1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62 
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
64 
65 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
66 				    unsigned int type,
67 				    uint64_t size)
68 {
69 	return ttm_range_man_init(&adev->mman.bdev, type,
70 				  TTM_PL_FLAG_UNCACHED, TTM_PL_FLAG_UNCACHED,
71 				  false, size >> PAGE_SHIFT);
72 }
73 
74 /**
75  * amdgpu_evict_flags - Compute placement flags
76  *
77  * @bo: The buffer object to evict
78  * @placement: Possible destination(s) for evicted BO
79  *
80  * Fill in placement data when ttm_bo_evict() is called
81  */
82 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
83 				struct ttm_placement *placement)
84 {
85 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
86 	struct amdgpu_bo *abo;
87 	static const struct ttm_place placements = {
88 		.fpfn = 0,
89 		.lpfn = 0,
90 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
91 	};
92 
93 	/* Don't handle scatter gather BOs */
94 	if (bo->type == ttm_bo_type_sg) {
95 		placement->num_placement = 0;
96 		placement->num_busy_placement = 0;
97 		return;
98 	}
99 
100 	/* Object isn't an AMDGPU object so ignore */
101 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
102 		placement->placement = &placements;
103 		placement->busy_placement = &placements;
104 		placement->num_placement = 1;
105 		placement->num_busy_placement = 1;
106 		return;
107 	}
108 
109 	abo = ttm_to_amdgpu_bo(bo);
110 	switch (bo->mem.mem_type) {
111 	case AMDGPU_PL_GDS:
112 	case AMDGPU_PL_GWS:
113 	case AMDGPU_PL_OA:
114 		placement->num_placement = 0;
115 		placement->num_busy_placement = 0;
116 		return;
117 
118 	case TTM_PL_VRAM:
119 		if (!adev->mman.buffer_funcs_enabled) {
120 			/* Move to system memory */
121 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
122 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
123 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
124 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
125 
126 			/* Try evicting to the CPU inaccessible part of VRAM
127 			 * first, but only set GTT as busy placement, so this
128 			 * BO will be evicted to GTT rather than causing other
129 			 * BOs to be evicted from VRAM
130 			 */
131 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
132 							 AMDGPU_GEM_DOMAIN_GTT);
133 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
134 			abo->placements[0].lpfn = 0;
135 			abo->placement.busy_placement = &abo->placements[1];
136 			abo->placement.num_busy_placement = 1;
137 		} else {
138 			/* Move to GTT memory */
139 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
140 		}
141 		break;
142 	case TTM_PL_TT:
143 	default:
144 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
145 		break;
146 	}
147 	*placement = abo->placement;
148 }
149 
150 /**
151  * amdgpu_verify_access - Verify access for a mmap call
152  *
153  * @bo:	The buffer object to map
154  * @filp: The file pointer from the process performing the mmap
155  *
156  * This is called by ttm_bo_mmap() to verify whether a process
157  * has the right to mmap a BO to their process space.
158  */
159 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
160 {
161 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
162 
163 	/*
164 	 * Don't verify access for KFD BOs. They don't have a GEM
165 	 * object associated with them.
166 	 */
167 	if (abo->kfd_bo)
168 		return 0;
169 
170 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
171 		return -EPERM;
172 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
173 					  filp->private_data);
174 }
175 
176 /**
177  * amdgpu_move_null - Register memory for a buffer object
178  *
179  * @bo: The bo to assign the memory to
180  * @new_mem: The memory to be assigned.
181  *
182  * Assign the memory from new_mem to the memory of the buffer object bo.
183  */
184 static void amdgpu_move_null(struct ttm_buffer_object *bo,
185 			     struct ttm_resource *new_mem)
186 {
187 	struct ttm_resource *old_mem = &bo->mem;
188 
189 	BUG_ON(old_mem->mm_node != NULL);
190 	*old_mem = *new_mem;
191 	new_mem->mm_node = NULL;
192 }
193 
194 /**
195  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
196  *
197  * @bo: The bo to assign the memory to.
198  * @mm_node: Memory manager node for drm allocator.
199  * @mem: The region where the bo resides.
200  *
201  */
202 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
203 				    struct drm_mm_node *mm_node,
204 				    struct ttm_resource *mem)
205 {
206 	uint64_t addr = 0;
207 
208 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
209 		addr = mm_node->start << PAGE_SHIFT;
210 		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
211 						mem->mem_type);
212 	}
213 	return addr;
214 }
215 
216 /**
217  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
218  * @offset. It also modifies the offset to be within the drm_mm_node returned
219  *
220  * @mem: The region where the bo resides.
221  * @offset: The offset that drm_mm_node is used for finding.
222  *
223  */
224 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
225 					       uint64_t *offset)
226 {
227 	struct drm_mm_node *mm_node = mem->mm_node;
228 
229 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
230 		*offset -= (mm_node->size << PAGE_SHIFT);
231 		++mm_node;
232 	}
233 	return mm_node;
234 }
235 
236 /**
237  * amdgpu_ttm_map_buffer - Map memory into the GART windows
238  * @bo: buffer object to map
239  * @mem: memory object to map
240  * @mm_node: drm_mm node object to map
241  * @num_pages: number of pages to map
242  * @offset: offset into @mm_node where to start
243  * @window: which GART window to use
244  * @ring: DMA ring to use for the copy
245  * @tmz: if we should setup a TMZ enabled mapping
246  * @addr: resulting address inside the MC address space
247  *
248  * Setup one of the GART windows to access a specific piece of memory or return
249  * the physical address for local memory.
250  */
251 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
252 				 struct ttm_resource *mem,
253 				 struct drm_mm_node *mm_node,
254 				 unsigned num_pages, uint64_t offset,
255 				 unsigned window, struct amdgpu_ring *ring,
256 				 bool tmz, uint64_t *addr)
257 {
258 	struct amdgpu_device *adev = ring->adev;
259 	struct amdgpu_job *job;
260 	unsigned num_dw, num_bytes;
261 	struct dma_fence *fence;
262 	uint64_t src_addr, dst_addr;
263 	void *cpu_addr;
264 	uint64_t flags;
265 	unsigned int i;
266 	int r;
267 
268 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
269 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
270 
271 	/* Map only what can't be accessed directly */
272 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
273 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
274 		return 0;
275 	}
276 
277 	*addr = adev->gmc.gart_start;
278 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
279 		AMDGPU_GPU_PAGE_SIZE;
280 	*addr += offset & ~PAGE_MASK;
281 
282 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
283 	num_bytes = num_pages * 8;
284 
285 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
286 				     AMDGPU_IB_POOL_DELAYED, &job);
287 	if (r)
288 		return r;
289 
290 	src_addr = num_dw * 4;
291 	src_addr += job->ibs[0].gpu_addr;
292 
293 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
294 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
295 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
296 				dst_addr, num_bytes, false);
297 
298 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
299 	WARN_ON(job->ibs[0].length_dw > num_dw);
300 
301 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
302 	if (tmz)
303 		flags |= AMDGPU_PTE_TMZ;
304 
305 	cpu_addr = &job->ibs[0].ptr[num_dw];
306 
307 	if (mem->mem_type == TTM_PL_TT) {
308 		struct ttm_dma_tt *dma;
309 		dma_addr_t *dma_address;
310 
311 		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
312 		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
313 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
314 				    cpu_addr);
315 		if (r)
316 			goto error_free;
317 	} else {
318 		dma_addr_t dma_address;
319 
320 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
321 		dma_address += adev->vm_manager.vram_base_offset;
322 
323 		for (i = 0; i < num_pages; ++i) {
324 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
325 					    &dma_address, flags, cpu_addr);
326 			if (r)
327 				goto error_free;
328 
329 			dma_address += PAGE_SIZE;
330 		}
331 	}
332 
333 	r = amdgpu_job_submit(job, &adev->mman.entity,
334 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
335 	if (r)
336 		goto error_free;
337 
338 	dma_fence_put(fence);
339 
340 	return r;
341 
342 error_free:
343 	amdgpu_job_free(job);
344 	return r;
345 }
346 
347 /**
348  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
349  * @adev: amdgpu device
350  * @src: buffer/address where to read from
351  * @dst: buffer/address where to write to
352  * @size: number of bytes to copy
353  * @tmz: if a secure copy should be used
354  * @resv: resv object to sync to
355  * @f: Returns the last fence if multiple jobs are submitted.
356  *
357  * The function copies @size bytes from {src->mem + src->offset} to
358  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
359  * move and different for a BO to BO copy.
