1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 placement->num_busy_placement = 0; 106 return; 107 } 108 109 /* Object isn't an AMDGPU object so ignore */ 110 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 111 placement->placement = &placements; 112 placement->busy_placement = &placements; 113 placement->num_placement = 1; 114 placement->num_busy_placement = 1; 115 return; 116 } 117 118 abo = ttm_to_amdgpu_bo(bo); 119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 120 placement->num_placement = 0; 121 placement->num_busy_placement = 0; 122 return; 123 } 124 125 switch (bo->resource->mem_type) { 126 case AMDGPU_PL_GDS: 127 case AMDGPU_PL_GWS: 128 case AMDGPU_PL_OA: 129 case AMDGPU_PL_DOORBELL: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned int window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned int offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct amdgpu_job *job; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 202 return -EINVAL; 203 204 /* Map only what can't be accessed directly */ 205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 207 mm_cur->start; 208 return 0; 209 } 210 211 212 /* 213 * If start begins at an offset inside the page, then adjust the size 214 * and addr accordingly 215 */ 216 offset = mm_cur->start & ~PAGE_MASK; 217 218 num_pages = PFN_UP(*size + offset); 219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 220 221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 222 223 *addr = adev->gmc.gart_start; 224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 225 AMDGPU_GPU_PAGE_SIZE; 226 *addr += offset; 227 228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 230 231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 232 AMDGPU_FENCE_OWNER_UNDEFINED, 233 num_dw * 4 + num_bytes, 234 AMDGPU_IB_POOL_DELAYED, &job); 235 if (r) 236 return r; 237 238 src_addr = num_dw * 4; 239 src_addr += job->ibs[0].gpu_addr; 240 241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 244 dst_addr, num_bytes, false); 245 246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 247 WARN_ON(job->ibs[0].length_dw > num_dw); 248 249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 250 if (tmz) 251 flags |= AMDGPU_PTE_TMZ; 252 253 cpu_addr = &job->ibs[0].ptr[num_dw]; 254 255 if (mem->mem_type == TTM_PL_TT) { 256 dma_addr_t *dma_addr; 257 258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 268 flags, cpu_addr); 269 dma_address += PAGE_SIZE; 270 } 271 } 272 273 dma_fence_put(amdgpu_job_submit(job)); 274 return 0; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 300 struct amdgpu_res_cursor src_mm, dst_mm; 301 struct dma_fence *fence = NULL; 302 int r = 0; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 DRM_ERROR("Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, 332 resv, &next, false, true, tmz); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /* 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 413 * 414 * Called by amdgpu_bo_move() 415 */ 416 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 417 struct ttm_resource *mem) 418 { 419 u64 mem_size = (u64)mem->size; 420 struct amdgpu_res_cursor cursor; 421 u64 end; 422 423 if (mem->mem_type == TTM_PL_SYSTEM || 424 mem->mem_type == TTM_PL_TT) 425 return true; 426 if (mem->mem_type != TTM_PL_VRAM) 427 return false; 428 429 amdgpu_res_first(mem, 0, mem_size, &cursor); 430 end = cursor.start + cursor.size; 431 while (cursor.remaining) { 432 amdgpu_res_next(&cursor, cursor.size); 433 434 if (!cursor.remaining) 435 break; 436 437 /* ttm_resource_ioremap only supports contiguous memory */ 438 if (end != cursor.start) 439 return false; 440 441 end = cursor.start + cursor.size; 442 } 443 444 return end <= adev->gmc.visible_vram_size; 445 } 446 447 /* 448 * amdgpu_bo_move - Move a buffer object to a new memory location 449 * 450 * Called by ttm_bo_handle_move_mem() 451 */ 452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 453 struct ttm_operation_ctx *ctx, 454 struct ttm_resource *new_mem, 455 struct ttm_place *hop) 456 { 457 struct amdgpu_device *adev; 458 struct amdgpu_bo *abo; 459 struct ttm_resource *old_mem = bo->resource; 460 int r; 461 462 if (new_mem->mem_type == TTM_PL_TT || 463 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 465 if (r) 466 return r; 467 } 468 469 abo = ttm_to_amdgpu_bo(bo); 470 adev = amdgpu_ttm_adev(bo->bdev); 471 472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 473 bo->ttm == NULL)) { 474 ttm_bo_move_null(bo, new_mem); 475 goto out; 476 } 477 if (old_mem->mem_type == TTM_PL_SYSTEM && 478 (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 480 ttm_bo_move_null(bo, new_mem); 481 goto out; 482 } 483 if ((old_mem->mem_type == TTM_PL_TT || 484 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 485 new_mem->mem_type == TTM_PL_SYSTEM) { 486 r = ttm_bo_wait_ctx(bo, ctx); 487 if (r) 488 return r; 489 490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 491 ttm_resource_free(bo, &bo->resource); 492 ttm_bo_assign_mem(bo, new_mem); 493 goto out; 494 } 495 496 if (old_mem->mem_type == AMDGPU_PL_GDS || 497 old_mem->mem_type == AMDGPU_PL_GWS || 498 old_mem->mem_type == AMDGPU_PL_OA || 499 old_mem->mem_type == AMDGPU_PL_DOORBELL || 500 new_mem->mem_type == AMDGPU_PL_GDS || 501 new_mem->mem_type == AMDGPU_PL_GWS || 502 new_mem->mem_type == AMDGPU_PL_OA || 503 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 504 /* Nothing to save here */ 505 ttm_bo_move_null(bo, new_mem); 506 goto out; 507 } 508 509 if (bo->type == ttm_bo_type_device && 510 new_mem->mem_type == TTM_PL_VRAM && 511 old_mem->mem_type != TTM_PL_VRAM) { 512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 513 * accesses the BO after it's moved. 514 */ 515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 516 } 517 518 if (adev->mman.buffer_funcs_enabled) { 519 if (((old_mem->mem_type == TTM_PL_SYSTEM && 520 new_mem->mem_type == TTM_PL_VRAM) || 521 (old_mem->mem_type == TTM_PL_VRAM && 522 new_mem->mem_type == TTM_PL_SYSTEM))) { 523 hop->fpfn = 0; 524 hop->lpfn = 0; 525 hop->mem_type = TTM_PL_TT; 526 hop->flags = TTM_PL_FLAG_TEMPORARY; 527 return -EMULTIHOP; 528 } 529 530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 531 } else { 532 r = -ENODEV; 533 } 534 535 if (r) { 536 /* Check that all memory is CPU accessible */ 537 if (!amdgpu_mem_visible(adev, old_mem) || 538 !amdgpu_mem_visible(adev, new_mem)) { 539 pr_err("Move buffer fallback to memcpy unavailable\n"); 540 return r; 541 } 542 543 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 544 if (r) 545 return r; 546 } 547 548 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type); 549 out: 550 /* update statistics */ 551 atomic64_add(bo->base.size, &adev->num_bytes_moved); 552 amdgpu_bo_move_notify(bo, evict); 553 return 0; 554 } 555 556 /* 557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 558 * 559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 560 */ 561 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 562 struct ttm_resource *mem) 563 { 564 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 565 size_t bus_size = (size_t)mem->size; 566 567 switch (mem->mem_type) { 568 case TTM_PL_SYSTEM: 569 /* system memory */ 570 return 0; 571 case TTM_PL_TT: 572 case AMDGPU_PL_PREEMPT: 573 break; 574 case TTM_PL_VRAM: 575 mem->bus.offset = mem->start << PAGE_SHIFT; 576 /* check if it's visible */ 577 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 578 return -EINVAL; 579 580 if (adev->mman.aper_base_kaddr && 581 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 582 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 583 mem->bus.offset; 584 585 mem->bus.offset += adev->gmc.aper_base; 586 mem->bus.is_iomem = true; 587 break; 588 case AMDGPU_PL_DOORBELL: 589 mem->bus.offset = mem->start << PAGE_SHIFT; 590 mem->bus.offset += adev->doorbell.base; 591 mem->bus.is_iomem = true; 592 mem->bus.caching = ttm_uncached; 593 break; 594 default: 595 return -EINVAL; 596 } 597 return 0; 598 } 599 600 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 601 unsigned long page_offset) 602 { 603 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 604 struct amdgpu_res_cursor cursor; 605 606 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 607 &cursor); 608 609 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 610 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 611 612 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 613 } 614 615 /** 616 * amdgpu_ttm_domain_start - Returns GPU start address 617 * @adev: amdgpu device object 618 * @type: type of the memory 619 * 620 * Returns: 621 * GPU start address of a memory domain 622 */ 623 624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 625 { 626 switch (type) { 627 case TTM_PL_TT: 628 return adev->gmc.gart_start; 629 case TTM_PL_VRAM: 630 return adev->gmc.vram_start; 631 } 632 633 return 0; 634 } 635 636 /* 637 * TTM backend functions. 