1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62 
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
64 
65 
66 /**
67  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
68  * memory request.
69  *
70  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
71  * @type: The type of memory requested
72  * @man: The memory type manager for each domain
73  *
74  * This is called by ttm_bo_init_mm() when a buffer object is being
75  * initialized.
76  */
77 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
78 				struct ttm_mem_type_manager *man)
79 {
80 	struct amdgpu_device *adev;
81 
82 	adev = amdgpu_ttm_adev(bdev);
83 
84 	switch (type) {
85 	case TTM_PL_SYSTEM:
86 		/* System memory */
87 		man->flags = 0;
88 		man->available_caching = TTM_PL_MASK_CACHING;
89 		man->default_caching = TTM_PL_FLAG_CACHED;
90 		break;
91 	case TTM_PL_TT:
92 		/* GTT memory  */
93 		man->func = &amdgpu_gtt_mgr_func;
94 		man->available_caching = TTM_PL_MASK_CACHING;
95 		man->default_caching = TTM_PL_FLAG_CACHED;
96 		man->flags = 0;
97 		break;
98 	case TTM_PL_VRAM:
99 		/* "On-card" video ram */
100 		man->func = &amdgpu_vram_mgr_func;
101 		man->flags = TTM_MEMTYPE_FLAG_FIXED;
102 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
103 		man->default_caching = TTM_PL_FLAG_WC;
104 		break;
105 	case AMDGPU_PL_GDS:
106 	case AMDGPU_PL_GWS:
107 	case AMDGPU_PL_OA:
108 		/* On-chip GDS memory*/
109 		man->func = &ttm_bo_manager_func;
110 		man->flags = TTM_MEMTYPE_FLAG_FIXED;
111 		man->available_caching = TTM_PL_FLAG_UNCACHED;
112 		man->default_caching = TTM_PL_FLAG_UNCACHED;
113 		break;
114 	default:
115 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
116 		return -EINVAL;
117 	}
118 	return 0;
119 }
120 
121 /**
122  * amdgpu_evict_flags - Compute placement flags
123  *
124  * @bo: The buffer object to evict
125  * @placement: Possible destination(s) for evicted BO
126  *
127  * Fill in placement data when ttm_bo_evict() is called
128  */
129 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
130 				struct ttm_placement *placement)
131 {
132 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
133 	struct amdgpu_bo *abo;
134 	static const struct ttm_place placements = {
135 		.fpfn = 0,
136 		.lpfn = 0,
137 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
138 	};
139 
140 	/* Don't handle scatter gather BOs */
141 	if (bo->type == ttm_bo_type_sg) {
142 		placement->num_placement = 0;
143 		placement->num_busy_placement = 0;
144 		return;
145 	}
146 
147 	/* Object isn't an AMDGPU object so ignore */
148 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
149 		placement->placement = &placements;
150 		placement->busy_placement = &placements;
151 		placement->num_placement = 1;
152 		placement->num_busy_placement = 1;
153 		return;
154 	}
155 
156 	abo = ttm_to_amdgpu_bo(bo);
157 	switch (bo->mem.mem_type) {
158 	case AMDGPU_PL_GDS:
159 	case AMDGPU_PL_GWS:
160 	case AMDGPU_PL_OA:
161 		placement->num_placement = 0;
162 		placement->num_busy_placement = 0;
163 		return;
164 
165 	case TTM_PL_VRAM:
166 		if (!adev->mman.buffer_funcs_enabled) {
167 			/* Move to system memory */
168 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
169 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
170 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
171 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
172 
173 			/* Try evicting to the CPU inaccessible part of VRAM
174 			 * first, but only set GTT as busy placement, so this
175 			 * BO will be evicted to GTT rather than causing other
176 			 * BOs to be evicted from VRAM
177 			 */
178 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
179 							 AMDGPU_GEM_DOMAIN_GTT);
180 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
181 			abo->placements[0].lpfn = 0;
182 			abo->placement.busy_placement = &abo->placements[1];
183 			abo->placement.num_busy_placement = 1;
184 		} else {
185 			/* Move to GTT memory */
186 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
187 		}
188 		break;
189 	case TTM_PL_TT:
190 	default:
191 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
192 		break;
193 	}
194 	*placement = abo->placement;
195 }
196 
197 /**
198  * amdgpu_verify_access - Verify access for a mmap call
199  *
200  * @bo:	The buffer object to map
201  * @filp: The file pointer from the process performing the mmap
202  *
203  * This is called by ttm_bo_mmap() to verify whether a process
204  * has the right to mmap a BO to their process space.
205  */
206 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
207 {
208 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
209 
210 	/*
211 	 * Don't verify access for KFD BOs. They don't have a GEM
212 	 * object associated with them.
213 	 */
214 	if (abo->kfd_bo)
215 		return 0;
216 
217 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
218 		return -EPERM;
219 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
220 					  filp->private_data);
221 }
222 
223 /**
224  * amdgpu_move_null - Register memory for a buffer object
225  *
226  * @bo: The bo to assign the memory to
227  * @new_mem: The memory to be assigned.
228  *
229  * Assign the memory from new_mem to the memory of the buffer object bo.
230  */
231 static void amdgpu_move_null(struct ttm_buffer_object *bo,
232 			     struct ttm_mem_reg *new_mem)
233 {
234 	struct ttm_mem_reg *old_mem = &bo->mem;
235 
236 	BUG_ON(old_mem->mm_node != NULL);
237 	*old_mem = *new_mem;
238 	new_mem->mm_node = NULL;
239 }
240 
241 /**
242  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
243  *
244  * @bo: The bo to assign the memory to.
245  * @mm_node: Memory manager node for drm allocator.
246  * @mem: The region where the bo resides.
247  *
248  */
249 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
250 				    struct drm_mm_node *mm_node,
251 				    struct ttm_mem_reg *mem)
252 {
253 	uint64_t addr = 0;
254 
255 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
256 		addr = mm_node->start << PAGE_SHIFT;
257 		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
258 						mem->mem_type);
259 	}
260 	return addr;
261 }
262 
263 /**
264  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
265  * @offset. It also modifies the offset to be within the drm_mm_node returned
266  *
267  * @mem: The region where the bo resides.
268  * @offset: The offset that drm_mm_node is used for finding.
269  *
270  */
271 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
272 					       uint64_t *offset)
273 {
274 	struct drm_mm_node *mm_node = mem->mm_node;
275 
276 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
277 		*offset -= (mm_node->size << PAGE_SHIFT);
278 		++mm_node;
279 	}
280 	return mm_node;
281 }
282 
283 /**
284  * amdgpu_ttm_map_buffer - Map memory into the GART windows
285  * @bo: buffer object to map
286  * @mem: memory object to map
287  * @mm_node: drm_mm node object to map
288  * @num_pages: number of pages to map
289  * @offset: offset into @mm_node where to start
290  * @window: which GART window to use
291  * @ring: DMA ring to use for the copy
292  * @tmz: if we should setup a TMZ enabled mapping
293  * @addr: resulting address inside the MC address space
294  *
295  * Setup one of the GART windows to access a specific piece of memory or return
296  * the physical address for local memory.
297  */
298 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
299 				 struct ttm_mem_reg *mem,
300 				 struct drm_mm_node *mm_node,
301 				 unsigned num_pages, uint64_t offset,
302 				 unsigned window, struct amdgpu_ring *ring,
303 				 bool tmz, uint64_t *addr)
304 {
305 	struct amdgpu_device *adev = ring->adev;
306 	struct amdgpu_job *job;
307 	unsigned num_dw, num_bytes;
308 	struct dma_fence *fence;
309 	uint64_t src_addr, dst_addr;
310 	void *cpu_addr;
311 	uint64_t flags;
312 	unsigned int i;
313 	int r;
314 
315 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
316 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
317 
318 	/* Map only what can't be accessed directly */
319 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
320 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
321 		return 0;
322 	}
323 
324 	*addr = adev->gmc.gart_start;
325 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
326 		AMDGPU_GPU_PAGE_SIZE;
327 	*addr += offset & ~PAGE_MASK;
328 
329 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
330 	num_bytes = num_pages * 8;
331 
332 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
333 				     AMDGPU_IB_POOL_DELAYED, &job);
334 	if (r)
335 		return r;
336 
337 	src_addr = num_dw * 4;
338 	src_addr += job->ibs[0].gpu_addr;
339 
340 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
341 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
342 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
343 				dst_addr, num_bytes, false);
344 
345 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
346 	WARN_ON(job->ibs[0].length_dw > num_dw);
347 
348 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
349 	if (tmz)
350 		flags |= AMDGPU_PTE_TMZ;
351 
352 	cpu_addr = &job->ibs[0].ptr[num_dw];
353 
354 	if (mem->mem_type == TTM_PL_TT) {
355 		struct ttm_dma_tt *dma;
356 		dma_addr_t *dma_address;
357 
358 		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
359 		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
360 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
361 				    cpu_addr);
362 		if (r)
363 			goto error_free;
364 	} else {
365 		dma_addr_t dma_address;
366 
367 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
368 		dma_address += adev->vm_manager.vram_base_offset;
369 
370 		for (i = 0; i < num_pages; ++i) {
371 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
372 					    &dma_address, flags, cpu_addr);
373 			if (r)
374 				goto error_free;
375 
376 			dma_address += PAGE_SIZE;
377 		}
378 	}
379 
380 	r = amdgpu_job_submit(job, &adev->mman.entity,
381 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
382 	if (r)
383 		goto error_free;
384 
385 	dma_fence_put(fence);
386 
387 	return r;
388 
389 error_free:
390 	amdgpu_job_free(job);
391 	return r;
392 }
393 
394 /**
395  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
396  * @adev: amdgpu device
397  * @src: buffer/address where to read from
398  * @dst: buffer/address where to write to
399  * @size: number of bytes to copy
400  * @tmz: if a secure copy should be used
401  * @resv: resv object to sync to
402  * @f: Returns the last fence if multiple jobs are submitted.
