1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 #include <drm/drm_drv.h> 53 54 #include "amdgpu.h" 55 #include "amdgpu_object.h" 56 #include "amdgpu_trace.h" 57 #include "amdgpu_amdkfd.h" 58 #include "amdgpu_sdma.h" 59 #include "amdgpu_ras.h" 60 #include "amdgpu_hmm.h" 61 #include "amdgpu_atomfirmware.h" 62 #include "amdgpu_res_cursor.h" 63 #include "bif/bif_4_1_d.h" 64 65 MODULE_IMPORT_NS(DMA_BUF); 66 67 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 68 69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 70 struct ttm_tt *ttm, 71 struct ttm_resource *bo_mem); 72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 73 struct ttm_tt *ttm); 74 75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 76 unsigned int type, 77 uint64_t size_in_page) 78 { 79 return ttm_range_man_init(&adev->mman.bdev, type, 80 false, size_in_page); 81 } 82 83 /** 84 * amdgpu_evict_flags - Compute placement flags 85 * 86 * @bo: The buffer object to evict 87 * @placement: Possible destination(s) for evicted BO 88 * 89 * Fill in placement data when ttm_bo_evict() is called 90 */ 91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 92 struct ttm_placement *placement) 93 { 94 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 95 struct amdgpu_bo *abo; 96 static const struct ttm_place placements = { 97 .fpfn = 0, 98 .lpfn = 0, 99 .mem_type = TTM_PL_SYSTEM, 100 .flags = 0 101 }; 102 103 /* Don't handle scatter gather BOs */ 104 if (bo->type == ttm_bo_type_sg) { 105 placement->num_placement = 0; 106 placement->num_busy_placement = 0; 107 return; 108 } 109 110 /* Object isn't an AMDGPU object so ignore */ 111 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 112 placement->placement = &placements; 113 placement->busy_placement = &placements; 114 placement->num_placement = 1; 115 placement->num_busy_placement = 1; 116 return; 117 } 118 119 abo = ttm_to_amdgpu_bo(bo); 120 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 121 placement->num_placement = 0; 122 placement->num_busy_placement = 0; 123 return; 124 } 125 126 switch (bo->resource->mem_type) { 127 case AMDGPU_PL_GDS: 128 case AMDGPU_PL_GWS: 129 case AMDGPU_PL_OA: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned int window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned int offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct amdgpu_job *job; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 202 return -EINVAL; 203 204 /* Map only what can't be accessed directly */ 205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 207 mm_cur->start; 208 return 0; 209 } 210 211 212 /* 213 * If start begins at an offset inside the page, then adjust the size 214 * and addr accordingly 215 */ 216 offset = mm_cur->start & ~PAGE_MASK; 217 218 num_pages = PFN_UP(*size + offset); 219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 220 221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 222 223 *addr = adev->gmc.gart_start; 224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 225 AMDGPU_GPU_PAGE_SIZE; 226 *addr += offset; 227 228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 230 231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 232 AMDGPU_FENCE_OWNER_UNDEFINED, 233 num_dw * 4 + num_bytes, 234 AMDGPU_IB_POOL_DELAYED, &job); 235 if (r) 236 return r; 237 238 src_addr = num_dw * 4; 239 src_addr += job->ibs[0].gpu_addr; 240 241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 244 dst_addr, num_bytes, false); 245 246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 247 WARN_ON(job->ibs[0].length_dw > num_dw); 248 249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 250 if (tmz) 251 flags |= AMDGPU_PTE_TMZ; 252 253 cpu_addr = &job->ibs[0].ptr[num_dw]; 254 255 if (mem->mem_type == TTM_PL_TT) { 256 dma_addr_t *dma_addr; 257 258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 268 flags, cpu_addr); 269 dma_address += PAGE_SIZE; 270 } 271 } 272 273 dma_fence_put(amdgpu_job_submit(job)); 274 return 0; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 300 struct amdgpu_res_cursor src_mm, dst_mm; 301 struct dma_fence *fence = NULL; 302 int r = 0; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 DRM_ERROR("Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, 332 resv, &next, false, true, tmz); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /* 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 413 * 414 * Called by amdgpu_bo_move() 415 */ 416 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 417 struct ttm_resource *mem) 418 { 419 u64 mem_size = (u64)mem->size; 420 struct amdgpu_res_cursor cursor; 421 u64 end; 422 423 if (mem->mem_type == TTM_PL_SYSTEM || 424 mem->mem_type == TTM_PL_TT) 425 return true; 426 if (mem->mem_type != TTM_PL_VRAM) 427 return false; 428 429 amdgpu_res_first(mem, 0, mem_size, &cursor); 430 end = cursor.start + cursor.size; 431 while (cursor.remaining) { 432 amdgpu_res_next(&cursor, cursor.size); 433 434 if (!cursor.remaining) 435 break; 436 437 /* ttm_resource_ioremap only supports contiguous memory */ 438 if (end != cursor.start) 439 return false; 440 441 end = cursor.start + cursor.size; 442 } 443 444 return end <= adev->gmc.visible_vram_size; 445 } 446 447 /* 448 * amdgpu_bo_move - Move a buffer object to a new memory location 449 * 450 * Called by ttm_bo_handle_move_mem() 451 */ 452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 453 struct ttm_operation_ctx *ctx, 454 struct ttm_resource *new_mem, 455 struct ttm_place *hop) 456 { 457 struct amdgpu_device *adev; 458 struct amdgpu_bo *abo; 459 struct ttm_resource *old_mem = bo->resource; 460 int r; 461 462 if (new_mem->mem_type == TTM_PL_TT || 463 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 465 if (r) 466 return r; 467 } 468 469 abo = ttm_to_amdgpu_bo(bo); 470 adev = amdgpu_ttm_adev(bo->bdev); 471 472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 473 bo->ttm == NULL)) { 474 ttm_bo_move_null(bo, new_mem); 475 goto out; 476 } 477 if (old_mem->mem_type == TTM_PL_SYSTEM && 478 (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 480 ttm_bo_move_null(bo, new_mem); 481 goto out; 482 } 483 if ((old_mem->mem_type == TTM_PL_TT || 484 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 485 new_mem->mem_type == TTM_PL_SYSTEM) { 486 r = ttm_bo_wait_ctx(bo, ctx); 487 if (r) 488 return r; 489 490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 491 ttm_resource_free(bo, &bo->resource); 492 ttm_bo_assign_mem(bo, new_mem); 493 goto out; 494 } 495 496 if (old_mem->mem_type == AMDGPU_PL_GDS || 497 old_mem->mem_type == AMDGPU_PL_GWS || 498 old_mem->mem_type == AMDGPU_PL_OA || 499 new_mem->mem_type == AMDGPU_PL_GDS || 500 new_mem->mem_type == AMDGPU_PL_GWS || 501 new_mem->mem_type == AMDGPU_PL_OA) { 502 /* Nothing to save here */ 503 ttm_bo_move_null(bo, new_mem); 504 goto out; 505 } 506 507 if (bo->type == ttm_bo_type_device && 508 new_mem->mem_type == TTM_PL_VRAM && 509 old_mem->mem_type != TTM_PL_VRAM) { 510 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 511 * accesses the BO after it's moved. 