638 */ 639 struct amdgpu_ttm_tt { 640 struct ttm_tt ttm; 641 struct drm_gem_object *gobj; 642 u64 offset; 643 uint64_t userptr; 644 struct task_struct *usertask; 645 uint32_t userflags; 646 bool bound; 647 int32_t pool_id; 648 }; 649 650 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 651 652 #ifdef CONFIG_DRM_AMDGPU_USERPTR 653 /* 654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 655 * memory and start HMM tracking CPU page table update 656 * 657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 658 * once afterwards to stop HMM tracking 659 */ 660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 661 struct hmm_range **range) 662 { 663 struct ttm_tt *ttm = bo->tbo.ttm; 664 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 665 unsigned long start = gtt->userptr; 666 struct vm_area_struct *vma; 667 struct mm_struct *mm; 668 bool readonly; 669 int r = 0; 670 671 /* Make sure get_user_pages_done() can cleanup gracefully */ 672 *range = NULL; 673 674 mm = bo->notifier.mm; 675 if (unlikely(!mm)) { 676 DRM_DEBUG_DRIVER("BO is not registered?\n"); 677 return -EFAULT; 678 } 679 680 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 681 return -ESRCH; 682 683 mmap_read_lock(mm); 684 vma = vma_lookup(mm, start); 685 if (unlikely(!vma)) { 686 r = -EFAULT; 687 goto out_unlock; 688 } 689 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 690 vma->vm_file)) { 691 r = -EPERM; 692 goto out_unlock; 693 } 694 695 readonly = amdgpu_ttm_tt_is_readonly(ttm); 696 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 697 readonly, NULL, pages, range); 698 out_unlock: 699 mmap_read_unlock(mm); 700 if (r) 701 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 702 703 mmput(mm); 704 705 return r; 706 } 707 708 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 709 */ 710 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 711 struct hmm_range *range) 712 { 713 struct amdgpu_ttm_tt *gtt = (void *)ttm; 714 715 if (gtt && gtt->userptr && range) 716 amdgpu_hmm_range_get_pages_done(range); 717 } 718 719 /* 720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 721 * Check if the pages backing this ttm range have been invalidated 722 * 723 * Returns: true if pages are still valid 724 */ 725 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 726 struct hmm_range *range) 727 { 728 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 729 730 if (!gtt || !gtt->userptr || !range) 731 return false; 732 733 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 734 gtt->userptr, ttm->num_pages); 735 736 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 737 738 return !amdgpu_hmm_range_get_pages_done(range); 739 } 740 #endif 741 742 /* 743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 744 * 745 * Called by amdgpu_cs_list_validate(). This creates the page list 746 * that backs user memory and will ultimately be mapped into the device 747 * address space. 748 */ 749 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 750 { 751 unsigned long i; 752 753 for (i = 0; i < ttm->num_pages; ++i) 754 ttm->pages[i] = pages ? pages[i] : NULL; 755 } 756 757 /* 758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 759 * 760 * Called by amdgpu_ttm_backend_bind() 761 **/ 762 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 763 struct ttm_tt *ttm) 764 { 765 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 766 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 767 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 768 enum dma_data_direction direction = write ? 769 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 770 int r; 771 772 /* Allocate an SG array and squash pages into it */ 773 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 774 (u64)ttm->num_pages << PAGE_SHIFT, 775 GFP_KERNEL); 776 if (r) 777 goto release_sg; 778 779 /* Map SG to device */ 780 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 781 if (r) 782 goto release_sg; 783 784 /* convert SG to linear array of pages and dma addresses */ 785 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 786 ttm->num_pages); 787 788 return 0; 789 790 release_sg: 791 kfree(ttm->sg); 792 ttm->sg = NULL; 793 return r; 794 } 795 796 /* 797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 798 */ 799 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 800 struct ttm_tt *ttm) 801 { 802 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 803 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 804 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 805 enum dma_data_direction direction = write ? 806 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 807 808 /* double check that we don't free the table twice */ 809 if (!ttm->sg || !ttm->sg->sgl) 810 return; 811 812 /* unmap the pages mapped to the device */ 813 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 814 sg_free_table(ttm->sg); 815 } 816 817 /* 818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 819 * MQDn+CtrlStackn where n is the number of XCCs per partition. 820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 821 * and uses memory type default, UC. The rest of pages_per_xcc are 822 * Ctrl stack and modify their memory type to NC. 823 */ 824 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 825 struct ttm_tt *ttm, uint64_t flags) 826 { 827 struct amdgpu_ttm_tt *gtt = (void *)ttm; 828 uint64_t total_pages = ttm->num_pages; 829 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 830 uint64_t page_idx, pages_per_xcc; 831 int i; 832 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 833 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 834 835 pages_per_xcc = total_pages; 836 do_div(pages_per_xcc, num_xcc); 837 838 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 839 /* MQD page: use default flags */ 840 amdgpu_gart_bind(adev, 841 gtt->offset + (page_idx << PAGE_SHIFT), 842 1, >t->ttm.dma_address[page_idx], flags); 843 /* 844 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 845 * the second page of the BO onward. 846 */ 847 amdgpu_gart_bind(adev, 848 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 849 pages_per_xcc - 1, 850 >t->ttm.dma_address[page_idx + 1], 851 ctrl_flags); 852 } 853 } 854 855 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 856 struct ttm_buffer_object *tbo, 857 uint64_t flags) 858 { 859 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 860 struct ttm_tt *ttm = tbo->ttm; 861 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 862 863 if (amdgpu_bo_encrypted(abo)) 864 flags |= AMDGPU_PTE_TMZ; 865 866 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 867 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 868 } else { 869 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 870 gtt->ttm.dma_address, flags); 871 } 872 gtt->bound = true; 873 } 874 875 /* 876 * amdgpu_ttm_backend_bind - Bind GTT memory 877 * 878 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 879 * This handles binding GTT memory to the device address space. 