1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51 
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64 
65 MODULE_IMPORT_NS(DMA_BUF);
66 
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
68 
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 				   struct ttm_tt *ttm,
71 				   struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73 				      struct ttm_tt *ttm);
74 
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 				    unsigned int type,
77 				    uint64_t size_in_page)
78 {
79 	return ttm_range_man_init(&adev->mman.bdev, type,
80 				  false, size_in_page);
81 }
82 
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 				struct ttm_placement *placement)
93 {
94 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 	struct amdgpu_bo *abo;
96 	static const struct ttm_place placements = {
97 		.fpfn = 0,
98 		.lpfn = 0,
99 		.mem_type = TTM_PL_SYSTEM,
100 		.flags = 0
101 	};
102 
103 	/* Don't handle scatter gather BOs */
104 	if (bo->type == ttm_bo_type_sg) {
105 		placement->num_placement = 0;
106 		placement->num_busy_placement = 0;
107 		return;
108 	}
109 
110 	/* Object isn't an AMDGPU object so ignore */
111 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 		placement->placement = &placements;
113 		placement->busy_placement = &placements;
114 		placement->num_placement = 1;
115 		placement->num_busy_placement = 1;
116 		return;
117 	}
118 
119 	abo = ttm_to_amdgpu_bo(bo);
120 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121 		placement->num_placement = 0;
122 		placement->num_busy_placement = 0;
123 		return;
124 	}
125 
126 	switch (bo->resource->mem_type) {
127 	case AMDGPU_PL_GDS:
128 	case AMDGPU_PL_GWS:
129 	case AMDGPU_PL_OA:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct dma_fence *fence;
193 	struct amdgpu_job *job;
194 	void *cpu_addr;
195 	uint64_t flags;
196 	unsigned int i;
197 	int r;
198 
199 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 
202 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 		return -EINVAL;
204 
205 	/* Map only what can't be accessed directly */
206 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 			mm_cur->start;
209 		return 0;
210 	}
211 
212 
213 	/*
214 	 * If start begins at an offset inside the page, then adjust the size
215 	 * and addr accordingly
216 	 */
217 	offset = mm_cur->start & ~PAGE_MASK;
218 
219 	num_pages = PFN_UP(*size + offset);
220 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 
222 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 
224 	*addr = adev->gmc.gart_start;
225 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 		AMDGPU_GPU_PAGE_SIZE;
227 	*addr += offset;
228 
229 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 
232 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233 				     AMDGPU_IB_POOL_DELAYED, &job);
234 	if (r)
235 		return r;
236 
237 	src_addr = num_dw * 4;
238 	src_addr += job->ibs[0].gpu_addr;
239 
240 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243 				dst_addr, num_bytes, false);
244 
245 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246 	WARN_ON(job->ibs[0].length_dw > num_dw);
247 
248 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249 	if (tmz)
250 		flags |= AMDGPU_PTE_TMZ;
251 
252 	cpu_addr = &job->ibs[0].ptr[num_dw];
253 
254 	if (mem->mem_type == TTM_PL_TT) {
255 		dma_addr_t *dma_addr;
256 
257 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259 	} else {
260 		dma_addr_t dma_address;
261 
262 		dma_address = mm_cur->start;
263 		dma_address += adev->vm_manager.vram_base_offset;
264 
265 		for (i = 0; i < num_pages; ++i) {
266 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267 					flags, cpu_addr);
268 			dma_address += PAGE_SIZE;
269 		}
270 	}
271 
272 	r = amdgpu_job_submit(job, &adev->mman.entity,
273 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 	if (r)
275 		goto error_free;
276 
277 	dma_fence_put(fence);
278 
279 	return r;
280 
281 error_free:
282 	amdgpu_job_free(job);
283 	return r;
284 }
285 
