1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 #include <drm/ttm/ttm_bo_api.h> 33 #include <drm/ttm/ttm_bo_driver.h> 34 #include <drm/ttm/ttm_placement.h> 35 #include <drm/ttm/ttm_module.h> 36 #include <drm/ttm/ttm_page_alloc.h> 37 #include <drm/drmP.h> 38 #include <drm/amdgpu_drm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swiotlb.h> 42 #include <linux/swap.h> 43 #include <linux/pagemap.h> 44 #include <linux/debugfs.h> 45 #include <linux/iommu.h> 46 #include "amdgpu.h" 47 #include "amdgpu_object.h" 48 #include "amdgpu_trace.h" 49 #include "amdgpu_amdkfd.h" 50 #include "amdgpu_sdma.h" 51 #include "bif/bif_4_1_d.h" 52 53 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT) 54 55 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 56 struct ttm_mem_reg *mem, unsigned num_pages, 57 uint64_t offset, unsigned window, 58 struct amdgpu_ring *ring, 59 uint64_t *addr); 60 61 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 62 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 63 64 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 65 { 66 return 0; 67 } 68 69 /** 70 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 71 * memory request. 72 * 73 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 74 * @type: The type of memory requested 75 * @man: The memory type manager for each domain 76 * 77 * This is called by ttm_bo_init_mm() when a buffer object is being 78 * initialized. 79 */ 80 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 81 struct ttm_mem_type_manager *man) 82 { 83 struct amdgpu_device *adev; 84 85 adev = amdgpu_ttm_adev(bdev); 86 87 switch (type) { 88 case TTM_PL_SYSTEM: 89 /* System memory */ 90 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 91 man->available_caching = TTM_PL_MASK_CACHING; 92 man->default_caching = TTM_PL_FLAG_CACHED; 93 break; 94 case TTM_PL_TT: 95 /* GTT memory */ 96 man->func = &amdgpu_gtt_mgr_func; 97 man->gpu_offset = adev->gmc.gart_start; 98 man->available_caching = TTM_PL_MASK_CACHING; 99 man->default_caching = TTM_PL_FLAG_CACHED; 100 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 101 break; 102 case TTM_PL_VRAM: 103 /* "On-card" video ram */ 104 man->func = &amdgpu_vram_mgr_func; 105 man->gpu_offset = adev->gmc.vram_start; 106 man->flags = TTM_MEMTYPE_FLAG_FIXED | 107 TTM_MEMTYPE_FLAG_MAPPABLE; 108 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 109 man->default_caching = TTM_PL_FLAG_WC; 110 break; 111 case AMDGPU_PL_GDS: 112 case AMDGPU_PL_GWS: 113 case AMDGPU_PL_OA: 114 /* On-chip GDS memory*/ 115 man->func = &ttm_bo_manager_func; 116 man->gpu_offset = 0; 117 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 118 man->available_caching = TTM_PL_FLAG_UNCACHED; 119 man->default_caching = TTM_PL_FLAG_UNCACHED; 120 break; 121 default: 122 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 123 return -EINVAL; 124 } 125 return 0; 126 } 127 128 /** 129 * amdgpu_evict_flags - Compute placement flags 130 * 131 * @bo: The buffer object to evict 132 * @placement: Possible destination(s) for evicted BO 133 * 134 * Fill in placement data when ttm_bo_evict() is called 135 */ 136 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 137 struct ttm_placement *placement) 138 { 139 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 140 struct amdgpu_bo *abo; 141 static const struct ttm_place placements = { 142 .fpfn = 0, 143 .lpfn = 0, 144 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 145 }; 146 147 /* Don't handle scatter gather BOs */ 148 if (bo->type == ttm_bo_type_sg) { 149 placement->num_placement = 0; 150 placement->num_busy_placement = 0; 151 return; 152 } 153 154 /* Object isn't an AMDGPU object so ignore */ 155 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 156 placement->placement = &placements; 157 placement->busy_placement = &placements; 158 placement->num_placement = 1; 159 placement->num_busy_placement = 1; 160 return; 161 } 162 163 abo = ttm_to_amdgpu_bo(bo); 164 switch (bo->mem.mem_type) { 165 case AMDGPU_PL_GDS: 166 case AMDGPU_PL_GWS: 167 case AMDGPU_PL_OA: 168 placement->num_placement = 0; 169 placement->num_busy_placement = 0; 170 return; 171 172 case TTM_PL_VRAM: 173 if (!adev->mman.buffer_funcs_enabled) { 174 /* Move to system memory */ 175 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 176 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 177 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 178 amdgpu_bo_in_cpu_visible_vram(abo)) { 179 180 /* Try evicting to the CPU inaccessible part of VRAM 181 * first, but only set GTT as busy placement, so this 182 * BO will be evicted to GTT rather than causing other 183 * BOs to be evicted from VRAM 184 */ 185 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 186 AMDGPU_GEM_DOMAIN_GTT); 187 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 188 abo->placements[0].lpfn = 0; 189 abo->placement.busy_placement = &abo->placements[1]; 190 abo->placement.num_busy_placement = 1; 191 } else { 192 /* Move to GTT memory */ 193 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 194 } 195 break; 196 case TTM_PL_TT: 197 default: 198 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 199 break; 200 } 201 *placement = abo->placement; 202 } 203 204 /** 205 * amdgpu_verify_access - Verify access for a mmap call 206 * 207 * @bo: The buffer object to map 208 * @filp: The file pointer from the process performing the mmap 209 * 210 * This is called by ttm_bo_mmap() to verify whether a process 211 * has the right to mmap a BO to their process space. 212 */ 213 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 214 { 215 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 216 217 /* 218 * Don't verify access for KFD BOs. They don't have a GEM 219 * object associated with them. 220 */ 221 if (abo->kfd_bo) 222 return 0; 223 224 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 225 return -EPERM; 226 return drm_vma_node_verify_access(&abo->gem_base.vma_node, 227 filp->private_data); 228 } 229 230 /** 231 * amdgpu_move_null - Register memory for a buffer object 232 * 233 * @bo: The bo to assign the memory to 234 * @new_mem: The memory to be assigned. 235 * 236 * Assign the memory from new_mem to the memory of the buffer object bo. 237 */ 238 static void amdgpu_move_null(struct ttm_buffer_object *bo, 239 struct ttm_mem_reg *new_mem) 240 { 241 struct ttm_mem_reg *old_mem = &bo->mem; 242 243 BUG_ON(old_mem->mm_node != NULL); 244 *old_mem = *new_mem; 245 new_mem->mm_node = NULL; 246 } 247 248 /** 249 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 250 * 251 * @bo: The bo to assign the memory to. 252 * @mm_node: Memory manager node for drm allocator. 253 * @mem: The region where the bo resides. 254 * 255 */ 256 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 257 struct drm_mm_node *mm_node, 258 struct ttm_mem_reg *mem) 259 { 260 uint64_t addr = 0; 261 262 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 263 addr = mm_node->start << PAGE_SHIFT; 264 addr += bo->bdev->man[mem->mem_type].gpu_offset; 265 } 266 return addr; 267 } 268 269 /** 270 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 271 * @offset. It also modifies the offset to be within the drm_mm_node returned 272 * 273 * @mem: The region where the bo resides. 274 * @offset: The offset that drm_mm_node is used for finding. 275 * 276 */ 277 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 278 unsigned long *offset) 279 { 280 struct drm_mm_node *mm_node = mem->mm_node; 281 282 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 283 *offset -= (mm_node->size << PAGE_SHIFT); 284 ++mm_node; 285 } 286 return mm_node; 287 } 288 289 /** 290 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 291 * 292 * The function copies @size bytes from {src->mem + src->offset} to 293 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 294 * move and different for a BO to BO copy. 295 * 296 * @f: Returns the last fence if multiple jobs are submitted. 297 */ 298 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 299 struct amdgpu_copy_mem *src, 300 struct amdgpu_copy_mem *dst, 301 uint64_t size, 302 struct reservation_object *resv, 303 struct dma_fence **f) 304 { 305 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 306 struct drm_mm_node *src_mm, *dst_mm; 307 uint64_t src_node_start, dst_node_start, src_node_size, 308 dst_node_size, src_page_offset, dst_page_offset; 309 struct dma_fence *fence = NULL; 310 int r = 0; 311 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 312 AMDGPU_GPU_PAGE_SIZE); 313 314 if (!adev->mman.buffer_funcs_enabled) { 315 DRM_ERROR("Trying to move memory with ring turned off.