360  *
361  */
362 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
363 			       const struct amdgpu_copy_mem *src,
364 			       const struct amdgpu_copy_mem *dst,
365 			       uint64_t size, bool tmz,
366 			       struct dma_resv *resv,
367 			       struct dma_fence **f)
368 {
369 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
370 					AMDGPU_GPU_PAGE_SIZE);
371 
372 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
373 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
374 	struct drm_mm_node *src_mm, *dst_mm;
375 	struct dma_fence *fence = NULL;
376 	int r = 0;
377 
378 	if (!adev->mman.buffer_funcs_enabled) {
379 		DRM_ERROR("Trying to move memory with ring turned off.\n");
380 		return -EINVAL;
381 	}
382 
383 	src_offset = src->offset;
384 	if (src->mem->mm_node) {
385 		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
386 		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
387 	} else {
388 		src_mm = NULL;
389 		src_node_size = ULLONG_MAX;
390 	}
391 
392 	dst_offset = dst->offset;
393 	if (dst->mem->mm_node) {
394 		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
395 		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
396 	} else {
397 		dst_mm = NULL;
398 		dst_node_size = ULLONG_MAX;
399 	}
400 
401 	mutex_lock(&adev->mman.gtt_window_lock);
402 
403 	while (size) {
404 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
405 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
406 		struct dma_fence *next;
407 		uint32_t cur_size;
408 		uint64_t from, to;
409 
410 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
411 		 * begins at an offset, then adjust the size accordingly
412 		 */
413 		cur_size = max(src_page_offset, dst_page_offset);
414 		cur_size = min(min3(src_node_size, dst_node_size, size),
415 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
416 
417 		/* Map src to window 0 and dst to window 1. */
418 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
419 					  PFN_UP(cur_size + src_page_offset),
420 					  src_offset, 0, ring, tmz, &from);
421 		if (r)
422 			goto error;
423 
424 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
425 					  PFN_UP(cur_size + dst_page_offset),
426 					  dst_offset, 1, ring, tmz, &to);
427 		if (r)
428 			goto error;
429 
430 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
431 				       resv, &next, false, true, tmz);
432 		if (r)
433 			goto error;
434 
435 		dma_fence_put(fence);
436 		fence = next;
437 
438 		size -= cur_size;
439 		if (!size)
440 			break;
441 
442 		src_node_size -= cur_size;
443 		if (!src_node_size) {
444 			++src_mm;
445 			src_node_size = src_mm->size << PAGE_SHIFT;
446 			src_offset = 0;
447 		} else {
448 			src_offset += cur_size;
449 		}
450 
451 		dst_node_size -= cur_size;
452 		if (!dst_node_size) {
453 			++dst_mm;
454 			dst_node_size = dst_mm->size << PAGE_SHIFT;
455 			dst_offset = 0;
456 		} else {
457 			dst_offset += cur_size;
458 		}
459 	}
460 error:
461 	mutex_unlock(&adev->mman.gtt_window_lock);
462 	if (f)
463 		*f = dma_fence_get(fence);
464 	dma_fence_put(fence);
465 	return r;
466 }
467 
468 /**
469  * amdgpu_move_blit - Copy an entire buffer to another buffer
470  *
471  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
472  * help move buffers to and from VRAM.
473  */
474 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
475 			    bool evict, bool no_wait_gpu,
476 			    struct ttm_resource *new_mem,
477 			    struct ttm_resource *old_mem)
478 {
479 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
480 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
481 	struct amdgpu_copy_mem src, dst;
482 	struct dma_fence *fence = NULL;
483 	int r;
484 
485 	src.bo = bo;
486 	dst.bo = bo;
487 	src.mem = old_mem;
488 	dst.mem = new_mem;
489 	src.offset = 0;
490 	dst.offset = 0;
491 
492 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
493 				       new_mem->num_pages << PAGE_SHIFT,
494 				       amdgpu_bo_encrypted(abo),
495 				       bo->base.resv, &fence);
496 	if (r)
497 		goto error;
498 
499 	/* clear the space being freed */
500 	if (old_mem->mem_type == TTM_PL_VRAM &&
501 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
502 		struct dma_fence *wipe_fence = NULL;
503 
504 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
505 				       NULL, &wipe_fence);
506 		if (r) {
507 			goto error;
508 		} else if (wipe_fence) {
509 			dma_fence_put(fence);
510 			fence = wipe_fence;
511 		}
512 	}
513 
514 	/* Always block for VM page tables before committing the new location */
515 	if (bo->type == ttm_bo_type_kernel)
516 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
517 	else
518 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
519 	dma_fence_put(fence);
520 	return r;
521 
522 error:
523 	if (fence)
524 		dma_fence_wait(fence, false);
525 	dma_fence_put(fence);
526 	return r;
527 }
528 
529 /**
530  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
531  *
532  * Called by amdgpu_bo_move().
533  */
534 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
535 				struct ttm_operation_ctx *ctx,
536 				struct ttm_resource *new_mem)
537 {
538 	struct ttm_resource *old_mem = &bo->mem;
539 	struct ttm_resource tmp_mem;
540 	struct ttm_place placements;
541 	struct ttm_placement placement;
542 	int r;
543 
544 	/* create space/pages for new_mem in GTT space */
545 	tmp_mem = *new_mem;
546 	tmp_mem.mm_node = NULL;
547 	placement.num_placement = 1;
548 	placement.placement = &placements;
549 	placement.num_busy_placement = 1;
550 	placement.busy_placement = &placements;
551 	placements.fpfn = 0;
552 	placements.lpfn = 0;
553 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
554 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
555 	if (unlikely(r)) {
556 		pr_err("Failed to find GTT space for blit from VRAM\n");
557 		return r;
558 	}
559 
560 	/* set caching flags */
561 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
562 	if (unlikely(r)) {
563 		goto out_cleanup;
564 	}
565 
566 	/* Bind the memory to the GTT space */
567 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
568 	if (unlikely(r)) {
569 		goto out_cleanup;
570 	}
571 
572 	/* blit VRAM to GTT */
573 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
574 	if (unlikely(r)) {
575 		goto out_cleanup;
576 	}
577 
578 	/* move BO (in tmp_mem) to new_mem */
579 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
580 out_cleanup:
581 	ttm_bo_mem_put(bo, &tmp_mem);
582 	return r;
583 }
584 
585 /**
586  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
587  *
588  * Called by amdgpu_bo_move().