880 */ 881 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 882 struct ttm_tt *ttm, 883 struct ttm_resource *bo_mem) 884 { 885 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 886 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 887 uint64_t flags; 888 int r; 889 890 if (!bo_mem) 891 return -EINVAL; 892 893 if (gtt->bound) 894 return 0; 895 896 if (gtt->userptr) { 897 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 898 if (r) { 899 DRM_ERROR("failed to pin userptr\n"); 900 return r; 901 } 902 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 903 if (!ttm->sg) { 904 struct dma_buf_attachment *attach; 905 struct sg_table *sgt; 906 907 attach = gtt->gobj->import_attach; 908 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 909 if (IS_ERR(sgt)) 910 return PTR_ERR(sgt); 911 912 ttm->sg = sgt; 913 } 914 915 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 916 ttm->num_pages); 917 } 918 919 if (!ttm->num_pages) { 920 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 921 ttm->num_pages, bo_mem, ttm); 922 } 923 924 if (bo_mem->mem_type != TTM_PL_TT || 925 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 926 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 927 return 0; 928 } 929 930 /* compute PTE flags relevant to this BO memory */ 931 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 932 933 /* bind pages into GART page tables */ 934 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 935 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 936 gtt->ttm.dma_address, flags); 937 gtt->bound = true; 938 return 0; 939 } 940 941 /* 942 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 943 * through AGP or GART aperture. 944 * 945 * If bo is accessible through AGP aperture, then use AGP aperture 946 * to access bo; otherwise allocate logical space in GART aperture 947 * and map bo to GART aperture. 948 */ 949 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 950 { 951 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 952 struct ttm_operation_ctx ctx = { false, false }; 953 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 954 struct ttm_placement placement; 955 struct ttm_place placements; 956 struct ttm_resource *tmp; 957 uint64_t addr, flags; 958 int r; 959 960 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 961 return 0; 962 963 addr = amdgpu_gmc_agp_addr(bo); 964 if (addr != AMDGPU_BO_INVALID_OFFSET) { 965 bo->resource->start = addr >> PAGE_SHIFT; 966 return 0; 967 } 968 969 /* allocate GART space */ 970 placement.num_placement = 1; 971 placement.placement = &placements; 972 placement.num_busy_placement = 1; 973 placement.busy_placement = &placements; 974 placements.fpfn = 0; 975 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 976 placements.mem_type = TTM_PL_TT; 977 placements.flags = bo->resource->placement; 978 979 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 980 if (unlikely(r)) 981 return r; 982 983 /* compute PTE flags for this buffer object */ 984 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 985 986 /* Bind pages */ 987 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 988 amdgpu_ttm_gart_bind(adev, bo, flags); 989 amdgpu_gart_invalidate_tlb(adev); 990 ttm_resource_free(bo, &bo->resource); 991 ttm_bo_assign_mem(bo, tmp); 992 993 return 0; 994 } 995 996 /* 997 * amdgpu_ttm_recover_gart - Rebind GTT pages 998 * 999 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1000 * rebind GTT pages during a GPU reset. 1001 */ 1002 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1003 { 1004 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1005 uint64_t flags; 1006 1007 if (!tbo->ttm) 1008 return; 1009 1010 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1011 amdgpu_ttm_gart_bind(adev, tbo, flags); 1012 } 1013 1014 /* 1015 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1016 * 1017 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1018 * ttm_tt_destroy(). 1019 */ 1020 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1021 struct ttm_tt *ttm) 1022 { 1023 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1024 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1025 1026 /* if the pages have userptr pinning then clear that first */ 1027 if (gtt->userptr) { 1028 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1029 } else if (ttm->sg && gtt->gobj->import_attach) { 1030 struct dma_buf_attachment *attach; 1031 1032 attach = gtt->gobj->import_attach; 1033 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1034 ttm->sg = NULL; 1035 } 1036 1037 if (!gtt->bound) 1038 return; 1039 1040 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1041 return; 1042 1043 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1044 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1045 gtt->bound = false; 1046 } 1047 1048 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1049 struct ttm_tt *ttm) 1050 { 1051 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1052 1053 if (gtt->usertask) 1054 put_task_struct(gtt->usertask); 1055 1056 ttm_tt_fini(>t->ttm); 1057 kfree(gtt); 1058 } 1059 1060 /** 1061 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1062 * 1063 * @bo: The buffer object to create a GTT ttm_tt object around 1064 * @page_flags: Page flags to be added to the ttm_tt object 1065 * 1066 * Called by ttm_tt_create(). 1067 */ 1068 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1069 uint32_t page_flags) 1070 { 1071 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1072 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1073 struct amdgpu_ttm_tt *gtt; 1074 enum ttm_caching caching; 1075 1076 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1077 if (!gtt) 1078 return NULL; 1079 1080 gtt->gobj = &bo->base; 1081 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1082 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1083 else 1084 gtt->pool_id = abo->xcp_id; 1085 1086 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1087 caching = ttm_write_combined; 1088 else 1089 caching = ttm_cached; 1090 1091 /* allocate space for the uninitialized page entries */ 1092 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1093 kfree(gtt); 1094 return NULL; 1095 } 1096 return >t->ttm; 1097 } 1098 1099 /* 1100 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1101 * 1102 * Map the pages of a ttm_tt object to an address space visible 1103 * to the underlying device. 1104 */ 1105 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1106 struct ttm_tt *ttm, 1107 struct ttm_operation_ctx *ctx) 1108 { 1109 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1110 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1111 struct ttm_pool *pool; 1112 pgoff_t i; 1113 int ret; 1114 1115 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1116 if (gtt->userptr) { 1117 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1118 if (!ttm->sg) 1119 return -ENOMEM; 1120 return 0; 1121 } 1122 1123 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1124 return 0; 1125 1126 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1127 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1128 else 1129 pool = &adev->mman.bdev.pool; 1130 ret = ttm_pool_alloc(pool, ttm, ctx); 1131 if (ret) 1132 return ret; 1133 1134 for (i = 0; i < ttm->num_pages; ++i) 1135 ttm->pages[i]->mapping = bdev->dev_mapping; 1136 1137 return 0; 1138 } 1139 1140 /* 1141 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1142 * 1143 * Unmaps pages of a ttm_tt object from the device address space and 1144 * unpopulates the page array backing it. 1145 */ 1146 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1147 struct ttm_tt *ttm) 1148 { 1149 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1150 struct amdgpu_device *adev; 1151 struct ttm_pool *pool; 1152 pgoff_t i; 1153 1154 