\n"); 316 return -EINVAL; 317 } 318 319 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 320 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 321 src->offset; 322 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 323 src_page_offset = src_node_start & (PAGE_SIZE - 1); 324 325 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 326 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 327 dst->offset; 328 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 329 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 330 331 mutex_lock(&adev->mman.gtt_window_lock); 332 333 while (size) { 334 unsigned long cur_size; 335 uint64_t from = src_node_start, to = dst_node_start; 336 struct dma_fence *next; 337 338 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 339 * begins at an offset, then adjust the size accordingly 340 */ 341 cur_size = min3(min(src_node_size, dst_node_size), size, 342 GTT_MAX_BYTES); 343 if (cur_size + src_page_offset > GTT_MAX_BYTES || 344 cur_size + dst_page_offset > GTT_MAX_BYTES) 345 cur_size -= max(src_page_offset, dst_page_offset); 346 347 /* Map only what needs to be accessed. Map src to window 0 and 348 * dst to window 1 349 */ 350 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 351 r = amdgpu_map_buffer(src->bo, src->mem, 352 PFN_UP(cur_size + src_page_offset), 353 src_node_start, 0, ring, 354 &from); 355 if (r) 356 goto error; 357 /* Adjust the offset because amdgpu_map_buffer returns 358 * start of mapped page 359 */ 360 from += src_page_offset; 361 } 362 363 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 364 r = amdgpu_map_buffer(dst->bo, dst->mem, 365 PFN_UP(cur_size + dst_page_offset), 366 dst_node_start, 1, ring, 367 &to); 368 if (r) 369 goto error; 370 to += dst_page_offset; 371 } 372 373 r = amdgpu_copy_buffer(ring, from, to, cur_size, 374 resv, &next, false, true); 375 if (r) 376 goto error; 377 378 dma_fence_put(fence); 379 fence = next; 380 381 size -= cur_size; 382 if (!size) 383 break; 384 385 src_node_size -= cur_size; 386 if (!src_node_size) { 387 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 388 src->mem); 389 src_node_size = (src_mm->size << PAGE_SHIFT); 390 } else { 391 src_node_start += cur_size; 392 src_page_offset = src_node_start & (PAGE_SIZE - 1); 393 } 394 dst_node_size -= cur_size; 395 if (!dst_node_size) { 396 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 397 dst->mem); 398 dst_node_size = (dst_mm->size << PAGE_SHIFT); 399 } else { 400 dst_node_start += cur_size; 401 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 402 } 403 } 404 error: 405 mutex_unlock(&adev->mman.gtt_window_lock); 406 if (f) 407 *f = dma_fence_get(fence); 408 dma_fence_put(fence); 409 return r; 410 } 411 412 /** 413 * amdgpu_move_blit - Copy an entire buffer to another buffer 414 * 415 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 416 * help move buffers to and from VRAM. 417 */ 418 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 419 bool evict, bool no_wait_gpu, 420 struct ttm_mem_reg *new_mem, 421 struct ttm_mem_reg *old_mem) 422 { 423 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 424 struct amdgpu_copy_mem src, dst; 425 struct dma_fence *fence = NULL; 426 int r; 427 428 src.bo = bo; 429 dst.bo = bo; 430 src.mem = old_mem; 431 dst.mem = new_mem; 432 src.offset = 0; 433 dst.offset = 0; 434 435 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 436 new_mem->num_pages << PAGE_SHIFT, 437 bo->resv, &fence); 438 if (r) 439 goto error; 440 441 /* Always block for VM page tables before committing the new location */ 442 if (bo->type == ttm_bo_type_kernel) 443 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 444 else 445 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 446 dma_fence_put(fence); 447 return r; 448 449 error: 450 if (fence) 451 dma_fence_wait(fence, false); 452 dma_fence_put(fence); 453 return r; 454 } 455 456 /** 457 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 458 * 459 * Called by amdgpu_bo_move(). 460 */ 461 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 462 struct ttm_operation_ctx *ctx, 463 struct ttm_mem_reg *new_mem) 464 { 465 struct amdgpu_device *adev; 466 struct ttm_mem_reg *old_mem = &bo->mem; 467 struct ttm_mem_reg tmp_mem; 468 struct ttm_place placements; 469 struct ttm_placement placement; 470 int r; 471 472 adev = amdgpu_ttm_adev(bo->bdev); 473 474 /* create space/pages for new_mem in GTT space */ 475 tmp_mem = *new_mem; 476 tmp_mem.mm_node = NULL; 477 placement.num_placement = 1; 478 placement.placement = &placements; 479 placement.num_busy_placement = 1; 480 placement.busy_placement = &placements; 481 placements.fpfn = 0; 482 placements.lpfn = 0; 483 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 484 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 485 if (unlikely(r)) { 486 return r; 487 } 488 489 /* set caching flags */ 490 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 491 if (unlikely(r)) { 492 goto out_cleanup; 493 } 494 495 /* Bind the memory to the GTT space */ 496 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 497 if (unlikely(r)) { 498 goto out_cleanup; 499 } 500 501 /* blit VRAM to GTT */ 502 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 503 if (unlikely(r)) { 504 goto out_cleanup; 505 } 506 507 /* move BO (in tmp_mem) to new_mem */ 508 r = ttm_bo_move_ttm(bo, ctx, new_mem); 509 out_cleanup: 510 ttm_bo_mem_put(bo, &tmp_mem); 511 return r; 512 } 513 514 /** 515 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 516 * 517 * Called by amdgpu_bo_move(). 518 */ 519 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 520 struct ttm_operation_ctx *ctx, 521 struct ttm_mem_reg *new_mem) 522 { 523 struct amdgpu_device *adev; 524 struct ttm_mem_reg *old_mem = &bo->mem; 525 struct ttm_mem_reg tmp_mem; 526 struct ttm_placement placement; 527 struct ttm_place placements; 528 int r; 529 530 adev = amdgpu_ttm_adev(bo->bdev); 531 532 /* make space in GTT for old_mem buffer */ 533 tmp_mem = *new_mem; 534 tmp_mem.mm_node = NULL; 535 placement.num_placement = 1; 536 placement.placement = &placements; 537 placement.num_busy_placement = 1; 538 placement.busy_placement = &placements; 539 placements.fpfn = 0; 540 placements.lpfn = 0; 541 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 542 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 543 if (unlikely(r)) { 544 return r; 545 } 546 547 /* move/bind old memory to GTT space */ 548 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 549 if (unlikely(r)) { 550 goto out_cleanup; 551 } 552 553 /* copy to VRAM */ 554 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 555 if (unlikely(r)) { 556 goto out_cleanup; 557 } 558 out_cleanup: 559 ttm_bo_mem_put(bo, &tmp_mem); 560 return r; 561 } 562 563 /** 564 * amdgpu_bo_move - Move a buffer object to a new memory location 565 * 566 * Called by ttm_bo_handle_move_mem() 567 */ 568 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 569 struct ttm_operation_ctx *ctx, 570 struct ttm_mem_reg *new_mem) 571 { 572 struct amdgpu_device *adev; 573 struct amdgpu_bo *abo; 574 struct ttm_mem_reg *old_mem = &bo->mem; 575 int r; 576 577 /* Can't move a pinned BO */ 578 abo = ttm_to_amdgpu_bo(bo); 579 if (WARN_ON_ONCE(abo->pin_count > 0)) 580 return -EINVAL; 581 582 adev = amdgpu_ttm_adev(bo->bdev); 583 584 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 585 amdgpu_move_null(bo, new_mem); 586 return 0; 587 } 588 if ((old_mem->mem_type == TTM_PL_TT && 589 new_mem->mem_type == TTM_PL_SYSTEM) || 590 (old_mem->mem_type == TTM_PL_SYSTEM && 591 new_mem->mem_type == TTM_PL_TT)) { 592 /* bind is enough */ 593 amdgpu_move_null(bo, new_mem); 594 return 0; 595 } 596 if (old_mem->mem_type == AMDGPU_PL_GDS || 597 old_mem->mem_type == AMDGPU_PL_GWS || 598 old_mem->mem_type == AMDGPU_PL_OA || 599 new_mem->mem_type == AMDGPU_PL_GDS || 600 new_mem->mem_type == AMDGPU_PL_GWS || 601 new_mem->mem_type == AMDGPU_PL_OA) { 602 /* Nothing to save here */ 603 amdgpu_move_null(bo, new_mem); 604 return 0; 605 } 606 607 if (!adev->mman.buffer_funcs_enabled) 608 goto memcpy; 609 610 if (old_mem->mem_type == TTM_PL_VRAM && 611 new_mem->mem_type == TTM_PL_SYSTEM) { 612 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 613 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 614 new_mem->mem_type == TTM_PL_VRAM) { 615 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 616 } else { 617 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 618 new_mem, old_mem); 619 } 620 621 if (r) { 622 memcpy: 623 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 624 if (r) { 625 return r; 626 } 627 } 628 629 if (bo->type == ttm_bo_type_device && 630 new_mem->mem_type == TTM_PL_VRAM && 631 old_mem->mem_type != TTM_PL_VRAM) { 632 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 633 * accesses the BO after it's moved. 