512 */ 513 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 514 } 515 516 if (adev->mman.buffer_funcs_enabled) { 517 if (((old_mem->mem_type == TTM_PL_SYSTEM && 518 new_mem->mem_type == TTM_PL_VRAM) || 519 (old_mem->mem_type == TTM_PL_VRAM && 520 new_mem->mem_type == TTM_PL_SYSTEM))) { 521 hop->fpfn = 0; 522 hop->lpfn = 0; 523 hop->mem_type = TTM_PL_TT; 524 hop->flags = TTM_PL_FLAG_TEMPORARY; 525 return -EMULTIHOP; 526 } 527 528 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 529 } else { 530 r = -ENODEV; 531 } 532 533 if (r) { 534 /* Check that all memory is CPU accessible */ 535 if (!amdgpu_mem_visible(adev, old_mem) || 536 !amdgpu_mem_visible(adev, new_mem)) { 537 pr_err("Move buffer fallback to memcpy unavailable\n"); 538 return r; 539 } 540 541 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 542 if (r) 543 return r; 544 } 545 546 out: 547 /* update statistics */ 548 atomic64_add(bo->base.size, &adev->num_bytes_moved); 549 amdgpu_bo_move_notify(bo, evict, new_mem); 550 return 0; 551 } 552 553 /* 554 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 555 * 556 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 557 */ 558 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 559 struct ttm_resource *mem) 560 { 561 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 562 size_t bus_size = (size_t)mem->size; 563 564 switch (mem->mem_type) { 565 case TTM_PL_SYSTEM: 566 /* system memory */ 567 return 0; 568 case TTM_PL_TT: 569 case AMDGPU_PL_PREEMPT: 570 break; 571 case TTM_PL_VRAM: 572 mem->bus.offset = mem->start << PAGE_SHIFT; 573 /* check if it's visible */ 574 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 575 return -EINVAL; 576 577 if (adev->mman.aper_base_kaddr && 578 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 579 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 580 mem->bus.offset; 581 582 mem->bus.offset += adev->gmc.aper_base; 583 mem->bus.is_iomem = true; 584 break; 585 default: 586 return -EINVAL; 587 } 588 return 0; 589 } 590 591 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 592 unsigned long page_offset) 593 { 594 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 595 struct amdgpu_res_cursor cursor; 596 597 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 598 &cursor); 599 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 600 } 601 602 /** 603 * amdgpu_ttm_domain_start - Returns GPU start address 604 * @adev: amdgpu device object 605 * @type: type of the memory 606 * 607 * Returns: 608 * GPU start address of a memory domain 609 */ 610 611 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 612 { 613 switch (type) { 614 case TTM_PL_TT: 615 return adev->gmc.gart_start; 616 case TTM_PL_VRAM: 617 return adev->gmc.vram_start; 618 } 619 620 return 0; 621 } 622 623 /* 624 * TTM backend functions. 625 */ 626 struct amdgpu_ttm_tt { 627 struct ttm_tt ttm; 628 struct drm_gem_object *gobj; 629 u64 offset; 630 uint64_t userptr; 631 struct task_struct *usertask; 632 uint32_t userflags; 633 bool bound; 634 int32_t pool_id; 635 }; 636 637 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 638 639 #ifdef CONFIG_DRM_AMDGPU_USERPTR 640 /* 641 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 642 * memory and start HMM tracking CPU page table update 643 * 644 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 645 * once afterwards to stop HMM tracking 646 */ 647 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 648 struct hmm_range **range) 649 { 650 struct ttm_tt *ttm = bo->tbo.ttm; 651 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 652 unsigned long start = gtt->userptr; 653 struct vm_area_struct *vma; 654 struct mm_struct *mm; 655 bool readonly; 656 int r = 0; 657 658 /* Make sure get_user_pages_done() can cleanup gracefully */ 659 *range = NULL; 660 661 mm = bo->notifier.mm; 662 if (unlikely(!mm)) { 663 DRM_DEBUG_DRIVER("BO is not registered?\n"); 664 return -EFAULT; 665 } 666 667 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 668 return -ESRCH; 669 670 mmap_read_lock(mm); 671 vma = vma_lookup(mm, start); 672 if (unlikely(!vma)) { 673 r = -EFAULT; 674 goto out_unlock; 675 } 676 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 677 vma->vm_file)) { 678 r = -EPERM; 679 goto out_unlock; 680 } 681 682 readonly = amdgpu_ttm_tt_is_readonly(ttm); 683 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 684 readonly, NULL, pages, range); 685 out_unlock: 686 mmap_read_unlock(mm); 687 if (r) 688 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 689 690 mmput(mm); 691 692 return r; 693 } 694 695 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 696 */ 697 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 698 struct hmm_range *range) 699 { 700 struct amdgpu_ttm_tt *gtt = (void *)ttm; 701 702 if (gtt && gtt->userptr && range) 703 amdgpu_hmm_range_get_pages_done(range); 704 } 705 706 /* 707 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 708 * Check if the pages backing this ttm range have been invalidated 709 * 710 * Returns: true if pages are still valid 711 */ 712 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 713 struct hmm_range *range) 714 { 715 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 716 717 if (!gtt || !gtt->userptr || !range) 718 return false; 719 720 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 721 gtt->userptr, ttm->num_pages); 722 723 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 724 725 return !amdgpu_hmm_range_get_pages_done(range); 726 } 727 #endif 728 729 /* 730 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 731 * 732 * Called by amdgpu_cs_list_validate(). This creates the page list 733 * that backs user memory and will ultimately be mapped into the device 734 * address space. 735 */ 736 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 737 { 738 unsigned long i; 739 740 for (i = 0; i < ttm->num_pages; ++i) 741 ttm->pages[i] = pages ? pages[i] : NULL; 742 } 743 744 /* 745 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 746 * 747 * Called by amdgpu_ttm_backend_bind() 748 **/ 749 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 750 struct ttm_tt *ttm) 751 { 752 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 753 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 754 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 755 enum dma_data_direction direction = write ? 756 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 757 int r; 758 759 /* Allocate an SG array and squash pages into it */ 760 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 761 (u64)ttm->num_pages << PAGE_SHIFT, 762 GFP_KERNEL); 763 if (r) 764 goto release_sg; 765 766 /* Map SG to device */ 767 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 768 if (r) 769 goto release_sg; 770 771 /* convert SG to linear array of pages and dma addresses */ 772 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 773 ttm->num_pages); 774 775 return 0; 776 777 release_sg: 778 kfree(ttm->sg); 779 ttm->sg = NULL; 780 return r; 781 } 782 783 /* 784 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 785 */ 786 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 787 struct ttm_tt *ttm) 788 { 789 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 790 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 791 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 792 enum dma_data_direction direction = write ? 793 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 794 795 /* double check that we don't free the table twice */ 796 if (!ttm->sg || !ttm->sg->sgl) 797 return; 798 799 /* unmap the pages mapped to the device */ 800 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 801 sg_free_table(ttm->sg); 802 } 803 804 /* 805 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 806 * MQDn+CtrlStackn where n is the number of XCCs per partition. 807 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 808 * and uses memory type default, UC. The rest of pages_per_xcc are 809 * Ctrl stack and modify their memory type to NC. 810 */ 811 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 812 struct ttm_tt *ttm, uint64_t flags) 813 { 814 struct amdgpu_ttm_tt *gtt = (void *)ttm; 815 uint64_t total_pages = ttm->num_pages; 816 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 817 uint64_t page_idx, pages_per_xcc; 818 int i; 819 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 820 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 821 822 pages_per_xcc = total_pages; 823 do_div(pages_per_xcc, num_xcc); 824 825 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 826 /* MQD page: use default flags */ 827 amdgpu_gart_bind(adev, 828 gtt->offset + (page_idx << PAGE_SHIFT), 829 1, >t->ttm.dma_address[page_idx], flags); 830 /* 831 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 832 * the second page of the BO onward. 