403  *
404  * The function copies @size bytes from {src->mem + src->offset} to
405  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
406  * move and different for a BO to BO copy.
407  *
408  */
409 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
410 			       const struct amdgpu_copy_mem *src,
411 			       const struct amdgpu_copy_mem *dst,
412 			       uint64_t size, bool tmz,
413 			       struct dma_resv *resv,
414 			       struct dma_fence **f)
415 {
416 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
417 					AMDGPU_GPU_PAGE_SIZE);
418 
419 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
420 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
421 	struct drm_mm_node *src_mm, *dst_mm;
422 	struct dma_fence *fence = NULL;
423 	int r = 0;
424 
425 	if (!adev->mman.buffer_funcs_enabled) {
426 		DRM_ERROR("Trying to move memory with ring turned off.\n");
427 		return -EINVAL;
428 	}
429 
430 	src_offset = src->offset;
431 	if (src->mem->mm_node) {
432 		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
433 		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
434 	} else {
435 		src_mm = NULL;
436 		src_node_size = ULLONG_MAX;
437 	}
438 
439 	dst_offset = dst->offset;
440 	if (dst->mem->mm_node) {
441 		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
442 		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
443 	} else {
444 		dst_mm = NULL;
445 		dst_node_size = ULLONG_MAX;
446 	}
447 
448 	mutex_lock(&adev->mman.gtt_window_lock);
449 
450 	while (size) {
451 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
452 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
453 		struct dma_fence *next;
454 		uint32_t cur_size;
455 		uint64_t from, to;
456 
457 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
458 		 * begins at an offset, then adjust the size accordingly
459 		 */
460 		cur_size = max(src_page_offset, dst_page_offset);
461 		cur_size = min(min3(src_node_size, dst_node_size, size),
462 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
463 
464 		/* Map src to window 0 and dst to window 1. */
465 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
466 					  PFN_UP(cur_size + src_page_offset),
467 					  src_offset, 0, ring, tmz, &from);
468 		if (r)
469 			goto error;
470 
471 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
472 					  PFN_UP(cur_size + dst_page_offset),
473 					  dst_offset, 1, ring, tmz, &to);
474 		if (r)
475 			goto error;
476 
477 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
478 				       resv, &next, false, true, tmz);
479 		if (r)
480 			goto error;
481 
482 		dma_fence_put(fence);
483 		fence = next;
484 
485 		size -= cur_size;
486 		if (!size)
487 			break;
488 
489 		src_node_size -= cur_size;
490 		if (!src_node_size) {
491 			++src_mm;
492 			src_node_size = src_mm->size << PAGE_SHIFT;
493 			src_offset = 0;
494 		} else {
495 			src_offset += cur_size;
496 		}
497 
498 		dst_node_size -= cur_size;
499 		if (!dst_node_size) {
500 			++dst_mm;
501 			dst_node_size = dst_mm->size << PAGE_SHIFT;
502 			dst_offset = 0;
503 		} else {
504 			dst_offset += cur_size;
505 		}
506 	}
507 error:
508 	mutex_unlock(&adev->mman.gtt_window_lock);
509 	if (f)
510 		*f = dma_fence_get(fence);
511 	dma_fence_put(fence);
512 	return r;
513 }
514 
515 /**
516  * amdgpu_move_blit - Copy an entire buffer to another buffer
517  *
518  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
519  * help move buffers to and from VRAM.
520  */
521 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
522 			    bool evict, bool no_wait_gpu,
523 			    struct ttm_mem_reg *new_mem,
524 			    struct ttm_mem_reg *old_mem)
525 {
526 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
527 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
528 	struct amdgpu_copy_mem src, dst;
529 	struct dma_fence *fence = NULL;
530 	int r;
531 
532 	src.bo = bo;
533 	dst.bo = bo;
534 	src.mem = old_mem;
535 	dst.mem = new_mem;
536 	src.offset = 0;
537 	dst.offset = 0;
538 
539 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
540 				       new_mem->num_pages << PAGE_SHIFT,
541 				       amdgpu_bo_encrypted(abo),
542 				       bo->base.resv, &fence);
543 	if (r)
544 		goto error;
545 
546 	/* clear the space being freed */
547 	if (old_mem->mem_type == TTM_PL_VRAM &&
548 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
549 		struct dma_fence *wipe_fence = NULL;
550 
551 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
552 				       NULL, &wipe_fence);
553 		if (r) {
554 			goto error;
555 		} else if (wipe_fence) {
556 			dma_fence_put(fence);
557 			fence = wipe_fence;
558 		}
559 	}
560 
561 	/* Always block for VM page tables before committing the new location */
562 	if (bo->type == ttm_bo_type_kernel)
563 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
564 	else
565 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
566 	dma_fence_put(fence);
567 	return r;
568 
569 error:
570 	if (fence)
571 		dma_fence_wait(fence, false);
572 	dma_fence_put(fence);
573 	return r;
574 }
575 
576 /**
577  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
578  *
579  * Called by amdgpu_bo_move().
580  */
581 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
582 				struct ttm_operation_ctx *ctx,
583 				struct ttm_mem_reg *new_mem)
584 {
585 	struct ttm_mem_reg *old_mem = &bo->mem;
586 	struct ttm_mem_reg tmp_mem;
587 	struct ttm_place placements;
588 	struct ttm_placement placement;
589 	int r;
590 
591 	/* create space/pages for new_mem in GTT space */
592 	tmp_mem = *new_mem;
593 	tmp_mem.mm_node = NULL;
594 	placement.num_placement = 1;
595 	placement.placement = &placements;
596 	placement.num_busy_placement = 1;
597 	placement.busy_placement = &placements;
598 	placements.fpfn = 0;
599 	placements.lpfn = 0;
600 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
601 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
602 	if (unlikely(r)) {
603 		pr_err("Failed to find GTT space for blit from VRAM\n");
604 		return r;
605 	}
606 
607 	/* set caching flags */
608 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
609 	if (unlikely(r)) {
610 		goto out_cleanup;
611 	}
612 
613 	/* Bind the memory to the GTT space */
614 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
615 	if (unlikely(r)) {
616 		goto out_cleanup;
617 	}
618 
619 	/* blit VRAM to GTT */
620 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
621 	if (unlikely(r)) {
622 		goto out_cleanup;
623 	}
624 
625 	/* move BO (in tmp_mem) to new_mem */
626 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
627 out_cleanup:
628 	ttm_bo_mem_put(bo, &tmp_mem);
629 	return r;
630 }
631 
632 /**
633  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
634  *
635  * Called by amdgpu_bo_move().