amdgpu_ttm_backend_unbind(bdev, ttm); 1155 1156 if (gtt->userptr) { 1157 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1158 kfree(ttm->sg); 1159 ttm->sg = NULL; 1160 return; 1161 } 1162 1163 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1164 return; 1165 1166 for (i = 0; i < ttm->num_pages; ++i) 1167 ttm->pages[i]->mapping = NULL; 1168 1169 adev = amdgpu_ttm_adev(bdev); 1170 1171 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1172 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1173 else 1174 pool = &adev->mman.bdev.pool; 1175 1176 return ttm_pool_free(pool, ttm); 1177 } 1178 1179 /** 1180 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1181 * task 1182 * 1183 * @tbo: The ttm_buffer_object that contains the userptr 1184 * @user_addr: The returned value 1185 */ 1186 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1187 uint64_t *user_addr) 1188 { 1189 struct amdgpu_ttm_tt *gtt; 1190 1191 if (!tbo->ttm) 1192 return -EINVAL; 1193 1194 gtt = (void *)tbo->ttm; 1195 *user_addr = gtt->userptr; 1196 return 0; 1197 } 1198 1199 /** 1200 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1201 * task 1202 * 1203 * @bo: The ttm_buffer_object to bind this userptr to 1204 * @addr: The address in the current tasks VM space to use 1205 * @flags: Requirements of userptr object. 1206 * 1207 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1208 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1209 * initialize GPU VM for a KFD process. 1210 */ 1211 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1212 uint64_t addr, uint32_t flags) 1213 { 1214 struct amdgpu_ttm_tt *gtt; 1215 1216 if (!bo->ttm) { 1217 /* TODO: We want a separate TTM object type for userptrs */ 1218 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1219 if (bo->ttm == NULL) 1220 return -ENOMEM; 1221 } 1222 1223 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1224 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1225 1226 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1227 gtt->userptr = addr; 1228 gtt->userflags = flags; 1229 1230 if (gtt->usertask) 1231 put_task_struct(gtt->usertask); 1232 gtt->usertask = current->group_leader; 1233 get_task_struct(gtt->usertask); 1234 1235 return 0; 1236 } 1237 1238 /* 1239 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1240 */ 1241 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1242 { 1243 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1244 1245 if (gtt == NULL) 1246 return NULL; 1247 1248 if (gtt->usertask == NULL) 1249 return NULL; 1250 1251 return gtt->usertask->mm; 1252 } 1253 1254 /* 1255 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1256 * address range for the current task. 1257 * 1258 */ 1259 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1260 unsigned long end, unsigned long *userptr) 1261 { 1262 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1263 unsigned long size; 1264 1265 if (gtt == NULL || !gtt->userptr) 1266 return false; 1267 1268 /* Return false if no part of the ttm_tt object lies within 1269 * the range 1270 */ 1271 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1272 if (gtt->userptr > end || gtt->userptr + size <= start) 1273 return false; 1274 1275 if (userptr) 1276 *userptr = gtt->userptr; 1277 return true; 1278 } 1279 1280 /* 1281 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1282 */ 1283 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1284 { 1285 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1286 1287 if (gtt == NULL || !gtt->userptr) 1288 return false; 1289 1290 return true; 1291 } 1292 1293 /* 1294 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1295 */ 1296 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1297 { 1298 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1299 1300 if (gtt == NULL) 1301 return false; 1302 1303 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1304 } 1305 1306 /** 1307 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1308 * 1309 * @ttm: The ttm_tt object to compute the flags for 1310 * @mem: The memory registry backing this ttm_tt object 1311 * 1312 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1313 */ 1314 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1315 { 1316 uint64_t flags = 0; 1317 1318 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1319 flags |= AMDGPU_PTE_VALID; 1320 1321 if (mem && (mem->mem_type == TTM_PL_TT || 1322 mem->mem_type == AMDGPU_PL_DOORBELL || 1323 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1324 flags |= AMDGPU_PTE_SYSTEM; 1325 1326 if (ttm->caching == ttm_cached) 1327 flags |= AMDGPU_PTE_SNOOPED; 1328 } 1329 1330 if (mem && mem->mem_type == TTM_PL_VRAM && 1331 mem->bus.caching == ttm_cached) 1332 flags |= AMDGPU_PTE_SNOOPED; 1333 1334 return flags; 1335 } 1336 1337 /** 1338 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1339 * 1340 * @adev: amdgpu_device pointer 1341 * @ttm: The ttm_tt object to compute the flags for 1342 * @mem: The memory registry backing this ttm_tt object 1343 * 1344 * Figure out the flags to use for a VM PTE (Page Table Entry). 1345 */ 1346 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1347 struct ttm_resource *mem) 1348 { 1349 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1350 1351 flags |= adev->gart.gart_pte_flags; 1352 flags |= AMDGPU_PTE_READABLE; 1353 1354 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1355 flags |= AMDGPU_PTE_WRITEABLE; 1356 1357 return flags; 1358 } 1359 1360 /* 1361 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1362 * object. 1363 * 1364 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1365 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1366 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1367 * used to clean out a memory space. 1368 */ 1369 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1370 const struct ttm_place *place) 1371 { 1372 struct dma_resv_iter resv_cursor; 1373 struct dma_fence *f; 1374 1375 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1376 return ttm_bo_eviction_valuable(bo, place); 1377 1378 /* Swapout? */ 1379 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1380 return true; 1381 1382 if (bo->type == ttm_bo_type_kernel && 1383 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1384 return false; 1385 1386 /* If bo is a KFD BO, check if the bo belongs to the current process. 1387 * If true, then return false as any KFD process needs all its BOs to 1388 * be resident to run successfully 1389 */ 1390 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1391 DMA_RESV_USAGE_BOOKKEEP, f) { 1392 if (amdkfd_fence_check_mm(f, current->mm)) 1393 return false; 1394 } 1395 1396 /* Preemptible BOs don't own system resources managed by the 1397 * driver (pages, VRAM, GART space). They point to resources 1398 * owned by someone else (e.g. pageable memory in user mode 1399 * or a DMABuf). They are used in a preemptible context so we 1400 * can guarantee no deadlocks and good QoS in case of MMU 1401 * notifiers or DMABuf move notifiers from the resource owner. 