833 */ 834 amdgpu_gart_bind(adev, 835 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 836 pages_per_xcc - 1, 837 >t->ttm.dma_address[page_idx + 1], 838 ctrl_flags); 839 } 840 } 841 842 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 843 struct ttm_buffer_object *tbo, 844 uint64_t flags) 845 { 846 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 847 struct ttm_tt *ttm = tbo->ttm; 848 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 849 850 if (amdgpu_bo_encrypted(abo)) 851 flags |= AMDGPU_PTE_TMZ; 852 853 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 854 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 855 } else { 856 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 857 gtt->ttm.dma_address, flags); 858 } 859 } 860 861 /* 862 * amdgpu_ttm_backend_bind - Bind GTT memory 863 * 864 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 865 * This handles binding GTT memory to the device address space. 866 */ 867 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 868 struct ttm_tt *ttm, 869 struct ttm_resource *bo_mem) 870 { 871 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 872 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 873 uint64_t flags; 874 int r; 875 876 if (!bo_mem) 877 return -EINVAL; 878 879 if (gtt->bound) 880 return 0; 881 882 if (gtt->userptr) { 883 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 884 if (r) { 885 DRM_ERROR("failed to pin userptr\n"); 886 return r; 887 } 888 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 889 if (!ttm->sg) { 890 struct dma_buf_attachment *attach; 891 struct sg_table *sgt; 892 893 attach = gtt->gobj->import_attach; 894 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 895 if (IS_ERR(sgt)) 896 return PTR_ERR(sgt); 897 898 ttm->sg = sgt; 899 } 900 901 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 902 ttm->num_pages); 903 } 904 905 if (!ttm->num_pages) { 906 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 907 ttm->num_pages, bo_mem, ttm); 908 } 909 910 if (bo_mem->mem_type != TTM_PL_TT || 911 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 912 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 913 return 0; 914 } 915 916 /* compute PTE flags relevant to this BO memory */ 917 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 918 919 /* bind pages into GART page tables */ 920 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 921 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 922 gtt->ttm.dma_address, flags); 923 gtt->bound = true; 924 return 0; 925 } 926 927 /* 928 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 929 * through AGP or GART aperture. 930 * 931 * If bo is accessible through AGP aperture, then use AGP aperture 932 * to access bo; otherwise allocate logical space in GART aperture 933 * and map bo to GART aperture. 934 */ 935 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 936 { 937 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 938 struct ttm_operation_ctx ctx = { false, false }; 939 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 940 struct ttm_placement placement; 941 struct ttm_place placements; 942 struct ttm_resource *tmp; 943 uint64_t addr, flags; 944 int r; 945 946 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 947 return 0; 948 949 addr = amdgpu_gmc_agp_addr(bo); 950 if (addr != AMDGPU_BO_INVALID_OFFSET) { 951 bo->resource->start = addr >> PAGE_SHIFT; 952 return 0; 953 } 954 955 /* allocate GART space */ 956 placement.num_placement = 1; 957 placement.placement = &placements; 958 placement.num_busy_placement = 1; 959 placement.busy_placement = &placements; 960 placements.fpfn = 0; 961 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 962 placements.mem_type = TTM_PL_TT; 963 placements.flags = bo->resource->placement; 964 965 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 966 if (unlikely(r)) 967 return r; 968 969 /* compute PTE flags for this buffer object */ 970 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 971 972 /* Bind pages */ 973 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 974 amdgpu_ttm_gart_bind(adev, bo, flags); 975 amdgpu_gart_invalidate_tlb(adev); 976 ttm_resource_free(bo, &bo->resource); 977 ttm_bo_assign_mem(bo, tmp); 978 979 return 0; 980 } 981 982 /* 983 * amdgpu_ttm_recover_gart - Rebind GTT pages 984 * 985 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 986 * rebind GTT pages during a GPU reset. 987 */ 988 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 989 { 990 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 991 uint64_t flags; 992 993 if (!tbo->ttm) 994 return; 995 996 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 997 amdgpu_ttm_gart_bind(adev, tbo, flags); 998 } 999 1000 /* 1001 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1002 * 1003 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1004 * ttm_tt_destroy(). 1005 */ 1006 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1007 struct ttm_tt *ttm) 1008 { 1009 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1010 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1011 1012 /* if the pages have userptr pinning then clear that first */ 1013 if (gtt->userptr) { 1014 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1015 } else if (ttm->sg && gtt->gobj->import_attach) { 1016 struct dma_buf_attachment *attach; 1017 1018 attach = gtt->gobj->import_attach; 1019 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1020 ttm->sg = NULL; 1021 } 1022 1023 if (!gtt->bound) 1024 return; 1025 1026 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1027 return; 1028 1029 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1030 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1031 gtt->bound = false; 1032 } 1033 1034 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1035 struct ttm_tt *ttm) 1036 { 1037 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1038 1039 if (gtt->usertask) 1040 put_task_struct(gtt->usertask); 1041 1042 ttm_tt_fini(>t->ttm); 1043 kfree(gtt); 1044 } 1045 1046 /** 1047 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1048 * 1049 * @bo: The buffer object to create a GTT ttm_tt object around 1050 * @page_flags: Page flags to be added to the ttm_tt object 1051 * 1052 * Called by ttm_tt_create(). 1053 */ 1054 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1055 uint32_t page_flags) 1056 { 1057 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1058 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1059 struct amdgpu_ttm_tt *gtt; 1060 enum ttm_caching caching; 1061 1062 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1063 if (!gtt) 1064 return NULL; 1065 1066 gtt->gobj = &bo->base; 1067 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1068 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1069 else 1070 gtt->pool_id = abo->xcp_id; 1071 1072 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1073 caching = ttm_write_combined; 1074 else 1075 caching = ttm_cached; 1076 1077 /* allocate space for the uninitialized page entries */ 1078 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1079 kfree(gtt); 1080 return NULL; 1081 } 1082 return >t->ttm; 1083 } 1084 1085 /* 1086 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1087 * 1088 * Map the pages of a ttm_tt object to an address space visible 1089 * to the underlying device. 