634 */ 635 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 636 } 637 638 /* update statistics */ 639 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 640 return 0; 641 } 642 643 /** 644 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 645 * 646 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 647 */ 648 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 649 { 650 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 651 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 652 struct drm_mm_node *mm_node = mem->mm_node; 653 654 mem->bus.addr = NULL; 655 mem->bus.offset = 0; 656 mem->bus.size = mem->num_pages << PAGE_SHIFT; 657 mem->bus.base = 0; 658 mem->bus.is_iomem = false; 659 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 660 return -EINVAL; 661 switch (mem->mem_type) { 662 case TTM_PL_SYSTEM: 663 /* system memory */ 664 return 0; 665 case TTM_PL_TT: 666 break; 667 case TTM_PL_VRAM: 668 mem->bus.offset = mem->start << PAGE_SHIFT; 669 /* check if it's visible */ 670 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 671 return -EINVAL; 672 /* Only physically contiguous buffers apply. In a contiguous 673 * buffer, size of the first mm_node would match the number of 674 * pages in ttm_mem_reg. 675 */ 676 if (adev->mman.aper_base_kaddr && 677 (mm_node->size == mem->num_pages)) 678 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 679 mem->bus.offset; 680 681 mem->bus.base = adev->gmc.aper_base; 682 mem->bus.is_iomem = true; 683 break; 684 default: 685 return -EINVAL; 686 } 687 return 0; 688 } 689 690 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 691 { 692 } 693 694 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 695 unsigned long page_offset) 696 { 697 struct drm_mm_node *mm; 698 unsigned long offset = (page_offset << PAGE_SHIFT); 699 700 mm = amdgpu_find_mm_node(&bo->mem, &offset); 701 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 702 (offset >> PAGE_SHIFT); 703 } 704 705 /* 706 * TTM backend functions. 707 */ 708 struct amdgpu_ttm_gup_task_list { 709 struct list_head list; 710 struct task_struct *task; 711 }; 712 713 struct amdgpu_ttm_tt { 714 struct ttm_dma_tt ttm; 715 u64 offset; 716 uint64_t userptr; 717 struct task_struct *usertask; 718 uint32_t userflags; 719 spinlock_t guptasklock; 720 struct list_head guptasks; 721 atomic_t mmu_invalidations; 722 uint32_t last_set_pages; 723 }; 724 725 /** 726 * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR 727 * pointer to memory 728 * 729 * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos(). 730 * This provides a wrapper around the get_user_pages() call to provide 731 * device accessible pages that back user memory. 732 */ 733 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages) 734 { 735 struct amdgpu_ttm_tt *gtt = (void *)ttm; 736 struct mm_struct *mm = gtt->usertask->mm; 737 unsigned int flags = 0; 738 unsigned pinned = 0; 739 int r; 740 741 if (!mm) /* Happens during process shutdown */ 742 return -ESRCH; 743 744 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 745 flags |= FOLL_WRITE; 746 747 down_read(&mm->mmap_sem); 748 749 if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) { 750 /* 751 * check that we only use anonymous memory to prevent problems 752 * with writeback 753 */ 754 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE; 755 struct vm_area_struct *vma; 756 757 vma = find_vma(mm, gtt->userptr); 758 if (!vma || vma->vm_file || vma->vm_end < end) { 759 up_read(&mm->mmap_sem); 760 return -EPERM; 761 } 762 } 763 764 /* loop enough times using contiguous pages of memory */ 765 do { 766 unsigned num_pages = ttm->num_pages - pinned; 767 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE; 768 struct page **p = pages + pinned; 769 struct amdgpu_ttm_gup_task_list guptask; 770 771 guptask.task = current; 772 spin_lock(>t->guptasklock); 773 list_add(&guptask.list, >t->guptasks); 774 spin_unlock(>t->guptasklock); 775 776 if (mm == current->mm) 777 r = get_user_pages(userptr, num_pages, flags, p, NULL); 778 else 779 r = get_user_pages_remote(gtt->usertask, 780 mm, userptr, num_pages, 781 flags, p, NULL, NULL); 782 783 spin_lock(>t->guptasklock); 784 list_del(&guptask.list); 785 spin_unlock(>t->guptasklock); 786 787 if (r < 0) 788 goto release_pages; 789 790 pinned += r; 791 792 } while (pinned < ttm->num_pages); 793 794 up_read(&mm->mmap_sem); 795 return 0; 796 797 release_pages: 798 release_pages(pages, pinned); 799 up_read(&mm->mmap_sem); 800 return r; 801 } 802 803 /** 804 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 805 * 806 * Called by amdgpu_cs_list_validate(). This creates the page list 807 * that backs user memory and will ultimately be mapped into the device 808 * address space. 809 */ 810 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 811 { 812 struct amdgpu_ttm_tt *gtt = (void *)ttm; 813 unsigned i; 814 815 gtt->last_set_pages = atomic_read(>t->mmu_invalidations); 816 for (i = 0; i < ttm->num_pages; ++i) { 817 if (ttm->pages[i]) 818 put_page(ttm->pages[i]); 819 820 ttm->pages[i] = pages ? pages[i] : NULL; 821 } 822 } 823 824 /** 825 * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty 826 * 827 * Called while unpinning userptr pages 828 */ 829 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm) 830 { 831 struct amdgpu_ttm_tt *gtt = (void *)ttm; 832 unsigned i; 833 834 for (i = 0; i < ttm->num_pages; ++i) { 835 struct page *page = ttm->pages[i]; 836 837 if (!page) 838 continue; 839 840 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 841 set_page_dirty(page); 842 843 mark_page_accessed(page); 844 } 845 } 846 847 /** 848 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 849 * 850 * Called by amdgpu_ttm_backend_bind() 851 **/ 852 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 853 { 854 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 855 struct amdgpu_ttm_tt *gtt = (void *)ttm; 856 unsigned nents; 857 int r; 858 859 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 860 enum dma_data_direction direction = write ? 861 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 862 863 /* Allocate an SG array and squash pages into it */ 864 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 865 ttm->num_pages << PAGE_SHIFT, 866 GFP_KERNEL); 867 if (r) 868 goto release_sg; 869 870 /* Map SG to device */ 871 r = -ENOMEM; 872 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 873 if (nents != ttm->sg->nents) 874 goto release_sg; 875 876 /* convert SG to linear array of pages and dma addresses */ 877 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 878 gtt->ttm.dma_address, ttm->num_pages); 879 880 return 0; 881 882 release_sg: 883 kfree(ttm->sg); 884 return r; 885 } 886 887 /** 888 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 889 */ 890 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 891 { 892 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 893 struct amdgpu_ttm_tt *gtt = (void *)ttm; 894 895 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 896 enum dma_data_direction direction = write ? 897 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 898 899 /* double check that we don't free the table twice */ 900 if (!ttm->sg->sgl) 901 return; 902 903 /* unmap the pages mapped to the device */ 904 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 905 906 /* mark the pages as dirty */ 907 amdgpu_ttm_tt_mark_user_pages(ttm); 908 909 sg_free_table(ttm->sg); 910 } 911 912 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 913 struct ttm_buffer_object *tbo, 914 uint64_t flags) 915 { 916 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 917 struct ttm_tt *ttm = tbo->ttm; 918 struct amdgpu_ttm_tt *gtt = (void *)ttm; 919 int r; 920 921 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 922 uint64_t page_idx = 1; 923 924 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 925 ttm->pages, gtt->ttm.dma_address, flags); 926 if (r) 927 goto gart_bind_fail; 928 929 /* Patch mtype of the second part BO */ 930 flags &= ~AMDGPU_PTE_MTYPE_MASK; 931 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC); 932 933 r = amdgpu_gart_bind(adev, 934 gtt->offset + (page_idx << PAGE_SHIFT), 935 ttm->num_pages - page_idx, 936 &ttm->pages[page_idx], 937 &(gtt->ttm.dma_address[page_idx]), flags); 938 } else { 939 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 940 ttm->pages, gtt->ttm.dma_address, flags); 941 } 942 943 gart_bind_fail: 944 if (r) 945 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 946 ttm->num_pages, gtt->offset); 947 948 return r; 949 } 950 951 /** 952 * amdgpu_ttm_backend_bind - Bind GTT memory 953 * 954 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 955 * This handles binding GTT memory to the device address space. 