1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62 
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
64 
65 
66 /**
67  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
68  * memory request.
69  *
70  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
71  * @type: The type of memory requested
72  * @man: The memory type manager for each domain
73  *
74  * This is called by ttm_bo_init_mm() when a buffer object is being
75  * initialized.
76  */
77 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
78 				struct ttm_mem_type_manager *man)
79 {
80 	struct amdgpu_device *adev;
81 
82 	adev = amdgpu_ttm_adev(bdev);
83 
84 	switch (type) {
85 	case TTM_PL_SYSTEM:
86 		/* System memory */
87 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
88 		man->available_caching = TTM_PL_MASK_CACHING;
89 		man->default_caching = TTM_PL_FLAG_CACHED;
90 		break;
91 	case TTM_PL_TT:
92 		/* GTT memory  */
93 		man->func = &amdgpu_gtt_mgr_func;
94 		man->gpu_offset = adev->gmc.gart_start;
95 		man->available_caching = TTM_PL_MASK_CACHING;
96 		man->default_caching = TTM_PL_FLAG_CACHED;
97 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
98 		break;
99 	case TTM_PL_VRAM:
100 		/* "On-card" video ram */
101 		man->func = &amdgpu_vram_mgr_func;
102 		man->gpu_offset = adev->gmc.vram_start;
103 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
104 			     TTM_MEMTYPE_FLAG_MAPPABLE;
105 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
106 		man->default_caching = TTM_PL_FLAG_WC;
107 		break;
108 	case AMDGPU_PL_GDS:
109 	case AMDGPU_PL_GWS:
110 	case AMDGPU_PL_OA:
111 		/* On-chip GDS memory*/
112 		man->func = &ttm_bo_manager_func;
113 		man->gpu_offset = 0;
114 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
115 		man->available_caching = TTM_PL_FLAG_UNCACHED;
116 		man->default_caching = TTM_PL_FLAG_UNCACHED;
117 		break;
118 	default:
119 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
120 		return -EINVAL;
121 	}
122 	return 0;
123 }
124 
125 /**
126  * amdgpu_evict_flags - Compute placement flags
127  *
128  * @bo: The buffer object to evict
129  * @placement: Possible destination(s) for evicted BO
130  *
131  * Fill in placement data when ttm_bo_evict() is called
132  */
133 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
134 				struct ttm_placement *placement)
135 {
136 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
137 	struct amdgpu_bo *abo;
138 	static const struct ttm_place placements = {
139 		.fpfn = 0,
140 		.lpfn = 0,
141 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
142 	};
143 
144 	/* Don't handle scatter gather BOs */
145 	if (bo->type == ttm_bo_type_sg) {
146 		placement->num_placement = 0;
147 		placement->num_busy_placement = 0;
148 		return;
149 	}
150 
151 	/* Object isn't an AMDGPU object so ignore */
152 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
153 		placement->placement = &placements;
154 		placement->busy_placement = &placements;
155 		placement->num_placement = 1;
156 		placement->num_busy_placement = 1;
157 		return;
158 	}
159 
160 	abo = ttm_to_amdgpu_bo(bo);
161 	switch (bo->mem.mem_type) {
162 	case AMDGPU_PL_GDS:
163 	case AMDGPU_PL_GWS:
164 	case AMDGPU_PL_OA:
165 		placement->num_placement = 0;
166 		placement->num_busy_placement = 0;
167 		return;
168 
169 	case TTM_PL_VRAM:
170 		if (!adev->mman.buffer_funcs_enabled) {
171 			/* Move to system memory */
172 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
173 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
174 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
175 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
176 
177 			/* Try evicting to the CPU inaccessible part of VRAM
178 			 * first, but only set GTT as busy placement, so this
179 			 * BO will be evicted to GTT rather than causing other
180 			 * BOs to be evicted from VRAM
181 			 */
182 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
183 							 AMDGPU_GEM_DOMAIN_GTT);
184 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
185 			abo->placements[0].lpfn = 0;
186 			abo->placement.busy_placement = &abo->placements[1];
187 			abo->placement.num_busy_placement = 1;
188 		} else {
189 			/* Move to GTT memory */
190 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
191 		}
192 		break;
193 	case TTM_PL_TT:
194 	default:
195 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
196 		break;
197 	}
198 	*placement = abo->placement;
199 }
200 
201 /**
202  * amdgpu_verify_access - Verify access for a mmap call
203  *
204  * @bo:	The buffer object to map
205  * @filp: The file pointer from the process performing the mmap
206  *
207  * This is called by ttm_bo_mmap() to verify whether a process
208  * has the right to mmap a BO to their process space.
209  */
210 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
211 {
212 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
213 
214 	/*
215 	 * Don't verify access for KFD BOs. They don't have a GEM
216 	 * object associated with them.
217 	 */
218 	if (abo->kfd_bo)
219 		return 0;
220 
221 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
222 		return -EPERM;
223 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
224 					  filp->private_data);
225 }
226 
227 /**
228  * amdgpu_move_null - Register memory for a buffer object
229  *
230  * @bo: The bo to assign the memory to
231  * @new_mem: The memory to be assigned.
232  *
233  * Assign the memory from new_mem to the memory of the buffer object bo.
234  */
235 static void amdgpu_move_null(struct ttm_buffer_object *bo,
236 			     struct ttm_mem_reg *new_mem)
237 {
238 	struct ttm_mem_reg *old_mem = &bo->mem;
239 
240 	BUG_ON(old_mem->mm_node != NULL);
241 	*old_mem = *new_mem;
242 	new_mem->mm_node = NULL;
243 }
244 
245 /**
246  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
247  *
248  * @bo: The bo to assign the memory to.
249  * @mm_node: Memory manager node for drm allocator.
250  * @mem: The region where the bo resides.
251  *
252  */
253 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
254 				    struct drm_mm_node *mm_node,
255 				    struct ttm_mem_reg *mem)
256 {
257 	uint64_t addr = 0;
258 
259 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
260 		addr = mm_node->start << PAGE_SHIFT;
261 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
262 	}
263 	return addr;
264 }
265 
266 /**
267  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
268  * @offset. It also modifies the offset to be within the drm_mm_node returned
269  *
270  * @mem: The region where the bo resides.
271  * @offset: The offset that drm_mm_node is used for finding.
272  *
273  */
274 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
275 					       uint64_t *offset)
276 {
277 	struct drm_mm_node *mm_node = mem->mm_node;
278 
279 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
280 		*offset -= (mm_node->size << PAGE_SHIFT);
281 		++mm_node;
282 	}
283 	return mm_node;
284 }
285 
286 /**
287  * amdgpu_ttm_map_buffer - Map memory into the GART windows
288  * @bo: buffer object to map
289  * @mem: memory object to map
290  * @mm_node: drm_mm node object to map
291  * @num_pages: number of pages to map
292  * @offset: offset into @mm_node where to start
293  * @window: which GART window to use
294  * @ring: DMA ring to use for the copy
295  * @tmz: if we should setup a TMZ enabled mapping
296  * @addr: resulting address inside the MC address space
297  *
298  * Setup one of the GART windows to access a specific piece of memory or return
299  * the physical address for local memory.
300  */
301 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
302 				 struct ttm_mem_reg *mem,
303 				 struct drm_mm_node *mm_node,
304 				 unsigned num_pages, uint64_t offset,
305 				 unsigned window, struct amdgpu_ring *ring,
306 				 bool tmz, uint64_t *addr)
307 {
308 	struct amdgpu_device *adev = ring->adev;
309 	struct amdgpu_job *job;
310 	unsigned num_dw, num_bytes;
311 	struct dma_fence *fence;
312 	uint64_t src_addr, dst_addr;
313 	void *cpu_addr;
314 	uint64_t flags;
315 	unsigned int i;
316 	int r;
317 
318 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
319 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
320 
321 	/* Map only what can't be accessed directly */
322 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
323 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
324 		return 0;
325 	}
326 
327 	*addr = adev->gmc.gart_start;
328 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
329 		AMDGPU_GPU_PAGE_SIZE;
330 	*addr += offset & ~PAGE_MASK;
331 
332 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
333 	num_bytes = num_pages * 8;
334 
335 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
336 				     AMDGPU_IB_POOL_DELAYED, &job);
337 	if (r)
338 		return r;
339 
340 	src_addr = num_dw * 4;
341 	src_addr += job->ibs[0].gpu_addr;
342 
343 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
344 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
345 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
346 				dst_addr, num_bytes, false);
347 
348 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
349 	WARN_ON(job->ibs[0].length_dw > num_dw);
350 
351 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
352 	if (tmz)
353 		flags |= AMDGPU_PTE_TMZ;
354 
355 	cpu_addr = &job->ibs[0].ptr[num_dw];
356 
357 	if (mem->mem_type == TTM_PL_TT) {
358 		struct ttm_dma_tt *dma;
359 		dma_addr_t *dma_address;
360 
361 		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
362 		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
363 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
364 				    cpu_addr);
365 		if (r)
366 			goto error_free;
367 	} else {
368 		dma_addr_t dma_address;
369 
370 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
371 		dma_address += adev->vm_manager.vram_base_offset;
372 
373 		for (i = 0; i < num_pages; ++i) {
374 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
375 					    &dma_address, flags, cpu_addr);
376 			if (r)
377 				goto error_free;
378 
379 			dma_address += PAGE_SIZE;
380 		}
381 	}
382 
383 	r = amdgpu_job_submit(job, &adev->mman.entity,
384 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
385 	if (r)
386 		goto error_free;
387 
388 	dma_fence_put(fence);
389 
390 	return r;
391 
392 error_free:
393 	amdgpu_job_free(job);
394 	return r;
395 }
396 
397 /**
398  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
399  * @adev: amdgpu device
400  * @src: buffer/address where to read from
401  * @dst: buffer/address where to write to
402  * @size: number of bytes to copy
403  * @tmz: if a secure copy should be used
404  * @resv: resv object to sync to
405  * @f: Returns the last fence if multiple jobs are submitted.