1090 */ 1091 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1092 struct ttm_tt *ttm, 1093 struct ttm_operation_ctx *ctx) 1094 { 1095 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1096 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1097 struct ttm_pool *pool; 1098 pgoff_t i; 1099 int ret; 1100 1101 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1102 if (gtt->userptr) { 1103 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1104 if (!ttm->sg) 1105 return -ENOMEM; 1106 return 0; 1107 } 1108 1109 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1110 return 0; 1111 1112 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1113 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1114 else 1115 pool = &adev->mman.bdev.pool; 1116 ret = ttm_pool_alloc(pool, ttm, ctx); 1117 if (ret) 1118 return ret; 1119 1120 for (i = 0; i < ttm->num_pages; ++i) 1121 ttm->pages[i]->mapping = bdev->dev_mapping; 1122 1123 return 0; 1124 } 1125 1126 /* 1127 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1128 * 1129 * Unmaps pages of a ttm_tt object from the device address space and 1130 * unpopulates the page array backing it. 1131 */ 1132 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1133 struct ttm_tt *ttm) 1134 { 1135 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1136 struct amdgpu_device *adev; 1137 struct ttm_pool *pool; 1138 pgoff_t i; 1139 1140 amdgpu_ttm_backend_unbind(bdev, ttm); 1141 1142 if (gtt->userptr) { 1143 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1144 kfree(ttm->sg); 1145 ttm->sg = NULL; 1146 return; 1147 } 1148 1149 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1150 return; 1151 1152 for (i = 0; i < ttm->num_pages; ++i) 1153 ttm->pages[i]->mapping = NULL; 1154 1155 adev = amdgpu_ttm_adev(bdev); 1156 1157 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1158 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1159 else 1160 pool = &adev->mman.bdev.pool; 1161 1162 return ttm_pool_free(pool, ttm); 1163 } 1164 1165 /** 1166 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1167 * task 1168 * 1169 * @tbo: The ttm_buffer_object that contains the userptr 1170 * @user_addr: The returned value 1171 */ 1172 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1173 uint64_t *user_addr) 1174 { 1175 struct amdgpu_ttm_tt *gtt; 1176 1177 if (!tbo->ttm) 1178 return -EINVAL; 1179 1180 gtt = (void *)tbo->ttm; 1181 *user_addr = gtt->userptr; 1182 return 0; 1183 } 1184 1185 /** 1186 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1187 * task 1188 * 1189 * @bo: The ttm_buffer_object to bind this userptr to 1190 * @addr: The address in the current tasks VM space to use 1191 * @flags: Requirements of userptr object. 1192 * 1193 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1194 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1195 * initialize GPU VM for a KFD process. 1196 */ 1197 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1198 uint64_t addr, uint32_t flags) 1199 { 1200 struct amdgpu_ttm_tt *gtt; 1201 1202 if (!bo->ttm) { 1203 /* TODO: We want a separate TTM object type for userptrs */ 1204 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1205 if (bo->ttm == NULL) 1206 return -ENOMEM; 1207 } 1208 1209 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1210 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1211 1212 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1213 gtt->userptr = addr; 1214 gtt->userflags = flags; 1215 1216 if (gtt->usertask) 1217 put_task_struct(gtt->usertask); 1218 gtt->usertask = current->group_leader; 1219 get_task_struct(gtt->usertask); 1220 1221 return 0; 1222 } 1223 1224 /* 1225 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1226 */ 1227 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1228 { 1229 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1230 1231 if (gtt == NULL) 1232 return NULL; 1233 1234 if (gtt->usertask == NULL) 1235 return NULL; 1236 1237 return gtt->usertask->mm; 1238 } 1239 1240 /* 1241 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1242 * address range for the current task. 1243 * 1244 */ 1245 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1246 unsigned long end, unsigned long *userptr) 1247 { 1248 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1249 unsigned long size; 1250 1251 if (gtt == NULL || !gtt->userptr) 1252 return false; 1253 1254 /* Return false if no part of the ttm_tt object lies within 1255 * the range 1256 */ 1257 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1258 if (gtt->userptr > end || gtt->userptr + size <= start) 1259 return false; 1260 1261 if (userptr) 1262 *userptr = gtt->userptr; 1263 return true; 1264 } 1265 1266 /* 1267 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1268 */ 1269 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1270 { 1271 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1272 1273 if (gtt == NULL || !gtt->userptr) 1274 return false; 1275 1276 return true; 1277 } 1278 1279 /* 1280 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1281 */ 1282 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1283 { 1284 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1285 1286 if (gtt == NULL) 1287 return false; 1288 1289 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1290 } 1291 1292 /** 1293 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1294 * 1295 * @ttm: The ttm_tt object to compute the flags for 1296 * @mem: The memory registry backing this ttm_tt object 1297 * 1298 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1299 */ 1300 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1301 { 1302 uint64_t flags = 0; 1303 1304 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1305 flags |= AMDGPU_PTE_VALID; 1306 1307 if (mem && (mem->mem_type == TTM_PL_TT || 1308 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1309 flags |= AMDGPU_PTE_SYSTEM; 1310 1311 if (ttm->caching == ttm_cached) 1312 flags |= AMDGPU_PTE_SNOOPED; 1313 } 1314 1315 if (mem && mem->mem_type == TTM_PL_VRAM && 1316 mem->bus.caching == ttm_cached) 1317 flags |= AMDGPU_PTE_SNOOPED; 1318 1319 return flags; 1320 } 1321 1322 /** 1323 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1324 * 1325 * @adev: amdgpu_device pointer 1326 * @ttm: The ttm_tt object to compute the flags for 1327 * @mem: The memory registry backing this ttm_tt object 1328 * 1329 * Figure out the flags to use for a VM PTE (Page Table Entry). 1330 */ 1331 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1332 struct ttm_resource *mem) 1333 { 1334 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1335 1336 flags |= adev->gart.gart_pte_flags; 1337 flags |= AMDGPU_PTE_READABLE; 1338 1339 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1340 flags |= AMDGPU_PTE_WRITEABLE; 1341 1342 return flags; 1343 } 1344 1345 /* 1346 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1347 * object. 1348 * 1349 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1350 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1351 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1352 * used to clean out a memory space. 1353 */ 1354 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1355 const struct ttm_place *place) 1356 { 1357 struct dma_resv_iter resv_cursor; 1358 struct dma_fence *f; 1359 1360 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1361 return ttm_bo_eviction_valuable(bo, place); 1362 1363 /* Swapout? */ 1364 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1365 return true; 1366 1367 if (bo->type == ttm_bo_type_kernel && 1368 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1369 return false; 1370 1371 /* If bo is a KFD BO, check if the bo belongs to the current process. 1372 * If true, then return false as any KFD process needs all its BOs to 1373 * be resident to run successfully 1374 */ 1375 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1376 DMA_RESV_USAGE_BOOKKEEP, f) { 1377 if (amdkfd_fence_check_mm(f, current->mm)) 1378 return false; 1379 } 1380 1381 /* Preemptible BOs don't own system resources managed by the 1382 * driver (pages, VRAM, GART space). They point to resources 1383 * owned by someone else (e.g. pageable memory in user mode 1384 * or a DMABuf). They are used in a preemptible context so we 1385 * can guarantee no deadlocks and good QoS in case of MMU 1386 * notifiers or DMABuf move notifiers from the resource owner. 