956 */ 957 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 958 struct ttm_mem_reg *bo_mem) 959 { 960 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 961 struct amdgpu_ttm_tt *gtt = (void*)ttm; 962 uint64_t flags; 963 int r = 0; 964 965 if (gtt->userptr) { 966 r = amdgpu_ttm_tt_pin_userptr(ttm); 967 if (r) { 968 DRM_ERROR("failed to pin userptr\n"); 969 return r; 970 } 971 } 972 if (!ttm->num_pages) { 973 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 974 ttm->num_pages, bo_mem, ttm); 975 } 976 977 if (bo_mem->mem_type == AMDGPU_PL_GDS || 978 bo_mem->mem_type == AMDGPU_PL_GWS || 979 bo_mem->mem_type == AMDGPU_PL_OA) 980 return -EINVAL; 981 982 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 983 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 984 return 0; 985 } 986 987 /* compute PTE flags relevant to this BO memory */ 988 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 989 990 /* bind pages into GART page tables */ 991 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 992 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 993 ttm->pages, gtt->ttm.dma_address, flags); 994 995 if (r) 996 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 997 ttm->num_pages, gtt->offset); 998 return r; 999 } 1000 1001 /** 1002 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1003 */ 1004 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1005 { 1006 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1007 struct ttm_operation_ctx ctx = { false, false }; 1008 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1009 struct ttm_mem_reg tmp; 1010 struct ttm_placement placement; 1011 struct ttm_place placements; 1012 uint64_t addr, flags; 1013 int r; 1014 1015 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1016 return 0; 1017 1018 addr = amdgpu_gmc_agp_addr(bo); 1019 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1020 bo->mem.start = addr >> PAGE_SHIFT; 1021 } else { 1022 1023 /* allocate GART space */ 1024 tmp = bo->mem; 1025 tmp.mm_node = NULL; 1026 placement.num_placement = 1; 1027 placement.placement = &placements; 1028 placement.num_busy_placement = 1; 1029 placement.busy_placement = &placements; 1030 placements.fpfn = 0; 1031 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1032 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1033 TTM_PL_FLAG_TT; 1034 1035 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1036 if (unlikely(r)) 1037 return r; 1038 1039 /* compute PTE flags for this buffer object */ 1040 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1041 1042 /* Bind pages */ 1043 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1044 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1045 if (unlikely(r)) { 1046 ttm_bo_mem_put(bo, &tmp); 1047 return r; 1048 } 1049 1050 ttm_bo_mem_put(bo, &bo->mem); 1051 bo->mem = tmp; 1052 } 1053 1054 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1055 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1056 1057 return 0; 1058 } 1059 1060 /** 1061 * amdgpu_ttm_recover_gart - Rebind GTT pages 1062 * 1063 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1064 * rebind GTT pages during a GPU reset. 1065 */ 1066 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1067 { 1068 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1069 uint64_t flags; 1070 int r; 1071 1072 if (!tbo->ttm) 1073 return 0; 1074 1075 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1076 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1077 1078 return r; 1079 } 1080 1081 /** 1082 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1083 * 1084 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1085 * ttm_tt_destroy(). 1086 */ 1087 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1088 { 1089 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1090 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1091 int r; 1092 1093 /* if the pages have userptr pinning then clear that first */ 1094 if (gtt->userptr) 1095 amdgpu_ttm_tt_unpin_userptr(ttm); 1096 1097 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1098 return 0; 1099 1100 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1101 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1102 if (r) 1103 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1104 gtt->ttm.ttm.num_pages, gtt->offset); 1105 return r; 1106 } 1107 1108 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1109 { 1110 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1111 1112 if (gtt->usertask) 1113 put_task_struct(gtt->usertask); 1114 1115 ttm_dma_tt_fini(>t->ttm); 1116 kfree(gtt); 1117 } 1118 1119 static struct ttm_backend_func amdgpu_backend_func = { 1120 .bind = &amdgpu_ttm_backend_bind, 1121 .unbind = &amdgpu_ttm_backend_unbind, 1122 .destroy = &amdgpu_ttm_backend_destroy, 1123 }; 1124 1125 /** 1126 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1127 * 1128 * @bo: The buffer object to create a GTT ttm_tt object around 1129 * 1130 * Called by ttm_tt_create(). 1131 */ 1132 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1133 uint32_t page_flags) 1134 { 1135 struct amdgpu_device *adev; 1136 struct amdgpu_ttm_tt *gtt; 1137 1138 adev = amdgpu_ttm_adev(bo->bdev); 1139 1140 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1141 if (gtt == NULL) { 1142 return NULL; 1143 } 1144 gtt->ttm.ttm.func = &amdgpu_backend_func; 1145 1146 /* allocate space for the uninitialized page entries */ 1147 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1148 kfree(gtt); 1149 return NULL; 1150 } 1151 return >t->ttm.ttm; 1152 } 1153 1154 /** 1155 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1156 * 1157 * Map the pages of a ttm_tt object to an address space visible 1158 * to the underlying device. 1159 */ 1160 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1161 struct ttm_operation_ctx *ctx) 1162 { 1163 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1164 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1165 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1166 1167 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1168 if (gtt && gtt->userptr) { 1169 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1170 if (!ttm->sg) 1171 return -ENOMEM; 1172 1173 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1174 ttm->state = tt_unbound; 1175 return 0; 1176 } 1177 1178 if (slave && ttm->sg) { 1179 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1180 gtt->ttm.dma_address, 1181 ttm->num_pages); 1182 ttm->state = tt_unbound; 1183 return 0; 1184 } 1185 1186 #ifdef CONFIG_SWIOTLB 1187 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1188 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1189 } 1190 #endif 1191 1192 /* fall back to generic helper to populate the page array 1193 * and map them to the device */ 1194 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1195 } 1196 1197 /** 1198 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1199 * 1200 * Unmaps pages of a ttm_tt object from the device address space and 1201 * unpopulates the page array backing it. 1202 */ 1203 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1204 { 1205 struct amdgpu_device *adev; 1206 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1207 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1208 1209 if (gtt && gtt->userptr) { 1210 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1211 kfree(ttm->sg); 1212 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1213 return; 1214 } 1215 1216 if (slave) 1217 return; 1218 1219 adev = amdgpu_ttm_adev(ttm->bdev); 1220 1221 #ifdef CONFIG_SWIOTLB 1222 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1223 ttm_dma_unpopulate(>t->ttm, adev->dev); 1224 return; 1225 } 1226 #endif 1227 1228 /* fall back to generic helper to unmap and unpopulate array */ 1229 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1230 } 1231 1232 /** 1233 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1234 * task 1235 * 1236 * @ttm: The ttm_tt object to bind this userptr object to 1237 * @addr: The address in the current tasks VM space to use 1238 * @flags: Requirements of userptr object. 