589  */
590 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
591 				struct ttm_operation_ctx *ctx,
592 				struct ttm_resource *new_mem)
593 {
594 	struct ttm_resource *old_mem = &bo->mem;
595 	struct ttm_resource tmp_mem;
596 	struct ttm_placement placement;
597 	struct ttm_place placements;
598 	int r;
599 
600 	/* make space in GTT for old_mem buffer */
601 	tmp_mem = *new_mem;
602 	tmp_mem.mm_node = NULL;
603 	placement.num_placement = 1;
604 	placement.placement = &placements;
605 	placement.num_busy_placement = 1;
606 	placement.busy_placement = &placements;
607 	placements.fpfn = 0;
608 	placements.lpfn = 0;
609 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
610 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
611 	if (unlikely(r)) {
612 		pr_err("Failed to find GTT space for blit to VRAM\n");
613 		return r;
614 	}
615 
616 	/* move/bind old memory to GTT space */
617 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
618 	if (unlikely(r)) {
619 		goto out_cleanup;
620 	}
621 
622 	/* copy to VRAM */
623 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
624 	if (unlikely(r)) {
625 		goto out_cleanup;
626 	}
627 out_cleanup:
628 	ttm_bo_mem_put(bo, &tmp_mem);
629 	return r;
630 }
631 
632 /**
633  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
634  *
635  * Called by amdgpu_bo_move()
636  */
637 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
638 			       struct ttm_resource *mem)
639 {
640 	struct drm_mm_node *nodes = mem->mm_node;
641 
642 	if (mem->mem_type == TTM_PL_SYSTEM ||
643 	    mem->mem_type == TTM_PL_TT)
644 		return true;
645 	if (mem->mem_type != TTM_PL_VRAM)
646 		return false;
647 
648 	/* ttm_resource_ioremap only supports contiguous memory */
649 	if (nodes->size != mem->num_pages)
650 		return false;
651 
652 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
653 		<= adev->gmc.visible_vram_size;
654 }
655 
656 /**
657  * amdgpu_bo_move - Move a buffer object to a new memory location
658  *
659  * Called by ttm_bo_handle_move_mem()
660  */
661 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
662 			  struct ttm_operation_ctx *ctx,
663 			  struct ttm_resource *new_mem)
664 {
665 	struct amdgpu_device *adev;
666 	struct amdgpu_bo *abo;
667 	struct ttm_resource *old_mem = &bo->mem;
668 	int r;
669 
670 	/* Can't move a pinned BO */
671 	abo = ttm_to_amdgpu_bo(bo);
672 	if (WARN_ON_ONCE(abo->pin_count > 0))
673 		return -EINVAL;
674 
675 	adev = amdgpu_ttm_adev(bo->bdev);
676 
677 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
678 		amdgpu_move_null(bo, new_mem);
679 		return 0;
680 	}
681 	if ((old_mem->mem_type == TTM_PL_TT &&
682 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
683 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
684 	     new_mem->mem_type == TTM_PL_TT)) {
685 		/* bind is enough */
686 		amdgpu_move_null(bo, new_mem);
687 		return 0;
688 	}
689 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
690 	    old_mem->mem_type == AMDGPU_PL_GWS ||
691 	    old_mem->mem_type == AMDGPU_PL_OA ||
692 	    new_mem->mem_type == AMDGPU_PL_GDS ||
693 	    new_mem->mem_type == AMDGPU_PL_GWS ||
694 	    new_mem->mem_type == AMDGPU_PL_OA) {
695 		/* Nothing to save here */
696 		amdgpu_move_null(bo, new_mem);
697 		return 0;
698 	}
699 
700 	if (!adev->mman.buffer_funcs_enabled) {
701 		r = -ENODEV;
702 		goto memcpy;
703 	}
704 
705 	if (old_mem->mem_type == TTM_PL_VRAM &&
706 	    new_mem->mem_type == TTM_PL_SYSTEM) {
707 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
708 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
709 		   new_mem->mem_type == TTM_PL_VRAM) {
710 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
711 	} else {
712 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
713 				     new_mem, old_mem);
714 	}
715 
716 	if (r) {
717 memcpy:
718 		/* Check that all memory is CPU accessible */
719 		if (!amdgpu_mem_visible(adev, old_mem) ||
720 		    !amdgpu_mem_visible(adev, new_mem)) {
721 			pr_err("Move buffer fallback to memcpy unavailable\n");
722 			return r;
723 		}
724 
725 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
726 		if (r)
727 			return r;
728 	}
729 
730 	if (bo->type == ttm_bo_type_device &&
731 	    new_mem->mem_type == TTM_PL_VRAM &&
732 	    old_mem->mem_type != TTM_PL_VRAM) {
733 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
734 		 * accesses the BO after it's moved.
735 		 */
736 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
737 	}
738 
739 	/* update statistics */
740 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
741 	return 0;
742 }
743 
744 /**
745  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
746  *
747  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
748  */
749 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
750 {
751 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
752 	struct drm_mm_node *mm_node = mem->mm_node;
753 
754 	mem->bus.addr = NULL;
755 	mem->bus.offset = 0;
756 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
757 	mem->bus.base = 0;
758 	mem->bus.is_iomem = false;
759 
760 	switch (mem->mem_type) {
761 	case TTM_PL_SYSTEM:
762 		/* system memory */
763 		return 0;
764 	case TTM_PL_TT:
765 		break;
766 	case TTM_PL_VRAM:
767 		mem->bus.offset = mem->start << PAGE_SHIFT;
768 		/* check if it's visible */
769 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
770 			return -EINVAL;
771 		/* Only physically contiguous buffers apply. In a contiguous
772 		 * buffer, size of the first mm_node would match the number of
773 		 * pages in ttm_resource.
774 		 */
775 		if (adev->mman.aper_base_kaddr &&
776 		    (mm_node->size == mem->num_pages))
777 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
778 					mem->bus.offset;
779 
780 		mem->bus.base = adev->gmc.aper_base;
781 		mem->bus.is_iomem = true;
782 		break;
783 	default:
784 		return -EINVAL;
785 	}
786 	return 0;
787 }
788 
789 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
790 					   unsigned long page_offset)
791 {
792 	uint64_t offset = (page_offset << PAGE_SHIFT);
793 	struct drm_mm_node *mm;
794 
795 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
796 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
797 		(offset >> PAGE_SHIFT);
798 }
799 
800 /**
801  * amdgpu_ttm_domain_start - Returns GPU start address
802  * @adev: amdgpu device object
803  * @type: type of the memory
804  *
805  * Returns:
806  * GPU start address of a memory domain
807  */
808 
809 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
810 {
811 	switch (type) {
812 	case TTM_PL_TT:
813 		return adev->gmc.gart_start;
814 	case TTM_PL_VRAM:
815 		return adev->gmc.vram_start;
816 	}
817 
818 	return 0;
819 }
820 
821 /*
822  * TTM backend functions.
823  */
824 struct amdgpu_ttm_tt {
825 	struct ttm_dma_tt	ttm;
826 	struct drm_gem_object	*gobj;
827 	u64			offset;
828 	uint64_t		userptr;
829 	struct task_struct	*usertask;
830 	uint32_t		userflags;
831 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
832 	struct hmm_range	*range;
833 #endif
834 };
835 
836 #ifdef CONFIG_DRM_AMDGPU_USERPTR
837 /**
838  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
839  * memory and start HMM tracking CPU page table update
840  *
841  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
842  * once afterwards to stop HMM tracking
843  */
844 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
845 {
846 	struct ttm_tt *ttm = bo->tbo.ttm;
847 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
848 	unsigned long start = gtt->userptr;
849 	struct vm_area_struct *vma;
850 	struct hmm_range *range;
851 	unsigned long timeout;
852 	struct mm_struct *mm;
853 	unsigned long i;
854 	int r = 0;
855 
856 	mm = bo->notifier.mm;
857 	if (unlikely(!mm)) {
858 		DRM_DEBUG_DRIVER("BO is not registered?\n");
859 		return -EFAULT;
860 	}
861 
862 	/* Another get_user_pages is running at the same time?? */
863 	if (WARN_ON(gtt->range))
864 		return -EFAULT;
865 
866 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
867 		return -ESRCH;
868 
869 	range = kzalloc(sizeof(*range), GFP_KERNEL);
870 	if (unlikely(!range)) {
871 		r = -ENOMEM;
872 		goto out;
873 	}
874 	range->notifier = &bo->notifier;
875 	range->start = bo->notifier.interval_tree.start;
876 	range->end = bo->notifier.interval_tree.last + 1;
877 	range->default_flags = HMM_PFN_REQ_FAULT;
878 	if (!amdgpu_ttm_tt_is_readonly(ttm))
879 		range->default_flags |= HMM_PFN_REQ_WRITE;
880 
881 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
882 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
883 	if (unlikely(!range->hmm_pfns)) {
884 		r = -ENOMEM;
885 		goto out_free_ranges;
886 	}
887 
888 	mmap_read_lock(mm);
889 	vma = find_vma(mm, start);
890 	if (unlikely(!vma || start < vma->vm_start)) {
891 		r = -EFAULT;
892 		goto out_unlock;
893 	}
894 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
895 		vma->vm_file)) {
896 		r = -EPERM;
897 		goto out_unlock;
898 	}
899 	mmap_read_unlock(mm);
900 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
901 
902 retry:
903 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
904 
905 	mmap_read_lock(mm);
906 	r = hmm_range_fault(range);
907 	mmap_read_unlock(mm);
908 	if (unlikely(r)) {
909 		/*
910 		 * FIXME: This timeout should encompass the retry from
911 		 * mmu_interval_read_retry() as well.
912 		 */
913 		if (r == -EBUSY && !time_after(jiffies, timeout))
914 			goto retry;
915 		goto out_free_pfns;
916 	}
917 
918 	/*
919 	 * Due to default_flags, all pages are HMM_PFN_VALID or
920 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
921 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
922 	 */
923 	for (i = 0; i < ttm->num_pages; i++)
924 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
925 
926 	gtt->range = range;
927 	mmput(mm);
928 
929 	return 0;
930 
931 out_unlock:
932 	mmap_read_unlock(mm);
933 out_free_pfns:
934 	kvfree(range->hmm_pfns);
935 out_free_ranges:
936 	kfree(range);
937 out:
938 	mmput(mm);
939 	return r;
940 }
941 
942 /**
943  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
944  * Check if the pages backing this ttm range have been invalidated
945  *
946  * Returns: true if pages are still valid
947  */
948 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
949 {
950 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
951 	bool r = false;
952 
953 	if (!gtt || !gtt->userptr)
954 		return false;
955 
956 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
957 		gtt->userptr, ttm->num_pages);
958 
959 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
960 		"No user pages to check\n");
961 
962 	if (gtt->range) {
963 		/*
964 		 * FIXME: Must always hold notifier_lock for this, and must
965 		 * not ignore the return code.