406  *
407  * The function copies @size bytes from {src->mem + src->offset} to
408  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
409  * move and different for a BO to BO copy.
410  *
411  */
412 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
413 			       const struct amdgpu_copy_mem *src,
414 			       const struct amdgpu_copy_mem *dst,
415 			       uint64_t size, bool tmz,
416 			       struct dma_resv *resv,
417 			       struct dma_fence **f)
418 {
419 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
420 					AMDGPU_GPU_PAGE_SIZE);
421 
422 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
423 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
424 	struct drm_mm_node *src_mm, *dst_mm;
425 	struct dma_fence *fence = NULL;
426 	int r = 0;
427 
428 	if (!adev->mman.buffer_funcs_enabled) {
429 		DRM_ERROR("Trying to move memory with ring turned off.\n");
430 		return -EINVAL;
431 	}
432 
433 	src_offset = src->offset;
434 	src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
435 	src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
436 
437 	dst_offset = dst->offset;
438 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
439 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
440 
441 	mutex_lock(&adev->mman.gtt_window_lock);
442 
443 	while (size) {
444 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
445 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
446 		struct dma_fence *next;
447 		uint32_t cur_size;
448 		uint64_t from, to;
449 
450 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
451 		 * begins at an offset, then adjust the size accordingly
452 		 */
453 		cur_size = max(src_page_offset, dst_page_offset);
454 		cur_size = min(min3(src_node_size, dst_node_size, size),
455 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
456 
457 		/* Map src to window 0 and dst to window 1. */
458 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
459 					  PFN_UP(cur_size + src_page_offset),
460 					  src_offset, 0, ring, tmz, &from);
461 		if (r)
462 			goto error;
463 
464 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
465 					  PFN_UP(cur_size + dst_page_offset),
466 					  dst_offset, 1, ring, tmz, &to);
467 		if (r)
468 			goto error;
469 
470 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
471 				       resv, &next, false, true, tmz);
472 		if (r)
473 			goto error;
474 
475 		dma_fence_put(fence);
476 		fence = next;
477 
478 		size -= cur_size;
479 		if (!size)
480 			break;
481 
482 		src_node_size -= cur_size;
483 		if (!src_node_size) {
484 			++src_mm;
485 			src_node_size = src_mm->size << PAGE_SHIFT;
486 			src_offset = 0;
487 		} else {
488 			src_offset += cur_size;
489 		}
490 
491 		dst_node_size -= cur_size;
492 		if (!dst_node_size) {
493 			++dst_mm;
494 			dst_node_size = dst_mm->size << PAGE_SHIFT;
495 			dst_offset = 0;
496 		} else {
497 			dst_offset += cur_size;
498 		}
499 	}
500 error:
501 	mutex_unlock(&adev->mman.gtt_window_lock);
502 	if (f)
503 		*f = dma_fence_get(fence);
504 	dma_fence_put(fence);
505 	return r;
506 }
507 
508 /**
509  * amdgpu_move_blit - Copy an entire buffer to another buffer
510  *
511  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
512  * help move buffers to and from VRAM.
513  */
514 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
515 			    bool evict, bool no_wait_gpu,
516 			    struct ttm_mem_reg *new_mem,
517 			    struct ttm_mem_reg *old_mem)
518 {
519 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
520 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
521 	struct amdgpu_copy_mem src, dst;
522 	struct dma_fence *fence = NULL;
523 	int r;
524 
525 	src.bo = bo;
526 	dst.bo = bo;
527 	src.mem = old_mem;
528 	dst.mem = new_mem;
529 	src.offset = 0;
530 	dst.offset = 0;
531 
532 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
533 				       new_mem->num_pages << PAGE_SHIFT,
534 				       amdgpu_bo_encrypted(abo),
535 				       bo->base.resv, &fence);
536 	if (r)
537 		goto error;
538 
539 	/* clear the space being freed */
540 	if (old_mem->mem_type == TTM_PL_VRAM &&
541 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
542 		struct dma_fence *wipe_fence = NULL;
543 
544 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
545 				       NULL, &wipe_fence);
546 		if (r) {
547 			goto error;
548 		} else if (wipe_fence) {
549 			dma_fence_put(fence);
550 			fence = wipe_fence;
551 		}
552 	}
553 
554 	/* Always block for VM page tables before committing the new location */
555 	if (bo->type == ttm_bo_type_kernel)
556 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
557 	else
558 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
559 	dma_fence_put(fence);
560 	return r;
561 
562 error:
563 	if (fence)
564 		dma_fence_wait(fence, false);
565 	dma_fence_put(fence);
566 	return r;
567 }
568 
569 /**
570  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
571  *
572  * Called by amdgpu_bo_move().
573  */
574 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
575 				struct ttm_operation_ctx *ctx,
576 				struct ttm_mem_reg *new_mem)
577 {
578 	struct ttm_mem_reg *old_mem = &bo->mem;
579 	struct ttm_mem_reg tmp_mem;
580 	struct ttm_place placements;
581 	struct ttm_placement placement;
582 	int r;
583 
584 	/* create space/pages for new_mem in GTT space */
585 	tmp_mem = *new_mem;
586 	tmp_mem.mm_node = NULL;
587 	placement.num_placement = 1;
588 	placement.placement = &placements;
589 	placement.num_busy_placement = 1;
590 	placement.busy_placement = &placements;
591 	placements.fpfn = 0;
592 	placements.lpfn = 0;
593 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
594 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
595 	if (unlikely(r)) {
596 		pr_err("Failed to find GTT space for blit from VRAM\n");
597 		return r;
598 	}
599 
600 	/* set caching flags */
601 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
602 	if (unlikely(r)) {
603 		goto out_cleanup;
604 	}
605 
606 	/* Bind the memory to the GTT space */
607 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
608 	if (unlikely(r)) {
609 		goto out_cleanup;
610 	}
611 
612 	/* blit VRAM to GTT */
613 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
614 	if (unlikely(r)) {
615 		goto out_cleanup;
616 	}
617 
618 	/* move BO (in tmp_mem) to new_mem */
619 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
620 out_cleanup:
621 	ttm_bo_mem_put(bo, &tmp_mem);
622 	return r;
623 }
624 
625 /**
626  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
627  *
628  * Called by amdgpu_bo_move().