1239 * 1240 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1241 * to current task 1242 */ 1243 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1244 uint32_t flags) 1245 { 1246 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1247 1248 if (gtt == NULL) 1249 return -EINVAL; 1250 1251 gtt->userptr = addr; 1252 gtt->userflags = flags; 1253 1254 if (gtt->usertask) 1255 put_task_struct(gtt->usertask); 1256 gtt->usertask = current->group_leader; 1257 get_task_struct(gtt->usertask); 1258 1259 spin_lock_init(>t->guptasklock); 1260 INIT_LIST_HEAD(>t->guptasks); 1261 atomic_set(>t->mmu_invalidations, 0); 1262 gtt->last_set_pages = 0; 1263 1264 return 0; 1265 } 1266 1267 /** 1268 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1269 */ 1270 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1271 { 1272 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1273 1274 if (gtt == NULL) 1275 return NULL; 1276 1277 if (gtt->usertask == NULL) 1278 return NULL; 1279 1280 return gtt->usertask->mm; 1281 } 1282 1283 /** 1284 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1285 * address range for the current task. 1286 * 1287 */ 1288 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1289 unsigned long end) 1290 { 1291 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1292 struct amdgpu_ttm_gup_task_list *entry; 1293 unsigned long size; 1294 1295 if (gtt == NULL || !gtt->userptr) 1296 return false; 1297 1298 /* Return false if no part of the ttm_tt object lies within 1299 * the range 1300 */ 1301 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1302 if (gtt->userptr > end || gtt->userptr + size <= start) 1303 return false; 1304 1305 /* Search the lists of tasks that hold this mapping and see 1306 * if current is one of them. If it is return false. 1307 */ 1308 spin_lock(>t->guptasklock); 1309 list_for_each_entry(entry, >t->guptasks, list) { 1310 if (entry->task == current) { 1311 spin_unlock(>t->guptasklock); 1312 return false; 1313 } 1314 } 1315 spin_unlock(>t->guptasklock); 1316 1317 atomic_inc(>t->mmu_invalidations); 1318 1319 return true; 1320 } 1321 1322 /** 1323 * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated? 1324 */ 1325 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm, 1326 int *last_invalidated) 1327 { 1328 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1329 int prev_invalidated = *last_invalidated; 1330 1331 *last_invalidated = atomic_read(>t->mmu_invalidations); 1332 return prev_invalidated != *last_invalidated; 1333 } 1334 1335 /** 1336 * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object 1337 * been invalidated since the last time they've been set? 1338 */ 1339 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm) 1340 { 1341 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1342 1343 if (gtt == NULL || !gtt->userptr) 1344 return false; 1345 1346 return atomic_read(>t->mmu_invalidations) != gtt->last_set_pages; 1347 } 1348 1349 /** 1350 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1351 */ 1352 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1353 { 1354 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1355 1356 if (gtt == NULL) 1357 return false; 1358 1359 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1360 } 1361 1362 /** 1363 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1364 * 1365 * @ttm: The ttm_tt object to compute the flags for 1366 * @mem: The memory registry backing this ttm_tt object 1367 * 1368 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1369 */ 1370 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1371 { 1372 uint64_t flags = 0; 1373 1374 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1375 flags |= AMDGPU_PTE_VALID; 1376 1377 if (mem && mem->mem_type == TTM_PL_TT) { 1378 flags |= AMDGPU_PTE_SYSTEM; 1379 1380 if (ttm->caching_state == tt_cached) 1381 flags |= AMDGPU_PTE_SNOOPED; 1382 } 1383 1384 return flags; 1385 } 1386 1387 /** 1388 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1389 * 1390 * @ttm: The ttm_tt object to compute the flags for 1391 * @mem: The memory registry backing this ttm_tt object 1392 1393 * Figure out the flags to use for a VM PTE (Page Table Entry). 1394 */ 1395 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1396 struct ttm_mem_reg *mem) 1397 { 1398 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1399 1400 flags |= adev->gart.gart_pte_flags; 1401 flags |= AMDGPU_PTE_READABLE; 1402 1403 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1404 flags |= AMDGPU_PTE_WRITEABLE; 1405 1406 return flags; 1407 } 1408 1409 /** 1410 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1411 * object. 1412 * 1413 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1414 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1415 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1416 * used to clean out a memory space. 1417 */ 1418 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1419 const struct ttm_place *place) 1420 { 1421 unsigned long num_pages = bo->mem.num_pages; 1422 struct drm_mm_node *node = bo->mem.mm_node; 1423 struct reservation_object_list *flist; 1424 struct dma_fence *f; 1425 int i; 1426 1427 /* If bo is a KFD BO, check if the bo belongs to the current process. 1428 * If true, then return false as any KFD process needs all its BOs to 1429 * be resident to run successfully 1430 */ 1431 flist = reservation_object_get_list(bo->resv); 1432 if (flist) { 1433 for (i = 0; i < flist->shared_count; ++i) { 1434 f = rcu_dereference_protected(flist->shared[i], 1435 reservation_object_held(bo->resv)); 1436 if (amdkfd_fence_check_mm(f, current->mm)) 1437 return false; 1438 } 1439 } 1440 1441 switch (bo->mem.mem_type) { 1442 case TTM_PL_TT: 1443 return true; 1444 1445 case TTM_PL_VRAM: 1446 /* Check each drm MM node individually */ 1447 while (num_pages) { 1448 if (place->fpfn < (node->start + node->size) && 1449 !(place->lpfn && place->lpfn <= node->start)) 1450 return true; 1451 1452 num_pages -= node->size; 1453 ++node; 1454 } 1455 return false; 1456 1457 default: 1458 break; 1459 } 1460 1461 return ttm_bo_eviction_valuable(bo, place); 1462 } 1463 1464 /** 1465 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1466 * 1467 * @bo: The buffer object to read/write 1468 * @offset: Offset into buffer object 1469 * @buf: Secondary buffer to write/read from 1470 * @len: Length in bytes of access 1471 * @write: true if writing 1472 * 1473 * This is used to access VRAM that backs a buffer object via MMIO 1474 * access for debugging purposes. 1475 */ 1476 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1477 unsigned long offset, 1478 void *buf, int len, int write) 1479 { 1480 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1481 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1482 struct drm_mm_node *nodes; 1483 uint32_t value = 0; 1484 int ret = 0; 1485 uint64_t pos; 1486 unsigned long flags; 1487 1488 if (bo->mem.mem_type != TTM_PL_VRAM) 1489 return -EIO; 1490 1491 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1492 pos = (nodes->start << PAGE_SHIFT) + offset; 1493 1494 while (len && pos < adev->gmc.mc_vram_size) { 1495 uint64_t aligned_pos = pos & ~(uint64_t)3; 1496 uint32_t bytes = 4 - (pos & 3); 1497 uint32_t shift = (pos & 3) * 8; 1498 uint32_t mask = 0xffffffff << shift; 1499 1500 if (len < bytes) { 1501 mask &= 0xffffffff >> (bytes - len) * 8; 1502 bytes = len; 1503 } 1504 1505 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1506 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1507 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1508 if (!write || mask != 0xffffffff) 1509 value = RREG32_NO_KIQ(mmMM_DATA); 1510 if (write) { 1511 value &= ~mask; 1512 value |= (*(uint32_t *)buf << shift) & mask; 1513 WREG32_NO_KIQ(mmMM_DATA, value); 1514 } 1515 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1516 if (!write) { 1517 value = (value & mask) >> shift; 1518 memcpy(buf, &value, bytes); 1519 } 1520 1521 ret += bytes; 1522 buf = (uint8_t *)buf + bytes; 1523 pos += bytes; 1524 len -= bytes; 1525 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1526 ++nodes; 1527 pos = (nodes->start << PAGE_SHIFT); 1528 } 1529 } 1530 1531 return ret; 1532 } 1533 1534 static struct ttm_bo_driver amdgpu_bo_driver = { 1535 .ttm_tt_create = &amdgpu_ttm_tt_create, 1536 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1537 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1538 .invalidate_caches = &amdgpu_invalidate_caches, 1539 .init_mem_type = &amdgpu_init_mem_type, 1540 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1541 .evict_flags = &amdgpu_evict_flags, 1542 .move = &amdgpu_bo_move, 1543 .verify_access = &amdgpu_verify_access, 1544 .move_notify = &amdgpu_bo_move_notify, 1545 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1546 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1547 .io_mem_free = &amdgpu_ttm_io_mem_free, 1548 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1549 .access_memory = &amdgpu_ttm_access_memory 1550 }; 1551 1552 /* 1553 * Firmware Reservation functions 1554 */ 1555 /** 1556 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1557 * 1558 * @adev: amdgpu_device pointer 1559 * 1560 * free fw reserved vram if it has been reserved. 