1402 */ 1403 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1404 return false; 1405 1406 if (bo->resource->mem_type == TTM_PL_TT && 1407 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1408 return false; 1409 1410 return ttm_bo_eviction_valuable(bo, place); 1411 } 1412 1413 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1414 void *buf, size_t size, bool write) 1415 { 1416 while (size) { 1417 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1418 uint64_t bytes = 4 - (pos & 0x3); 1419 uint32_t shift = (pos & 0x3) * 8; 1420 uint32_t mask = 0xffffffff << shift; 1421 uint32_t value = 0; 1422 1423 if (size < bytes) { 1424 mask &= 0xffffffff >> (bytes - size) * 8; 1425 bytes = size; 1426 } 1427 1428 if (mask != 0xffffffff) { 1429 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1430 if (write) { 1431 value &= ~mask; 1432 value |= (*(uint32_t *)buf << shift) & mask; 1433 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1434 } else { 1435 value = (value & mask) >> shift; 1436 memcpy(buf, &value, bytes); 1437 } 1438 } else { 1439 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1440 } 1441 1442 pos += bytes; 1443 buf += bytes; 1444 size -= bytes; 1445 } 1446 } 1447 1448 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1449 unsigned long offset, void *buf, 1450 int len, int write) 1451 { 1452 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1453 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1454 struct amdgpu_res_cursor src_mm; 1455 struct amdgpu_job *job; 1456 struct dma_fence *fence; 1457 uint64_t src_addr, dst_addr; 1458 unsigned int num_dw; 1459 int r, idx; 1460 1461 if (len != PAGE_SIZE) 1462 return -EINVAL; 1463 1464 if (!adev->mman.sdma_access_ptr) 1465 return -EACCES; 1466 1467 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1468 return -ENODEV; 1469 1470 if (write) 1471 memcpy(adev->mman.sdma_access_ptr, buf, len); 1472 1473 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1474 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1475 AMDGPU_FENCE_OWNER_UNDEFINED, 1476 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1477 &job); 1478 if (r) 1479 goto out; 1480 1481 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1482 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1483 src_mm.start; 1484 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1485 if (write) 1486 swap(src_addr, dst_addr); 1487 1488 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1489 PAGE_SIZE, false); 1490 1491 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1492 WARN_ON(job->ibs[0].length_dw > num_dw); 1493 1494 fence = amdgpu_job_submit(job); 1495 1496 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1497 r = -ETIMEDOUT; 1498 dma_fence_put(fence); 1499 1500 if (!(r || write)) 1501 memcpy(buf, adev->mman.sdma_access_ptr, len); 1502 out: 1503 drm_dev_exit(idx); 1504 return r; 1505 } 1506 1507 /** 1508 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1509 * 1510 * @bo: The buffer object to read/write 1511 * @offset: Offset into buffer object 1512 * @buf: Secondary buffer to write/read from 1513 * @len: Length in bytes of access 1514 * @write: true if writing 1515 * 1516 * This is used to access VRAM that backs a buffer object via MMIO 1517 * access for debugging purposes. 1518 */ 1519 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1520 unsigned long offset, void *buf, int len, 1521 int write) 1522 { 1523 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1524 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1525 struct amdgpu_res_cursor cursor; 1526 int ret = 0; 1527 1528 if (bo->resource->mem_type != TTM_PL_VRAM) 1529 return -EIO; 1530 1531 if (amdgpu_device_has_timeouts_enabled(adev) && 1532 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1533 return len; 1534 1535 amdgpu_res_first(bo->resource, offset, len, &cursor); 1536 while (cursor.remaining) { 1537 size_t count, size = cursor.size; 1538 loff_t pos = cursor.start; 1539 1540 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1541 size -= count; 1542 if (size) { 1543 /* using MM to access rest vram and handle un-aligned address */ 1544 pos += count; 1545 buf += count; 1546 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1547 } 1548 1549 ret += cursor.size; 1550 buf += cursor.size; 1551 amdgpu_res_next(&cursor, cursor.size); 1552 } 1553 1554 return ret; 1555 } 1556 1557 static void 1558 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1559 { 1560 amdgpu_bo_move_notify(bo, false); 1561 } 1562 1563 static struct ttm_device_funcs amdgpu_bo_driver = { 1564 .ttm_tt_create = &amdgpu_ttm_tt_create, 1565 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1566 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1567 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1568 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1569 .evict_flags = &amdgpu_evict_flags, 1570 .move = &amdgpu_bo_move, 1571 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1572 .release_notify = &amdgpu_bo_release_notify, 1573 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1574 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1575 .access_memory = &amdgpu_ttm_access_memory, 1576 }; 1577 1578 /* 1579 * Firmware Reservation functions 1580 */ 1581 /** 1582 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1583 * 1584 * @adev: amdgpu_device pointer 1585 * 1586 * free fw reserved vram if it has been reserved. 1587 */ 1588 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1589 { 1590 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1591 NULL, &adev->mman.fw_vram_usage_va); 1592 } 1593 1594 /* 1595 * Driver Reservation functions 1596 */ 1597 /** 1598 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1599 * 1600 * @adev: amdgpu_device pointer 1601 * 1602 * free drv reserved vram if it has been reserved. 1603 */ 1604 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1605 { 1606 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1607 NULL, 1608 &adev->mman.drv_vram_usage_va); 1609 } 1610 1611 /** 1612 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1613 * 1614 * @adev: amdgpu_device pointer 1615 * 1616 * create bo vram reservation from fw. 1617 */ 1618 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1619 { 1620 uint64_t vram_size = adev->gmc.visible_vram_size; 1621 1622 adev->mman.fw_vram_usage_va = NULL; 1623 adev->mman.fw_vram_usage_reserved_bo = NULL; 1624 1625 if (adev->mman.fw_vram_usage_size == 0 || 1626 adev->mman.fw_vram_usage_size > vram_size) 1627 return 0; 1628 1629 return amdgpu_bo_create_kernel_at(adev, 1630 adev->mman.fw_vram_usage_start_offset, 1631 adev->mman.fw_vram_usage_size, 1632 &adev->mman.fw_vram_usage_reserved_bo, 1633 &adev->mman.fw_vram_usage_va); 1634 } 1635 1636 /** 1637 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1638 * 1639 * @adev: amdgpu_device pointer 1640 * 1641 * create bo vram reservation from drv. 1642 */ 1643 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1644 { 1645 u64 vram_size = adev->gmc.visible_vram_size; 1646 1647 adev->mman.drv_vram_usage_va = NULL; 1648 adev->mman.drv_vram_usage_reserved_bo = NULL; 1649 1650 if (adev->mman.drv_vram_usage_size == 0 || 1651 adev->mman.drv_vram_usage_size > vram_size) 1652 return 0; 1653 1654 return amdgpu_bo_create_kernel_at(adev, 1655 adev->mman.drv_vram_usage_start_offset, 1656 adev->mman.drv_vram_usage_size, 1657 &adev->mman.drv_vram_usage_reserved_bo, 1658 &adev->mman.drv_vram_usage_va); 1659 } 1660 1661 /* 1662 * Memoy training reservation functions 1663 */ 1664 1665 /** 1666 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1667 * 1668 * @adev: amdgpu_device pointer 1669 * 1670 * free memory training reserved vram if it has been reserved. 1671 */ 1672 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1673 { 1674 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1675 1676 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1677 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1678 ctx->c2p_bo = NULL; 1679 1680 return 0; 1681 } 1682 1683 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1684 uint32_t reserve_size) 1685 { 1686 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1687 1688 memset(ctx, 0, sizeof(*ctx)); 1689 1690 ctx->c2p_train_data_offset = 1691 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1692 ctx->p2c_train_data_offset = 1693 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1694 ctx->train_data_size = 1695 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1696 1697 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1698 ctx->train_data_size, 1699 ctx->p2c_train_data_offset, 1700 ctx->c2p_train_data_offset); 1701 } 1702 1703 /* 1704 * reserve TMR memory at the top of VRAM which holds 1705 * IP Discovery data and is protected by PSP. 1706 */ 1707 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1708 { 1709 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1710 bool mem_train_support = false; 1711 uint32_t reserve_size = 0; 1712 int ret; 1713 1714 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1715 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1716 mem_train_support = true; 1717 else 1718 DRM_DEBUG("memory training does not support!