629  */
630 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
631 				struct ttm_operation_ctx *ctx,
632 				struct ttm_mem_reg *new_mem)
633 {
634 	struct ttm_mem_reg *old_mem = &bo->mem;
635 	struct ttm_mem_reg tmp_mem;
636 	struct ttm_placement placement;
637 	struct ttm_place placements;
638 	int r;
639 
640 	/* make space in GTT for old_mem buffer */
641 	tmp_mem = *new_mem;
642 	tmp_mem.mm_node = NULL;
643 	placement.num_placement = 1;
644 	placement.placement = &placements;
645 	placement.num_busy_placement = 1;
646 	placement.busy_placement = &placements;
647 	placements.fpfn = 0;
648 	placements.lpfn = 0;
649 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
650 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
651 	if (unlikely(r)) {
652 		pr_err("Failed to find GTT space for blit to VRAM\n");
653 		return r;
654 	}
655 
656 	/* move/bind old memory to GTT space */
657 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
658 	if (unlikely(r)) {
659 		goto out_cleanup;
660 	}
661 
662 	/* copy to VRAM */
663 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
664 	if (unlikely(r)) {
665 		goto out_cleanup;
666 	}
667 out_cleanup:
668 	ttm_bo_mem_put(bo, &tmp_mem);
669 	return r;
670 }
671 
672 /**
673  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
674  *
675  * Called by amdgpu_bo_move()
676  */
677 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
678 			       struct ttm_mem_reg *mem)
679 {
680 	struct drm_mm_node *nodes = mem->mm_node;
681 
682 	if (mem->mem_type == TTM_PL_SYSTEM ||
683 	    mem->mem_type == TTM_PL_TT)
684 		return true;
685 	if (mem->mem_type != TTM_PL_VRAM)
686 		return false;
687 
688 	/* ttm_mem_reg_ioremap only supports contiguous memory */
689 	if (nodes->size != mem->num_pages)
690 		return false;
691 
692 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
693 		<= adev->gmc.visible_vram_size;
694 }
695 
696 /**
697  * amdgpu_bo_move - Move a buffer object to a new memory location
698  *
699  * Called by ttm_bo_handle_move_mem()
700  */
701 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
702 			  struct ttm_operation_ctx *ctx,
703 			  struct ttm_mem_reg *new_mem)
704 {
705 	struct amdgpu_device *adev;
706 	struct amdgpu_bo *abo;
707 	struct ttm_mem_reg *old_mem = &bo->mem;
708 	int r;
709 
710 	/* Can't move a pinned BO */
711 	abo = ttm_to_amdgpu_bo(bo);
712 	if (WARN_ON_ONCE(abo->pin_count > 0))
713 		return -EINVAL;
714 
715 	adev = amdgpu_ttm_adev(bo->bdev);
716 
717 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
718 		amdgpu_move_null(bo, new_mem);
719 		return 0;
720 	}
721 	if ((old_mem->mem_type == TTM_PL_TT &&
722 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
723 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
724 	     new_mem->mem_type == TTM_PL_TT)) {
725 		/* bind is enough */
726 		amdgpu_move_null(bo, new_mem);
727 		return 0;
728 	}
729 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
730 	    old_mem->mem_type == AMDGPU_PL_GWS ||
731 	    old_mem->mem_type == AMDGPU_PL_OA ||
732 	    new_mem->mem_type == AMDGPU_PL_GDS ||
733 	    new_mem->mem_type == AMDGPU_PL_GWS ||
734 	    new_mem->mem_type == AMDGPU_PL_OA) {
735 		/* Nothing to save here */
736 		amdgpu_move_null(bo, new_mem);
737 		return 0;
738 	}
739 
740 	if (!adev->mman.buffer_funcs_enabled) {
741 		r = -ENODEV;
742 		goto memcpy;
743 	}
744 
745 	if (old_mem->mem_type == TTM_PL_VRAM &&
746 	    new_mem->mem_type == TTM_PL_SYSTEM) {
747 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
748 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
749 		   new_mem->mem_type == TTM_PL_VRAM) {
750 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
751 	} else {
752 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
753 				     new_mem, old_mem);
754 	}
755 
756 	if (r) {
757 memcpy:
758 		/* Check that all memory is CPU accessible */
759 		if (!amdgpu_mem_visible(adev, old_mem) ||
760 		    !amdgpu_mem_visible(adev, new_mem)) {
761 			pr_err("Move buffer fallback to memcpy unavailable\n");
762 			return r;
763 		}
764 
765 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
766 		if (r)
767 			return r;
768 	}
769 
770 	if (bo->type == ttm_bo_type_device &&
771 	    new_mem->mem_type == TTM_PL_VRAM &&
772 	    old_mem->mem_type != TTM_PL_VRAM) {
773 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
774 		 * accesses the BO after it's moved.
775 		 */
776 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
777 	}
778 
779 	/* update statistics */
780 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
781 	return 0;
782 }
783 
784 /**
785  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
786  *
787  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
788  */
789 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
790 {
791 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
792 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793 	struct drm_mm_node *mm_node = mem->mm_node;
794 
795 	mem->bus.addr = NULL;
796 	mem->bus.offset = 0;
797 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
798 	mem->bus.base = 0;
799 	mem->bus.is_iomem = false;
800 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
801 		return -EINVAL;
802 	switch (mem->mem_type) {
803 	case TTM_PL_SYSTEM:
804 		/* system memory */
805 		return 0;
806 	case TTM_PL_TT:
807 		break;
808 	case TTM_PL_VRAM:
809 		mem->bus.offset = mem->start << PAGE_SHIFT;
810 		/* check if it's visible */
811 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
812 			return -EINVAL;
813 		/* Only physically contiguous buffers apply. In a contiguous
814 		 * buffer, size of the first mm_node would match the number of
815 		 * pages in ttm_mem_reg.
816 		 */
817 		if (adev->mman.aper_base_kaddr &&
818 		    (mm_node->size == mem->num_pages))
819 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
820 					mem->bus.offset;
821 
822 		mem->bus.base = adev->gmc.aper_base;
823 		mem->bus.is_iomem = true;
824 		break;
825 	default:
826 		return -EINVAL;
827 	}
828 	return 0;
829 }
830 
831 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
832 {
833 }
834 
835 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
836 					   unsigned long page_offset)
837 {
838 	uint64_t offset = (page_offset << PAGE_SHIFT);
839 	struct drm_mm_node *mm;
840 
841 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
842 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
843 		(offset >> PAGE_SHIFT);
844 }
845 
846 /*
847  * TTM backend functions.
848  */
849 struct amdgpu_ttm_tt {
850 	struct ttm_dma_tt	ttm;
851 	struct drm_gem_object	*gobj;
852 	u64			offset;
853 	uint64_t		userptr;
854 	struct task_struct	*usertask;
855 	uint32_t		userflags;
856 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
857 	struct hmm_range	*range;
858 #endif
859 };
860 
861 #ifdef CONFIG_DRM_AMDGPU_USERPTR
862 /**
863  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
864  * memory and start HMM tracking CPU page table update
865  *
866  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
867  * once afterwards to stop HMM tracking
868  */
869 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
870 {
871 	struct ttm_tt *ttm = bo->tbo.ttm;
872 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
873 	unsigned long start = gtt->userptr;
874 	struct vm_area_struct *vma;
875 	struct hmm_range *range;
876 	unsigned long timeout;
877 	struct mm_struct *mm;
878 	unsigned long i;
879 	int r = 0;
880 
881 	mm = bo->notifier.mm;
882 	if (unlikely(!mm)) {
883 		DRM_DEBUG_DRIVER("BO is not registered?\n");
884 		return -EFAULT;
885 	}
886 
887 	/* Another get_user_pages is running at the same time?? */
888 	if (WARN_ON(gtt->range))
889 		return -EFAULT;
890 
891 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
892 		return -ESRCH;
893 
894 	range = kzalloc(sizeof(*range), GFP_KERNEL);
895 	if (unlikely(!range)) {
896 		r = -ENOMEM;
897 		goto out;
898 	}
899 	range->notifier = &bo->notifier;
900 	range->start = bo->notifier.interval_tree.start;
901 	range->end = bo->notifier.interval_tree.last + 1;
902 	range->default_flags = HMM_PFN_REQ_FAULT;
903 	if (!amdgpu_ttm_tt_is_readonly(ttm))
904 		range->default_flags |= HMM_PFN_REQ_WRITE;
905 
906 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
907 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
908 	if (unlikely(!range->hmm_pfns)) {
909 		r = -ENOMEM;
910 		goto out_free_ranges;
911 	}
912 
913 	mmap_read_lock(mm);
914 	vma = find_vma(mm, start);
915 	if (unlikely(!vma || start < vma->vm_start)) {
916 		r = -EFAULT;
917 		goto out_unlock;
918 	}
919 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
920 		vma->vm_file)) {
921 		r = -EPERM;
922 		goto out_unlock;
923 	}
924 	mmap_read_unlock(mm);
925 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
926 
927 retry:
928 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
929 
930 	mmap_read_lock(mm);
931 	r = hmm_range_fault(range);
932 	mmap_read_unlock(mm);
933 	if (unlikely(r)) {
934 		/*
935 		 * FIXME: This timeout should encompass the retry from
936 		 * mmu_interval_read_retry() as well.
937 		 */
938 		if (r == -EBUSY && !time_after(jiffies, timeout))
939 			goto retry;
940 		goto out_free_pfns;
941 	}
942 
943 	/*
944 	 * Due to default_flags, all pages are HMM_PFN_VALID or
945 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
946 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
947 	 */
948 	for (i = 0; i < ttm->num_pages; i++)
949 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
950 
951 	gtt->range = range;
952 	mmput(mm);
953 
954 	return 0;
955 
956 out_unlock:
957 	mmap_read_unlock(mm);
958 out_free_pfns:
959 	kvfree(range->hmm_pfns);
960 out_free_ranges:
961 	kfree(range);
962 out:
963 	mmput(mm);
964 	return r;
965 }
966 
967 /**
968  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
969  * Check if the pages backing this ttm range have been invalidated
970  *
971  * Returns: true if pages are still valid
972  */
973 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
974 {
975 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
976 	bool r = false;
977 
978 	if (!gtt || !gtt->userptr)
979 		return false;
980 
981 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
982 		gtt->userptr, ttm->num_pages);
983 
984 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
985 		"No user pages to check\n");
986 
987 	if (gtt->range) {
988 		/*
989 		 * FIXME: Must always hold notifier_lock for this, and must
990 		 * not ignore the return code.