1561 */ 1562 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1563 { 1564 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1565 NULL, &adev->fw_vram_usage.va); 1566 } 1567 1568 /** 1569 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1570 * 1571 * @adev: amdgpu_device pointer 1572 * 1573 * create bo vram reservation from fw. 1574 */ 1575 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1576 { 1577 struct ttm_operation_ctx ctx = { false, false }; 1578 struct amdgpu_bo_param bp; 1579 int r = 0; 1580 int i; 1581 u64 vram_size = adev->gmc.visible_vram_size; 1582 u64 offset = adev->fw_vram_usage.start_offset; 1583 u64 size = adev->fw_vram_usage.size; 1584 struct amdgpu_bo *bo; 1585 1586 memset(&bp, 0, sizeof(bp)); 1587 bp.size = adev->fw_vram_usage.size; 1588 bp.byte_align = PAGE_SIZE; 1589 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1590 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1591 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1592 bp.type = ttm_bo_type_kernel; 1593 bp.resv = NULL; 1594 adev->fw_vram_usage.va = NULL; 1595 adev->fw_vram_usage.reserved_bo = NULL; 1596 1597 if (adev->fw_vram_usage.size > 0 && 1598 adev->fw_vram_usage.size <= vram_size) { 1599 1600 r = amdgpu_bo_create(adev, &bp, 1601 &adev->fw_vram_usage.reserved_bo); 1602 if (r) 1603 goto error_create; 1604 1605 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1606 if (r) 1607 goto error_reserve; 1608 1609 /* remove the original mem node and create a new one at the 1610 * request position 1611 */ 1612 bo = adev->fw_vram_usage.reserved_bo; 1613 offset = ALIGN(offset, PAGE_SIZE); 1614 for (i = 0; i < bo->placement.num_placement; ++i) { 1615 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1616 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1617 } 1618 1619 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1620 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1621 &bo->tbo.mem, &ctx); 1622 if (r) 1623 goto error_pin; 1624 1625 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1626 AMDGPU_GEM_DOMAIN_VRAM, 1627 adev->fw_vram_usage.start_offset, 1628 (adev->fw_vram_usage.start_offset + 1629 adev->fw_vram_usage.size)); 1630 if (r) 1631 goto error_pin; 1632 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1633 &adev->fw_vram_usage.va); 1634 if (r) 1635 goto error_kmap; 1636 1637 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1638 } 1639 return r; 1640 1641 error_kmap: 1642 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1643 error_pin: 1644 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1645 error_reserve: 1646 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1647 error_create: 1648 adev->fw_vram_usage.va = NULL; 1649 adev->fw_vram_usage.reserved_bo = NULL; 1650 return r; 1651 } 1652 /** 1653 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1654 * gtt/vram related fields. 1655 * 1656 * This initializes all of the memory space pools that the TTM layer 1657 * will need such as the GTT space (system memory mapped to the device), 1658 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1659 * can be mapped per VMID. 1660 */ 1661 int amdgpu_ttm_init(struct amdgpu_device *adev) 1662 { 1663 uint64_t gtt_size; 1664 int r; 1665 u64 vis_vram_limit; 1666 1667 mutex_init(&adev->mman.gtt_window_lock); 1668 1669 /* No others user of address space so set it to 0 */ 1670 r = ttm_bo_device_init(&adev->mman.bdev, 1671 &amdgpu_bo_driver, 1672 adev->ddev->anon_inode->i_mapping, 1673 DRM_FILE_PAGE_OFFSET, 1674 adev->need_dma32); 1675 if (r) { 1676 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1677 return r; 1678 } 1679 adev->mman.initialized = true; 1680 1681 /* We opt to avoid OOM on system pages allocations */ 1682 adev->mman.bdev.no_retry = true; 1683 1684 /* Initialize VRAM pool with all of VRAM divided into pages */ 1685 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1686 adev->gmc.real_vram_size >> PAGE_SHIFT); 1687 if (r) { 1688 DRM_ERROR("Failed initializing VRAM heap.\n"); 1689 return r; 1690 } 1691 1692 /* Reduce size of CPU-visible VRAM if requested */ 1693 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1694 if (amdgpu_vis_vram_limit > 0 && 1695 vis_vram_limit <= adev->gmc.visible_vram_size) 1696 adev->gmc.visible_vram_size = vis_vram_limit; 1697 1698 /* Change the size here instead of the init above so only lpfn is affected */ 1699 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1700 #ifdef CONFIG_64BIT 1701 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1702 adev->gmc.visible_vram_size); 1703 #endif 1704 1705 /* 1706 *The reserved vram for firmware must be pinned to the specified 1707 *place on the VRAM, so reserve it early. 1708 */ 1709 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1710 if (r) { 1711 return r; 1712 } 1713 1714 /* allocate memory as required for VGA 1715 * This is used for VGA emulation and pre-OS scanout buffers to 1716 * avoid display artifacts while transitioning between pre-OS 1717 * and driver. */ 1718 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1719 AMDGPU_GEM_DOMAIN_VRAM, 1720 &adev->stolen_vga_memory, 1721 NULL, NULL); 1722 if (r) 1723 return r; 1724 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1725 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1726 1727 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1728 * or whatever the user passed on module init */ 1729 if (amdgpu_gtt_size == -1) { 1730 struct sysinfo si; 1731 1732 si_meminfo(&si); 1733 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1734 adev->gmc.mc_vram_size), 1735 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1736 } 1737 else 1738 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1739 1740 /* Initialize GTT memory pool */ 1741 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1742 if (r) { 1743 DRM_ERROR("Failed initializing GTT heap.\n"); 1744 return r; 1745 } 1746 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1747 (unsigned)(gtt_size / (1024 * 1024))); 1748 1749 /* Initialize various on-chip memory pools */ 1750 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1751 adev->gds.mem.total_size); 1752 if (r) { 1753 DRM_ERROR("Failed initializing GDS heap.\n"); 1754 return r; 1755 } 1756 1757 r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size, 1758 PAGE_SIZE, AMDGPU_GEM_DOMAIN_GDS, 1759 &adev->gds.gds_gfx_bo, NULL, NULL); 1760 if (r) 1761 return r; 1762 1763 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1764 adev->gds.gws.total_size); 1765 if (r) { 1766 DRM_ERROR("Failed initializing gws heap.\n"); 1767 return r; 1768 } 1769 1770 r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size, 1771 PAGE_SIZE, AMDGPU_GEM_DOMAIN_GWS, 1772 &adev->gds.gws_gfx_bo, NULL, NULL); 1773 if (r) 1774 return r; 1775 1776 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1777 adev->gds.oa.total_size); 1778 if (r) { 1779 DRM_ERROR("Failed initializing oa heap.\n"); 1780 return r; 1781 } 1782 1783 r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size, 1784 PAGE_SIZE, AMDGPU_GEM_DOMAIN_OA, 1785 &adev->gds.oa_gfx_bo, NULL, NULL); 1786 if (r) 1787 return r; 1788 1789 /* Register debugfs entries for amdgpu_ttm */ 1790 r = amdgpu_ttm_debugfs_init(adev); 1791 if (r) { 1792 DRM_ERROR("Failed to init debugfs\n"); 1793 return r; 1794 } 1795 return 0; 1796 } 1797 1798 /** 1799 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1800 */ 1801 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1802 { 1803 /* return the VGA stolen memory (if any) back to VRAM */ 1804 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1805 } 1806 1807 /** 1808 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1809 */ 1810 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1811 { 1812 if (!adev->mman.initialized) 1813 return; 1814 1815 amdgpu_ttm_debugfs_fini(adev); 1816 amdgpu_ttm_fw_reserve_vram_fini(adev); 1817 if (adev->mman.aper_base_kaddr) 1818 iounmap(adev->mman.aper_base_kaddr); 1819 adev->mman.aper_base_kaddr = NULL; 1820 1821 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1822 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1823 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1824 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1825 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1826 ttm_bo_device_release(&adev->mman.bdev); 1827 adev->mman.initialized = false; 1828 DRM_INFO("amdgpu: ttm finalized\n"); 1829 } 1830 1831 /** 1832 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1833 * 1834 * @adev: amdgpu_device pointer 1835 * @enable: true when we can use buffer functions. 