\n"); 1719 } 1720 1721 /* 1722 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1723 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1724 * 1725 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1726 * discovery data and G6 memory training data respectively 1727 */ 1728 if (adev->bios) 1729 reserve_size = 1730 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1731 1732 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3)) 1733 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1734 else if (!reserve_size) 1735 reserve_size = DISCOVERY_TMR_OFFSET; 1736 1737 if (mem_train_support) { 1738 /* reserve vram for mem train according to TMR location */ 1739 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1740 ret = amdgpu_bo_create_kernel_at(adev, 1741 ctx->c2p_train_data_offset, 1742 ctx->train_data_size, 1743 &ctx->c2p_bo, 1744 NULL); 1745 if (ret) { 1746 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1747 amdgpu_ttm_training_reserve_vram_fini(adev); 1748 return ret; 1749 } 1750 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1751 } 1752 1753 if (!adev->gmc.is_app_apu) { 1754 ret = amdgpu_bo_create_kernel_at( 1755 adev, adev->gmc.real_vram_size - reserve_size, 1756 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1757 if (ret) { 1758 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1759 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1760 NULL, NULL); 1761 return ret; 1762 } 1763 } else { 1764 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1765 } 1766 1767 return 0; 1768 } 1769 1770 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1771 { 1772 int i; 1773 1774 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1775 return 0; 1776 1777 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1778 sizeof(*adev->mman.ttm_pools), 1779 GFP_KERNEL); 1780 if (!adev->mman.ttm_pools) 1781 return -ENOMEM; 1782 1783 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1784 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1785 adev->gmc.mem_partitions[i].numa.node, 1786 false, false); 1787 } 1788 return 0; 1789 } 1790 1791 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1792 { 1793 int i; 1794 1795 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1796 return; 1797 1798 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1799 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1800 1801 kfree(adev->mman.ttm_pools); 1802 adev->mman.ttm_pools = NULL; 1803 } 1804 1805 /* 1806 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1807 * gtt/vram related fields. 1808 * 1809 * This initializes all of the memory space pools that the TTM layer 1810 * will need such as the GTT space (system memory mapped to the device), 1811 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1812 * can be mapped per VMID. 1813 */ 1814 int amdgpu_ttm_init(struct amdgpu_device *adev) 1815 { 1816 uint64_t gtt_size; 1817 int r; 1818 1819 mutex_init(&adev->mman.gtt_window_lock); 1820 1821 /* No others user of address space so set it to 0 */ 1822 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1823 adev_to_drm(adev)->anon_inode->i_mapping, 1824 adev_to_drm(adev)->vma_offset_manager, 1825 adev->need_swiotlb, 1826 dma_addressing_limited(adev->dev)); 1827 if (r) { 1828 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1829 return r; 1830 } 1831 1832 r = amdgpu_ttm_pools_init(adev); 1833 if (r) { 1834 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1835 return r; 1836 } 1837 adev->mman.initialized = true; 1838 1839 /* Initialize VRAM pool with all of VRAM divided into pages */ 1840 r = amdgpu_vram_mgr_init(adev); 1841 if (r) { 1842 DRM_ERROR("Failed initializing VRAM heap.\n"); 1843 return r; 1844 } 1845 1846 /* Change the size here instead of the init above so only lpfn is affected */ 1847 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1848 #ifdef CONFIG_64BIT 1849 #ifdef CONFIG_X86 1850 if (adev->gmc.xgmi.connected_to_cpu) 1851 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1852 adev->gmc.visible_vram_size); 1853 1854 else if (adev->gmc.is_app_apu) 1855 DRM_DEBUG_DRIVER( 1856 "No need to ioremap when real vram size is 0\n"); 1857 else 1858 #endif 1859 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1860 adev->gmc.visible_vram_size); 1861 #endif 1862 1863 /* 1864 *The reserved vram for firmware must be pinned to the specified 1865 *place on the VRAM, so reserve it early. 1866 */ 1867 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1868 if (r) 1869 return r; 1870 1871 /* 1872 *The reserved vram for driver must be pinned to the specified 1873 *place on the VRAM, so reserve it early. 1874 */ 1875 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1876 if (r) 1877 return r; 1878 1879 /* 1880 * only NAVI10 and onwards ASIC support for IP discovery. 1881 * If IP discovery enabled, a block of memory should be 1882 * reserved for IP discovey. 1883 */ 1884 if (adev->mman.discovery_bin) { 1885 r = amdgpu_ttm_reserve_tmr(adev); 1886 if (r) 1887 return r; 1888 } 1889 1890 /* allocate memory as required for VGA 1891 * This is used for VGA emulation and pre-OS scanout buffers to 1892 * avoid display artifacts while transitioning between pre-OS 1893 * and driver. 1894 */ 1895 if (!adev->gmc.is_app_apu) { 1896 r = amdgpu_bo_create_kernel_at(adev, 0, 1897 adev->mman.stolen_vga_size, 1898 &adev->mman.stolen_vga_memory, 1899 NULL); 1900 if (r) 1901 return r; 1902 1903 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1904 adev->mman.stolen_extended_size, 1905 &adev->mman.stolen_extended_memory, 1906 NULL); 1907 1908 if (r) 1909 return r; 1910 1911 r = amdgpu_bo_create_kernel_at(adev, 1912 adev->mman.stolen_reserved_offset, 1913 adev->mman.stolen_reserved_size, 1914 &adev->mman.stolen_reserved_memory, 1915 NULL); 1916 if (r) 1917 return r; 1918 } else { 1919 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1920 } 1921 1922 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1923 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1924 1925 /* Compute GTT size, either based on TTM limit 1926 * or whatever the user passed on module init. 1927 */ 1928 if (amdgpu_gtt_size == -1) 1929 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1930 else 1931 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1932 1933 /* Initialize GTT memory pool */ 1934 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1935 if (r) { 1936 DRM_ERROR("Failed initializing GTT heap.\n"); 1937 return r; 1938 } 1939 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1940 (unsigned int)(gtt_size / (1024 * 1024))); 1941 1942 /* Initiailize doorbell pool on PCI BAR */ 1943 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1944 if (r) { 1945 DRM_ERROR("Failed initializing doorbell heap.\n"); 1946 return r; 1947 } 1948 1949 /* Create a boorbell page for kernel usages */ 1950 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1951 if (r) { 1952 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1953 return r; 1954 } 1955 1956 /* Initialize preemptible memory pool */ 1957 r = amdgpu_preempt_mgr_init(adev); 1958 if (r) { 1959 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1960 return r; 1961 } 1962 1963 /* Initialize various on-chip memory pools */ 1964 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1965 if (r) { 1966 DRM_ERROR("Failed initializing GDS heap.\n"); 1967 return r; 1968 } 1969 1970 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1971 if (r) { 1972 DRM_ERROR("Failed initializing gws heap.