991 		 */
992 		r = mmu_interval_read_retry(gtt->range->notifier,
993 					 gtt->range->notifier_seq);
994 		kvfree(gtt->range->hmm_pfns);
995 		kfree(gtt->range);
996 		gtt->range = NULL;
997 	}
998 
999 	return !r;
1000 }
1001 #endif
1002 
1003 /**
1004  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1005  *
1006  * Called by amdgpu_cs_list_validate(). This creates the page list
1007  * that backs user memory and will ultimately be mapped into the device
1008  * address space.
1009  */
1010 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1011 {
1012 	unsigned long i;
1013 
1014 	for (i = 0; i < ttm->num_pages; ++i)
1015 		ttm->pages[i] = pages ? pages[i] : NULL;
1016 }
1017 
1018 /**
1019  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
1020  *
1021  * Called by amdgpu_ttm_backend_bind()
1022  **/
1023 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
1024 {
1025 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1026 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1027 	unsigned nents;
1028 	int r;
1029 
1030 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1031 	enum dma_data_direction direction = write ?
1032 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1033 
1034 	/* Allocate an SG array and squash pages into it */
1035 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1036 				      ttm->num_pages << PAGE_SHIFT,
1037 				      GFP_KERNEL);
1038 	if (r)
1039 		goto release_sg;
1040 
1041 	/* Map SG to device */
1042 	r = -ENOMEM;
1043 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1044 	if (nents == 0)
1045 		goto release_sg;
1046 
1047 	/* convert SG to linear array of pages and dma addresses */
1048 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1049 					 gtt->ttm.dma_address, ttm->num_pages);
1050 
1051 	return 0;
1052 
1053 release_sg:
1054 	kfree(ttm->sg);
1055 	return r;
1056 }
1057 
1058 /**
1059  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1060  */
1061 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1062 {
1063 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1064 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1065 
1066 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1067 	enum dma_data_direction direction = write ?
1068 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1069 
1070 	/* double check that we don't free the table twice */
1071 	if (!ttm->sg->sgl)
1072 		return;
1073 
1074 	/* unmap the pages mapped to the device */
1075 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1076 
1077 	sg_free_table(ttm->sg);
1078 
1079 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1080 	if (gtt->range) {
1081 		unsigned long i;
1082 
1083 		for (i = 0; i < ttm->num_pages; i++) {
1084 			if (ttm->pages[i] !=
1085 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1086 				break;
1087 		}
1088 
1089 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1090 	}
1091 #endif
1092 }
1093 
1094 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1095 				struct ttm_buffer_object *tbo,
1096 				uint64_t flags)
1097 {
1098 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1099 	struct ttm_tt *ttm = tbo->ttm;
1100 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1101 	int r;
1102 
1103 	if (amdgpu_bo_encrypted(abo))
1104 		flags |= AMDGPU_PTE_TMZ;
1105 
1106 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1107 		uint64_t page_idx = 1;
1108 
1109 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1110 				ttm->pages, gtt->ttm.dma_address, flags);
1111 		if (r)
1112 			goto gart_bind_fail;
1113 
1114 		/* The memory type of the first page defaults to UC. Now
1115 		 * modify the memory type to NC from the second page of
1116 		 * the BO onward.
1117 		 */
1118 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1119 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1120 
1121 		r = amdgpu_gart_bind(adev,
1122 				gtt->offset + (page_idx << PAGE_SHIFT),
1123 				ttm->num_pages - page_idx,
1124 				&ttm->pages[page_idx],
1125 				&(gtt->ttm.dma_address[page_idx]), flags);
1126 	} else {
1127 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1128 				     ttm->pages, gtt->ttm.dma_address, flags);
1129 	}
1130 
1131 gart_bind_fail:
1132 	if (r)
1133 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1134 			  ttm->num_pages, gtt->offset);
1135 
1136 	return r;
1137 }
1138 
1139 /**
1140  * amdgpu_ttm_backend_bind - Bind GTT memory
1141  *
1142  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1143  * This handles binding GTT memory to the device address space.
1144  */
1145 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1146 				   struct ttm_mem_reg *bo_mem)
1147 {
1148 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1149 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1150 	uint64_t flags;
1151 	int r = 0;
1152 
1153 	if (gtt->userptr) {
1154 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1155 		if (r) {
1156 			DRM_ERROR("failed to pin userptr\n");
1157 			return r;
1158 		}
1159 	}
1160 	if (!ttm->num_pages) {
1161 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1162 		     ttm->num_pages, bo_mem, ttm);
1163 	}
1164 
1165 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1166 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1167 	    bo_mem->mem_type == AMDGPU_PL_OA)
1168 		return -EINVAL;
1169 
1170 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1171 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1172 		return 0;
1173 	}
1174 
1175 	/* compute PTE flags relevant to this BO memory */
1176 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1177 
1178 	/* bind pages into GART page tables */
1179 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1180 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1181 		ttm->pages, gtt->ttm.dma_address, flags);
1182 
1183 	if (r)
1184 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1185 			  ttm->num_pages, gtt->offset);
1186 	return r;
1187 }
1188 
1189 /**
1190  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1191  */
1192 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1193 {
1194 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1195 	struct ttm_operation_ctx ctx = { false, false };
1196 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1197 	struct ttm_mem_reg tmp;
1198 	struct ttm_placement placement;
1199 	struct ttm_place placements;
1200 	uint64_t addr, flags;
1201 	int r;
1202 
1203 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1204 		return 0;
1205 
1206 	addr = amdgpu_gmc_agp_addr(bo);
1207 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1208 		bo->mem.start = addr >> PAGE_SHIFT;
1209 	} else {
1210 
1211 		/* allocate GART space */
1212 		tmp = bo->mem;
1213 		tmp.mm_node = NULL;
1214 		placement.num_placement = 1;
1215 		placement.placement = &placements;
1216 		placement.num_busy_placement = 1;
1217 		placement.busy_placement = &placements;
1218 		placements.fpfn = 0;
1219 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1220 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1221 			TTM_PL_FLAG_TT;
1222 
1223 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1224 		if (unlikely(r))
1225 			return r;
1226 
1227 		/* compute PTE flags for this buffer object */
1228 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1229 
1230 		/* Bind pages */
1231 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1232 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1233 		if (unlikely(r)) {
1234 			ttm_bo_mem_put(bo, &tmp);
1235 			return r;
1236 		}
1237 
1238 		ttm_bo_mem_put(bo, &bo->mem);
1239 		bo->mem = tmp;
1240 	}
1241 
1242 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1243 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1244 
1245 	return 0;
1246 }
1247 
1248 /**
1249  * amdgpu_ttm_recover_gart - Rebind GTT pages
1250  *
1251  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1252  * rebind GTT pages during a GPU reset.
1253  */
1254 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1255 {
1256 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1257 	uint64_t flags;
1258 	int r;
1259 
1260 	if (!tbo->ttm)
1261 		return 0;
1262 
1263 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1264 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1265 
1266 	return r;
1267 }
1268 
1269 /**
1270  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1271  *
1272  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1273  * ttm_tt_destroy().
1274  */
1275 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1276 {
1277 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1278 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1279 	int r;
1280 
1281 	/* if the pages have userptr pinning then clear that first */
1282 	if (gtt->userptr)
1283 		amdgpu_ttm_tt_unpin_userptr(ttm);
1284 
1285 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1286 		return 0;
1287 
1288 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1289 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1290 	if (r)
1291 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1292 			  gtt->ttm.ttm.num_pages, gtt->offset);
1293 	return r;
1294 }
1295 
1296 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1297 {
1298 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1299 
1300 	if (gtt->usertask)
1301 		put_task_struct(gtt->usertask);
1302 
1303 	ttm_dma_tt_fini(&gtt->ttm);
1304 	kfree(gtt);
1305 }
1306 
1307 static struct ttm_backend_func amdgpu_backend_func = {
1308 	.bind = &amdgpu_ttm_backend_bind,
1309 	.unbind = &amdgpu_ttm_backend_unbind,
1310 	.destroy = &amdgpu_ttm_backend_destroy,
1311 };
1312 
1313 /**
1314  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1315  *
1316  * @bo: The buffer object to create a GTT ttm_tt object around
1317  *
1318  * Called by ttm_tt_create().