636  */
637 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
638 				struct ttm_operation_ctx *ctx,
639 				struct ttm_mem_reg *new_mem)
640 {
641 	struct ttm_mem_reg *old_mem = &bo->mem;
642 	struct ttm_mem_reg tmp_mem;
643 	struct ttm_placement placement;
644 	struct ttm_place placements;
645 	int r;
646 
647 	/* make space in GTT for old_mem buffer */
648 	tmp_mem = *new_mem;
649 	tmp_mem.mm_node = NULL;
650 	placement.num_placement = 1;
651 	placement.placement = &placements;
652 	placement.num_busy_placement = 1;
653 	placement.busy_placement = &placements;
654 	placements.fpfn = 0;
655 	placements.lpfn = 0;
656 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
657 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
658 	if (unlikely(r)) {
659 		pr_err("Failed to find GTT space for blit to VRAM\n");
660 		return r;
661 	}
662 
663 	/* move/bind old memory to GTT space */
664 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
665 	if (unlikely(r)) {
666 		goto out_cleanup;
667 	}
668 
669 	/* copy to VRAM */
670 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
671 	if (unlikely(r)) {
672 		goto out_cleanup;
673 	}
674 out_cleanup:
675 	ttm_bo_mem_put(bo, &tmp_mem);
676 	return r;
677 }
678 
679 /**
680  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
681  *
682  * Called by amdgpu_bo_move()
683  */
684 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
685 			       struct ttm_mem_reg *mem)
686 {
687 	struct drm_mm_node *nodes = mem->mm_node;
688 
689 	if (mem->mem_type == TTM_PL_SYSTEM ||
690 	    mem->mem_type == TTM_PL_TT)
691 		return true;
692 	if (mem->mem_type != TTM_PL_VRAM)
693 		return false;
694 
695 	/* ttm_mem_reg_ioremap only supports contiguous memory */
696 	if (nodes->size != mem->num_pages)
697 		return false;
698 
699 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
700 		<= adev->gmc.visible_vram_size;
701 }
702 
703 /**
704  * amdgpu_bo_move - Move a buffer object to a new memory location
705  *
706  * Called by ttm_bo_handle_move_mem()
707  */
708 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
709 			  struct ttm_operation_ctx *ctx,
710 			  struct ttm_mem_reg *new_mem)
711 {
712 	struct amdgpu_device *adev;
713 	struct amdgpu_bo *abo;
714 	struct ttm_mem_reg *old_mem = &bo->mem;
715 	int r;
716 
717 	/* Can't move a pinned BO */
718 	abo = ttm_to_amdgpu_bo(bo);
719 	if (WARN_ON_ONCE(abo->pin_count > 0))
720 		return -EINVAL;
721 
722 	adev = amdgpu_ttm_adev(bo->bdev);
723 
724 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
725 		amdgpu_move_null(bo, new_mem);
726 		return 0;
727 	}
728 	if ((old_mem->mem_type == TTM_PL_TT &&
729 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
730 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
731 	     new_mem->mem_type == TTM_PL_TT)) {
732 		/* bind is enough */
733 		amdgpu_move_null(bo, new_mem);
734 		return 0;
735 	}
736 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
737 	    old_mem->mem_type == AMDGPU_PL_GWS ||
738 	    old_mem->mem_type == AMDGPU_PL_OA ||
739 	    new_mem->mem_type == AMDGPU_PL_GDS ||
740 	    new_mem->mem_type == AMDGPU_PL_GWS ||
741 	    new_mem->mem_type == AMDGPU_PL_OA) {
742 		/* Nothing to save here */
743 		amdgpu_move_null(bo, new_mem);
744 		return 0;
745 	}
746 
747 	if (!adev->mman.buffer_funcs_enabled) {
748 		r = -ENODEV;
749 		goto memcpy;
750 	}
751 
752 	if (old_mem->mem_type == TTM_PL_VRAM &&
753 	    new_mem->mem_type == TTM_PL_SYSTEM) {
754 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
755 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
756 		   new_mem->mem_type == TTM_PL_VRAM) {
757 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
758 	} else {
759 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
760 				     new_mem, old_mem);
761 	}
762 
763 	if (r) {
764 memcpy:
765 		/* Check that all memory is CPU accessible */
766 		if (!amdgpu_mem_visible(adev, old_mem) ||
767 		    !amdgpu_mem_visible(adev, new_mem)) {
768 			pr_err("Move buffer fallback to memcpy unavailable\n");
769 			return r;
770 		}
771 
772 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
773 		if (r)
774 			return r;
775 	}
776 
777 	if (bo->type == ttm_bo_type_device &&
778 	    new_mem->mem_type == TTM_PL_VRAM &&
779 	    old_mem->mem_type != TTM_PL_VRAM) {
780 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
781 		 * accesses the BO after it's moved.
782 		 */
783 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
784 	}
785 
786 	/* update statistics */
787 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
788 	return 0;
789 }
790 
791 /**
792  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
793  *
794  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
795  */
796 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
797 {
798 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
799 	struct drm_mm_node *mm_node = mem->mm_node;
800 
801 	mem->bus.addr = NULL;
802 	mem->bus.offset = 0;
803 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
804 	mem->bus.base = 0;
805 	mem->bus.is_iomem = false;
806 
807 	switch (mem->mem_type) {
808 	case TTM_PL_SYSTEM:
809 		/* system memory */
810 		return 0;
811 	case TTM_PL_TT:
812 		break;
813 	case TTM_PL_VRAM:
814 		mem->bus.offset = mem->start << PAGE_SHIFT;
815 		/* check if it's visible */
816 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
817 			return -EINVAL;
818 		/* Only physically contiguous buffers apply. In a contiguous
819 		 * buffer, size of the first mm_node would match the number of
820 		 * pages in ttm_mem_reg.
821 		 */
822 		if (adev->mman.aper_base_kaddr &&
823 		    (mm_node->size == mem->num_pages))
824 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
825 					mem->bus.offset;
826 
827 		mem->bus.base = adev->gmc.aper_base;
828 		mem->bus.is_iomem = true;
829 		break;
830 	default:
831 		return -EINVAL;
832 	}
833 	return 0;
834 }
835 
836 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
837 					   unsigned long page_offset)
838 {
839 	uint64_t offset = (page_offset << PAGE_SHIFT);
840 	struct drm_mm_node *mm;
841 
842 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
843 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
844 		(offset >> PAGE_SHIFT);
845 }
846 
847 /**
848  * amdgpu_ttm_domain_start - Returns GPU start address
849  * @adev: amdgpu device object
850  * @type: type of the memory
851  *
852  * Returns:
853  * GPU start address of a memory domain
854  */
855 
856 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
857 {
858 	switch (type) {
859 	case TTM_PL_TT:
860 		return adev->gmc.gart_start;
861 	case TTM_PL_VRAM:
862 		return adev->gmc.vram_start;
863 	}
864 
865 	return 0;
866 }
867 
868 /*
869  * TTM backend functions.
870  */
871 struct amdgpu_ttm_tt {
872 	struct ttm_dma_tt	ttm;
873 	struct drm_gem_object	*gobj;
874 	u64			offset;
875 	uint64_t		userptr;
876 	struct task_struct	*usertask;
877 	uint32_t		userflags;
878 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
879 	struct hmm_range	*range;
880 #endif
881 };
882 
883 #ifdef CONFIG_DRM_AMDGPU_USERPTR
884 /**
885  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
886  * memory and start HMM tracking CPU page table update
887  *
888  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
889  * once afterwards to stop HMM tracking
890  */
891 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
892 {
893 	struct ttm_tt *ttm = bo->tbo.ttm;
894 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
895 	unsigned long start = gtt->userptr;
896 	struct vm_area_struct *vma;
897 	struct hmm_range *range;
898 	unsigned long timeout;
899 	struct mm_struct *mm;
900 	unsigned long i;
901 	int r = 0;
902 
903 	mm = bo->notifier.mm;
904 	if (unlikely(!mm)) {
905 		DRM_DEBUG_DRIVER("BO is not registered?\n");
906 		return -EFAULT;
907 	}
908 
909 	/* Another get_user_pages is running at the same time?? */
910 	if (WARN_ON(gtt->range))
911 		return -EFAULT;
912 
913 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
914 		return -ESRCH;
915 
916 	range = kzalloc(sizeof(*range), GFP_KERNEL);
917 	if (unlikely(!range)) {
918 		r = -ENOMEM;
919 		goto out;
920 	}
921 	range->notifier = &bo->notifier;
922 	range->start = bo->notifier.interval_tree.start;
923 	range->end = bo->notifier.interval_tree.last + 1;
924 	range->default_flags = HMM_PFN_REQ_FAULT;
925 	if (!amdgpu_ttm_tt_is_readonly(ttm))
926 		range->default_flags |= HMM_PFN_REQ_WRITE;
927 
928 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
929 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
930 	if (unlikely(!range->hmm_pfns)) {
931 		r = -ENOMEM;
932 		goto out_free_ranges;
933 	}
934 
935 	mmap_read_lock(mm);
936 	vma = find_vma(mm, start);
937 	if (unlikely(!vma || start < vma->vm_start)) {
938 		r = -EFAULT;
939 		goto out_unlock;
940 	}
941 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
942 		vma->vm_file)) {
943 		r = -EPERM;
944 		goto out_unlock;
945 	}
946 	mmap_read_unlock(mm);
947 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
948 
949 retry:
950 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
951 
952 	mmap_read_lock(mm);
953 	r = hmm_range_fault(range);
954 	mmap_read_unlock(mm);
955 	if (unlikely(r)) {
956 		/*
957 		 * FIXME: This timeout should encompass the retry from
958 		 * mmu_interval_read_retry() as well.