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 			       const struct amdgpu_copy_mem *src,
303 			       const struct amdgpu_copy_mem *dst,
304 			       uint64_t size, bool tmz,
305 			       struct dma_resv *resv,
306 			       struct dma_fence **f)
307 {
308 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 	struct amdgpu_res_cursor src_mm, dst_mm;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 
321 	mutex_lock(&adev->mman.gtt_window_lock);
322 	while (src_mm.remaining) {
323 		uint64_t from, to, cur_size;
324 		struct dma_fence *next;
325 
326 		/* Never copy more than 256MiB at once to avoid a timeout */
327 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328 
329 		/* Map src to window 0 and dst to window 1. */
330 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331 					  0, ring, tmz, &cur_size, &from);
332 		if (r)
333 			goto error;
334 
335 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336 					  1, ring, tmz, &cur_size, &to);
337 		if (r)
338 			goto error;
339 
340 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
341 				       resv, &next, false, true, tmz);
342 		if (r)
343 			goto error;
344 
345 		dma_fence_put(fence);
346 		fence = next;
347 
348 		amdgpu_res_next(&src_mm, cur_size);
349 		amdgpu_res_next(&dst_mm, cur_size);
350 	}
351 error:
352 	mutex_unlock(&adev->mman.gtt_window_lock);
353 	if (f)
354 		*f = dma_fence_get(fence);
355 	dma_fence_put(fence);
356 	return r;
357 }
358 
359 /*
360  * amdgpu_move_blit - Copy an entire buffer to another buffer
361  *
362  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363  * help move buffers to and from VRAM.
364  */
365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366 			    bool evict,
367 			    struct ttm_resource *new_mem,
368 			    struct ttm_resource *old_mem)
369 {
370 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372 	struct amdgpu_copy_mem src, dst;
373 	struct dma_fence *fence = NULL;
374 	int r;
375 
376 	src.bo = bo;
377 	dst.bo = bo;
378 	src.mem = old_mem;
379 	dst.mem = new_mem;
380 	src.offset = 0;
381 	dst.offset = 0;
382 
383 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384 				       new_mem->num_pages << PAGE_SHIFT,
385 				       amdgpu_bo_encrypted(abo),
386 				       bo->base.resv, &fence);
387 	if (r)
388 		goto error;
389 
390 	/* clear the space being freed */
391 	if (old_mem->mem_type == TTM_PL_VRAM &&
392 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393 		struct dma_fence *wipe_fence = NULL;
394 
395 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396 		if (r) {
397 			goto error;
398 		} else if (wipe_fence) {
399 			dma_fence_put(fence);
400 			fence = wipe_fence;
401 		}
402 	}
403 
404 	/* Always block for VM page tables before committing the new location */
405 	if (bo->type == ttm_bo_type_kernel)
406 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407 	else
408 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409 	dma_fence_put(fence);
410 	return r;
411 
412 error:
413 	if (fence)
414 		dma_fence_wait(fence, false);
415 	dma_fence_put(fence);
416 	return r;
417 }
418 
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425 			       struct ttm_resource *mem)
426 {
427 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428 	struct amdgpu_res_cursor cursor;
429 
430 	if (mem->mem_type == TTM_PL_SYSTEM ||
431 	    mem->mem_type == TTM_PL_TT)
432 		return true;
433 	if (mem->mem_type != TTM_PL_VRAM)
434 		return false;
435 
436 	amdgpu_res_first(mem, 0, mem_size, &cursor);
437 
438 	/* ttm_resource_ioremap only supports contiguous memory */
439 	if (cursor.size != mem_size)
440 		return false;
441 
442 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
443 }
444 
445 /*
446  * amdgpu_bo_move - Move a buffer object to a new memory location
447  *
448  * Called by ttm_bo_handle_move_mem()
449  */
450 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
451 			  struct ttm_operation_ctx *ctx,
452 			  struct ttm_resource *new_mem,
453 			  struct ttm_place *hop)