1319  */
1320 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1321 					   uint32_t page_flags)
1322 {
1323 	struct amdgpu_ttm_tt *gtt;
1324 
1325 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1326 	if (gtt == NULL) {
1327 		return NULL;
1328 	}
1329 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1330 	gtt->gobj = &bo->base;
1331 
1332 	/* allocate space for the uninitialized page entries */
1333 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1334 		kfree(gtt);
1335 		return NULL;
1336 	}
1337 	return &gtt->ttm.ttm;
1338 }
1339 
1340 /**
1341  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1342  *
1343  * Map the pages of a ttm_tt object to an address space visible
1344  * to the underlying device.
1345  */
1346 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1347 			struct ttm_operation_ctx *ctx)
1348 {
1349 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1350 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1351 
1352 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1353 	if (gtt && gtt->userptr) {
1354 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1355 		if (!ttm->sg)
1356 			return -ENOMEM;
1357 
1358 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1359 		ttm->state = tt_unbound;
1360 		return 0;
1361 	}
1362 
1363 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1364 		if (!ttm->sg) {
1365 			struct dma_buf_attachment *attach;
1366 			struct sg_table *sgt;
1367 
1368 			attach = gtt->gobj->import_attach;
1369 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1370 			if (IS_ERR(sgt))
1371 				return PTR_ERR(sgt);
1372 
1373 			ttm->sg = sgt;
1374 		}
1375 
1376 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1377 						 gtt->ttm.dma_address,
1378 						 ttm->num_pages);
1379 		ttm->state = tt_unbound;
1380 		return 0;
1381 	}
1382 
1383 #ifdef CONFIG_SWIOTLB
1384 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1385 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1386 	}
1387 #endif
1388 
1389 	/* fall back to generic helper to populate the page array
1390 	 * and map them to the device */
1391 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1392 }
1393 
1394 /**
1395  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1396  *
1397  * Unmaps pages of a ttm_tt object from the device address space and
1398  * unpopulates the page array backing it.
1399  */
1400 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1401 {
1402 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1403 	struct amdgpu_device *adev;
1404 
1405 	if (gtt && gtt->userptr) {
1406 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1407 		kfree(ttm->sg);
1408 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1409 		return;
1410 	}
1411 
1412 	if (ttm->sg && gtt->gobj->import_attach) {
1413 		struct dma_buf_attachment *attach;
1414 
1415 		attach = gtt->gobj->import_attach;
1416 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1417 		ttm->sg = NULL;
1418 		return;
1419 	}
1420 
1421 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1422 		return;
1423 
1424 	adev = amdgpu_ttm_adev(ttm->bdev);
1425 
1426 #ifdef CONFIG_SWIOTLB
1427 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1428 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1429 		return;
1430 	}
1431 #endif
1432 
1433 	/* fall back to generic helper to unmap and unpopulate array */
1434 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1435 }
1436 
1437 /**
1438  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1439  * task
1440  *
1441  * @ttm: The ttm_tt object to bind this userptr object to
1442  * @addr:  The address in the current tasks VM space to use
1443  * @flags: Requirements of userptr object.
1444  *
1445  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1446  * to current task
1447  */
1448 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1449 			      uint32_t flags)
1450 {
1451 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1452 
1453 	if (gtt == NULL)
1454 		return -EINVAL;
1455 
1456 	gtt->userptr = addr;
1457 	gtt->userflags = flags;
1458 
1459 	if (gtt->usertask)
1460 		put_task_struct(gtt->usertask);
1461 	gtt->usertask = current->group_leader;
1462 	get_task_struct(gtt->usertask);
1463 
1464 	return 0;
1465 }
1466 
1467 /**
1468  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1469  */
1470 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1471 {
1472 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1473 
1474 	if (gtt == NULL)
1475 		return NULL;
1476 
1477 	if (gtt->usertask == NULL)
1478 		return NULL;
1479 
1480 	return gtt->usertask->mm;
1481 }
1482 
1483 /**
1484  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1485  * address range for the current task.
1486  *
1487  */
1488 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1489 				  unsigned long end)
1490 {
1491 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1492 	unsigned long size;
1493 
1494 	if (gtt == NULL || !gtt->userptr)
1495 		return false;
1496 
1497 	/* Return false if no part of the ttm_tt object lies within
1498 	 * the range
1499 	 */
1500 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1501 	if (gtt->userptr > end || gtt->userptr + size <= start)
1502 		return false;
1503 
1504 	return true;
1505 }
1506 
1507 /**
1508  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1509  */
1510 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1511 {
1512 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1513 
1514 	if (gtt == NULL || !gtt->userptr)
1515 		return false;
1516 
1517 	return true;
1518 }
1519 
1520 /**
1521  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1522  */
1523 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1524 {
1525 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1526 
1527 	if (gtt == NULL)
1528 		return false;
1529 
1530 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1531 }
1532 
1533 /**
1534  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1535  *
1536  * @ttm: The ttm_tt object to compute the flags for
1537  * @mem: The memory registry backing this ttm_tt object
1538  *
1539  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1540  */
1541 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1542 {
1543 	uint64_t flags = 0;
1544 
1545 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1546 		flags |= AMDGPU_PTE_VALID;
1547 
1548 	if (mem && mem->mem_type == TTM_PL_TT) {
1549 		flags |= AMDGPU_PTE_SYSTEM;
1550 
1551 		if (ttm->caching_state == tt_cached)
1552 			flags |= AMDGPU_PTE_SNOOPED;
1553 	}
1554 
1555 	return flags;
1556 }
1557 
1558 /**
1559  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1560  *
1561  * @ttm: The ttm_tt object to compute the flags for
1562  * @mem: The memory registry backing this ttm_tt object
1563 
1564  * Figure out the flags to use for a VM PTE (Page Table Entry).
1565  */
1566 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1567 				 struct ttm_mem_reg *mem)
1568 {
1569 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1570 
1571 	flags |= adev->gart.gart_pte_flags;
1572 	flags |= AMDGPU_PTE_READABLE;
1573 
1574 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1575 		flags |= AMDGPU_PTE_WRITEABLE;
1576 
1577 	return flags;
1578 }
1579 
1580 /**
1581  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1582  * object.
1583  *
1584  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1585  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1586  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1587  * used to clean out a memory space.
1588  */
1589 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1590 					    const struct ttm_place *place)
1591 {
1592 	unsigned long num_pages = bo->mem.num_pages;
1593 	struct drm_mm_node *node = bo->mem.mm_node;
1594 	struct dma_resv_list *flist;
1595 	struct dma_fence *f;
1596 	int i;
1597 
1598 	if (bo->type == ttm_bo_type_kernel &&
1599 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1600 		return false;
1601 
1602 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1603 	 * If true, then return false as any KFD process needs all its BOs to
1604 	 * be resident to run successfully
1605 	 */
1606 	flist = dma_resv_get_list(bo->base.resv);
1607 	if (flist) {
1608 		for (i = 0; i < flist->shared_count; ++i) {
1609 			f = rcu_dereference_protected(flist->shared[i],
1610 				dma_resv_held(bo->base.resv));
1611 			if (amdkfd_fence_check_mm(f, current->mm))
1612 				return false;
1613 		}
1614 	}
1615 
1616 	switch (bo->mem.mem_type) {
1617 	case TTM_PL_TT:
1618 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1619 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1620 			return false;
1621 		return true;
1622 
1623 	case TTM_PL_VRAM:
1624 		/* Check each drm MM node individually */
1625 		while (num_pages) {
1626 			if (place->fpfn < (node->start + node->size) &&
1627 			    !(place->lpfn && place->lpfn <= node->start))
1628 				return true;
1629 
1630 			num_pages -= node->size;
1631 			++node;
1632 		}
1633 		return false;
1634 
1635 	default:
1636 		break;
1637 	}
1638 
1639 	return ttm_bo_eviction_valuable(bo, place);
1640 }
1641 
1642 /**
1643  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1644  *
1645  * @bo:  The buffer object to read/write
1646  * @offset:  Offset into buffer object
1647  * @buf:  Secondary buffer to write/read from
1648  * @len: Length in bytes of access
1649  * @write:  true if writing
1650  *
1651  * This is used to access VRAM that backs a buffer object via MMIO
1652  * access for debugging purposes.