966 		 */
967 		r = mmu_interval_read_retry(gtt->range->notifier,
968 					 gtt->range->notifier_seq);
969 		kvfree(gtt->range->hmm_pfns);
970 		kfree(gtt->range);
971 		gtt->range = NULL;
972 	}
973 
974 	return !r;
975 }
976 #endif
977 
978 /**
979  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
980  *
981  * Called by amdgpu_cs_list_validate(). This creates the page list
982  * that backs user memory and will ultimately be mapped into the device
983  * address space.
984  */
985 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
986 {
987 	unsigned long i;
988 
989 	for (i = 0; i < ttm->num_pages; ++i)
990 		ttm->pages[i] = pages ? pages[i] : NULL;
991 }
992 
993 /**
994  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
995  *
996  * Called by amdgpu_ttm_backend_bind()
997  **/
998 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
999 {
1000 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1001 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1002 	int r;
1003 
1004 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1005 	enum dma_data_direction direction = write ?
1006 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1007 
1008 	/* Allocate an SG array and squash pages into it */
1009 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1010 				      ttm->num_pages << PAGE_SHIFT,
1011 				      GFP_KERNEL);
1012 	if (r)
1013 		goto release_sg;
1014 
1015 	/* Map SG to device */
1016 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1017 	if (r)
1018 		goto release_sg;
1019 
1020 	/* convert SG to linear array of pages and dma addresses */
1021 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1022 					 gtt->ttm.dma_address, ttm->num_pages);
1023 
1024 	return 0;
1025 
1026 release_sg:
1027 	kfree(ttm->sg);
1028 	return r;
1029 }
1030 
1031 /**
1032  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1033  */
1034 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1035 {
1036 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1037 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1038 
1039 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1040 	enum dma_data_direction direction = write ?
1041 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1042 
1043 	/* double check that we don't free the table twice */
1044 	if (!ttm->sg->sgl)
1045 		return;
1046 
1047 	/* unmap the pages mapped to the device */
1048 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1049 	sg_free_table(ttm->sg);
1050 
1051 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1052 	if (gtt->range) {
1053 		unsigned long i;
1054 
1055 		for (i = 0; i < ttm->num_pages; i++) {
1056 			if (ttm->pages[i] !=
1057 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1058 				break;
1059 		}
1060 
1061 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1062 	}
1063 #endif
1064 }
1065 
1066 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1067 				struct ttm_buffer_object *tbo,
1068 				uint64_t flags)
1069 {
1070 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1071 	struct ttm_tt *ttm = tbo->ttm;
1072 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1073 	int r;
1074 
1075 	if (amdgpu_bo_encrypted(abo))
1076 		flags |= AMDGPU_PTE_TMZ;
1077 
1078 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1079 		uint64_t page_idx = 1;
1080 
1081 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1082 				ttm->pages, gtt->ttm.dma_address, flags);
1083 		if (r)
1084 			goto gart_bind_fail;
1085 
1086 		/* The memory type of the first page defaults to UC. Now
1087 		 * modify the memory type to NC from the second page of
1088 		 * the BO onward.
1089 		 */
1090 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1091 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1092 
1093 		r = amdgpu_gart_bind(adev,
1094 				gtt->offset + (page_idx << PAGE_SHIFT),
1095 				ttm->num_pages - page_idx,
1096 				&ttm->pages[page_idx],
1097 				&(gtt->ttm.dma_address[page_idx]), flags);
1098 	} else {
1099 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1100 				     ttm->pages, gtt->ttm.dma_address, flags);
1101 	}
1102 
1103 gart_bind_fail:
1104 	if (r)
1105 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1106 			  ttm->num_pages, gtt->offset);
1107 
1108 	return r;
1109 }
1110 
1111 /**
1112  * amdgpu_ttm_backend_bind - Bind GTT memory
1113  *
1114  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1115  * This handles binding GTT memory to the device address space.
1116  */
1117 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1118 				   struct ttm_resource *bo_mem)
1119 {
1120 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1121 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1122 	uint64_t flags;
1123 	int r = 0;
1124 
1125 	if (gtt->userptr) {
1126 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1127 		if (r) {
1128 			DRM_ERROR("failed to pin userptr\n");
1129 			return r;
1130 		}
1131 	}
1132 	if (!ttm->num_pages) {
1133 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1134 		     ttm->num_pages, bo_mem, ttm);
1135 	}
1136 
1137 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1138 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1139 	    bo_mem->mem_type == AMDGPU_PL_OA)
1140 		return -EINVAL;
1141 
1142 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1143 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1144 		return 0;
1145 	}
1146 
1147 	/* compute PTE flags relevant to this BO memory */
1148 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1149 
1150 	/* bind pages into GART page tables */
1151 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1152 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1153 		ttm->pages, gtt->ttm.dma_address, flags);
1154 
1155 	if (r)
1156 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1157 			  ttm->num_pages, gtt->offset);
1158 	return r;
1159 }
1160 
1161 /**
1162  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1163  */
1164 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1165 {
1166 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1167 	struct ttm_operation_ctx ctx = { false, false };
1168 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1169 	struct ttm_resource tmp;
1170 	struct ttm_placement placement;
1171 	struct ttm_place placements;
1172 	uint64_t addr, flags;
1173 	int r;
1174 
1175 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1176 		return 0;
1177 
1178 	addr = amdgpu_gmc_agp_addr(bo);
1179 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1180 		bo->mem.start = addr >> PAGE_SHIFT;
1181 	} else {
1182 
1183 		/* allocate GART space */
1184 		tmp = bo->mem;
1185 		tmp.mm_node = NULL;
1186 		placement.num_placement = 1;
1187 		placement.placement = &placements;
1188 		placement.num_busy_placement = 1;
1189 		placement.busy_placement = &placements;
1190 		placements.fpfn = 0;
1191 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1192 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1193 			TTM_PL_FLAG_TT;
1194 
1195 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1196 		if (unlikely(r))
1197 			return r;
1198 
1199 		/* compute PTE flags for this buffer object */
1200 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1201 
1202 		/* Bind pages */
1203 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1204 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1205 		if (unlikely(r)) {
1206 			ttm_bo_mem_put(bo, &tmp);
1207 			return r;
1208 		}
1209 
1210 		ttm_bo_mem_put(bo, &bo->mem);
1211 		bo->mem = tmp;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 /**
1218  * amdgpu_ttm_recover_gart - Rebind GTT pages
1219  *
1220  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1221  * rebind GTT pages during a GPU reset.
1222  */
1223 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1224 {
1225 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1226 	uint64_t flags;
1227 	int r;
1228 
1229 	if (!tbo->ttm)
1230 		return 0;
1231 
1232 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1233 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1234 
1235 	return r;
1236 }
1237 
1238 /**
1239  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1240  *
1241  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1242  * ttm_tt_destroy().
1243  */
1244 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1245 {
1246 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1247 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1248 	int r;
1249 
1250 	/* if the pages have userptr pinning then clear that first */
1251 	if (gtt->userptr)
1252 		amdgpu_ttm_tt_unpin_userptr(ttm);
1253 
1254 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1255 		return 0;
1256 
1257 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1258 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1259 	if (r)
1260 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1261 			  gtt->ttm.ttm.num_pages, gtt->offset);
1262 	return r;
1263 }
1264 
1265 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1266 {
1267 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1268 
1269 	if (gtt->usertask)
1270 		put_task_struct(gtt->usertask);
1271 
1272 	ttm_dma_tt_fini(&gtt->ttm);
1273 	kfree(gtt);
1274 }
1275 
1276 static struct ttm_backend_func amdgpu_backend_func = {
1277 	.bind = &amdgpu_ttm_backend_bind,
1278 	.unbind = &amdgpu_ttm_backend_unbind,
1279 	.destroy = &amdgpu_ttm_backend_destroy,
1280 };
1281 
1282 /**
1283  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1284  *
1285  * @bo: The buffer object to create a GTT ttm_tt object around
1286  *
1287  * Called by ttm_tt_create().
1288  */
1289 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1290 					   uint32_t page_flags)
1291 {
1292 	struct amdgpu_ttm_tt *gtt;
1293 
1294 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1295 	if (gtt == NULL) {
1296 		return NULL;
1297 	}
1298 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1299 	gtt->gobj = &bo->base;
1300 
1301 	/* allocate space for the uninitialized page entries */
1302 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1303 		kfree(gtt);
1304 		return NULL;
1305 	}
1306 	return &gtt->ttm.ttm;
1307 }
1308 
1309 /**
1310  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1311  *
1312  * Map the pages of a ttm_tt object to an address space visible
1313  * to the underlying device.