959 		 */
960 		if (r == -EBUSY && !time_after(jiffies, timeout))
961 			goto retry;
962 		goto out_free_pfns;
963 	}
964 
965 	/*
966 	 * Due to default_flags, all pages are HMM_PFN_VALID or
967 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
968 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
969 	 */
970 	for (i = 0; i < ttm->num_pages; i++)
971 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
972 
973 	gtt->range = range;
974 	mmput(mm);
975 
976 	return 0;
977 
978 out_unlock:
979 	mmap_read_unlock(mm);
980 out_free_pfns:
981 	kvfree(range->hmm_pfns);
982 out_free_ranges:
983 	kfree(range);
984 out:
985 	mmput(mm);
986 	return r;
987 }
988 
989 /**
990  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
991  * Check if the pages backing this ttm range have been invalidated
992  *
993  * Returns: true if pages are still valid
994  */
995 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
996 {
997 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
998 	bool r = false;
999 
1000 	if (!gtt || !gtt->userptr)
1001 		return false;
1002 
1003 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
1004 		gtt->userptr, ttm->num_pages);
1005 
1006 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
1007 		"No user pages to check\n");
1008 
1009 	if (gtt->range) {
1010 		/*
1011 		 * FIXME: Must always hold notifier_lock for this, and must
1012 		 * not ignore the return code.
1013 		 */
1014 		r = mmu_interval_read_retry(gtt->range->notifier,
1015 					 gtt->range->notifier_seq);
1016 		kvfree(gtt->range->hmm_pfns);
1017 		kfree(gtt->range);
1018 		gtt->range = NULL;
1019 	}
1020 
1021 	return !r;
1022 }
1023 #endif
1024 
1025 /**
1026  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1027  *
1028  * Called by amdgpu_cs_list_validate(). This creates the page list
1029  * that backs user memory and will ultimately be mapped into the device
1030  * address space.
1031  */
1032 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1033 {
1034 	unsigned long i;
1035 
1036 	for (i = 0; i < ttm->num_pages; ++i)
1037 		ttm->pages[i] = pages ? pages[i] : NULL;
1038 }
1039 
1040 /**
1041  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
1042  *
1043  * Called by amdgpu_ttm_backend_bind()
1044  **/
1045 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
1046 {
1047 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1048 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1049 	int r;
1050 
1051 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1052 	enum dma_data_direction direction = write ?
1053 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1054 
1055 	/* Allocate an SG array and squash pages into it */
1056 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1057 				      ttm->num_pages << PAGE_SHIFT,
1058 				      GFP_KERNEL);
1059 	if (r)
1060 		goto release_sg;
1061 
1062 	/* Map SG to device */
1063 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1064 	if (r)
1065 		goto release_sg;
1066 
1067 	/* convert SG to linear array of pages and dma addresses */
1068 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1069 					 gtt->ttm.dma_address, ttm->num_pages);
1070 
1071 	return 0;
1072 
1073 release_sg:
1074 	kfree(ttm->sg);
1075 	return r;
1076 }
1077 
1078 /**
1079  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1080  */
1081 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1082 {
1083 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1084 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1085 
1086 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1087 	enum dma_data_direction direction = write ?
1088 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1089 
1090 	/* double check that we don't free the table twice */
1091 	if (!ttm->sg->sgl)
1092 		return;
1093 
1094 	/* unmap the pages mapped to the device */
1095 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1096 	sg_free_table(ttm->sg);
1097 
1098 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1099 	if (gtt->range) {
1100 		unsigned long i;
1101 
1102 		for (i = 0; i < ttm->num_pages; i++) {
1103 			if (ttm->pages[i] !=
1104 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1105 				break;
1106 		}
1107 
1108 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1109 	}
1110 #endif
1111 }
1112 
1113 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1114 				struct ttm_buffer_object *tbo,
1115 				uint64_t flags)
1116 {
1117 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1118 	struct ttm_tt *ttm = tbo->ttm;
1119 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1120 	int r;
1121 
1122 	if (amdgpu_bo_encrypted(abo))
1123 		flags |= AMDGPU_PTE_TMZ;
1124 
1125 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1126 		uint64_t page_idx = 1;
1127 
1128 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1129 				ttm->pages, gtt->ttm.dma_address, flags);
1130 		if (r)
1131 			goto gart_bind_fail;
1132 
1133 		/* The memory type of the first page defaults to UC. Now
1134 		 * modify the memory type to NC from the second page of
1135 		 * the BO onward.
1136 		 */
1137 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1138 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1139 
1140 		r = amdgpu_gart_bind(adev,
1141 				gtt->offset + (page_idx << PAGE_SHIFT),
1142 				ttm->num_pages - page_idx,
1143 				&ttm->pages[page_idx],
1144 				&(gtt->ttm.dma_address[page_idx]), flags);
1145 	} else {
1146 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1147 				     ttm->pages, gtt->ttm.dma_address, flags);
1148 	}
1149 
1150 gart_bind_fail:
1151 	if (r)
1152 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1153 			  ttm->num_pages, gtt->offset);
1154 
1155 	return r;
1156 }
1157 
1158 /**
1159  * amdgpu_ttm_backend_bind - Bind GTT memory
1160  *
1161  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1162  * This handles binding GTT memory to the device address space.
1163  */
1164 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1165 				   struct ttm_mem_reg *bo_mem)
1166 {
1167 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1168 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1169 	uint64_t flags;
1170 	int r = 0;
1171 
1172 	if (gtt->userptr) {
1173 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1174 		if (r) {
1175 			DRM_ERROR("failed to pin userptr\n");
1176 			return r;
1177 		}
1178 	}
1179 	if (!ttm->num_pages) {
1180 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1181 		     ttm->num_pages, bo_mem, ttm);
1182 	}
1183 
1184 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1185 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1186 	    bo_mem->mem_type == AMDGPU_PL_OA)
1187 		return -EINVAL;
1188 
1189 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1190 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1191 		return 0;
1192 	}
1193 
1194 	/* compute PTE flags relevant to this BO memory */
1195 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1196 
1197 	/* bind pages into GART page tables */
1198 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1199 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1200 		ttm->pages, gtt->ttm.dma_address, flags);
1201 
1202 	if (r)
1203 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1204 			  ttm->num_pages, gtt->offset);
1205 	return r;
1206 }
1207 
1208 /**
1209  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1210  */
1211 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1212 {
1213 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1214 	struct ttm_operation_ctx ctx = { false, false };
1215 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1216 	struct ttm_mem_reg tmp;
1217 	struct ttm_placement placement;
1218 	struct ttm_place placements;
1219 	uint64_t addr, flags;
1220 	int r;
1221 
1222 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1223 		return 0;
1224 
1225 	addr = amdgpu_gmc_agp_addr(bo);
1226 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1227 		bo->mem.start = addr >> PAGE_SHIFT;
1228 	} else {
1229 
1230 		/* allocate GART space */
1231 		tmp = bo->mem;
1232 		tmp.mm_node = NULL;
1233 		placement.num_placement = 1;
1234 		placement.placement = &placements;
1235 		placement.num_busy_placement = 1;
1236 		placement.busy_placement = &placements;
1237 		placements.fpfn = 0;
1238 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1239 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1240 			TTM_PL_FLAG_TT;
1241 
1242 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1243 		if (unlikely(r))
1244 			return r;
1245 
1246 		/* compute PTE flags for this buffer object */
1247 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1248 
1249 		/* Bind pages */
1250 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1251 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1252 		if (unlikely(r)) {
1253 			ttm_bo_mem_put(bo, &tmp);
1254 			return r;
1255 		}
1256 
1257 		ttm_bo_mem_put(bo, &bo->mem);
1258 		bo->mem = tmp;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /**
1265  * amdgpu_ttm_recover_gart - Rebind GTT pages
1266  *
1267  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1268  * rebind GTT pages during a GPU reset.
1269  */
1270 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1271 {
1272 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1273 	uint64_t flags;
1274 	int r;
1275 
1276 	if (!tbo->ttm)
1277 		return 0;
1278 
1279 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1280 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1281 
1282 	return r;
1283 }
1284 
1285 /**
1286  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1287  *
1288  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1289  * ttm_tt_destroy().
1290  */
1291 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1292 {
1293 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1294 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1295 	int r;
1296 
1297 	/* if the pages have userptr pinning then clear that first */
1298 	if (gtt->userptr)
1299 		amdgpu_ttm_tt_unpin_userptr(ttm);
1300 
1301 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1302 		return 0;
1303 
1304 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1305 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1306 	if (r)
1307 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1308 			  gtt->ttm.ttm.num_pages, gtt->offset);
1309 	return r;
1310 }
1311 
1312 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1313 {
1314 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1315 
1316 	if (gtt->usertask)
1317 		put_task_struct(gtt->usertask);
1318 
1319 	ttm_dma_tt_fini(&gtt->ttm);
1320 	kfree(gtt);
1321 }
1322 
1323 static struct ttm_backend_func amdgpu_backend_func = {
1324 	.bind = &amdgpu_ttm_backend_bind,
1325 	.unbind = &amdgpu_ttm_backend_unbind,
1326 	.destroy = &amdgpu_ttm_backend_destroy,
1327 };
1328 
1329 /**
1330  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1331  *
1332  * @bo: The buffer object to create a GTT ttm_tt object around
1333  *
1334  * Called by ttm_tt_create().