1653  */
1654 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1655 				    unsigned long offset,
1656 				    void *buf, int len, int write)
1657 {
1658 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1659 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1660 	struct drm_mm_node *nodes;
1661 	uint32_t value = 0;
1662 	int ret = 0;
1663 	uint64_t pos;
1664 	unsigned long flags;
1665 
1666 	if (bo->mem.mem_type != TTM_PL_VRAM)
1667 		return -EIO;
1668 
1669 	pos = offset;
1670 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1671 	pos += (nodes->start << PAGE_SHIFT);
1672 
1673 	while (len && pos < adev->gmc.mc_vram_size) {
1674 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1675 		uint64_t bytes = 4 - (pos & 3);
1676 		uint32_t shift = (pos & 3) * 8;
1677 		uint32_t mask = 0xffffffff << shift;
1678 
1679 		if (len < bytes) {
1680 			mask &= 0xffffffff >> (bytes - len) * 8;
1681 			bytes = len;
1682 		}
1683 
1684 		if (mask != 0xffffffff) {
1685 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1686 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1687 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1688 			if (!write || mask != 0xffffffff)
1689 				value = RREG32_NO_KIQ(mmMM_DATA);
1690 			if (write) {
1691 				value &= ~mask;
1692 				value |= (*(uint32_t *)buf << shift) & mask;
1693 				WREG32_NO_KIQ(mmMM_DATA, value);
1694 			}
1695 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1696 			if (!write) {
1697 				value = (value & mask) >> shift;
1698 				memcpy(buf, &value, bytes);
1699 			}
1700 		} else {
1701 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1702 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1703 
1704 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1705 						  bytes, write);
1706 		}
1707 
1708 		ret += bytes;
1709 		buf = (uint8_t *)buf + bytes;
1710 		pos += bytes;
1711 		len -= bytes;
1712 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1713 			++nodes;
1714 			pos = (nodes->start << PAGE_SHIFT);
1715 		}
1716 	}
1717 
1718 	return ret;
1719 }
1720 
1721 static struct ttm_bo_driver amdgpu_bo_driver = {
1722 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1723 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1724 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1725 	.init_mem_type = &amdgpu_init_mem_type,
1726 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1727 	.evict_flags = &amdgpu_evict_flags,
1728 	.move = &amdgpu_bo_move,
1729 	.verify_access = &amdgpu_verify_access,
1730 	.move_notify = &amdgpu_bo_move_notify,
1731 	.release_notify = &amdgpu_bo_release_notify,
1732 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1733 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1734 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1735 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1736 	.access_memory = &amdgpu_ttm_access_memory,
1737 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1738 };
1739 
1740 /*
1741  * Firmware Reservation functions
1742  */
1743 /**
1744  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1745  *
1746  * @adev: amdgpu_device pointer
1747  *
1748  * free fw reserved vram if it has been reserved.
1749  */
1750 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1751 {
1752 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1753 		NULL, &adev->fw_vram_usage.va);
1754 }
1755 
1756 /**
1757  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1758  *
1759  * @adev: amdgpu_device pointer
1760  *
1761  * create bo vram reservation from fw.
1762  */
1763 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1764 {
1765 	uint64_t vram_size = adev->gmc.visible_vram_size;
1766 
1767 	adev->fw_vram_usage.va = NULL;
1768 	adev->fw_vram_usage.reserved_bo = NULL;
1769 
1770 	if (adev->fw_vram_usage.size == 0 ||
1771 	    adev->fw_vram_usage.size > vram_size)
1772 		return 0;
1773 
1774 	return amdgpu_bo_create_kernel_at(adev,
1775 					  adev->fw_vram_usage.start_offset,
1776 					  adev->fw_vram_usage.size,
1777 					  AMDGPU_GEM_DOMAIN_VRAM,
1778 					  &adev->fw_vram_usage.reserved_bo,
1779 					  &adev->fw_vram_usage.va);
1780 }
1781 
1782 /*
1783  * Memoy training reservation functions
1784  */
1785 
1786 /**
1787  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1788  *
1789  * @adev: amdgpu_device pointer
1790  *
1791  * free memory training reserved vram if it has been reserved.
1792  */
1793 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1794 {
1795 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1796 
1797 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1798 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1799 	ctx->c2p_bo = NULL;
1800 
1801 	return 0;
1802 }
1803 
1804 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1805 {
1806        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1807                vram_size -= SZ_1M;
1808 
1809        return ALIGN(vram_size, SZ_1M);
1810 }
1811 
1812 /**
1813  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1814  *
1815  * @adev: amdgpu_device pointer
1816  *
1817  * create bo vram reservation from memory training.
1818  */
1819 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1820 {
1821 	int ret;
1822 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1823 
1824 	memset(ctx, 0, sizeof(*ctx));
1825 	if (!adev->fw_vram_usage.mem_train_support) {
1826 		DRM_DEBUG("memory training does not support!\n");
1827 		return 0;
1828 	}
1829 
1830 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1831 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1832 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1833 
1834 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1835 		  ctx->train_data_size,
1836 		  ctx->p2c_train_data_offset,
1837 		  ctx->c2p_train_data_offset);
1838 
1839 	ret = amdgpu_bo_create_kernel_at(adev,
1840 					 ctx->c2p_train_data_offset,
1841 					 ctx->train_data_size,
1842 					 AMDGPU_GEM_DOMAIN_VRAM,
1843 					 &ctx->c2p_bo,
1844 					 NULL);
1845 	if (ret) {
1846 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1847 		amdgpu_ttm_training_reserve_vram_fini(adev);
1848 		return ret;
1849 	}
1850 
1851 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1852 	return 0;
1853 }
1854 
1855 /**
1856  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1857  * gtt/vram related fields.
1858  *
1859  * This initializes all of the memory space pools that the TTM layer
1860  * will need such as the GTT space (system memory mapped to the device),
1861  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1862  * can be mapped per VMID.
1863  */
1864 int amdgpu_ttm_init(struct amdgpu_device *adev)
1865 {
1866 	uint64_t gtt_size;
1867 	int r;
1868 	u64 vis_vram_limit;
1869 	void *stolen_vga_buf;
1870 
1871 	mutex_init(&adev->mman.gtt_window_lock);
1872 
1873 	/* No others user of address space so set it to 0 */
1874 	r = ttm_bo_device_init(&adev->mman.bdev,
1875 			       &amdgpu_bo_driver,
1876 			       adev->ddev->anon_inode->i_mapping,
1877 			       adev->ddev->vma_offset_manager,
1878 			       dma_addressing_limited(adev->dev));
1879 	if (r) {
1880 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1881 		return r;
1882 	}
1883 	adev->mman.initialized = true;
1884 
1885 	/* We opt to avoid OOM on system pages allocations */
1886 	adev->mman.bdev.no_retry = true;
1887 
1888 	/* Initialize VRAM pool with all of VRAM divided into pages */
1889 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1890 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1891 	if (r) {
1892 		DRM_ERROR("Failed initializing VRAM heap.\n");
1893 		return r;
1894 	}
1895 
1896 	/* Reduce size of CPU-visible VRAM if requested */
1897 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1898 	if (amdgpu_vis_vram_limit > 0 &&
1899 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1900 		adev->gmc.visible_vram_size = vis_vram_limit;
1901 
1902 	/* Change the size here instead of the init above so only lpfn is affected */
1903 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1904 #ifdef CONFIG_64BIT
1905 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1906 						adev->gmc.visible_vram_size);
1907 #endif
1908 
1909 	/*
1910 	 *The reserved vram for firmware must be pinned to the specified
1911 	 *place on the VRAM, so reserve it early.
1912 	 */
1913 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1914 	if (r) {
1915 		return r;
1916 	}
1917 
1918 	/*
1919 	 *The reserved vram for memory training must be pinned to the specified
1920 	 *place on the VRAM, so reserve it early.
1921 	 */
1922 	if (!amdgpu_sriov_vf(adev)) {
1923 		r = amdgpu_ttm_training_reserve_vram_init(adev);
1924 		if (r)
1925 			return r;
1926 	}
1927 
1928 	/* allocate memory as required for VGA
1929 	 * This is used for VGA emulation and pre-OS scanout buffers to
1930 	 * avoid display artifacts while transitioning between pre-OS
1931 	 * and driver.  */
1932 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1933 				    AMDGPU_GEM_DOMAIN_VRAM,
1934 				    &adev->stolen_vga_memory,
1935 				    NULL, &stolen_vga_buf);
1936 	if (r)
1937 		return r;
1938 
1939 	/*
1940 	 * reserve TMR memory at the top of VRAM which holds
1941 	 * IP Discovery data and is protected by PSP.