1314  */
1315 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1316 			struct ttm_operation_ctx *ctx)
1317 {
1318 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1319 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1320 
1321 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1322 	if (gtt && gtt->userptr) {
1323 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1324 		if (!ttm->sg)
1325 			return -ENOMEM;
1326 
1327 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1328 		ttm->state = tt_unbound;
1329 		return 0;
1330 	}
1331 
1332 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1333 		if (!ttm->sg) {
1334 			struct dma_buf_attachment *attach;
1335 			struct sg_table *sgt;
1336 
1337 			attach = gtt->gobj->import_attach;
1338 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1339 			if (IS_ERR(sgt))
1340 				return PTR_ERR(sgt);
1341 
1342 			ttm->sg = sgt;
1343 		}
1344 
1345 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1346 						 gtt->ttm.dma_address,
1347 						 ttm->num_pages);
1348 		ttm->state = tt_unbound;
1349 		return 0;
1350 	}
1351 
1352 #ifdef CONFIG_SWIOTLB
1353 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1354 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1355 	}
1356 #endif
1357 
1358 	/* fall back to generic helper to populate the page array
1359 	 * and map them to the device */
1360 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1361 }
1362 
1363 /**
1364  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1365  *
1366  * Unmaps pages of a ttm_tt object from the device address space and
1367  * unpopulates the page array backing it.
1368  */
1369 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1370 {
1371 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372 	struct amdgpu_device *adev;
1373 
1374 	if (gtt && gtt->userptr) {
1375 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1376 		kfree(ttm->sg);
1377 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1378 		return;
1379 	}
1380 
1381 	if (ttm->sg && gtt->gobj->import_attach) {
1382 		struct dma_buf_attachment *attach;
1383 
1384 		attach = gtt->gobj->import_attach;
1385 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1386 		ttm->sg = NULL;
1387 		return;
1388 	}
1389 
1390 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1391 		return;
1392 
1393 	adev = amdgpu_ttm_adev(ttm->bdev);
1394 
1395 #ifdef CONFIG_SWIOTLB
1396 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1397 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1398 		return;
1399 	}
1400 #endif
1401 
1402 	/* fall back to generic helper to unmap and unpopulate array */
1403 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1404 }
1405 
1406 /**
1407  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1408  * task
1409  *
1410  * @bo: The ttm_buffer_object to bind this userptr to
1411  * @addr:  The address in the current tasks VM space to use
1412  * @flags: Requirements of userptr object.
1413  *
1414  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1415  * to current task
1416  */
1417 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1418 			      uint64_t addr, uint32_t flags)
1419 {
1420 	struct amdgpu_ttm_tt *gtt;
1421 
1422 	if (!bo->ttm) {
1423 		/* TODO: We want a separate TTM object type for userptrs */
1424 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1425 		if (bo->ttm == NULL)
1426 			return -ENOMEM;
1427 	}
1428 
1429 	gtt = (void*)bo->ttm;
1430 	gtt->userptr = addr;
1431 	gtt->userflags = flags;
1432 
1433 	if (gtt->usertask)
1434 		put_task_struct(gtt->usertask);
1435 	gtt->usertask = current->group_leader;
1436 	get_task_struct(gtt->usertask);
1437 
1438 	return 0;
1439 }
1440 
1441 /**
1442  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1443  */
1444 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1445 {
1446 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1447 
1448 	if (gtt == NULL)
1449 		return NULL;
1450 
1451 	if (gtt->usertask == NULL)
1452 		return NULL;
1453 
1454 	return gtt->usertask->mm;
1455 }
1456 
1457 /**
1458  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1459  * address range for the current task.
1460  *
1461  */
1462 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1463 				  unsigned long end)
1464 {
1465 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1466 	unsigned long size;
1467 
1468 	if (gtt == NULL || !gtt->userptr)
1469 		return false;
1470 
1471 	/* Return false if no part of the ttm_tt object lies within
1472 	 * the range
1473 	 */
1474 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1475 	if (gtt->userptr > end || gtt->userptr + size <= start)
1476 		return false;
1477 
1478 	return true;
1479 }
1480 
1481 /**
1482  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1483  */
1484 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1485 {
1486 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1487 
1488 	if (gtt == NULL || !gtt->userptr)
1489 		return false;
1490 
1491 	return true;
1492 }
1493 
1494 /**
1495  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1496  */
1497 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1498 {
1499 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1500 
1501 	if (gtt == NULL)
1502 		return false;
1503 
1504 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1505 }
1506 
1507 /**
1508  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1509  *
1510  * @ttm: The ttm_tt object to compute the flags for
1511  * @mem: The memory registry backing this ttm_tt object
1512  *
1513  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1514  */
1515 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1516 {
1517 	uint64_t flags = 0;
1518 
1519 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1520 		flags |= AMDGPU_PTE_VALID;
1521 
1522 	if (mem && mem->mem_type == TTM_PL_TT) {
1523 		flags |= AMDGPU_PTE_SYSTEM;
1524 
1525 		if (ttm->caching_state == tt_cached)
1526 			flags |= AMDGPU_PTE_SNOOPED;
1527 	}
1528 
1529 	return flags;
1530 }
1531 
1532 /**
1533  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1534  *
1535  * @ttm: The ttm_tt object to compute the flags for
1536  * @mem: The memory registry backing this ttm_tt object
1537 
1538  * Figure out the flags to use for a VM PTE (Page Table Entry).
1539  */
1540 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1541 				 struct ttm_resource *mem)
1542 {
1543 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1544 
1545 	flags |= adev->gart.gart_pte_flags;
1546 	flags |= AMDGPU_PTE_READABLE;
1547 
1548 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1549 		flags |= AMDGPU_PTE_WRITEABLE;
1550 
1551 	return flags;
1552 }
1553 
1554 /**
1555  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1556  * object.
1557  *
1558  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1559  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1560  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1561  * used to clean out a memory space.
1562  */
1563 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1564 					    const struct ttm_place *place)
1565 {
1566 	unsigned long num_pages = bo->mem.num_pages;
1567 	struct drm_mm_node *node = bo->mem.mm_node;
1568 	struct dma_resv_list *flist;
1569 	struct dma_fence *f;
1570 	int i;
1571 
1572 	if (bo->type == ttm_bo_type_kernel &&
1573 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1574 		return false;
1575 
1576 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1577 	 * If true, then return false as any KFD process needs all its BOs to
1578 	 * be resident to run successfully
1579 	 */
1580 	flist = dma_resv_get_list(bo->base.resv);
1581 	if (flist) {
1582 		for (i = 0; i < flist->shared_count; ++i) {
1583 			f = rcu_dereference_protected(flist->shared[i],
1584 				dma_resv_held(bo->base.resv));
1585 			if (amdkfd_fence_check_mm(f, current->mm))
1586 				return false;
1587 		}
1588 	}
1589 
1590 	switch (bo->mem.mem_type) {
1591 	case TTM_PL_TT:
1592 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1593 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1594 			return false;
1595 		return true;
1596 
1597 	case TTM_PL_VRAM:
1598 		/* Check each drm MM node individually */
1599 		while (num_pages) {
1600 			if (place->fpfn < (node->start + node->size) &&
1601 			    !(place->lpfn && place->lpfn <= node->start))
1602 				return true;
1603 
1604 			num_pages -= node->size;
1605 			++node;
1606 		}
1607 		return false;
1608 
1609 	default:
1610 		break;
1611 	}
1612 
1613 	return ttm_bo_eviction_valuable(bo, place);
1614 }
1615 
1616 /**
1617  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1618  *
1619  * @bo:  The buffer object to read/write
1620  * @offset:  Offset into buffer object
1621  * @buf:  Secondary buffer to write/read from
1622  * @len: Length in bytes of access
1623  * @write:  true if writing
1624  *
1625  * This is used to access VRAM that backs a buffer object via MMIO
1626  * access for debugging purposes.