\n"); 1973 return r; 1974 } 1975 1976 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1977 if (r) { 1978 DRM_ERROR("Failed initializing oa heap.\n"); 1979 return r; 1980 } 1981 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1982 AMDGPU_GEM_DOMAIN_GTT, 1983 &adev->mman.sdma_access_bo, NULL, 1984 &adev->mman.sdma_access_ptr)) 1985 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1986 1987 return 0; 1988 } 1989 1990 /* 1991 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1992 */ 1993 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1994 { 1995 int idx; 1996 1997 if (!adev->mman.initialized) 1998 return; 1999 2000 amdgpu_ttm_pools_fini(adev); 2001 2002 amdgpu_ttm_training_reserve_vram_fini(adev); 2003 /* return the stolen vga memory back to VRAM */ 2004 if (!adev->gmc.is_app_apu) { 2005 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2006 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2007 /* return the FW reserved memory back to VRAM */ 2008 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2009 NULL); 2010 if (adev->mman.stolen_reserved_size) 2011 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2012 NULL, NULL); 2013 } 2014 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2015 &adev->mman.sdma_access_ptr); 2016 amdgpu_ttm_fw_reserve_vram_fini(adev); 2017 amdgpu_ttm_drv_reserve_vram_fini(adev); 2018 2019 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2020 2021 if (adev->mman.aper_base_kaddr) 2022 iounmap(adev->mman.aper_base_kaddr); 2023 adev->mman.aper_base_kaddr = NULL; 2024 2025 drm_dev_exit(idx); 2026 } 2027 2028 amdgpu_vram_mgr_fini(adev); 2029 amdgpu_gtt_mgr_fini(adev); 2030 amdgpu_preempt_mgr_fini(adev); 2031 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2032 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2033 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2034 ttm_device_fini(&adev->mman.bdev); 2035 adev->mman.initialized = false; 2036 DRM_INFO("amdgpu: ttm finalized\n"); 2037 } 2038 2039 /** 2040 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2041 * 2042 * @adev: amdgpu_device pointer 2043 * @enable: true when we can use buffer functions. 2044 * 2045 * Enable/disable use of buffer functions during suspend/resume. This should 2046 * only be called at bootup or when userspace isn't running. 2047 */ 2048 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2049 { 2050 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2051 uint64_t size; 2052 int r; 2053 2054 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2055 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2056 return; 2057 2058 if (enable) { 2059 struct amdgpu_ring *ring; 2060 struct drm_gpu_scheduler *sched; 2061 2062 ring = adev->mman.buffer_funcs_ring; 2063 sched = &ring->sched; 2064 r = drm_sched_entity_init(&adev->mman.high_pr, 2065 DRM_SCHED_PRIORITY_KERNEL, &sched, 2066 1, NULL); 2067 if (r) { 2068 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2069 r); 2070 return; 2071 } 2072 2073 r = drm_sched_entity_init(&adev->mman.low_pr, 2074 DRM_SCHED_PRIORITY_NORMAL, &sched, 2075 1, NULL); 2076 if (r) { 2077 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2078 r); 2079 goto error_free_entity; 2080 } 2081 } else { 2082 drm_sched_entity_destroy(&adev->mman.high_pr); 2083 drm_sched_entity_destroy(&adev->mman.low_pr); 2084 dma_fence_put(man->move); 2085 man->move = NULL; 2086 } 2087 2088 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2089 if (enable) 2090 size = adev->gmc.real_vram_size; 2091 else 2092 size = adev->gmc.visible_vram_size; 2093 man->size = size; 2094 adev->mman.buffer_funcs_enabled = enable; 2095 2096 return; 2097 2098 error_free_entity: 2099 drm_sched_entity_destroy(&adev->mman.high_pr); 2100 } 2101 2102 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2103 bool direct_submit, 2104 unsigned int num_dw, 2105 struct dma_resv *resv, 2106 bool vm_needs_flush, 2107 struct amdgpu_job **job, 2108 bool delayed) 2109 { 2110 enum amdgpu_ib_pool_type pool = direct_submit ? 2111 AMDGPU_IB_POOL_DIRECT : 2112 AMDGPU_IB_POOL_DELAYED; 2113 int r; 2114 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2115 &adev->mman.high_pr; 2116 r = amdgpu_job_alloc_with_ib(adev, entity, 2117 AMDGPU_FENCE_OWNER_UNDEFINED, 2118 num_dw * 4, pool, job); 2119 if (r) 2120 return r; 2121 2122 if (vm_needs_flush) { 2123 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2124 adev->gmc.pdb0_bo : 2125 adev->gart.bo); 2126 (*job)->vm_needs_flush = true; 2127 } 2128 if (!resv) 2129 return 0; 2130 2131 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2132 DMA_RESV_USAGE_BOOKKEEP); 2133 } 2134 2135 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2136 uint64_t dst_offset, uint32_t byte_count, 2137 struct dma_resv *resv, 2138 struct dma_fence **fence, bool direct_submit, 2139 bool vm_needs_flush, bool tmz) 2140 { 2141 struct amdgpu_device *adev = ring->adev; 2142 unsigned int num_loops, num_dw; 2143 struct amdgpu_job *job; 2144 uint32_t max_bytes; 2145 unsigned int i; 2146 int r; 2147 2148 if (!direct_submit && !ring->sched.ready) { 2149 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2150 return -EINVAL; 2151 } 2152 2153 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2154 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2155 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2156 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2157 resv, vm_needs_flush, &job, false); 2158 if (r) 2159 return r; 2160 2161 for (i = 0; i < num_loops; i++) { 2162 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2163 2164 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2165 dst_offset, cur_size_in_bytes, tmz); 2166 2167 src_offset += cur_size_in_bytes; 2168 dst_offset += cur_size_in_bytes; 2169 byte_count -= cur_size_in_bytes; 2170 } 2171 2172 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2173 WARN_ON(job->ibs[0].length_dw > num_dw); 2174 if (direct_submit) 2175 r = amdgpu_job_submit_direct(job, ring, fence); 2176 else 2177 *fence = amdgpu_job_submit(job); 2178 if (r) 2179 goto error_free; 2180 2181 return r; 2182 2183 error_free: 2184 amdgpu_job_free(job); 2185 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2186 return r; 2187 } 2188 2189 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2190 uint64_t dst_addr, uint32_t byte_count, 2191 struct dma_resv *resv, 2192 struct dma_fence **fence, 2193 bool vm_needs_flush, bool delayed) 2194 { 2195 struct amdgpu_device *adev = ring->adev; 2196 unsigned int num_loops, num_dw; 2197 struct amdgpu_job *job; 2198 uint32_t max_bytes; 2199 unsigned int i; 2200 int r; 2201 2202 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2203 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2204 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2205 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2206 &job, delayed); 2207 if (r) 2208 return r; 2209 2210 for (i = 0; i < num_loops; i++) { 2211 uint32_t cur_size = min(byte_count, max_bytes); 2212 2213 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2214 cur_size); 2215 2216 dst_addr += cur_size; 2217 byte_count -= cur_size; 2218 } 2219 2220 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2221 WARN_ON(job->ibs[0].length_dw > num_dw); 2222 *fence = amdgpu_job_submit(job); 2223 return 0; 2224 } 2225 2226 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2227 uint32_t src_data, 2228 struct dma_resv *resv, 2229 struct dma_fence **f, 2230 bool delayed) 2231 { 2232 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2233 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2234 struct dma_fence *fence = NULL; 2235 struct amdgpu_res_cursor dst; 2236 int r; 2237 2238 if (!adev->mman.buffer_funcs_enabled) { 2239 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2240 return -EINVAL; 2241 } 2242 2243 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2244 2245 mutex_lock(&adev->mman.gtt_window_lock); 2246 while (dst.remaining) { 2247 struct dma_fence *next; 2248 uint64_t cur_size, to; 2249 2250 /* Never fill more than 256MiB at once to avoid timeouts */ 2251 cur_size = min(dst.size, 256ULL << 20); 2252 2253 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2254 1, ring, false, &cur_size, &to); 2255 if (r) 2256 goto error; 2257 2258 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2259 &next, true, delayed); 2260 if (r) 2261 goto error; 2262 2263 dma_fence_put(fence); 2264 fence = next; 2265 2266 amdgpu_res_next(&dst, cur_size); 2267 } 2268 error: 2269 mutex_unlock(&adev->mman.gtt_window_lock); 2270 if (f) 2271 *f = dma_fence_get(fence); 2272 dma_fence_put(fence); 2273 return r; 2274 } 2275 2276 /** 2277 * amdgpu_ttm_evict_resources - evict memory buffers 2278 * @adev: amdgpu device object 2279 * @mem_type: evicted BO's memory type 2280 * 2281 * Evicts all @mem_type buffers on the lru list of the memory type. 2282 * 2283 * Returns: 2284 * 0 for success or a negative error code on failure. 