1942 	 */
1943 	if (adev->discovery_tmr_size > 0) {
1944 		r = amdgpu_bo_create_kernel_at(adev,
1945 			adev->gmc.real_vram_size - adev->discovery_tmr_size,
1946 			adev->discovery_tmr_size,
1947 			AMDGPU_GEM_DOMAIN_VRAM,
1948 			&adev->discovery_memory,
1949 			NULL);
1950 		if (r)
1951 			return r;
1952 	}
1953 
1954 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1955 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1956 
1957 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1958 	 * or whatever the user passed on module init */
1959 	if (amdgpu_gtt_size == -1) {
1960 		struct sysinfo si;
1961 
1962 		si_meminfo(&si);
1963 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1964 			       adev->gmc.mc_vram_size),
1965 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1966 	}
1967 	else
1968 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1969 
1970 	/* Initialize GTT memory pool */
1971 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1972 	if (r) {
1973 		DRM_ERROR("Failed initializing GTT heap.\n");
1974 		return r;
1975 	}
1976 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1977 		 (unsigned)(gtt_size / (1024 * 1024)));
1978 
1979 	/* Initialize various on-chip memory pools */
1980 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1981 			   adev->gds.gds_size);
1982 	if (r) {
1983 		DRM_ERROR("Failed initializing GDS heap.\n");
1984 		return r;
1985 	}
1986 
1987 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1988 			   adev->gds.gws_size);
1989 	if (r) {
1990 		DRM_ERROR("Failed initializing gws heap.\n");
1991 		return r;
1992 	}
1993 
1994 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1995 			   adev->gds.oa_size);
1996 	if (r) {
1997 		DRM_ERROR("Failed initializing oa heap.\n");
1998 		return r;
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 /**
2005  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2006  */
2007 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2008 {
2009 	void *stolen_vga_buf;
2010 	/* return the VGA stolen memory (if any) back to VRAM */
2011 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2012 }
2013 
2014 /**
2015  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2016  */
2017 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2018 {
2019 	if (!adev->mman.initialized)
2020 		return;
2021 
2022 	amdgpu_ttm_training_reserve_vram_fini(adev);
2023 	/* return the IP Discovery TMR memory back to VRAM */
2024 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2025 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2026 
2027 	if (adev->mman.aper_base_kaddr)
2028 		iounmap(adev->mman.aper_base_kaddr);
2029 	adev->mman.aper_base_kaddr = NULL;
2030 
2031 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2032 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2033 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2034 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2035 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2036 	ttm_bo_device_release(&adev->mman.bdev);
2037 	adev->mman.initialized = false;
2038 	DRM_INFO("amdgpu: ttm finalized\n");
2039 }
2040 
2041 /**
2042  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2043  *
2044  * @adev: amdgpu_device pointer
2045  * @enable: true when we can use buffer functions.
2046  *
2047  * Enable/disable use of buffer functions during suspend/resume. This should
2048  * only be called at bootup or when userspace isn't running.
2049  */
2050 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2051 {
2052 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2053 	uint64_t size;
2054 	int r;
2055 
2056 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2057 	    adev->mman.buffer_funcs_enabled == enable)
2058 		return;
2059 
2060 	if (enable) {
2061 		struct amdgpu_ring *ring;
2062 		struct drm_gpu_scheduler *sched;
2063 
2064 		ring = adev->mman.buffer_funcs_ring;
2065 		sched = &ring->sched;
2066 		r = drm_sched_entity_init(&adev->mman.entity,
2067 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2068 					  1, NULL);
2069 		if (r) {
2070 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2071 				  r);
2072 			return;
2073 		}
2074 	} else {
2075 		drm_sched_entity_destroy(&adev->mman.entity);
2076 		dma_fence_put(man->move);
2077 		man->move = NULL;
2078 	}
2079 
2080 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2081 	if (enable)
2082 		size = adev->gmc.real_vram_size;
2083 	else
2084 		size = adev->gmc.visible_vram_size;
2085 	man->size = size >> PAGE_SHIFT;
2086 	adev->mman.buffer_funcs_enabled = enable;
2087 }
2088 
2089 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2090 {
2091 	struct drm_file *file_priv = filp->private_data;
2092 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2093 
2094 	if (adev == NULL)
2095 		return -EINVAL;
2096 
2097 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2098 }
2099 
2100 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2101 		       uint64_t dst_offset, uint32_t byte_count,
2102 		       struct dma_resv *resv,
2103 		       struct dma_fence **fence, bool direct_submit,
2104 		       bool vm_needs_flush, bool tmz)
2105 {
2106 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2107 		AMDGPU_IB_POOL_DELAYED;
2108 	struct amdgpu_device *adev = ring->adev;
2109 	struct amdgpu_job *job;
2110 
2111 	uint32_t max_bytes;
2112 	unsigned num_loops, num_dw;
2113 	unsigned i;
2114 	int r;
2115 
2116 	if (direct_submit && !ring->sched.ready) {
2117 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2118 		return -EINVAL;
2119 	}
2120 
2121 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2122 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2123 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2124 
2125 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2126 	if (r)
2127 		return r;
2128 
2129 	if (vm_needs_flush) {
2130 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2131 		job->vm_needs_flush = true;
2132 	}
2133 	if (resv) {
2134 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2135 				     AMDGPU_SYNC_ALWAYS,
2136 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2137 		if (r) {
2138 			DRM_ERROR("sync failed (%d).\n", r);
2139 			goto error_free;
2140 		}
2141 	}
2142 
2143 	for (i = 0; i < num_loops; i++) {
2144 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2145 
2146 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2147 					dst_offset, cur_size_in_bytes, tmz);
2148 
2149 		src_offset += cur_size_in_bytes;
2150 		dst_offset += cur_size_in_bytes;
2151 		byte_count -= cur_size_in_bytes;
2152 	}
2153 
2154 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2155 	WARN_ON(job->ibs[0].length_dw > num_dw);
2156 	if (direct_submit)
2157 		r = amdgpu_job_submit_direct(job, ring, fence);
2158 	else
2159 		r = amdgpu_job_submit(job, &adev->mman.entity,
2160 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2161 	if (r)
2162 		goto error_free;
2163 
2164 	return r;
2165 
2166 error_free:
2167 	amdgpu_job_free(job);
2168 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2169 	return r;
2170 }
2171 
2172 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2173 		       uint32_t src_data,
2174 		       struct dma_resv *resv,
2175 		       struct dma_fence **fence)
2176 {
2177 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2178 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2179 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2180 
2181 	struct drm_mm_node *mm_node;
2182 	unsigned long num_pages;
2183 	unsigned int num_loops, num_dw;
2184 
2185 	struct amdgpu_job *job;
2186 	int r;
2187 
2188 	if (!adev->mman.buffer_funcs_enabled) {
2189 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2190 		return -EINVAL;
2191 	}
2192 
2193 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2194 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2195 		if (r)
2196 			return r;
2197 	}
2198 
2199 	num_pages = bo->tbo.num_pages;
2200 	mm_node = bo->tbo.mem.mm_node;
2201 	num_loops = 0;
2202 	while (num_pages) {
2203 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2204 
2205 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2206 		num_pages -= mm_node->size;
2207 		++mm_node;
2208 	}
2209 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2210 
2211 	/* for IB padding */
2212 	num_dw += 64;
2213 
2214 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2215 				     &job);
2216 	if (r)
2217 		return r;
2218 
2219 	if (resv) {
2220 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2221 				     AMDGPU_SYNC_ALWAYS,
2222 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2223 		if (r) {
2224 			DRM_ERROR("sync failed (%d).\n", r);
2225 			goto error_free;
2226 		}
2227 	}
2228 
2229 	num_pages = bo->tbo.num_pages;
2230 	mm_node = bo->tbo.mem.mm_node;
2231 
2232 	while (num_pages) {
2233 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2234 		uint64_t dst_addr;
2235 
2236 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2237 		while (byte_count) {
2238 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2239 							   max_bytes);
2240 
2241 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2242 						dst_addr, cur_size_in_bytes);
2243 
2244 			dst_addr += cur_size_in_bytes;
2245 			byte_count -= cur_size_in_bytes;
2246 		}
2247 
2248 		num_pages -= mm_node->size;
2249 		++mm_node;
2250 	}
2251 
2252 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2253 	WARN_ON(job->ibs[0].length_dw > num_dw);
2254 	r = amdgpu_job_submit(job, &adev->mman.entity,
2255 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2256 	if (r)
2257 		goto error_free;
2258 
2259 	return 0;
2260 
2261 error_free:
2262 	amdgpu_job_free(job);
2263 	return r;
2264 }
2265 
2266 #if defined(CONFIG_DEBUG_FS)
2267 
2268 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2269 {
2270 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2271 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2272 	struct drm_device *dev = node->minor->dev;
2273 	struct amdgpu_device *adev = dev->dev_private;
2274 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2275 	struct drm_printer p = drm_seq_file_printer(m);
2276 
2277 	man->func->debug(man, &p);
2278 	return 0;
2279 }
2280 
2281 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2282 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2283 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2284 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2285 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2286 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2287 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2288 #ifdef CONFIG_SWIOTLB
2289 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2290 #endif
2291 };
2292 
2293 /**
2294  * amdgpu_ttm_vram_read - Linear read access to VRAM
2295  *
2296  * Accesses VRAM via MMIO for debugging purposes.