1335  */
1336 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1337 					   uint32_t page_flags)
1338 {
1339 	struct amdgpu_ttm_tt *gtt;
1340 
1341 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1342 	if (gtt == NULL) {
1343 		return NULL;
1344 	}
1345 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1346 	gtt->gobj = &bo->base;
1347 
1348 	/* allocate space for the uninitialized page entries */
1349 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1350 		kfree(gtt);
1351 		return NULL;
1352 	}
1353 	return &gtt->ttm.ttm;
1354 }
1355 
1356 /**
1357  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1358  *
1359  * Map the pages of a ttm_tt object to an address space visible
1360  * to the underlying device.
1361  */
1362 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1363 			struct ttm_operation_ctx *ctx)
1364 {
1365 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1366 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1367 
1368 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1369 	if (gtt && gtt->userptr) {
1370 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1371 		if (!ttm->sg)
1372 			return -ENOMEM;
1373 
1374 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1375 		ttm->state = tt_unbound;
1376 		return 0;
1377 	}
1378 
1379 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1380 		if (!ttm->sg) {
1381 			struct dma_buf_attachment *attach;
1382 			struct sg_table *sgt;
1383 
1384 			attach = gtt->gobj->import_attach;
1385 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1386 			if (IS_ERR(sgt))
1387 				return PTR_ERR(sgt);
1388 
1389 			ttm->sg = sgt;
1390 		}
1391 
1392 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1393 						 gtt->ttm.dma_address,
1394 						 ttm->num_pages);
1395 		ttm->state = tt_unbound;
1396 		return 0;
1397 	}
1398 
1399 #ifdef CONFIG_SWIOTLB
1400 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1401 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1402 	}
1403 #endif
1404 
1405 	/* fall back to generic helper to populate the page array
1406 	 * and map them to the device */
1407 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1408 }
1409 
1410 /**
1411  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1412  *
1413  * Unmaps pages of a ttm_tt object from the device address space and
1414  * unpopulates the page array backing it.
1415  */
1416 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1417 {
1418 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1419 	struct amdgpu_device *adev;
1420 
1421 	if (gtt && gtt->userptr) {
1422 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1423 		kfree(ttm->sg);
1424 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1425 		return;
1426 	}
1427 
1428 	if (ttm->sg && gtt->gobj->import_attach) {
1429 		struct dma_buf_attachment *attach;
1430 
1431 		attach = gtt->gobj->import_attach;
1432 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1433 		ttm->sg = NULL;
1434 		return;
1435 	}
1436 
1437 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1438 		return;
1439 
1440 	adev = amdgpu_ttm_adev(ttm->bdev);
1441 
1442 #ifdef CONFIG_SWIOTLB
1443 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1444 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1445 		return;
1446 	}
1447 #endif
1448 
1449 	/* fall back to generic helper to unmap and unpopulate array */
1450 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1451 }
1452 
1453 /**
1454  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1455  * task
1456  *
1457  * @ttm: The ttm_tt object to bind this userptr object to
1458  * @addr:  The address in the current tasks VM space to use
1459  * @flags: Requirements of userptr object.
1460  *
1461  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1462  * to current task
1463  */
1464 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1465 			      uint32_t flags)
1466 {
1467 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1468 
1469 	if (gtt == NULL)
1470 		return -EINVAL;
1471 
1472 	gtt->userptr = addr;
1473 	gtt->userflags = flags;
1474 
1475 	if (gtt->usertask)
1476 		put_task_struct(gtt->usertask);
1477 	gtt->usertask = current->group_leader;
1478 	get_task_struct(gtt->usertask);
1479 
1480 	return 0;
1481 }
1482 
1483 /**
1484  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1485  */
1486 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1487 {
1488 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1489 
1490 	if (gtt == NULL)
1491 		return NULL;
1492 
1493 	if (gtt->usertask == NULL)
1494 		return NULL;
1495 
1496 	return gtt->usertask->mm;
1497 }
1498 
1499 /**
1500  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1501  * address range for the current task.
1502  *
1503  */
1504 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1505 				  unsigned long end)
1506 {
1507 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1508 	unsigned long size;
1509 
1510 	if (gtt == NULL || !gtt->userptr)
1511 		return false;
1512 
1513 	/* Return false if no part of the ttm_tt object lies within
1514 	 * the range
1515 	 */
1516 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1517 	if (gtt->userptr > end || gtt->userptr + size <= start)
1518 		return false;
1519 
1520 	return true;
1521 }
1522 
1523 /**
1524  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1525  */
1526 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1527 {
1528 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1529 
1530 	if (gtt == NULL || !gtt->userptr)
1531 		return false;
1532 
1533 	return true;
1534 }
1535 
1536 /**
1537  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1538  */
1539 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1540 {
1541 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1542 
1543 	if (gtt == NULL)
1544 		return false;
1545 
1546 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1547 }
1548 
1549 /**
1550  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1551  *
1552  * @ttm: The ttm_tt object to compute the flags for
1553  * @mem: The memory registry backing this ttm_tt object
1554  *
1555  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1556  */
1557 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1558 {
1559 	uint64_t flags = 0;
1560 
1561 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1562 		flags |= AMDGPU_PTE_VALID;
1563 
1564 	if (mem && mem->mem_type == TTM_PL_TT) {
1565 		flags |= AMDGPU_PTE_SYSTEM;
1566 
1567 		if (ttm->caching_state == tt_cached)
1568 			flags |= AMDGPU_PTE_SNOOPED;
1569 	}
1570 
1571 	return flags;
1572 }
1573 
1574 /**
1575  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1576  *
1577  * @ttm: The ttm_tt object to compute the flags for
1578  * @mem: The memory registry backing this ttm_tt object
1579 
1580  * Figure out the flags to use for a VM PTE (Page Table Entry).
1581  */
1582 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1583 				 struct ttm_mem_reg *mem)
1584 {
1585 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1586 
1587 	flags |= adev->gart.gart_pte_flags;
1588 	flags |= AMDGPU_PTE_READABLE;
1589 
1590 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1591 		flags |= AMDGPU_PTE_WRITEABLE;
1592 
1593 	return flags;
1594 }
1595 
1596 /**
1597  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1598  * object.
1599  *
1600  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1601  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1602  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1603  * used to clean out a memory space.
1604  */
1605 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1606 					    const struct ttm_place *place)
1607 {
1608 	unsigned long num_pages = bo->mem.num_pages;
1609 	struct drm_mm_node *node = bo->mem.mm_node;
1610 	struct dma_resv_list *flist;
1611 	struct dma_fence *f;
1612 	int i;
1613 
1614 	if (bo->type == ttm_bo_type_kernel &&
1615 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1616 		return false;
1617 
1618 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1619 	 * If true, then return false as any KFD process needs all its BOs to
1620 	 * be resident to run successfully
1621 	 */
1622 	flist = dma_resv_get_list(bo->base.resv);
1623 	if (flist) {
1624 		for (i = 0; i < flist->shared_count; ++i) {
1625 			f = rcu_dereference_protected(flist->shared[i],
1626 				dma_resv_held(bo->base.resv));
1627 			if (amdkfd_fence_check_mm(f, current->mm))
1628 				return false;
1629 		}
1630 	}
1631 
1632 	switch (bo->mem.mem_type) {
1633 	case TTM_PL_TT:
1634 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1635 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1636 			return false;
1637 		return true;
1638 
1639 	case TTM_PL_VRAM:
1640 		/* Check each drm MM node individually */
1641 		while (num_pages) {
1642 			if (place->fpfn < (node->start + node->size) &&
1643 			    !(place->lpfn && place->lpfn <= node->start))
1644 				return true;
1645 
1646 			num_pages -= node->size;
1647 			++node;
1648 		}
1649 		return false;
1650 
1651 	default:
1652 		break;
1653 	}
1654 
1655 	return ttm_bo_eviction_valuable(bo, place);
1656 }
1657 
1658 /**
1659  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1660  *
1661  * @bo:  The buffer object to read/write
1662  * @offset:  Offset into buffer object
1663  * @buf:  Secondary buffer to write/read from
1664  * @len: Length in bytes of access
1665  * @write:  true if writing
1666  *
1667  * This is used to access VRAM that backs a buffer object via MMIO
1668  * access for debugging purposes.