1387 */ 1388 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1389 return false; 1390 1391 if (bo->resource->mem_type == TTM_PL_TT && 1392 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1393 return false; 1394 1395 return ttm_bo_eviction_valuable(bo, place); 1396 } 1397 1398 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1399 void *buf, size_t size, bool write) 1400 { 1401 while (size) { 1402 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1403 uint64_t bytes = 4 - (pos & 0x3); 1404 uint32_t shift = (pos & 0x3) * 8; 1405 uint32_t mask = 0xffffffff << shift; 1406 uint32_t value = 0; 1407 1408 if (size < bytes) { 1409 mask &= 0xffffffff >> (bytes - size) * 8; 1410 bytes = size; 1411 } 1412 1413 if (mask != 0xffffffff) { 1414 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1415 if (write) { 1416 value &= ~mask; 1417 value |= (*(uint32_t *)buf << shift) & mask; 1418 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1419 } else { 1420 value = (value & mask) >> shift; 1421 memcpy(buf, &value, bytes); 1422 } 1423 } else { 1424 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1425 } 1426 1427 pos += bytes; 1428 buf += bytes; 1429 size -= bytes; 1430 } 1431 } 1432 1433 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1434 unsigned long offset, void *buf, 1435 int len, int write) 1436 { 1437 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1438 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1439 struct amdgpu_res_cursor src_mm; 1440 struct amdgpu_job *job; 1441 struct dma_fence *fence; 1442 uint64_t src_addr, dst_addr; 1443 unsigned int num_dw; 1444 int r, idx; 1445 1446 if (len != PAGE_SIZE) 1447 return -EINVAL; 1448 1449 if (!adev->mman.sdma_access_ptr) 1450 return -EACCES; 1451 1452 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1453 return -ENODEV; 1454 1455 if (write) 1456 memcpy(adev->mman.sdma_access_ptr, buf, len); 1457 1458 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1459 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1460 AMDGPU_FENCE_OWNER_UNDEFINED, 1461 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1462 &job); 1463 if (r) 1464 goto out; 1465 1466 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1467 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1468 src_mm.start; 1469 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1470 if (write) 1471 swap(src_addr, dst_addr); 1472 1473 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1474 PAGE_SIZE, false); 1475 1476 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1477 WARN_ON(job->ibs[0].length_dw > num_dw); 1478 1479 fence = amdgpu_job_submit(job); 1480 1481 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1482 r = -ETIMEDOUT; 1483 dma_fence_put(fence); 1484 1485 if (!(r || write)) 1486 memcpy(buf, adev->mman.sdma_access_ptr, len); 1487 out: 1488 drm_dev_exit(idx); 1489 return r; 1490 } 1491 1492 /** 1493 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1494 * 1495 * @bo: The buffer object to read/write 1496 * @offset: Offset into buffer object 1497 * @buf: Secondary buffer to write/read from 1498 * @len: Length in bytes of access 1499 * @write: true if writing 1500 * 1501 * This is used to access VRAM that backs a buffer object via MMIO 1502 * access for debugging purposes. 1503 */ 1504 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1505 unsigned long offset, void *buf, int len, 1506 int write) 1507 { 1508 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1509 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1510 struct amdgpu_res_cursor cursor; 1511 int ret = 0; 1512 1513 if (bo->resource->mem_type != TTM_PL_VRAM) 1514 return -EIO; 1515 1516 if (amdgpu_device_has_timeouts_enabled(adev) && 1517 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1518 return len; 1519 1520 amdgpu_res_first(bo->resource, offset, len, &cursor); 1521 while (cursor.remaining) { 1522 size_t count, size = cursor.size; 1523 loff_t pos = cursor.start; 1524 1525 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1526 size -= count; 1527 if (size) { 1528 /* using MM to access rest vram and handle un-aligned address */ 1529 pos += count; 1530 buf += count; 1531 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1532 } 1533 1534 ret += cursor.size; 1535 buf += cursor.size; 1536 amdgpu_res_next(&cursor, cursor.size); 1537 } 1538 1539 return ret; 1540 } 1541 1542 static void 1543 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1544 { 1545 amdgpu_bo_move_notify(bo, false, NULL); 1546 } 1547 1548 static struct ttm_device_funcs amdgpu_bo_driver = { 1549 .ttm_tt_create = &amdgpu_ttm_tt_create, 1550 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1551 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1552 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1553 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1554 .evict_flags = &amdgpu_evict_flags, 1555 .move = &amdgpu_bo_move, 1556 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1557 .release_notify = &amdgpu_bo_release_notify, 1558 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1559 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1560 .access_memory = &amdgpu_ttm_access_memory, 1561 }; 1562 1563 /* 1564 * Firmware Reservation functions 1565 */ 1566 /** 1567 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1568 * 1569 * @adev: amdgpu_device pointer 1570 * 1571 * free fw reserved vram if it has been reserved. 1572 */ 1573 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1574 { 1575 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1576 NULL, &adev->mman.fw_vram_usage_va); 1577 } 1578 1579 /* 1580 * Driver Reservation functions 1581 */ 1582 /** 1583 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1584 * 1585 * @adev: amdgpu_device pointer 1586 * 1587 * free drv reserved vram if it has been reserved. 1588 */ 1589 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1590 { 1591 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1592 NULL, 1593 &adev->mman.drv_vram_usage_va); 1594 } 1595 1596 /** 1597 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1598 * 1599 * @adev: amdgpu_device pointer 1600 * 1601 * create bo vram reservation from fw. 1602 */ 1603 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1604 { 1605 uint64_t vram_size = adev->gmc.visible_vram_size; 1606 1607 adev->mman.fw_vram_usage_va = NULL; 1608 adev->mman.fw_vram_usage_reserved_bo = NULL; 1609 1610 if (adev->mman.fw_vram_usage_size == 0 || 1611 adev->mman.fw_vram_usage_size > vram_size) 1612 return 0; 1613 1614 return amdgpu_bo_create_kernel_at(adev, 1615 adev->mman.fw_vram_usage_start_offset, 1616 adev->mman.fw_vram_usage_size, 1617 &adev->mman.fw_vram_usage_reserved_bo, 1618 &adev->mman.fw_vram_usage_va); 1619 } 1620 1621 /** 1622 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1623 * 1624 * @adev: amdgpu_device pointer 1625 * 1626 * create bo vram reservation from drv. 1627 */ 1628 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1629 { 1630 u64 vram_size = adev->gmc.visible_vram_size; 1631 1632 adev->mman.drv_vram_usage_va = NULL; 1633 adev->mman.drv_vram_usage_reserved_bo = NULL; 1634 1635 if (adev->mman.drv_vram_usage_size == 0 || 1636 adev->mman.drv_vram_usage_size > vram_size) 1637 return 0; 1638 1639 return amdgpu_bo_create_kernel_at(adev, 1640 adev->mman.drv_vram_usage_start_offset, 1641 adev->mman.drv_vram_usage_size, 1642 &adev->mman.drv_vram_usage_reserved_bo, 1643 &adev->mman.drv_vram_usage_va); 1644 } 1645 1646 /* 1647 * Memoy training reservation functions 1648 */ 1649 1650 /** 1651 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1652 * 1653 * @adev: amdgpu_device pointer 1654 * 1655 * free memory training reserved vram if it has been reserved. 