1627  */
1628 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1629 				    unsigned long offset,
1630 				    void *buf, int len, int write)
1631 {
1632 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1633 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1634 	struct drm_mm_node *nodes;
1635 	uint32_t value = 0;
1636 	int ret = 0;
1637 	uint64_t pos;
1638 	unsigned long flags;
1639 
1640 	if (bo->mem.mem_type != TTM_PL_VRAM)
1641 		return -EIO;
1642 
1643 	pos = offset;
1644 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1645 	pos += (nodes->start << PAGE_SHIFT);
1646 
1647 	while (len && pos < adev->gmc.mc_vram_size) {
1648 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1649 		uint64_t bytes = 4 - (pos & 3);
1650 		uint32_t shift = (pos & 3) * 8;
1651 		uint32_t mask = 0xffffffff << shift;
1652 
1653 		if (len < bytes) {
1654 			mask &= 0xffffffff >> (bytes - len) * 8;
1655 			bytes = len;
1656 		}
1657 
1658 		if (mask != 0xffffffff) {
1659 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1660 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1661 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1662 			if (!write || mask != 0xffffffff)
1663 				value = RREG32_NO_KIQ(mmMM_DATA);
1664 			if (write) {
1665 				value &= ~mask;
1666 				value |= (*(uint32_t *)buf << shift) & mask;
1667 				WREG32_NO_KIQ(mmMM_DATA, value);
1668 			}
1669 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1670 			if (!write) {
1671 				value = (value & mask) >> shift;
1672 				memcpy(buf, &value, bytes);
1673 			}
1674 		} else {
1675 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1676 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1677 
1678 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1679 						  bytes, write);
1680 		}
1681 
1682 		ret += bytes;
1683 		buf = (uint8_t *)buf + bytes;
1684 		pos += bytes;
1685 		len -= bytes;
1686 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1687 			++nodes;
1688 			pos = (nodes->start << PAGE_SHIFT);
1689 		}
1690 	}
1691 
1692 	return ret;
1693 }
1694 
1695 static struct ttm_bo_driver amdgpu_bo_driver = {
1696 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1697 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1698 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1699 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1700 	.evict_flags = &amdgpu_evict_flags,
1701 	.move = &amdgpu_bo_move,
1702 	.verify_access = &amdgpu_verify_access,
1703 	.move_notify = &amdgpu_bo_move_notify,
1704 	.release_notify = &amdgpu_bo_release_notify,
1705 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1706 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1707 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1708 	.access_memory = &amdgpu_ttm_access_memory,
1709 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1710 };
1711 
1712 /*
1713  * Firmware Reservation functions
1714  */
1715 /**
1716  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1717  *
1718  * @adev: amdgpu_device pointer
1719  *
1720  * free fw reserved vram if it has been reserved.
1721  */
1722 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1723 {
1724 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1725 		NULL, &adev->fw_vram_usage.va);
1726 }
1727 
1728 /**
1729  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1730  *
1731  * @adev: amdgpu_device pointer
1732  *
1733  * create bo vram reservation from fw.
1734  */
1735 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1736 {
1737 	uint64_t vram_size = adev->gmc.visible_vram_size;
1738 
1739 	adev->fw_vram_usage.va = NULL;
1740 	adev->fw_vram_usage.reserved_bo = NULL;
1741 
1742 	if (adev->fw_vram_usage.size == 0 ||
1743 	    adev->fw_vram_usage.size > vram_size)
1744 		return 0;
1745 
1746 	return amdgpu_bo_create_kernel_at(adev,
1747 					  adev->fw_vram_usage.start_offset,
1748 					  adev->fw_vram_usage.size,
1749 					  AMDGPU_GEM_DOMAIN_VRAM,
1750 					  &adev->fw_vram_usage.reserved_bo,
1751 					  &adev->fw_vram_usage.va);
1752 }
1753 
1754 /*
1755  * Memoy training reservation functions
1756  */
1757 
1758 /**
1759  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1760  *
1761  * @adev: amdgpu_device pointer
1762  *
1763  * free memory training reserved vram if it has been reserved.
1764  */
1765 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1766 {
1767 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1768 
1769 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1770 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1771 	ctx->c2p_bo = NULL;
1772 
1773 	return 0;
1774 }
1775 
1776 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1777 {
1778        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1779                vram_size -= SZ_1M;
1780 
1781        return ALIGN(vram_size, SZ_1M);
1782 }
1783 
1784 /**
1785  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1786  *
1787  * @adev: amdgpu_device pointer
1788  *
1789  * create bo vram reservation from memory training.
1790  */
1791 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1792 {
1793 	int ret;
1794 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1795 
1796 	memset(ctx, 0, sizeof(*ctx));
1797 	if (!adev->fw_vram_usage.mem_train_support) {
1798 		DRM_DEBUG("memory training does not support!\n");
1799 		return 0;
1800 	}
1801 
1802 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1803 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1804 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1805 
1806 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1807 		  ctx->train_data_size,
1808 		  ctx->p2c_train_data_offset,
1809 		  ctx->c2p_train_data_offset);
1810 
1811 	ret = amdgpu_bo_create_kernel_at(adev,
1812 					 ctx->c2p_train_data_offset,
1813 					 ctx->train_data_size,
1814 					 AMDGPU_GEM_DOMAIN_VRAM,
1815 					 &ctx->c2p_bo,
1816 					 NULL);
1817 	if (ret) {
1818 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1819 		amdgpu_ttm_training_reserve_vram_fini(adev);
1820 		return ret;
1821 	}
1822 
1823 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1824 	return 0;
1825 }
1826 
1827 /**
1828  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1829  * gtt/vram related fields.
1830  *
1831  * This initializes all of the memory space pools that the TTM layer
1832  * will need such as the GTT space (system memory mapped to the device),
1833  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1834  * can be mapped per VMID.
1835  */
1836 int amdgpu_ttm_init(struct amdgpu_device *adev)
1837 {
1838 	uint64_t gtt_size;
1839 	int r;
1840 	u64 vis_vram_limit;
1841 	void *stolen_vga_buf;
1842 
1843 	mutex_init(&adev->mman.gtt_window_lock);
1844 
1845 	/* No others user of address space so set it to 0 */
1846 	r = ttm_bo_device_init(&adev->mman.bdev,
1847 			       &amdgpu_bo_driver,
1848 			       adev->ddev->anon_inode->i_mapping,
1849 			       adev->ddev->vma_offset_manager,
1850 			       dma_addressing_limited(adev->dev));
1851 	if (r) {
1852 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1853 		return r;
1854 	}
1855 	adev->mman.initialized = true;
1856 
1857 	/* We opt to avoid OOM on system pages allocations */
1858 	adev->mman.bdev.no_retry = true;
1859 
1860 	/* Initialize VRAM pool with all of VRAM divided into pages */
1861 	r = amdgpu_vram_mgr_init(adev);
1862 	if (r) {
1863 		DRM_ERROR("Failed initializing VRAM heap.\n");
1864 		return r;
1865 	}
1866 
1867 	/* Reduce size of CPU-visible VRAM if requested */
1868 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1869 	if (amdgpu_vis_vram_limit > 0 &&
1870 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1871 		adev->gmc.visible_vram_size = vis_vram_limit;
1872 
1873 	/* Change the size here instead of the init above so only lpfn is affected */
1874 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1875 #ifdef CONFIG_64BIT
1876 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1877 						adev->gmc.visible_vram_size);
1878 #endif
1879 
1880 	/*
1881 	 *The reserved vram for firmware must be pinned to the specified
1882 	 *place on the VRAM, so reserve it early.
1883 	 */
1884 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1885 	if (r) {
1886 		return r;
1887 	}
1888 
1889 	/*
1890 	 *The reserved vram for memory training must be pinned to the specified
1891 	 *place on the VRAM, so reserve it early.
1892 	 */
1893 	if (!amdgpu_sriov_vf(adev)) {
1894 		r = amdgpu_ttm_training_reserve_vram_init(adev);
1895 		if (r)
1896 			return r;
1897 	}
1898 
1899 	/* allocate memory as required for VGA
1900 	 * This is used for VGA emulation and pre-OS scanout buffers to
1901 	 * avoid display artifacts while transitioning between pre-OS
1902 	 * and driver.  */
1903 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1904 				    AMDGPU_GEM_DOMAIN_VRAM,
1905 				    &adev->stolen_vga_memory,
1906 				    NULL, &stolen_vga_buf);
1907 	if (r)
1908 		return r;
1909 
1910 	/*
1911 	 * reserve TMR memory at the top of VRAM which holds
1912 	 * IP Discovery data and is protected by PSP.