1669  */
1670 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1671 				    unsigned long offset,
1672 				    void *buf, int len, int write)
1673 {
1674 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1675 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1676 	struct drm_mm_node *nodes;
1677 	uint32_t value = 0;
1678 	int ret = 0;
1679 	uint64_t pos;
1680 	unsigned long flags;
1681 
1682 	if (bo->mem.mem_type != TTM_PL_VRAM)
1683 		return -EIO;
1684 
1685 	pos = offset;
1686 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1687 	pos += (nodes->start << PAGE_SHIFT);
1688 
1689 	while (len && pos < adev->gmc.mc_vram_size) {
1690 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1691 		uint64_t bytes = 4 - (pos & 3);
1692 		uint32_t shift = (pos & 3) * 8;
1693 		uint32_t mask = 0xffffffff << shift;
1694 
1695 		if (len < bytes) {
1696 			mask &= 0xffffffff >> (bytes - len) * 8;
1697 			bytes = len;
1698 		}
1699 
1700 		if (mask != 0xffffffff) {
1701 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1702 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1703 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1704 			if (!write || mask != 0xffffffff)
1705 				value = RREG32_NO_KIQ(mmMM_DATA);
1706 			if (write) {
1707 				value &= ~mask;
1708 				value |= (*(uint32_t *)buf << shift) & mask;
1709 				WREG32_NO_KIQ(mmMM_DATA, value);
1710 			}
1711 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1712 			if (!write) {
1713 				value = (value & mask) >> shift;
1714 				memcpy(buf, &value, bytes);
1715 			}
1716 		} else {
1717 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1718 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1719 
1720 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1721 						  bytes, write);
1722 		}
1723 
1724 		ret += bytes;
1725 		buf = (uint8_t *)buf + bytes;
1726 		pos += bytes;
1727 		len -= bytes;
1728 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1729 			++nodes;
1730 			pos = (nodes->start << PAGE_SHIFT);
1731 		}
1732 	}
1733 
1734 	return ret;
1735 }
1736 
1737 static struct ttm_bo_driver amdgpu_bo_driver = {
1738 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1739 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1740 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1741 	.init_mem_type = &amdgpu_init_mem_type,
1742 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1743 	.evict_flags = &amdgpu_evict_flags,
1744 	.move = &amdgpu_bo_move,
1745 	.verify_access = &amdgpu_verify_access,
1746 	.move_notify = &amdgpu_bo_move_notify,
1747 	.release_notify = &amdgpu_bo_release_notify,
1748 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1749 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1750 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1751 	.access_memory = &amdgpu_ttm_access_memory,
1752 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1753 };
1754 
1755 /*
1756  * Firmware Reservation functions
1757  */
1758 /**
1759  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1760  *
1761  * @adev: amdgpu_device pointer
1762  *
1763  * free fw reserved vram if it has been reserved.
1764  */
1765 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1766 {
1767 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1768 		NULL, &adev->fw_vram_usage.va);
1769 }
1770 
1771 /**
1772  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1773  *
1774  * @adev: amdgpu_device pointer
1775  *
1776  * create bo vram reservation from fw.
1777  */
1778 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1779 {
1780 	uint64_t vram_size = adev->gmc.visible_vram_size;
1781 
1782 	adev->fw_vram_usage.va = NULL;
1783 	adev->fw_vram_usage.reserved_bo = NULL;
1784 
1785 	if (adev->fw_vram_usage.size == 0 ||
1786 	    adev->fw_vram_usage.size > vram_size)
1787 		return 0;
1788 
1789 	return amdgpu_bo_create_kernel_at(adev,
1790 					  adev->fw_vram_usage.start_offset,
1791 					  adev->fw_vram_usage.size,
1792 					  AMDGPU_GEM_DOMAIN_VRAM,
1793 					  &adev->fw_vram_usage.reserved_bo,
1794 					  &adev->fw_vram_usage.va);
1795 }
1796 
1797 /*
1798  * Memoy training reservation functions
1799  */
1800 
1801 /**
1802  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1803  *
1804  * @adev: amdgpu_device pointer
1805  *
1806  * free memory training reserved vram if it has been reserved.
1807  */
1808 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1809 {
1810 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1811 
1812 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1813 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1814 	ctx->c2p_bo = NULL;
1815 
1816 	return 0;
1817 }
1818 
1819 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1820 {
1821        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1822                vram_size -= SZ_1M;
1823 
1824        return ALIGN(vram_size, SZ_1M);
1825 }
1826 
1827 /**
1828  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1829  *
1830  * @adev: amdgpu_device pointer
1831  *
1832  * create bo vram reservation from memory training.
1833  */
1834 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1835 {
1836 	int ret;
1837 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1838 
1839 	memset(ctx, 0, sizeof(*ctx));
1840 	if (!adev->fw_vram_usage.mem_train_support) {
1841 		DRM_DEBUG("memory training does not support!\n");
1842 		return 0;
1843 	}
1844 
1845 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1846 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1847 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1848 
1849 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1850 		  ctx->train_data_size,
1851 		  ctx->p2c_train_data_offset,
1852 		  ctx->c2p_train_data_offset);
1853 
1854 	ret = amdgpu_bo_create_kernel_at(adev,
1855 					 ctx->c2p_train_data_offset,
1856 					 ctx->train_data_size,
1857 					 AMDGPU_GEM_DOMAIN_VRAM,
1858 					 &ctx->c2p_bo,
1859 					 NULL);
1860 	if (ret) {
1861 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1862 		amdgpu_ttm_training_reserve_vram_fini(adev);
1863 		return ret;
1864 	}
1865 
1866 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1867 	return 0;
1868 }
1869 
1870 /**
1871  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1872  * gtt/vram related fields.
1873  *
1874  * This initializes all of the memory space pools that the TTM layer
1875  * will need such as the GTT space (system memory mapped to the device),
1876  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1877  * can be mapped per VMID.
1878  */
1879 int amdgpu_ttm_init(struct amdgpu_device *adev)
1880 {
1881 	uint64_t gtt_size;
1882 	int r;
1883 	u64 vis_vram_limit;
1884 	void *stolen_vga_buf;
1885 
1886 	mutex_init(&adev->mman.gtt_window_lock);
1887 
1888 	/* No others user of address space so set it to 0 */
1889 	r = ttm_bo_device_init(&adev->mman.bdev,
1890 			       &amdgpu_bo_driver,
1891 			       adev->ddev->anon_inode->i_mapping,
1892 			       adev->ddev->vma_offset_manager,
1893 			       dma_addressing_limited(adev->dev));
1894 	if (r) {
1895 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1896 		return r;
1897 	}
1898 	adev->mman.initialized = true;
1899 
1900 	/* We opt to avoid OOM on system pages allocations */
1901 	adev->mman.bdev.no_retry = true;
1902 
1903 	/* Initialize VRAM pool with all of VRAM divided into pages */
1904 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1905 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1906 	if (r) {
1907 		DRM_ERROR("Failed initializing VRAM heap.\n");
1908 		return r;
1909 	}
1910 
1911 	/* Reduce size of CPU-visible VRAM if requested */
1912 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1913 	if (amdgpu_vis_vram_limit > 0 &&
1914 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1915 		adev->gmc.visible_vram_size = vis_vram_limit;
1916 
1917 	/* Change the size here instead of the init above so only lpfn is affected */
1918 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1919 #ifdef CONFIG_64BIT
1920 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1921 						adev->gmc.visible_vram_size);
1922 #endif
1923 
1924 	/*
1925 	 *The reserved vram for firmware must be pinned to the specified
1926 	 *place on the VRAM, so reserve it early.
1927 	 */
1928 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1929 	if (r) {
1930 		return r;
1931 	}
1932 
1933 	/*
1934 	 *The reserved vram for memory training must be pinned to the specified
1935 	 *place on the VRAM, so reserve it early.
1936 	 */
1937 	if (!amdgpu_sriov_vf(adev)) {
1938 		r = amdgpu_ttm_training_reserve_vram_init(adev);
1939 		if (r)
1940 			return r;
1941 	}
1942 
1943 	/* allocate memory as required for VGA
1944 	 * This is used for VGA emulation and pre-OS scanout buffers to
1945 	 * avoid display artifacts while transitioning between pre-OS
1946 	 * and driver.  */
1947 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1948 				    AMDGPU_GEM_DOMAIN_VRAM,
1949 				    &adev->stolen_vga_memory,
1950 				    NULL, &stolen_vga_buf);
1951 	if (r)
1952 		return r;
1953 
1954 	/*
1955 	 * reserve TMR memory at the top of VRAM which holds
1956 	 * IP Discovery data and is protected by PSP.