1656 */ 1657 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1658 { 1659 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1660 1661 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1662 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1663 ctx->c2p_bo = NULL; 1664 1665 return 0; 1666 } 1667 1668 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1669 uint32_t reserve_size) 1670 { 1671 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1672 1673 memset(ctx, 0, sizeof(*ctx)); 1674 1675 ctx->c2p_train_data_offset = 1676 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1677 ctx->p2c_train_data_offset = 1678 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1679 ctx->train_data_size = 1680 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1681 1682 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1683 ctx->train_data_size, 1684 ctx->p2c_train_data_offset, 1685 ctx->c2p_train_data_offset); 1686 } 1687 1688 /* 1689 * reserve TMR memory at the top of VRAM which holds 1690 * IP Discovery data and is protected by PSP. 1691 */ 1692 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1693 { 1694 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1695 bool mem_train_support = false; 1696 uint32_t reserve_size = 0; 1697 int ret; 1698 1699 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1700 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1701 mem_train_support = true; 1702 else 1703 DRM_DEBUG("memory training does not support!\n"); 1704 } 1705 1706 /* 1707 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1708 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1709 * 1710 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1711 * discovery data and G6 memory training data respectively 1712 */ 1713 if (adev->bios) 1714 reserve_size = 1715 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1716 1717 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3)) 1718 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1719 else if (!reserve_size) 1720 reserve_size = DISCOVERY_TMR_OFFSET; 1721 1722 if (mem_train_support) { 1723 /* reserve vram for mem train according to TMR location */ 1724 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1725 ret = amdgpu_bo_create_kernel_at(adev, 1726 ctx->c2p_train_data_offset, 1727 ctx->train_data_size, 1728 &ctx->c2p_bo, 1729 NULL); 1730 if (ret) { 1731 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1732 amdgpu_ttm_training_reserve_vram_fini(adev); 1733 return ret; 1734 } 1735 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1736 } 1737 1738 if (!adev->gmc.is_app_apu) { 1739 ret = amdgpu_bo_create_kernel_at( 1740 adev, adev->gmc.real_vram_size - reserve_size, 1741 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1742 if (ret) { 1743 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1744 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1745 NULL, NULL); 1746 return ret; 1747 } 1748 } else { 1749 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1750 } 1751 1752 return 0; 1753 } 1754 1755 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1756 { 1757 int i; 1758 1759 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1760 return 0; 1761 1762 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1763 sizeof(*adev->mman.ttm_pools), 1764 GFP_KERNEL); 1765 if (!adev->mman.ttm_pools) 1766 return -ENOMEM; 1767 1768 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1769 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1770 adev->gmc.mem_partitions[i].numa.node, 1771 false, false); 1772 } 1773 return 0; 1774 } 1775 1776 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1777 { 1778 int i; 1779 1780 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1781 return; 1782 1783 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1784 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1785 1786 kfree(adev->mman.ttm_pools); 1787 adev->mman.ttm_pools = NULL; 1788 } 1789 1790 /* 1791 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1792 * gtt/vram related fields. 1793 * 1794 * This initializes all of the memory space pools that the TTM layer 1795 * will need such as the GTT space (system memory mapped to the device), 1796 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1797 * can be mapped per VMID. 1798 */ 1799 int amdgpu_ttm_init(struct amdgpu_device *adev) 1800 { 1801 uint64_t gtt_size; 1802 int r; 1803 1804 mutex_init(&adev->mman.gtt_window_lock); 1805 1806 /* No others user of address space so set it to 0 */ 1807 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1808 adev_to_drm(adev)->anon_inode->i_mapping, 1809 adev_to_drm(adev)->vma_offset_manager, 1810 adev->need_swiotlb, 1811 dma_addressing_limited(adev->dev)); 1812 if (r) { 1813 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1814 return r; 1815 } 1816 1817 r = amdgpu_ttm_pools_init(adev); 1818 if (r) { 1819 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1820 return r; 1821 } 1822 adev->mman.initialized = true; 1823 1824 /* Initialize VRAM pool with all of VRAM divided into pages */ 1825 r = amdgpu_vram_mgr_init(adev); 1826 if (r) { 1827 DRM_ERROR("Failed initializing VRAM heap.\n"); 1828 return r; 1829 } 1830 1831 /* Change the size here instead of the init above so only lpfn is affected */ 1832 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1833 #ifdef CONFIG_64BIT 1834 #ifdef CONFIG_X86 1835 if (adev->gmc.xgmi.connected_to_cpu) 1836 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1837 adev->gmc.visible_vram_size); 1838 1839 else if (adev->gmc.is_app_apu) 1840 DRM_DEBUG_DRIVER( 1841 "No need to ioremap when real vram size is 0\n"); 1842 else 1843 #endif 1844 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1845 adev->gmc.visible_vram_size); 1846 #endif 1847 1848 /* 1849 *The reserved vram for firmware must be pinned to the specified 1850 *place on the VRAM, so reserve it early. 1851 */ 1852 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1853 if (r) 1854 return r; 1855 1856 /* 1857 *The reserved vram for driver must be pinned to the specified 1858 *place on the VRAM, so reserve it early. 1859 */ 1860 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1861 if (r) 1862 return r; 1863 1864 /* 1865 * only NAVI10 and onwards ASIC support for IP discovery. 1866 * If IP discovery enabled, a block of memory should be 1867 * reserved for IP discovey. 1868 */ 1869 if (adev->mman.discovery_bin) { 1870 r = amdgpu_ttm_reserve_tmr(adev); 1871 if (r) 1872 return r; 1873 } 1874 1875 /* allocate memory as required for VGA 1876 * This is used for VGA emulation and pre-OS scanout buffers to 1877 * avoid display artifacts while transitioning between pre-OS 1878 * and driver. 1879 */ 1880 if (!adev->gmc.is_app_apu) { 1881 r = amdgpu_bo_create_kernel_at(adev, 0, 1882 adev->mman.stolen_vga_size, 1883 &adev->mman.stolen_vga_memory, 1884 NULL); 1885 if (r) 1886 return r; 1887 1888 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1889 adev->mman.stolen_extended_size, 1890 &adev->mman.stolen_extended_memory, 1891 NULL); 1892 1893 if (r) 1894 return r; 1895 1896 r = amdgpu_bo_create_kernel_at(adev, 1897 adev->mman.stolen_reserved_offset, 1898 adev->mman.stolen_reserved_size, 1899 &adev->mman.stolen_reserved_memory, 1900 NULL); 1901 if (r) 1902 return r; 1903 } else { 1904 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1905 } 1906 1907 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1908 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1909 1910 /* Compute GTT size, either based on TTM limit 1911 * or whatever the user passed on module init. 1912 */ 1913 if (amdgpu_gtt_size == -1) 1914 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1915 else 1916 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1917 1918 /* Initialize GTT memory pool */ 1919 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1920 if (r) { 1921 DRM_ERROR("Failed initializing GTT heap.\n"); 1922 return r; 1923 } 1924 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1925 (unsigned int)(gtt_size / (1024 * 1024))); 1926 1927 /* Initialize preemptible memory pool */ 1928 r = amdgpu_preempt_mgr_init(adev); 1929 if (r) { 1930 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1931 return r; 1932 } 1933 1934 /* Initialize various on-chip memory pools */ 1935 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1936 if (r) { 1937 DRM_ERROR("Failed initializing GDS heap.