1913 	 */
1914 	if (adev->discovery_tmr_size > 0) {
1915 		r = amdgpu_bo_create_kernel_at(adev,
1916 			adev->gmc.real_vram_size - adev->discovery_tmr_size,
1917 			adev->discovery_tmr_size,
1918 			AMDGPU_GEM_DOMAIN_VRAM,
1919 			&adev->discovery_memory,
1920 			NULL);
1921 		if (r)
1922 			return r;
1923 	}
1924 
1925 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1926 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1927 
1928 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1929 	 * or whatever the user passed on module init */
1930 	if (amdgpu_gtt_size == -1) {
1931 		struct sysinfo si;
1932 
1933 		si_meminfo(&si);
1934 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1935 			       adev->gmc.mc_vram_size),
1936 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1937 	}
1938 	else
1939 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1940 
1941 	/* Initialize GTT memory pool */
1942 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1943 	if (r) {
1944 		DRM_ERROR("Failed initializing GTT heap.\n");
1945 		return r;
1946 	}
1947 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1948 		 (unsigned)(gtt_size / (1024 * 1024)));
1949 
1950 	/* Initialize various on-chip memory pools */
1951 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1952 	if (r) {
1953 		DRM_ERROR("Failed initializing GDS heap.\n");
1954 		return r;
1955 	}
1956 
1957 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1958 	if (r) {
1959 		DRM_ERROR("Failed initializing gws heap.\n");
1960 		return r;
1961 	}
1962 
1963 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1964 	if (r) {
1965 		DRM_ERROR("Failed initializing oa heap.\n");
1966 		return r;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 /**
1973  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1974  */
1975 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1976 {
1977 	void *stolen_vga_buf;
1978 	/* return the VGA stolen memory (if any) back to VRAM */
1979 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1980 }
1981 
1982 /**
1983  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1984  */
1985 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1986 {
1987 	if (!adev->mman.initialized)
1988 		return;
1989 
1990 	amdgpu_ttm_training_reserve_vram_fini(adev);
1991 	/* return the IP Discovery TMR memory back to VRAM */
1992 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1993 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1994 
1995 	if (adev->mman.aper_base_kaddr)
1996 		iounmap(adev->mman.aper_base_kaddr);
1997 	adev->mman.aper_base_kaddr = NULL;
1998 
1999 	amdgpu_vram_mgr_fini(adev);
2000 	amdgpu_gtt_mgr_fini(adev);
2001 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2002 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2003 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2004 	ttm_bo_device_release(&adev->mman.bdev);
2005 	adev->mman.initialized = false;
2006 	DRM_INFO("amdgpu: ttm finalized\n");
2007 }
2008 
2009 /**
2010  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2011  *
2012  * @adev: amdgpu_device pointer
2013  * @enable: true when we can use buffer functions.
2014  *
2015  * Enable/disable use of buffer functions during suspend/resume. This should
2016  * only be called at bootup or when userspace isn't running.
2017  */
2018 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2019 {
2020 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2021 	uint64_t size;
2022 	int r;
2023 
2024 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2025 	    adev->mman.buffer_funcs_enabled == enable)
2026 		return;
2027 
2028 	if (enable) {
2029 		struct amdgpu_ring *ring;
2030 		struct drm_gpu_scheduler *sched;
2031 
2032 		ring = adev->mman.buffer_funcs_ring;
2033 		sched = &ring->sched;
2034 		r = drm_sched_entity_init(&adev->mman.entity,
2035 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2036 					  1, NULL);
2037 		if (r) {
2038 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2039 				  r);
2040 			return;
2041 		}
2042 	} else {
2043 		drm_sched_entity_destroy(&adev->mman.entity);
2044 		dma_fence_put(man->move);
2045 		man->move = NULL;
2046 	}
2047 
2048 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2049 	if (enable)
2050 		size = adev->gmc.real_vram_size;
2051 	else
2052 		size = adev->gmc.visible_vram_size;
2053 	man->size = size >> PAGE_SHIFT;
2054 	adev->mman.buffer_funcs_enabled = enable;
2055 }
2056 
2057 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2058 {
2059 	struct drm_file *file_priv = filp->private_data;
2060 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2061 
2062 	if (adev == NULL)
2063 		return -EINVAL;
2064 
2065 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2066 }
2067 
2068 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2069 		       uint64_t dst_offset, uint32_t byte_count,
2070 		       struct dma_resv *resv,
2071 		       struct dma_fence **fence, bool direct_submit,
2072 		       bool vm_needs_flush, bool tmz)
2073 {
2074 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2075 		AMDGPU_IB_POOL_DELAYED;
2076 	struct amdgpu_device *adev = ring->adev;
2077 	struct amdgpu_job *job;
2078 
2079 	uint32_t max_bytes;
2080 	unsigned num_loops, num_dw;
2081 	unsigned i;
2082 	int r;
2083 
2084 	if (direct_submit && !ring->sched.ready) {
2085 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2086 		return -EINVAL;
2087 	}
2088 
2089 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2090 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2091 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2092 
2093 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2094 	if (r)
2095 		return r;
2096 
2097 	if (vm_needs_flush) {
2098 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2099 		job->vm_needs_flush = true;
2100 	}
2101 	if (resv) {
2102 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2103 				     AMDGPU_SYNC_ALWAYS,
2104 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2105 		if (r) {
2106 			DRM_ERROR("sync failed (%d).\n", r);
2107 			goto error_free;
2108 		}
2109 	}
2110 
2111 	for (i = 0; i < num_loops; i++) {
2112 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2113 
2114 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2115 					dst_offset, cur_size_in_bytes, tmz);
2116 
2117 		src_offset += cur_size_in_bytes;
2118 		dst_offset += cur_size_in_bytes;
2119 		byte_count -= cur_size_in_bytes;
2120 	}
2121 
2122 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2123 	WARN_ON(job->ibs[0].length_dw > num_dw);
2124 	if (direct_submit)
2125 		r = amdgpu_job_submit_direct(job, ring, fence);
2126 	else
2127 		r = amdgpu_job_submit(job, &adev->mman.entity,
2128 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2129 	if (r)
2130 		goto error_free;
2131 
2132 	return r;
2133 
2134 error_free:
2135 	amdgpu_job_free(job);
2136 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2137 	return r;
2138 }
2139 
2140 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2141 		       uint32_t src_data,
2142 		       struct dma_resv *resv,
2143 		       struct dma_fence **fence)
2144 {
2145 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2146 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2147 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2148 
2149 	struct drm_mm_node *mm_node;
2150 	unsigned long num_pages;
2151 	unsigned int num_loops, num_dw;
2152 
2153 	struct amdgpu_job *job;
2154 	int r;
2155 
2156 	if (!adev->mman.buffer_funcs_enabled) {
2157 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2158 		return -EINVAL;
2159 	}
2160 
2161 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2162 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2163 		if (r)
2164 			return r;
2165 	}
2166 
2167 	num_pages = bo->tbo.num_pages;
2168 	mm_node = bo->tbo.mem.mm_node;
2169 	num_loops = 0;
2170 	while (num_pages) {
2171 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2172 
2173 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2174 		num_pages -= mm_node->size;
2175 		++mm_node;
2176 	}
2177 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2178 
2179 	/* for IB padding */
2180 	num_dw += 64;
2181 
2182 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2183 				     &job);
2184 	if (r)
2185 		return r;
2186 
2187 	if (resv) {
2188 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2189 				     AMDGPU_SYNC_ALWAYS,
2190 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2191 		if (r) {
2192 			DRM_ERROR("sync failed (%d).\n", r);
2193 			goto error_free;
2194 		}
2195 	}
2196 
2197 	num_pages = bo->tbo.num_pages;
2198 	mm_node = bo->tbo.mem.mm_node;
2199 
2200 	while (num_pages) {
2201 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2202 		uint64_t dst_addr;
2203 
2204 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2205 		while (byte_count) {
2206 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2207 							   max_bytes);
2208 
2209 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2210 						dst_addr, cur_size_in_bytes);
2211 
2212 			dst_addr += cur_size_in_bytes;
2213 			byte_count -= cur_size_in_bytes;
2214 		}
2215 
2216 		num_pages -= mm_node->size;
2217 		++mm_node;
2218 	}
2219 
2220 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2221 	WARN_ON(job->ibs[0].length_dw > num_dw);
2222 	r = amdgpu_job_submit(job, &adev->mman.entity,
2223 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2224 	if (r)
2225 		goto error_free;
2226 
2227 	return 0;
2228 
2229 error_free:
2230 	amdgpu_job_free(job);
2231 	return r;
2232 }
2233 
2234 #if defined(CONFIG_DEBUG_FS)
2235 
2236 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2237 {
2238 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2239 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2240 	struct drm_device *dev = node->minor->dev;
2241 	struct amdgpu_device *adev = dev->dev_private;
2242 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2243 	struct drm_printer p = drm_seq_file_printer(m);
2244 
2245 	man->func->debug(man, &p);
2246 	return 0;
2247 }
2248 
2249 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2250 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2251 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2252 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2253 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2254 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2255 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2256 #ifdef CONFIG_SWIOTLB
2257 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2258 #endif
2259 };
2260 
2261 /**
2262  * amdgpu_ttm_vram_read - Linear read access to VRAM
2263  *
2264  * Accesses VRAM via MMIO for debugging purposes.