1957 	 */
1958 	if (adev->discovery_tmr_size > 0) {
1959 		r = amdgpu_bo_create_kernel_at(adev,
1960 			adev->gmc.real_vram_size - adev->discovery_tmr_size,
1961 			adev->discovery_tmr_size,
1962 			AMDGPU_GEM_DOMAIN_VRAM,
1963 			&adev->discovery_memory,
1964 			NULL);
1965 		if (r)
1966 			return r;
1967 	}
1968 
1969 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1970 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1971 
1972 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1973 	 * or whatever the user passed on module init */
1974 	if (amdgpu_gtt_size == -1) {
1975 		struct sysinfo si;
1976 
1977 		si_meminfo(&si);
1978 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1979 			       adev->gmc.mc_vram_size),
1980 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1981 	}
1982 	else
1983 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1984 
1985 	/* Initialize GTT memory pool */
1986 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1987 	if (r) {
1988 		DRM_ERROR("Failed initializing GTT heap.\n");
1989 		return r;
1990 	}
1991 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1992 		 (unsigned)(gtt_size / (1024 * 1024)));
1993 
1994 	/* Initialize various on-chip memory pools */
1995 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1996 			   adev->gds.gds_size);
1997 	if (r) {
1998 		DRM_ERROR("Failed initializing GDS heap.\n");
1999 		return r;
2000 	}
2001 
2002 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2003 			   adev->gds.gws_size);
2004 	if (r) {
2005 		DRM_ERROR("Failed initializing gws heap.\n");
2006 		return r;
2007 	}
2008 
2009 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2010 			   adev->gds.oa_size);
2011 	if (r) {
2012 		DRM_ERROR("Failed initializing oa heap.\n");
2013 		return r;
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 /**
2020  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2021  */
2022 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2023 {
2024 	void *stolen_vga_buf;
2025 	/* return the VGA stolen memory (if any) back to VRAM */
2026 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2027 }
2028 
2029 /**
2030  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2031  */
2032 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2033 {
2034 	if (!adev->mman.initialized)
2035 		return;
2036 
2037 	amdgpu_ttm_training_reserve_vram_fini(adev);
2038 	/* return the IP Discovery TMR memory back to VRAM */
2039 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2040 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2041 
2042 	if (adev->mman.aper_base_kaddr)
2043 		iounmap(adev->mman.aper_base_kaddr);
2044 	adev->mman.aper_base_kaddr = NULL;
2045 
2046 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2047 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2048 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2049 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2050 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2051 	ttm_bo_device_release(&adev->mman.bdev);
2052 	adev->mman.initialized = false;
2053 	DRM_INFO("amdgpu: ttm finalized\n");
2054 }
2055 
2056 /**
2057  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2058  *
2059  * @adev: amdgpu_device pointer
2060  * @enable: true when we can use buffer functions.
2061  *
2062  * Enable/disable use of buffer functions during suspend/resume. This should
2063  * only be called at bootup or when userspace isn't running.
2064  */
2065 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2066 {
2067 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2068 	uint64_t size;
2069 	int r;
2070 
2071 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2072 	    adev->mman.buffer_funcs_enabled == enable)
2073 		return;
2074 
2075 	if (enable) {
2076 		struct amdgpu_ring *ring;
2077 		struct drm_gpu_scheduler *sched;
2078 
2079 		ring = adev->mman.buffer_funcs_ring;
2080 		sched = &ring->sched;
2081 		r = drm_sched_entity_init(&adev->mman.entity,
2082 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2083 					  1, NULL);
2084 		if (r) {
2085 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2086 				  r);
2087 			return;
2088 		}
2089 	} else {
2090 		drm_sched_entity_destroy(&adev->mman.entity);
2091 		dma_fence_put(man->move);
2092 		man->move = NULL;
2093 	}
2094 
2095 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2096 	if (enable)
2097 		size = adev->gmc.real_vram_size;
2098 	else
2099 		size = adev->gmc.visible_vram_size;
2100 	man->size = size >> PAGE_SHIFT;
2101 	adev->mman.buffer_funcs_enabled = enable;
2102 }
2103 
2104 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2105 {
2106 	struct drm_file *file_priv = filp->private_data;
2107 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2108 
2109 	if (adev == NULL)
2110 		return -EINVAL;
2111 
2112 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2113 }
2114 
2115 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2116 		       uint64_t dst_offset, uint32_t byte_count,
2117 		       struct dma_resv *resv,
2118 		       struct dma_fence **fence, bool direct_submit,
2119 		       bool vm_needs_flush, bool tmz)
2120 {
2121 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2122 		AMDGPU_IB_POOL_DELAYED;
2123 	struct amdgpu_device *adev = ring->adev;
2124 	struct amdgpu_job *job;
2125 
2126 	uint32_t max_bytes;
2127 	unsigned num_loops, num_dw;
2128 	unsigned i;
2129 	int r;
2130 
2131 	if (direct_submit && !ring->sched.ready) {
2132 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2133 		return -EINVAL;
2134 	}
2135 
2136 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2137 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2138 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2139 
2140 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2141 	if (r)
2142 		return r;
2143 
2144 	if (vm_needs_flush) {
2145 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2146 		job->vm_needs_flush = true;
2147 	}
2148 	if (resv) {
2149 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2150 				     AMDGPU_SYNC_ALWAYS,
2151 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2152 		if (r) {
2153 			DRM_ERROR("sync failed (%d).\n", r);
2154 			goto error_free;
2155 		}
2156 	}
2157 
2158 	for (i = 0; i < num_loops; i++) {
2159 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2160 
2161 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2162 					dst_offset, cur_size_in_bytes, tmz);
2163 
2164 		src_offset += cur_size_in_bytes;
2165 		dst_offset += cur_size_in_bytes;
2166 		byte_count -= cur_size_in_bytes;
2167 	}
2168 
2169 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2170 	WARN_ON(job->ibs[0].length_dw > num_dw);
2171 	if (direct_submit)
2172 		r = amdgpu_job_submit_direct(job, ring, fence);
2173 	else
2174 		r = amdgpu_job_submit(job, &adev->mman.entity,
2175 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2176 	if (r)
2177 		goto error_free;
2178 
2179 	return r;
2180 
2181 error_free:
2182 	amdgpu_job_free(job);
2183 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184 	return r;
2185 }
2186 
2187 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2188 		       uint32_t src_data,
2189 		       struct dma_resv *resv,
2190 		       struct dma_fence **fence)
2191 {
2192 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2193 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2194 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2195 
2196 	struct drm_mm_node *mm_node;
2197 	unsigned long num_pages;
2198 	unsigned int num_loops, num_dw;
2199 
2200 	struct amdgpu_job *job;
2201 	int r;
2202 
2203 	if (!adev->mman.buffer_funcs_enabled) {
2204 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2205 		return -EINVAL;
2206 	}
2207 
2208 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2209 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2210 		if (r)
2211 			return r;
2212 	}
2213 
2214 	num_pages = bo->tbo.num_pages;
2215 	mm_node = bo->tbo.mem.mm_node;
2216 	num_loops = 0;
2217 	while (num_pages) {
2218 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2219 
2220 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2221 		num_pages -= mm_node->size;
2222 		++mm_node;
2223 	}
2224 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2225 
2226 	/* for IB padding */
2227 	num_dw += 64;
2228 
2229 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2230 				     &job);
2231 	if (r)
2232 		return r;
2233 
2234 	if (resv) {
2235 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2236 				     AMDGPU_SYNC_ALWAYS,
2237 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2238 		if (r) {
2239 			DRM_ERROR("sync failed (%d).\n", r);
2240 			goto error_free;
2241 		}
2242 	}
2243 
2244 	num_pages = bo->tbo.num_pages;
2245 	mm_node = bo->tbo.mem.mm_node;
2246 
2247 	while (num_pages) {
2248 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2249 		uint64_t dst_addr;
2250 
2251 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2252 		while (byte_count) {
2253 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2254 							   max_bytes);
2255 
2256 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2257 						dst_addr, cur_size_in_bytes);
2258 
2259 			dst_addr += cur_size_in_bytes;
2260 			byte_count -= cur_size_in_bytes;
2261 		}
2262 
2263 		num_pages -= mm_node->size;
2264 		++mm_node;
2265 	}
2266 
2267 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2268 	WARN_ON(job->ibs[0].length_dw > num_dw);
2269 	r = amdgpu_job_submit(job, &adev->mman.entity,
2270 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2271 	if (r)
2272 		goto error_free;
2273 
2274 	return 0;
2275 
2276 error_free:
2277 	amdgpu_job_free(job);
2278 	return r;
2279 }
2280 
2281 #if defined(CONFIG_DEBUG_FS)
2282 
2283 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2284 {
2285 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2286 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2287 	struct drm_device *dev = node->minor->dev;
2288 	struct amdgpu_device *adev = dev->dev_private;
2289 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2290 	struct drm_printer p = drm_seq_file_printer(m);
2291 
2292 	man->func->debug(man, &p);
2293 	return 0;
2294 }
2295 
2296 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2297 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2298 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2299 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2300 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2301 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2302 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2303 #ifdef CONFIG_SWIOTLB
2304 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2305 #endif
2306 };
2307 
2308 /**
2309  * amdgpu_ttm_vram_read - Linear read access to VRAM
2310  *
2311  * Accesses VRAM via MMIO for debugging purposes.