1836 * 1837 * Enable/disable use of buffer functions during suspend/resume. This should 1838 * only be called at bootup or when userspace isn't running. 1839 */ 1840 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1841 { 1842 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1843 uint64_t size; 1844 int r; 1845 1846 if (!adev->mman.initialized || adev->in_gpu_reset || 1847 adev->mman.buffer_funcs_enabled == enable) 1848 return; 1849 1850 if (enable) { 1851 struct amdgpu_ring *ring; 1852 struct drm_sched_rq *rq; 1853 1854 ring = adev->mman.buffer_funcs_ring; 1855 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1856 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1857 if (r) { 1858 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1859 r); 1860 return; 1861 } 1862 } else { 1863 drm_sched_entity_destroy(&adev->mman.entity); 1864 dma_fence_put(man->move); 1865 man->move = NULL; 1866 } 1867 1868 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1869 if (enable) 1870 size = adev->gmc.real_vram_size; 1871 else 1872 size = adev->gmc.visible_vram_size; 1873 man->size = size >> PAGE_SHIFT; 1874 adev->mman.buffer_funcs_enabled = enable; 1875 } 1876 1877 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1878 { 1879 struct drm_file *file_priv; 1880 struct amdgpu_device *adev; 1881 1882 if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET)) 1883 return -EINVAL; 1884 1885 file_priv = filp->private_data; 1886 adev = file_priv->minor->dev->dev_private; 1887 if (adev == NULL) 1888 return -EINVAL; 1889 1890 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1891 } 1892 1893 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1894 struct ttm_mem_reg *mem, unsigned num_pages, 1895 uint64_t offset, unsigned window, 1896 struct amdgpu_ring *ring, 1897 uint64_t *addr) 1898 { 1899 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1900 struct amdgpu_device *adev = ring->adev; 1901 struct ttm_tt *ttm = bo->ttm; 1902 struct amdgpu_job *job; 1903 unsigned num_dw, num_bytes; 1904 dma_addr_t *dma_address; 1905 struct dma_fence *fence; 1906 uint64_t src_addr, dst_addr; 1907 uint64_t flags; 1908 int r; 1909 1910 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1911 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1912 1913 *addr = adev->gmc.gart_start; 1914 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1915 AMDGPU_GPU_PAGE_SIZE; 1916 1917 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1918 while (num_dw & 0x7) 1919 num_dw++; 1920 1921 num_bytes = num_pages * 8; 1922 1923 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1924 if (r) 1925 return r; 1926 1927 src_addr = num_dw * 4; 1928 src_addr += job->ibs[0].gpu_addr; 1929 1930 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 1931 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1932 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1933 dst_addr, num_bytes); 1934 1935 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1936 WARN_ON(job->ibs[0].length_dw > num_dw); 1937 1938 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 1939 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 1940 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 1941 &job->ibs[0].ptr[num_dw]); 1942 if (r) 1943 goto error_free; 1944 1945 r = amdgpu_job_submit(job, &adev->mman.entity, 1946 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1947 if (r) 1948 goto error_free; 1949 1950 dma_fence_put(fence); 1951 1952 return r; 1953 1954 error_free: 1955 amdgpu_job_free(job); 1956 return r; 1957 } 1958 1959 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1960 uint64_t dst_offset, uint32_t byte_count, 1961 struct reservation_object *resv, 1962 struct dma_fence **fence, bool direct_submit, 1963 bool vm_needs_flush) 1964 { 1965 struct amdgpu_device *adev = ring->adev; 1966 struct amdgpu_job *job; 1967 1968 uint32_t max_bytes; 1969 unsigned num_loops, num_dw; 1970 unsigned i; 1971 int r; 1972 1973 if (direct_submit && !ring->sched.ready) { 1974 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1975 return -EINVAL; 1976 } 1977 1978 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 1979 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 1980 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 1981 1982 /* for IB padding */ 1983 while (num_dw & 0x7) 1984 num_dw++; 1985 1986 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 1987 if (r) 1988 return r; 1989 1990 if (vm_needs_flush) { 1991 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 1992 job->vm_needs_flush = true; 1993 } 1994 if (resv) { 1995 r = amdgpu_sync_resv(adev, &job->sync, resv, 1996 AMDGPU_FENCE_OWNER_UNDEFINED, 1997 false); 1998 if (r) { 1999 DRM_ERROR("sync failed (%d).\n", r); 2000 goto error_free; 2001 } 2002 } 2003 2004 for (i = 0; i < num_loops; i++) { 2005 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2006 2007 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2008 dst_offset, cur_size_in_bytes); 2009 2010 src_offset += cur_size_in_bytes; 2011 dst_offset += cur_size_in_bytes; 2012 byte_count -= cur_size_in_bytes; 2013 } 2014 2015 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2016 WARN_ON(job->ibs[0].length_dw > num_dw); 2017 if (direct_submit) 2018 r = amdgpu_job_submit_direct(job, ring, fence); 2019 else 2020 r = amdgpu_job_submit(job, &adev->mman.entity, 2021 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2022 if (r) 2023 goto error_free; 2024 2025 return r; 2026 2027 error_free: 2028 amdgpu_job_free(job); 2029 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2030 return r; 2031 } 2032 2033 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2034 uint32_t src_data, 2035 struct reservation_object *resv, 2036 struct dma_fence **fence) 2037 { 2038 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2039 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2040 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2041 2042 struct drm_mm_node *mm_node; 2043 unsigned long num_pages; 2044 unsigned int num_loops, num_dw; 2045 2046 struct amdgpu_job *job; 2047 int r; 2048 2049 if (!adev->mman.buffer_funcs_enabled) { 2050 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2051 return -EINVAL; 2052 } 2053 2054 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2055 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2056 if (r) 2057 return r; 2058 } 2059 2060 num_pages = bo->tbo.num_pages; 2061 mm_node = bo->tbo.mem.mm_node; 2062 num_loops = 0; 2063 while (num_pages) { 2064 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2065 2066 num_loops += DIV_ROUND_UP(byte_count, max_bytes); 2067 num_pages -= mm_node->size; 2068 ++mm_node; 2069 } 2070 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2071 2072 /* for IB padding */ 2073 num_dw += 64; 2074 2075 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2076 if (r) 2077 return r; 2078 2079 if (resv) { 2080 r = amdgpu_sync_resv(adev, &job->sync, resv, 2081 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2082 if (r) { 2083 DRM_ERROR("sync failed (%d).\n", r); 2084 goto error_free; 2085 } 2086 } 2087 2088 num_pages = bo->tbo.num_pages; 2089 mm_node = bo->tbo.mem.mm_node; 2090 2091 while (num_pages) { 2092 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2093 uint64_t dst_addr; 2094 2095 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2096 while (byte_count) { 2097 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2098 2099 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2100 dst_addr, cur_size_in_bytes); 2101 2102 dst_addr += cur_size_in_bytes; 2103 byte_count -= cur_size_in_bytes; 2104 } 2105 2106 num_pages -= mm_node->size; 2107 ++mm_node; 2108 } 2109 2110 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2111 WARN_ON(job->ibs[0].length_dw > num_dw); 2112 r = amdgpu_job_submit(job, &adev->mman.entity, 2113 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2114 if (r) 2115 goto error_free; 2116 2117 return 0; 2118 2119 error_free: 2120 amdgpu_job_free(job); 2121 return r; 2122 } 2123 2124 #if defined(CONFIG_DEBUG_FS) 2125 2126 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2127 { 2128 struct drm_info_node *node = (struct drm_info_node *)m->private; 2129 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2130 struct drm_device *dev = node->minor->dev; 2131 struct amdgpu_device *adev = dev->dev_private; 2132 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2133 struct drm_printer p = drm_seq_file_printer(m); 2134 2135 man->func->debug(man, &p); 2136 return 0; 2137 } 2138 2139 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2140 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2141 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2142 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2143 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2144 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2145 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2146 #ifdef CONFIG_SWIOTLB 2147 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2148 #endif 2149 }; 2150 2151 /** 2152 * amdgpu_ttm_vram_read - Linear read access to VRAM 2153 * 2154 * Accesses VRAM via MMIO for debugging purposes. 