\n"); 1938 return r; 1939 } 1940 1941 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1942 if (r) { 1943 DRM_ERROR("Failed initializing gws heap.\n"); 1944 return r; 1945 } 1946 1947 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1948 if (r) { 1949 DRM_ERROR("Failed initializing oa heap.\n"); 1950 return r; 1951 } 1952 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1953 AMDGPU_GEM_DOMAIN_GTT, 1954 &adev->mman.sdma_access_bo, NULL, 1955 &adev->mman.sdma_access_ptr)) 1956 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1957 1958 return 0; 1959 } 1960 1961 /* 1962 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1963 */ 1964 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1965 { 1966 int idx; 1967 1968 if (!adev->mman.initialized) 1969 return; 1970 1971 amdgpu_ttm_pools_fini(adev); 1972 1973 amdgpu_ttm_training_reserve_vram_fini(adev); 1974 /* return the stolen vga memory back to VRAM */ 1975 if (!adev->gmc.is_app_apu) { 1976 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1977 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1978 /* return the FW reserved memory back to VRAM */ 1979 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 1980 NULL); 1981 if (adev->mman.stolen_reserved_size) 1982 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1983 NULL, NULL); 1984 } 1985 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 1986 &adev->mman.sdma_access_ptr); 1987 amdgpu_ttm_fw_reserve_vram_fini(adev); 1988 amdgpu_ttm_drv_reserve_vram_fini(adev); 1989 1990 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 1991 1992 if (adev->mman.aper_base_kaddr) 1993 iounmap(adev->mman.aper_base_kaddr); 1994 adev->mman.aper_base_kaddr = NULL; 1995 1996 drm_dev_exit(idx); 1997 } 1998 1999 amdgpu_vram_mgr_fini(adev); 2000 amdgpu_gtt_mgr_fini(adev); 2001 amdgpu_preempt_mgr_fini(adev); 2002 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2003 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2004 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2005 ttm_device_fini(&adev->mman.bdev); 2006 adev->mman.initialized = false; 2007 DRM_INFO("amdgpu: ttm finalized\n"); 2008 } 2009 2010 /** 2011 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2012 * 2013 * @adev: amdgpu_device pointer 2014 * @enable: true when we can use buffer functions. 2015 * 2016 * Enable/disable use of buffer functions during suspend/resume. This should 2017 * only be called at bootup or when userspace isn't running. 2018 */ 2019 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2020 { 2021 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2022 uint64_t size; 2023 int r; 2024 2025 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2026 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2027 return; 2028 2029 if (enable) { 2030 struct amdgpu_ring *ring; 2031 struct drm_gpu_scheduler *sched; 2032 2033 ring = adev->mman.buffer_funcs_ring; 2034 sched = &ring->sched; 2035 r = drm_sched_entity_init(&adev->mman.high_pr, 2036 DRM_SCHED_PRIORITY_KERNEL, &sched, 2037 1, NULL); 2038 if (r) { 2039 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2040 r); 2041 return; 2042 } 2043 2044 r = drm_sched_entity_init(&adev->mman.low_pr, 2045 DRM_SCHED_PRIORITY_NORMAL, &sched, 2046 1, NULL); 2047 if (r) { 2048 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2049 r); 2050 goto error_free_entity; 2051 } 2052 } else { 2053 drm_sched_entity_destroy(&adev->mman.high_pr); 2054 drm_sched_entity_destroy(&adev->mman.low_pr); 2055 dma_fence_put(man->move); 2056 man->move = NULL; 2057 } 2058 2059 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2060 if (enable) 2061 size = adev->gmc.real_vram_size; 2062 else 2063 size = adev->gmc.visible_vram_size; 2064 man->size = size; 2065 adev->mman.buffer_funcs_enabled = enable; 2066 2067 return; 2068 2069 error_free_entity: 2070 drm_sched_entity_destroy(&adev->mman.high_pr); 2071 } 2072 2073 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2074 bool direct_submit, 2075 unsigned int num_dw, 2076 struct dma_resv *resv, 2077 bool vm_needs_flush, 2078 struct amdgpu_job **job, 2079 bool delayed) 2080 { 2081 enum amdgpu_ib_pool_type pool = direct_submit ? 2082 AMDGPU_IB_POOL_DIRECT : 2083 AMDGPU_IB_POOL_DELAYED; 2084 int r; 2085 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2086 &adev->mman.high_pr; 2087 r = amdgpu_job_alloc_with_ib(adev, entity, 2088 AMDGPU_FENCE_OWNER_UNDEFINED, 2089 num_dw * 4, pool, job); 2090 if (r) 2091 return r; 2092 2093 if (vm_needs_flush) { 2094 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2095 adev->gmc.pdb0_bo : 2096 adev->gart.bo); 2097 (*job)->vm_needs_flush = true; 2098 } 2099 if (!resv) 2100 return 0; 2101 2102 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2103 DMA_RESV_USAGE_BOOKKEEP); 2104 } 2105 2106 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2107 uint64_t dst_offset, uint32_t byte_count, 2108 struct dma_resv *resv, 2109 struct dma_fence **fence, bool direct_submit, 2110 bool vm_needs_flush, bool tmz) 2111 { 2112 struct amdgpu_device *adev = ring->adev; 2113 unsigned int num_loops, num_dw; 2114 struct amdgpu_job *job; 2115 uint32_t max_bytes; 2116 unsigned int i; 2117 int r; 2118 2119 if (!direct_submit && !ring->sched.ready) { 2120 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2121 return -EINVAL; 2122 } 2123 2124 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2125 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2126 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2127 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2128 resv, vm_needs_flush, &job, false); 2129 if (r) 2130 return r; 2131 2132 for (i = 0; i < num_loops; i++) { 2133 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2134 2135 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2136 dst_offset, cur_size_in_bytes, tmz); 2137 2138 src_offset += cur_size_in_bytes; 2139 dst_offset += cur_size_in_bytes; 2140 byte_count -= cur_size_in_bytes; 2141 } 2142 2143 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2144 WARN_ON(job->ibs[0].length_dw > num_dw); 2145 if (direct_submit) 2146 r = amdgpu_job_submit_direct(job, ring, fence); 2147 else 2148 *fence = amdgpu_job_submit(job); 2149 if (r) 2150 goto error_free; 2151 2152 return r; 2153 2154 error_free: 2155 amdgpu_job_free(job); 2156 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2157 return r; 2158 } 2159 2160 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2161 uint64_t dst_addr, uint32_t byte_count, 2162 struct dma_resv *resv, 2163 struct dma_fence **fence, 2164 bool vm_needs_flush, bool delayed) 2165 { 2166 struct amdgpu_device *adev = ring->adev; 2167 unsigned int num_loops, num_dw; 2168 struct amdgpu_job *job; 2169 uint32_t max_bytes; 2170 unsigned int i; 2171 int r; 2172 2173 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2174 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2175 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2176 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2177 &job, delayed); 2178 if (r) 2179 return r; 2180 2181 for (i = 0; i < num_loops; i++) { 2182 uint32_t cur_size = min(byte_count, max_bytes); 2183 2184 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2185 cur_size); 2186 2187 dst_addr += cur_size; 2188 byte_count -= cur_size; 2189 } 2190 2191 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2192 WARN_ON(job->ibs[0].length_dw > num_dw); 2193 *fence = amdgpu_job_submit(job); 2194 return 0; 2195 } 2196 2197 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2198 uint32_t src_data, 2199 struct dma_resv *resv, 2200 struct dma_fence **f, 2201 bool delayed) 2202 { 2203 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2204 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2205 struct dma_fence *fence = NULL; 2206 struct amdgpu_res_cursor dst; 2207 int r; 2208 2209 if (!adev->mman.buffer_funcs_enabled) { 2210 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2211 return -EINVAL; 2212 } 2213 2214 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2215 2216 mutex_lock(&adev->mman.gtt_window_lock); 2217 while (dst.remaining) { 2218 struct dma_fence *next; 2219 uint64_t cur_size, to; 2220 2221 /* Never fill more than 256MiB at once to avoid timeouts */ 2222 cur_size = min(dst.size, 256ULL << 20); 2223 2224 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2225 1, ring, false, &cur_size, &to); 2226 if (r) 2227 goto error; 2228 2229 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2230 &next, true, delayed); 2231 if (r) 2232 goto error; 2233 2234 dma_fence_put(fence); 2235 fence = next; 2236 2237 amdgpu_res_next(&dst, cur_size); 2238 } 2239 error: 2240 mutex_unlock(&adev->mman.gtt_window_lock); 2241 if (f) 2242 *f = dma_fence_get(fence); 2243 dma_fence_put(fence); 2244 return r; 2245 } 2246 2247 /** 2248 * amdgpu_ttm_evict_resources - evict memory buffers 2249 * @adev: amdgpu device object 2250 * @mem_type: evicted BO's memory type 2251 * 2252 * Evicts all @mem_type buffers on the lru list of the memory type. 2253 * 2254 * Returns: 2255 * 0 for success or a negative error code on failure. 