2312  */
2313 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2314 				    size_t size, loff_t *pos)
2315 {
2316 	struct amdgpu_device *adev = file_inode(f)->i_private;
2317 	ssize_t result = 0;
2318 
2319 	if (size & 0x3 || *pos & 0x3)
2320 		return -EINVAL;
2321 
2322 	if (*pos >= adev->gmc.mc_vram_size)
2323 		return -ENXIO;
2324 
2325 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2326 	while (size) {
2327 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2328 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2329 
2330 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2331 		if (copy_to_user(buf, value, bytes))
2332 			return -EFAULT;
2333 
2334 		result += bytes;
2335 		buf += bytes;
2336 		*pos += bytes;
2337 		size -= bytes;
2338 	}
2339 
2340 	return result;
2341 }
2342 
2343 /**
2344  * amdgpu_ttm_vram_write - Linear write access to VRAM
2345  *
2346  * Accesses VRAM via MMIO for debugging purposes.
2347  */
2348 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2349 				    size_t size, loff_t *pos)
2350 {
2351 	struct amdgpu_device *adev = file_inode(f)->i_private;
2352 	ssize_t result = 0;
2353 	int r;
2354 
2355 	if (size & 0x3 || *pos & 0x3)
2356 		return -EINVAL;
2357 
2358 	if (*pos >= adev->gmc.mc_vram_size)
2359 		return -ENXIO;
2360 
2361 	while (size) {
2362 		unsigned long flags;
2363 		uint32_t value;
2364 
2365 		if (*pos >= adev->gmc.mc_vram_size)
2366 			return result;
2367 
2368 		r = get_user(value, (uint32_t *)buf);
2369 		if (r)
2370 			return r;
2371 
2372 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2373 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2374 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2375 		WREG32_NO_KIQ(mmMM_DATA, value);
2376 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2377 
2378 		result += 4;
2379 		buf += 4;
2380 		*pos += 4;
2381 		size -= 4;
2382 	}
2383 
2384 	return result;
2385 }
2386 
2387 static const struct file_operations amdgpu_ttm_vram_fops = {
2388 	.owner = THIS_MODULE,
2389 	.read = amdgpu_ttm_vram_read,
2390 	.write = amdgpu_ttm_vram_write,
2391 	.llseek = default_llseek,
2392 };
2393 
2394 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2395 
2396 /**
2397  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2398  */
2399 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2400 				   size_t size, loff_t *pos)
2401 {
2402 	struct amdgpu_device *adev = file_inode(f)->i_private;
2403 	ssize_t result = 0;
2404 	int r;
2405 
2406 	while (size) {
2407 		loff_t p = *pos / PAGE_SIZE;
2408 		unsigned off = *pos & ~PAGE_MASK;
2409 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2410 		struct page *page;
2411 		void *ptr;
2412 
2413 		if (p >= adev->gart.num_cpu_pages)
2414 			return result;
2415 
2416 		page = adev->gart.pages[p];
2417 		if (page) {
2418 			ptr = kmap(page);
2419 			ptr += off;
2420 
2421 			r = copy_to_user(buf, ptr, cur_size);
2422 			kunmap(adev->gart.pages[p]);
2423 		} else
2424 			r = clear_user(buf, cur_size);
2425 
2426 		if (r)
2427 			return -EFAULT;
2428 
2429 		result += cur_size;
2430 		buf += cur_size;
2431 		*pos += cur_size;
2432 		size -= cur_size;
2433 	}
2434 
2435 	return result;
2436 }
2437 
2438 static const struct file_operations amdgpu_ttm_gtt_fops = {
2439 	.owner = THIS_MODULE,
2440 	.read = amdgpu_ttm_gtt_read,
2441 	.llseek = default_llseek
2442 };
2443 
2444 #endif
2445 
2446 /**
2447  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2448  *
2449  * This function is used to read memory that has been mapped to the
2450  * GPU and the known addresses are not physical addresses but instead
2451  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2452  */
2453 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2454 				 size_t size, loff_t *pos)
2455 {
2456 	struct amdgpu_device *adev = file_inode(f)->i_private;
2457 	struct iommu_domain *dom;
2458 	ssize_t result = 0;
2459 	int r;
2460 
2461 	/* retrieve the IOMMU domain if any for this device */
2462 	dom = iommu_get_domain_for_dev(adev->dev);
2463 
2464 	while (size) {
2465 		phys_addr_t addr = *pos & PAGE_MASK;
2466 		loff_t off = *pos & ~PAGE_MASK;
2467 		size_t bytes = PAGE_SIZE - off;
2468 		unsigned long pfn;
2469 		struct page *p;
2470 		void *ptr;
2471 
2472 		bytes = bytes < size ? bytes : size;
2473 
2474 		/* Translate the bus address to a physical address.  If
2475 		 * the domain is NULL it means there is no IOMMU active
2476 		 * and the address translation is the identity
2477 		 */
2478 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2479 
2480 		pfn = addr >> PAGE_SHIFT;
2481 		if (!pfn_valid(pfn))
2482 			return -EPERM;
2483 
2484 		p = pfn_to_page(pfn);
2485 		if (p->mapping != adev->mman.bdev.dev_mapping)
2486 			return -EPERM;
2487 
2488 		ptr = kmap(p);
2489 		r = copy_to_user(buf, ptr + off, bytes);
2490 		kunmap(p);
2491 		if (r)
2492 			return -EFAULT;
2493 
2494 		size -= bytes;
2495 		*pos += bytes;
2496 		result += bytes;
2497 	}
2498 
2499 	return result;
2500 }
2501 
2502 /**
2503  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2504  *
2505  * This function is used to write memory that has been mapped to the
2506  * GPU and the known addresses are not physical addresses but instead
2507  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2508  */
2509 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2510 				 size_t size, loff_t *pos)
2511 {
2512 	struct amdgpu_device *adev = file_inode(f)->i_private;
2513 	struct iommu_domain *dom;
2514 	ssize_t result = 0;
2515 	int r;
2516 
2517 	dom = iommu_get_domain_for_dev(adev->dev);
2518 
2519 	while (size) {
2520 		phys_addr_t addr = *pos & PAGE_MASK;
2521 		loff_t off = *pos & ~PAGE_MASK;
2522 		size_t bytes = PAGE_SIZE - off;
2523 		unsigned long pfn;
2524 		struct page *p;
2525 		void *ptr;
2526 
2527 		bytes = bytes < size ? bytes : size;
2528 
2529 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2530 
2531 		pfn = addr >> PAGE_SHIFT;
2532 		if (!pfn_valid(pfn))
2533 			return -EPERM;
2534 
2535 		p = pfn_to_page(pfn);
2536 		if (p->mapping != adev->mman.bdev.dev_mapping)
2537 			return -EPERM;
2538 
2539 		ptr = kmap(p);
2540 		r = copy_from_user(ptr + off, buf, bytes);
2541 		kunmap(p);
2542 		if (r)
2543 			return -EFAULT;
2544 
2545 		size -= bytes;
2546 		*pos += bytes;
2547 		result += bytes;
2548 	}
2549 
2550 	return result;
2551 }
2552 
2553 static const struct file_operations amdgpu_ttm_iomem_fops = {
2554 	.owner = THIS_MODULE,
2555 	.read = amdgpu_iomem_read,
2556 	.write = amdgpu_iomem_write,
2557 	.llseek = default_llseek
2558 };
2559 
2560 static const struct {
2561 	char *name;
2562 	const struct file_operations *fops;
2563 	int domain;
2564 } ttm_debugfs_entries[] = {
2565 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2566 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2567 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2568 #endif
2569 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2570 };
2571 
2572 #endif
2573 
2574 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2575 {
2576 #if defined(CONFIG_DEBUG_FS)
2577 	unsigned count;
2578 
2579 	struct drm_minor *minor = adev->ddev->primary;
2580 	struct dentry *ent, *root = minor->debugfs_root;
2581 
2582 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2583 		ent = debugfs_create_file(
2584 				ttm_debugfs_entries[count].name,
2585 				S_IFREG | S_IRUGO, root,
2586 				adev,
2587 				ttm_debugfs_entries[count].fops);
2588 		if (IS_ERR(ent))
2589 			return PTR_ERR(ent);
2590 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2591 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2592 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2593 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2594 		adev->mman.debugfs_entries[count] = ent;
2595 	}
2596 
2597 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2598 
2599 #ifdef CONFIG_SWIOTLB
2600 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2601 		--count;
2602 #endif
2603 
2604 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2605 #else
2606 	return 0;
2607 #endif
2608 }
2609