2155 */ 2156 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2157 size_t size, loff_t *pos) 2158 { 2159 struct amdgpu_device *adev = file_inode(f)->i_private; 2160 ssize_t result = 0; 2161 int r; 2162 2163 if (size & 0x3 || *pos & 0x3) 2164 return -EINVAL; 2165 2166 if (*pos >= adev->gmc.mc_vram_size) 2167 return -ENXIO; 2168 2169 while (size) { 2170 unsigned long flags; 2171 uint32_t value; 2172 2173 if (*pos >= adev->gmc.mc_vram_size) 2174 return result; 2175 2176 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2177 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2178 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2179 value = RREG32_NO_KIQ(mmMM_DATA); 2180 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2181 2182 r = put_user(value, (uint32_t *)buf); 2183 if (r) 2184 return r; 2185 2186 result += 4; 2187 buf += 4; 2188 *pos += 4; 2189 size -= 4; 2190 } 2191 2192 return result; 2193 } 2194 2195 /** 2196 * amdgpu_ttm_vram_write - Linear write access to VRAM 2197 * 2198 * Accesses VRAM via MMIO for debugging purposes. 2199 */ 2200 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2201 size_t size, loff_t *pos) 2202 { 2203 struct amdgpu_device *adev = file_inode(f)->i_private; 2204 ssize_t result = 0; 2205 int r; 2206 2207 if (size & 0x3 || *pos & 0x3) 2208 return -EINVAL; 2209 2210 if (*pos >= adev->gmc.mc_vram_size) 2211 return -ENXIO; 2212 2213 while (size) { 2214 unsigned long flags; 2215 uint32_t value; 2216 2217 if (*pos >= adev->gmc.mc_vram_size) 2218 return result; 2219 2220 r = get_user(value, (uint32_t *)buf); 2221 if (r) 2222 return r; 2223 2224 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2225 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2226 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2227 WREG32_NO_KIQ(mmMM_DATA, value); 2228 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2229 2230 result += 4; 2231 buf += 4; 2232 *pos += 4; 2233 size -= 4; 2234 } 2235 2236 return result; 2237 } 2238 2239 static const struct file_operations amdgpu_ttm_vram_fops = { 2240 .owner = THIS_MODULE, 2241 .read = amdgpu_ttm_vram_read, 2242 .write = amdgpu_ttm_vram_write, 2243 .llseek = default_llseek, 2244 }; 2245 2246 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2247 2248 /** 2249 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2250 */ 2251 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2252 size_t size, loff_t *pos) 2253 { 2254 struct amdgpu_device *adev = file_inode(f)->i_private; 2255 ssize_t result = 0; 2256 int r; 2257 2258 while (size) { 2259 loff_t p = *pos / PAGE_SIZE; 2260 unsigned off = *pos & ~PAGE_MASK; 2261 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2262 struct page *page; 2263 void *ptr; 2264 2265 if (p >= adev->gart.num_cpu_pages) 2266 return result; 2267 2268 page = adev->gart.pages[p]; 2269 if (page) { 2270 ptr = kmap(page); 2271 ptr += off; 2272 2273 r = copy_to_user(buf, ptr, cur_size); 2274 kunmap(adev->gart.pages[p]); 2275 } else 2276 r = clear_user(buf, cur_size); 2277 2278 if (r) 2279 return -EFAULT; 2280 2281 result += cur_size; 2282 buf += cur_size; 2283 *pos += cur_size; 2284 size -= cur_size; 2285 } 2286 2287 return result; 2288 } 2289 2290 static const struct file_operations amdgpu_ttm_gtt_fops = { 2291 .owner = THIS_MODULE, 2292 .read = amdgpu_ttm_gtt_read, 2293 .llseek = default_llseek 2294 }; 2295 2296 #endif 2297 2298 /** 2299 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2300 * 2301 * This function is used to read memory that has been mapped to the 2302 * GPU and the known addresses are not physical addresses but instead 2303 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2304 */ 2305 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2306 size_t size, loff_t *pos) 2307 { 2308 struct amdgpu_device *adev = file_inode(f)->i_private; 2309 struct iommu_domain *dom; 2310 ssize_t result = 0; 2311 int r; 2312 2313 /* retrieve the IOMMU domain if any for this device */ 2314 dom = iommu_get_domain_for_dev(adev->dev); 2315 2316 while (size) { 2317 phys_addr_t addr = *pos & PAGE_MASK; 2318 loff_t off = *pos & ~PAGE_MASK; 2319 size_t bytes = PAGE_SIZE - off; 2320 unsigned long pfn; 2321 struct page *p; 2322 void *ptr; 2323 2324 bytes = bytes < size ? bytes : size; 2325 2326 /* Translate the bus address to a physical address. If 2327 * the domain is NULL it means there is no IOMMU active 2328 * and the address translation is the identity 2329 */ 2330 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2331 2332 pfn = addr >> PAGE_SHIFT; 2333 if (!pfn_valid(pfn)) 2334 return -EPERM; 2335 2336 p = pfn_to_page(pfn); 2337 if (p->mapping != adev->mman.bdev.dev_mapping) 2338 return -EPERM; 2339 2340 ptr = kmap(p); 2341 r = copy_to_user(buf, ptr + off, bytes); 2342 kunmap(p); 2343 if (r) 2344 return -EFAULT; 2345 2346 size -= bytes; 2347 *pos += bytes; 2348 result += bytes; 2349 } 2350 2351 return result; 2352 } 2353 2354 /** 2355 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2356 * 2357 * This function is used to write memory that has been mapped to the 2358 * GPU and the known addresses are not physical addresses but instead 2359 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2360 */ 2361 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2362 size_t size, loff_t *pos) 2363 { 2364 struct amdgpu_device *adev = file_inode(f)->i_private; 2365 struct iommu_domain *dom; 2366 ssize_t result = 0; 2367 int r; 2368 2369 dom = iommu_get_domain_for_dev(adev->dev); 2370 2371 while (size) { 2372 phys_addr_t addr = *pos & PAGE_MASK; 2373 loff_t off = *pos & ~PAGE_MASK; 2374 size_t bytes = PAGE_SIZE - off; 2375 unsigned long pfn; 2376 struct page *p; 2377 void *ptr; 2378 2379 bytes = bytes < size ? bytes : size; 2380 2381 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2382 2383 pfn = addr >> PAGE_SHIFT; 2384 if (!pfn_valid(pfn)) 2385 return -EPERM; 2386 2387 p = pfn_to_page(pfn); 2388 if (p->mapping != adev->mman.bdev.dev_mapping) 2389 return -EPERM; 2390 2391 ptr = kmap(p); 2392 r = copy_from_user(ptr + off, buf, bytes); 2393 kunmap(p); 2394 if (r) 2395 return -EFAULT; 2396 2397 size -= bytes; 2398 *pos += bytes; 2399 result += bytes; 2400 } 2401 2402 return result; 2403 } 2404 2405 static const struct file_operations amdgpu_ttm_iomem_fops = { 2406 .owner = THIS_MODULE, 2407 .read = amdgpu_iomem_read, 2408 .write = amdgpu_iomem_write, 2409 .llseek = default_llseek 2410 }; 2411 2412 static const struct { 2413 char *name; 2414 const struct file_operations *fops; 2415 int domain; 2416 } ttm_debugfs_entries[] = { 2417 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2418 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2419 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2420 #endif 2421 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2422 }; 2423 2424 #endif 2425 2426 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2427 { 2428 #if defined(CONFIG_DEBUG_FS) 2429 unsigned count; 2430 2431 struct drm_minor *minor = adev->ddev->primary; 2432 struct dentry *ent, *root = minor->debugfs_root; 2433 2434 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2435 ent = debugfs_create_file( 2436 ttm_debugfs_entries[count].name, 2437 S_IFREG | S_IRUGO, root, 2438 adev, 2439 ttm_debugfs_entries[count].fops); 2440 if (IS_ERR(ent)) 2441 return PTR_ERR(ent); 2442 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2443 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2444 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2445 i_size_write(ent->d_inode, adev->gmc.gart_size); 2446 adev->mman.debugfs_entries[count] = ent; 2447 } 2448 2449 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2450 2451 #ifdef CONFIG_SWIOTLB 2452 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2453 --count; 2454 #endif 2455 2456 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2457 #else 2458 return 0; 2459 #endif 2460 } 2461 2462 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2463 { 2464 #if defined(CONFIG_DEBUG_FS) 2465 unsigned i; 2466 2467 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2468 debugfs_remove(adev->mman.debugfs_entries[i]); 2469 #endif 2470 } 2471