2256 */ 2257 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2258 { 2259 struct ttm_resource_manager *man; 2260 2261 switch (mem_type) { 2262 case TTM_PL_VRAM: 2263 case TTM_PL_TT: 2264 case AMDGPU_PL_GWS: 2265 case AMDGPU_PL_GDS: 2266 case AMDGPU_PL_OA: 2267 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2268 break; 2269 default: 2270 DRM_ERROR("Trying to evict invalid memory type\n"); 2271 return -EINVAL; 2272 } 2273 2274 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2275 } 2276 2277 #if defined(CONFIG_DEBUG_FS) 2278 2279 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2280 { 2281 struct amdgpu_device *adev = m->private; 2282 2283 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2284 } 2285 2286 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2287 2288 /* 2289 * amdgpu_ttm_vram_read - Linear read access to VRAM 2290 * 2291 * Accesses VRAM via MMIO for debugging purposes. 2292 */ 2293 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2294 size_t size, loff_t *pos) 2295 { 2296 struct amdgpu_device *adev = file_inode(f)->i_private; 2297 ssize_t result = 0; 2298 2299 if (size & 0x3 || *pos & 0x3) 2300 return -EINVAL; 2301 2302 if (*pos >= adev->gmc.mc_vram_size) 2303 return -ENXIO; 2304 2305 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2306 while (size) { 2307 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2308 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2309 2310 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2311 if (copy_to_user(buf, value, bytes)) 2312 return -EFAULT; 2313 2314 result += bytes; 2315 buf += bytes; 2316 *pos += bytes; 2317 size -= bytes; 2318 } 2319 2320 return result; 2321 } 2322 2323 /* 2324 * amdgpu_ttm_vram_write - Linear write access to VRAM 2325 * 2326 * Accesses VRAM via MMIO for debugging purposes. 2327 */ 2328 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2329 size_t size, loff_t *pos) 2330 { 2331 struct amdgpu_device *adev = file_inode(f)->i_private; 2332 ssize_t result = 0; 2333 int r; 2334 2335 if (size & 0x3 || *pos & 0x3) 2336 return -EINVAL; 2337 2338 if (*pos >= adev->gmc.mc_vram_size) 2339 return -ENXIO; 2340 2341 while (size) { 2342 uint32_t value; 2343 2344 if (*pos >= adev->gmc.mc_vram_size) 2345 return result; 2346 2347 r = get_user(value, (uint32_t *)buf); 2348 if (r) 2349 return r; 2350 2351 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2352 2353 result += 4; 2354 buf += 4; 2355 *pos += 4; 2356 size -= 4; 2357 } 2358 2359 return result; 2360 } 2361 2362 static const struct file_operations amdgpu_ttm_vram_fops = { 2363 .owner = THIS_MODULE, 2364 .read = amdgpu_ttm_vram_read, 2365 .write = amdgpu_ttm_vram_write, 2366 .llseek = default_llseek, 2367 }; 2368 2369 /* 2370 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2371 * 2372 * This function is used to read memory that has been mapped to the 2373 * GPU and the known addresses are not physical addresses but instead 2374 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2375 */ 2376 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2377 size_t size, loff_t *pos) 2378 { 2379 struct amdgpu_device *adev = file_inode(f)->i_private; 2380 struct iommu_domain *dom; 2381 ssize_t result = 0; 2382 int r; 2383 2384 /* retrieve the IOMMU domain if any for this device */ 2385 dom = iommu_get_domain_for_dev(adev->dev); 2386 2387 while (size) { 2388 phys_addr_t addr = *pos & PAGE_MASK; 2389 loff_t off = *pos & ~PAGE_MASK; 2390 size_t bytes = PAGE_SIZE - off; 2391 unsigned long pfn; 2392 struct page *p; 2393 void *ptr; 2394 2395 bytes = bytes < size ? bytes : size; 2396 2397 /* Translate the bus address to a physical address. If 2398 * the domain is NULL it means there is no IOMMU active 2399 * and the address translation is the identity 2400 */ 2401 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2402 2403 pfn = addr >> PAGE_SHIFT; 2404 if (!pfn_valid(pfn)) 2405 return -EPERM; 2406 2407 p = pfn_to_page(pfn); 2408 if (p->mapping != adev->mman.bdev.dev_mapping) 2409 return -EPERM; 2410 2411 ptr = kmap_local_page(p); 2412 r = copy_to_user(buf, ptr + off, bytes); 2413 kunmap_local(ptr); 2414 if (r) 2415 return -EFAULT; 2416 2417 size -= bytes; 2418 *pos += bytes; 2419 result += bytes; 2420 } 2421 2422 return result; 2423 } 2424 2425 /* 2426 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2427 * 2428 * This function is used to write memory that has been mapped to the 2429 * GPU and the known addresses are not physical addresses but instead 2430 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2431 */ 2432 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2433 size_t size, loff_t *pos) 2434 { 2435 struct amdgpu_device *adev = file_inode(f)->i_private; 2436 struct iommu_domain *dom; 2437 ssize_t result = 0; 2438 int r; 2439 2440 dom = iommu_get_domain_for_dev(adev->dev); 2441 2442 while (size) { 2443 phys_addr_t addr = *pos & PAGE_MASK; 2444 loff_t off = *pos & ~PAGE_MASK; 2445 size_t bytes = PAGE_SIZE - off; 2446 unsigned long pfn; 2447 struct page *p; 2448 void *ptr; 2449 2450 bytes = bytes < size ? bytes : size; 2451 2452 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2453 2454 pfn = addr >> PAGE_SHIFT; 2455 if (!pfn_valid(pfn)) 2456 return -EPERM; 2457 2458 p = pfn_to_page(pfn); 2459 if (p->mapping != adev->mman.bdev.dev_mapping) 2460 return -EPERM; 2461 2462 ptr = kmap_local_page(p); 2463 r = copy_from_user(ptr + off, buf, bytes); 2464 kunmap_local(ptr); 2465 if (r) 2466 return -EFAULT; 2467 2468 size -= bytes; 2469 *pos += bytes; 2470 result += bytes; 2471 } 2472 2473 return result; 2474 } 2475 2476 static const struct file_operations amdgpu_ttm_iomem_fops = { 2477 .owner = THIS_MODULE, 2478 .read = amdgpu_iomem_read, 2479 .write = amdgpu_iomem_write, 2480 .llseek = default_llseek 2481 }; 2482 2483 #endif 2484 2485 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2486 { 2487 #if defined(CONFIG_DEBUG_FS) 2488 struct drm_minor *minor = adev_to_drm(adev)->primary; 2489 struct dentry *root = minor->debugfs_root; 2490 2491 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2492 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2493 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2494 &amdgpu_ttm_iomem_fops); 2495 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2496 &amdgpu_ttm_page_pool_fops); 2497 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2498 TTM_PL_VRAM), 2499 root, "amdgpu_vram_mm"); 2500 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2501 TTM_PL_TT), 2502 root, "amdgpu_gtt_mm"); 2503 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2504 AMDGPU_PL_GDS), 2505 root, "amdgpu_gds_mm"); 2506 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2507 AMDGPU_PL_GWS), 2508 root, "amdgpu_gws_mm"); 2509 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2510 AMDGPU_PL_OA), 2511 root, "amdgpu_oa_mm"); 2512 2513 #endif 2514 } 2515