2265  */
2266 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2267 				    size_t size, loff_t *pos)
2268 {
2269 	struct amdgpu_device *adev = file_inode(f)->i_private;
2270 	ssize_t result = 0;
2271 
2272 	if (size & 0x3 || *pos & 0x3)
2273 		return -EINVAL;
2274 
2275 	if (*pos >= adev->gmc.mc_vram_size)
2276 		return -ENXIO;
2277 
2278 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2279 	while (size) {
2280 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2281 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2282 
2283 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2284 		if (copy_to_user(buf, value, bytes))
2285 			return -EFAULT;
2286 
2287 		result += bytes;
2288 		buf += bytes;
2289 		*pos += bytes;
2290 		size -= bytes;
2291 	}
2292 
2293 	return result;
2294 }
2295 
2296 /**
2297  * amdgpu_ttm_vram_write - Linear write access to VRAM
2298  *
2299  * Accesses VRAM via MMIO for debugging purposes.
2300  */
2301 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2302 				    size_t size, loff_t *pos)
2303 {
2304 	struct amdgpu_device *adev = file_inode(f)->i_private;
2305 	ssize_t result = 0;
2306 	int r;
2307 
2308 	if (size & 0x3 || *pos & 0x3)
2309 		return -EINVAL;
2310 
2311 	if (*pos >= adev->gmc.mc_vram_size)
2312 		return -ENXIO;
2313 
2314 	while (size) {
2315 		unsigned long flags;
2316 		uint32_t value;
2317 
2318 		if (*pos >= adev->gmc.mc_vram_size)
2319 			return result;
2320 
2321 		r = get_user(value, (uint32_t *)buf);
2322 		if (r)
2323 			return r;
2324 
2325 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2326 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2327 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2328 		WREG32_NO_KIQ(mmMM_DATA, value);
2329 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2330 
2331 		result += 4;
2332 		buf += 4;
2333 		*pos += 4;
2334 		size -= 4;
2335 	}
2336 
2337 	return result;
2338 }
2339 
2340 static const struct file_operations amdgpu_ttm_vram_fops = {
2341 	.owner = THIS_MODULE,
2342 	.read = amdgpu_ttm_vram_read,
2343 	.write = amdgpu_ttm_vram_write,
2344 	.llseek = default_llseek,
2345 };
2346 
2347 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2348 
2349 /**
2350  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2351  */
2352 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2353 				   size_t size, loff_t *pos)
2354 {
2355 	struct amdgpu_device *adev = file_inode(f)->i_private;
2356 	ssize_t result = 0;
2357 	int r;
2358 
2359 	while (size) {
2360 		loff_t p = *pos / PAGE_SIZE;
2361 		unsigned off = *pos & ~PAGE_MASK;
2362 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2363 		struct page *page;
2364 		void *ptr;
2365 
2366 		if (p >= adev->gart.num_cpu_pages)
2367 			return result;
2368 
2369 		page = adev->gart.pages[p];
2370 		if (page) {
2371 			ptr = kmap(page);
2372 			ptr += off;
2373 
2374 			r = copy_to_user(buf, ptr, cur_size);
2375 			kunmap(adev->gart.pages[p]);
2376 		} else
2377 			r = clear_user(buf, cur_size);
2378 
2379 		if (r)
2380 			return -EFAULT;
2381 
2382 		result += cur_size;
2383 		buf += cur_size;
2384 		*pos += cur_size;
2385 		size -= cur_size;
2386 	}
2387 
2388 	return result;
2389 }
2390 
2391 static const struct file_operations amdgpu_ttm_gtt_fops = {
2392 	.owner = THIS_MODULE,
2393 	.read = amdgpu_ttm_gtt_read,
2394 	.llseek = default_llseek
2395 };
2396 
2397 #endif
2398 
2399 /**
2400  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2401  *
2402  * This function is used to read memory that has been mapped to the
2403  * GPU and the known addresses are not physical addresses but instead
2404  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2405  */
2406 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2407 				 size_t size, loff_t *pos)
2408 {
2409 	struct amdgpu_device *adev = file_inode(f)->i_private;
2410 	struct iommu_domain *dom;
2411 	ssize_t result = 0;
2412 	int r;
2413 
2414 	/* retrieve the IOMMU domain if any for this device */
2415 	dom = iommu_get_domain_for_dev(adev->dev);
2416 
2417 	while (size) {
2418 		phys_addr_t addr = *pos & PAGE_MASK;
2419 		loff_t off = *pos & ~PAGE_MASK;
2420 		size_t bytes = PAGE_SIZE - off;
2421 		unsigned long pfn;
2422 		struct page *p;
2423 		void *ptr;
2424 
2425 		bytes = bytes < size ? bytes : size;
2426 
2427 		/* Translate the bus address to a physical address.  If
2428 		 * the domain is NULL it means there is no IOMMU active
2429 		 * and the address translation is the identity
2430 		 */
2431 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2432 
2433 		pfn = addr >> PAGE_SHIFT;
2434 		if (!pfn_valid(pfn))
2435 			return -EPERM;
2436 
2437 		p = pfn_to_page(pfn);
2438 		if (p->mapping != adev->mman.bdev.dev_mapping)
2439 			return -EPERM;
2440 
2441 		ptr = kmap(p);
2442 		r = copy_to_user(buf, ptr + off, bytes);
2443 		kunmap(p);
2444 		if (r)
2445 			return -EFAULT;
2446 
2447 		size -= bytes;
2448 		*pos += bytes;
2449 		result += bytes;
2450 	}
2451 
2452 	return result;
2453 }
2454 
2455 /**
2456  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2457  *
2458  * This function is used to write memory that has been mapped to the
2459  * GPU and the known addresses are not physical addresses but instead
2460  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2461  */
2462 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2463 				 size_t size, loff_t *pos)
2464 {
2465 	struct amdgpu_device *adev = file_inode(f)->i_private;
2466 	struct iommu_domain *dom;
2467 	ssize_t result = 0;
2468 	int r;
2469 
2470 	dom = iommu_get_domain_for_dev(adev->dev);
2471 
2472 	while (size) {
2473 		phys_addr_t addr = *pos & PAGE_MASK;
2474 		loff_t off = *pos & ~PAGE_MASK;
2475 		size_t bytes = PAGE_SIZE - off;
2476 		unsigned long pfn;
2477 		struct page *p;
2478 		void *ptr;
2479 
2480 		bytes = bytes < size ? bytes : size;
2481 
2482 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2483 
2484 		pfn = addr >> PAGE_SHIFT;
2485 		if (!pfn_valid(pfn))
2486 			return -EPERM;
2487 
2488 		p = pfn_to_page(pfn);
2489 		if (p->mapping != adev->mman.bdev.dev_mapping)
2490 			return -EPERM;
2491 
2492 		ptr = kmap(p);
2493 		r = copy_from_user(ptr + off, buf, bytes);
2494 		kunmap(p);
2495 		if (r)
2496 			return -EFAULT;
2497 
2498 		size -= bytes;
2499 		*pos += bytes;
2500 		result += bytes;
2501 	}
2502 
2503 	return result;
2504 }
2505 
2506 static const struct file_operations amdgpu_ttm_iomem_fops = {
2507 	.owner = THIS_MODULE,
2508 	.read = amdgpu_iomem_read,
2509 	.write = amdgpu_iomem_write,
2510 	.llseek = default_llseek
2511 };
2512 
2513 static const struct {
2514 	char *name;
2515 	const struct file_operations *fops;
2516 	int domain;
2517 } ttm_debugfs_entries[] = {
2518 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2519 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2520 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2521 #endif
2522 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2523 };
2524 
2525 #endif
2526 
2527 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2528 {
2529 #if defined(CONFIG_DEBUG_FS)
2530 	unsigned count;
2531 
2532 	struct drm_minor *minor = adev->ddev->primary;
2533 	struct dentry *ent, *root = minor->debugfs_root;
2534 
2535 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2536 		ent = debugfs_create_file(
2537 				ttm_debugfs_entries[count].name,
2538 				S_IFREG | S_IRUGO, root,
2539 				adev,
2540 				ttm_debugfs_entries[count].fops);
2541 		if (IS_ERR(ent))
2542 			return PTR_ERR(ent);
2543 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2544 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2545 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2546 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2547 		adev->mman.debugfs_entries[count] = ent;
2548 	}
2549 
2550 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2551 
2552 #ifdef CONFIG_SWIOTLB
2553 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2554 		--count;
2555 #endif
2556 
2557 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2558 #else
2559 	return 0;
2560 #endif
2561 }
2562