2297  */
2298 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2299 				    size_t size, loff_t *pos)
2300 {
2301 	struct amdgpu_device *adev = file_inode(f)->i_private;
2302 	ssize_t result = 0;
2303 
2304 	if (size & 0x3 || *pos & 0x3)
2305 		return -EINVAL;
2306 
2307 	if (*pos >= adev->gmc.mc_vram_size)
2308 		return -ENXIO;
2309 
2310 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2311 	while (size) {
2312 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2313 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2314 
2315 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2316 		if (copy_to_user(buf, value, bytes))
2317 			return -EFAULT;
2318 
2319 		result += bytes;
2320 		buf += bytes;
2321 		*pos += bytes;
2322 		size -= bytes;
2323 	}
2324 
2325 	return result;
2326 }
2327 
2328 /**
2329  * amdgpu_ttm_vram_write - Linear write access to VRAM
2330  *
2331  * Accesses VRAM via MMIO for debugging purposes.
2332  */
2333 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2334 				    size_t size, loff_t *pos)
2335 {
2336 	struct amdgpu_device *adev = file_inode(f)->i_private;
2337 	ssize_t result = 0;
2338 	int r;
2339 
2340 	if (size & 0x3 || *pos & 0x3)
2341 		return -EINVAL;
2342 
2343 	if (*pos >= adev->gmc.mc_vram_size)
2344 		return -ENXIO;
2345 
2346 	while (size) {
2347 		unsigned long flags;
2348 		uint32_t value;
2349 
2350 		if (*pos >= adev->gmc.mc_vram_size)
2351 			return result;
2352 
2353 		r = get_user(value, (uint32_t *)buf);
2354 		if (r)
2355 			return r;
2356 
2357 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2358 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2359 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2360 		WREG32_NO_KIQ(mmMM_DATA, value);
2361 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2362 
2363 		result += 4;
2364 		buf += 4;
2365 		*pos += 4;
2366 		size -= 4;
2367 	}
2368 
2369 	return result;
2370 }
2371 
2372 static const struct file_operations amdgpu_ttm_vram_fops = {
2373 	.owner = THIS_MODULE,
2374 	.read = amdgpu_ttm_vram_read,
2375 	.write = amdgpu_ttm_vram_write,
2376 	.llseek = default_llseek,
2377 };
2378 
2379 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2380 
2381 /**
2382  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2383  */
2384 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2385 				   size_t size, loff_t *pos)
2386 {
2387 	struct amdgpu_device *adev = file_inode(f)->i_private;
2388 	ssize_t result = 0;
2389 	int r;
2390 
2391 	while (size) {
2392 		loff_t p = *pos / PAGE_SIZE;
2393 		unsigned off = *pos & ~PAGE_MASK;
2394 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2395 		struct page *page;
2396 		void *ptr;
2397 
2398 		if (p >= adev->gart.num_cpu_pages)
2399 			return result;
2400 
2401 		page = adev->gart.pages[p];
2402 		if (page) {
2403 			ptr = kmap(page);
2404 			ptr += off;
2405 
2406 			r = copy_to_user(buf, ptr, cur_size);
2407 			kunmap(adev->gart.pages[p]);
2408 		} else
2409 			r = clear_user(buf, cur_size);
2410 
2411 		if (r)
2412 			return -EFAULT;
2413 
2414 		result += cur_size;
2415 		buf += cur_size;
2416 		*pos += cur_size;
2417 		size -= cur_size;
2418 	}
2419 
2420 	return result;
2421 }
2422 
2423 static const struct file_operations amdgpu_ttm_gtt_fops = {
2424 	.owner = THIS_MODULE,
2425 	.read = amdgpu_ttm_gtt_read,
2426 	.llseek = default_llseek
2427 };
2428 
2429 #endif
2430 
2431 /**
2432  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2433  *
2434  * This function is used to read memory that has been mapped to the
2435  * GPU and the known addresses are not physical addresses but instead
2436  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2437  */
2438 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2439 				 size_t size, loff_t *pos)
2440 {
2441 	struct amdgpu_device *adev = file_inode(f)->i_private;
2442 	struct iommu_domain *dom;
2443 	ssize_t result = 0;
2444 	int r;
2445 
2446 	/* retrieve the IOMMU domain if any for this device */
2447 	dom = iommu_get_domain_for_dev(adev->dev);
2448 
2449 	while (size) {
2450 		phys_addr_t addr = *pos & PAGE_MASK;
2451 		loff_t off = *pos & ~PAGE_MASK;
2452 		size_t bytes = PAGE_SIZE - off;
2453 		unsigned long pfn;
2454 		struct page *p;
2455 		void *ptr;
2456 
2457 		bytes = bytes < size ? bytes : size;
2458 
2459 		/* Translate the bus address to a physical address.  If
2460 		 * the domain is NULL it means there is no IOMMU active
2461 		 * and the address translation is the identity
2462 		 */
2463 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2464 
2465 		pfn = addr >> PAGE_SHIFT;
2466 		if (!pfn_valid(pfn))
2467 			return -EPERM;
2468 
2469 		p = pfn_to_page(pfn);
2470 		if (p->mapping != adev->mman.bdev.dev_mapping)
2471 			return -EPERM;
2472 
2473 		ptr = kmap(p);
2474 		r = copy_to_user(buf, ptr + off, bytes);
2475 		kunmap(p);
2476 		if (r)
2477 			return -EFAULT;
2478 
2479 		size -= bytes;
2480 		*pos += bytes;
2481 		result += bytes;
2482 	}
2483 
2484 	return result;
2485 }
2486 
2487 /**
2488  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2489  *
2490  * This function is used to write memory that has been mapped to the
2491  * GPU and the known addresses are not physical addresses but instead
2492  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2493  */
2494 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2495 				 size_t size, loff_t *pos)
2496 {
2497 	struct amdgpu_device *adev = file_inode(f)->i_private;
2498 	struct iommu_domain *dom;
2499 	ssize_t result = 0;
2500 	int r;
2501 
2502 	dom = iommu_get_domain_for_dev(adev->dev);
2503 
2504 	while (size) {
2505 		phys_addr_t addr = *pos & PAGE_MASK;
2506 		loff_t off = *pos & ~PAGE_MASK;
2507 		size_t bytes = PAGE_SIZE - off;
2508 		unsigned long pfn;
2509 		struct page *p;
2510 		void *ptr;
2511 
2512 		bytes = bytes < size ? bytes : size;
2513 
2514 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2515 
2516 		pfn = addr >> PAGE_SHIFT;
2517 		if (!pfn_valid(pfn))
2518 			return -EPERM;
2519 
2520 		p = pfn_to_page(pfn);
2521 		if (p->mapping != adev->mman.bdev.dev_mapping)
2522 			return -EPERM;
2523 
2524 		ptr = kmap(p);
2525 		r = copy_from_user(ptr + off, buf, bytes);
2526 		kunmap(p);
2527 		if (r)
2528 			return -EFAULT;
2529 
2530 		size -= bytes;
2531 		*pos += bytes;
2532 		result += bytes;
2533 	}
2534 
2535 	return result;
2536 }
2537 
2538 static const struct file_operations amdgpu_ttm_iomem_fops = {
2539 	.owner = THIS_MODULE,
2540 	.read = amdgpu_iomem_read,
2541 	.write = amdgpu_iomem_write,
2542 	.llseek = default_llseek
2543 };
2544 
2545 static const struct {
2546 	char *name;
2547 	const struct file_operations *fops;
2548 	int domain;
2549 } ttm_debugfs_entries[] = {
2550 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2551 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2552 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2553 #endif
2554 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2555 };
2556 
2557 #endif
2558 
2559 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2560 {
2561 #if defined(CONFIG_DEBUG_FS)
2562 	unsigned count;
2563 
2564 	struct drm_minor *minor = adev->ddev->primary;
2565 	struct dentry *ent, *root = minor->debugfs_root;
2566 
2567 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2568 		ent = debugfs_create_file(
2569 				ttm_debugfs_entries[count].name,
2570 				S_IFREG | S_IRUGO, root,
2571 				adev,
2572 				ttm_debugfs_entries[count].fops);
2573 		if (IS_ERR(ent))
2574 			return PTR_ERR(ent);
2575 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2576 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2577 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2578 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2579 		adev->mman.debugfs_entries[count] = ent;
2580 	}
2581 
2582 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2583 
2584 #ifdef CONFIG_SWIOTLB
2585 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2586 		--count;
2587 #endif
2588 
2589 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2590 #else
2591 	return 0;
2592 #endif
2593 }
2594