2285 */ 2286 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2287 { 2288 struct ttm_resource_manager *man; 2289 2290 switch (mem_type) { 2291 case TTM_PL_VRAM: 2292 case TTM_PL_TT: 2293 case AMDGPU_PL_GWS: 2294 case AMDGPU_PL_GDS: 2295 case AMDGPU_PL_OA: 2296 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2297 break; 2298 default: 2299 DRM_ERROR("Trying to evict invalid memory type\n"); 2300 return -EINVAL; 2301 } 2302 2303 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2304 } 2305 2306 #if defined(CONFIG_DEBUG_FS) 2307 2308 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2309 { 2310 struct amdgpu_device *adev = m->private; 2311 2312 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2313 } 2314 2315 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2316 2317 /* 2318 * amdgpu_ttm_vram_read - Linear read access to VRAM 2319 * 2320 * Accesses VRAM via MMIO for debugging purposes. 2321 */ 2322 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2323 size_t size, loff_t *pos) 2324 { 2325 struct amdgpu_device *adev = file_inode(f)->i_private; 2326 ssize_t result = 0; 2327 2328 if (size & 0x3 || *pos & 0x3) 2329 return -EINVAL; 2330 2331 if (*pos >= adev->gmc.mc_vram_size) 2332 return -ENXIO; 2333 2334 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2335 while (size) { 2336 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2337 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2338 2339 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2340 if (copy_to_user(buf, value, bytes)) 2341 return -EFAULT; 2342 2343 result += bytes; 2344 buf += bytes; 2345 *pos += bytes; 2346 size -= bytes; 2347 } 2348 2349 return result; 2350 } 2351 2352 /* 2353 * amdgpu_ttm_vram_write - Linear write access to VRAM 2354 * 2355 * Accesses VRAM via MMIO for debugging purposes. 2356 */ 2357 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2358 size_t size, loff_t *pos) 2359 { 2360 struct amdgpu_device *adev = file_inode(f)->i_private; 2361 ssize_t result = 0; 2362 int r; 2363 2364 if (size & 0x3 || *pos & 0x3) 2365 return -EINVAL; 2366 2367 if (*pos >= adev->gmc.mc_vram_size) 2368 return -ENXIO; 2369 2370 while (size) { 2371 uint32_t value; 2372 2373 if (*pos >= adev->gmc.mc_vram_size) 2374 return result; 2375 2376 r = get_user(value, (uint32_t *)buf); 2377 if (r) 2378 return r; 2379 2380 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2381 2382 result += 4; 2383 buf += 4; 2384 *pos += 4; 2385 size -= 4; 2386 } 2387 2388 return result; 2389 } 2390 2391 static const struct file_operations amdgpu_ttm_vram_fops = { 2392 .owner = THIS_MODULE, 2393 .read = amdgpu_ttm_vram_read, 2394 .write = amdgpu_ttm_vram_write, 2395 .llseek = default_llseek, 2396 }; 2397 2398 /* 2399 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2400 * 2401 * This function is used to read memory that has been mapped to the 2402 * GPU and the known addresses are not physical addresses but instead 2403 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2404 */ 2405 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2406 size_t size, loff_t *pos) 2407 { 2408 struct amdgpu_device *adev = file_inode(f)->i_private; 2409 struct iommu_domain *dom; 2410 ssize_t result = 0; 2411 int r; 2412 2413 /* retrieve the IOMMU domain if any for this device */ 2414 dom = iommu_get_domain_for_dev(adev->dev); 2415 2416 while (size) { 2417 phys_addr_t addr = *pos & PAGE_MASK; 2418 loff_t off = *pos & ~PAGE_MASK; 2419 size_t bytes = PAGE_SIZE - off; 2420 unsigned long pfn; 2421 struct page *p; 2422 void *ptr; 2423 2424 bytes = min(bytes, size); 2425 2426 /* Translate the bus address to a physical address. If 2427 * the domain is NULL it means there is no IOMMU active 2428 * and the address translation is the identity 2429 */ 2430 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2431 2432 pfn = addr >> PAGE_SHIFT; 2433 if (!pfn_valid(pfn)) 2434 return -EPERM; 2435 2436 p = pfn_to_page(pfn); 2437 if (p->mapping != adev->mman.bdev.dev_mapping) 2438 return -EPERM; 2439 2440 ptr = kmap_local_page(p); 2441 r = copy_to_user(buf, ptr + off, bytes); 2442 kunmap_local(ptr); 2443 if (r) 2444 return -EFAULT; 2445 2446 size -= bytes; 2447 *pos += bytes; 2448 result += bytes; 2449 } 2450 2451 return result; 2452 } 2453 2454 /* 2455 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2456 * 2457 * This function is used to write memory that has been mapped to the 2458 * GPU and the known addresses are not physical addresses but instead 2459 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2460 */ 2461 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2462 size_t size, loff_t *pos) 2463 { 2464 struct amdgpu_device *adev = file_inode(f)->i_private; 2465 struct iommu_domain *dom; 2466 ssize_t result = 0; 2467 int r; 2468 2469 dom = iommu_get_domain_for_dev(adev->dev); 2470 2471 while (size) { 2472 phys_addr_t addr = *pos & PAGE_MASK; 2473 loff_t off = *pos & ~PAGE_MASK; 2474 size_t bytes = PAGE_SIZE - off; 2475 unsigned long pfn; 2476 struct page *p; 2477 void *ptr; 2478 2479 bytes = min(bytes, size); 2480 2481 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2482 2483 pfn = addr >> PAGE_SHIFT; 2484 if (!pfn_valid(pfn)) 2485 return -EPERM; 2486 2487 p = pfn_to_page(pfn); 2488 if (p->mapping != adev->mman.bdev.dev_mapping) 2489 return -EPERM; 2490 2491 ptr = kmap_local_page(p); 2492 r = copy_from_user(ptr + off, buf, bytes); 2493 kunmap_local(ptr); 2494 if (r) 2495 return -EFAULT; 2496 2497 size -= bytes; 2498 *pos += bytes; 2499 result += bytes; 2500 } 2501 2502 return result; 2503 } 2504 2505 static const struct file_operations amdgpu_ttm_iomem_fops = { 2506 .owner = THIS_MODULE, 2507 .read = amdgpu_iomem_read, 2508 .write = amdgpu_iomem_write, 2509 .llseek = default_llseek 2510 }; 2511 2512 #endif 2513 2514 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2515 { 2516 #if defined(CONFIG_DEBUG_FS) 2517 struct drm_minor *minor = adev_to_drm(adev)->primary; 2518 struct dentry *root = minor->debugfs_root; 2519 2520 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2521 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2522 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2523 &amdgpu_ttm_iomem_fops); 2524 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2525 &amdgpu_ttm_page_pool_fops); 2526 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2527 TTM_PL_VRAM), 2528 root, "amdgpu_vram_mm"); 2529 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2530 TTM_PL_TT), 2531 root, "amdgpu_gtt_mm"); 2532 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2533 AMDGPU_PL_GDS), 2534 root, "amdgpu_gds_mm"); 2535 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2536 AMDGPU_PL_GWS), 2537 root, "amdgpu_gws_mm"); 2538 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2539 AMDGPU_PL_OA), 2540 root, "amdgpu_oa_mm"); 2541 2542 #endif 2543 } 2544