454 {
455 	struct amdgpu_device *adev;
456 	struct amdgpu_bo *abo;
457 	struct ttm_resource *old_mem = bo->resource;
458 	int r;
459 
460 	if (new_mem->mem_type == TTM_PL_TT ||
461 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
462 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
463 		if (r)
464 			return r;
465 	}
466 
467 	/* Can't move a pinned BO */
468 	abo = ttm_to_amdgpu_bo(bo);
469 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
470 		return -EINVAL;
471 
472 	adev = amdgpu_ttm_adev(bo->bdev);
473 
474 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
475 			 bo->ttm == NULL)) {
476 		ttm_bo_move_null(bo, new_mem);
477 		goto out;
478 	}
479 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
480 	    (new_mem->mem_type == TTM_PL_TT ||
481 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
482 		ttm_bo_move_null(bo, new_mem);
483 		goto out;
484 	}
485 	if ((old_mem->mem_type == TTM_PL_TT ||
486 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
487 	    new_mem->mem_type == TTM_PL_SYSTEM) {
488 		r = ttm_bo_wait_ctx(bo, ctx);
489 		if (r)
490 			return r;
491 
492 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
493 		ttm_resource_free(bo, &bo->resource);
494 		ttm_bo_assign_mem(bo, new_mem);
495 		goto out;
496 	}
497 
498 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
499 	    old_mem->mem_type == AMDGPU_PL_GWS ||
500 	    old_mem->mem_type == AMDGPU_PL_OA ||
501 	    new_mem->mem_type == AMDGPU_PL_GDS ||
502 	    new_mem->mem_type == AMDGPU_PL_GWS ||
503 	    new_mem->mem_type == AMDGPU_PL_OA) {
504 		/* Nothing to save here */
505 		ttm_bo_move_null(bo, new_mem);
506 		goto out;
507 	}
508 
509 	if (bo->type == ttm_bo_type_device &&
510 	    new_mem->mem_type == TTM_PL_VRAM &&
511 	    old_mem->mem_type != TTM_PL_VRAM) {
512 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513 		 * accesses the BO after it's moved.
514 		 */
515 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 	}
517 
518 	if (adev->mman.buffer_funcs_enabled) {
519 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520 		      new_mem->mem_type == TTM_PL_VRAM) ||
521 		     (old_mem->mem_type == TTM_PL_VRAM &&
522 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
523 			hop->fpfn = 0;
524 			hop->lpfn = 0;
525 			hop->mem_type = TTM_PL_TT;
526 			hop->flags = TTM_PL_FLAG_TEMPORARY;
527 			return -EMULTIHOP;
528 		}
529 
530 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 	} else {
532 		r = -ENODEV;
533 	}
534 
535 	if (r) {
536 		/* Check that all memory is CPU accessible */
537 		if (!amdgpu_mem_visible(adev, old_mem) ||
538 		    !amdgpu_mem_visible(adev, new_mem)) {
539 			pr_err("Move buffer fallback to memcpy unavailable\n");
540 			return r;
541 		}
542 
543 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544 		if (r)
545 			return r;
546 	}
547 
548 out:
549 	/* update statistics */
550 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
551 	amdgpu_bo_move_notify(bo, evict, new_mem);
552 	return 0;
553 }
554 
555 /*
556  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
557  *
558  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
559  */
560 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
561 				     struct ttm_resource *mem)
562 {
563 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
564 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
565 
566 	switch (mem->mem_type) {
567 	case TTM_PL_SYSTEM:
568 		/* system memory */
569 		return 0;
570 	case TTM_PL_TT:
571 	case AMDGPU_PL_PREEMPT:
572 		break;
573 	case TTM_PL_VRAM:
574 		mem->bus.offset = mem->start << PAGE_SHIFT;
575 		/* check if it's visible */
576 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
577 			return -EINVAL;
578 
579 		if (adev->mman.aper_base_kaddr &&
580 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
581 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
582 					mem->bus.offset;
583 
584 		mem->bus.offset += adev->gmc.aper_base;
585 		mem->bus.is_iomem = true;
586 		break;
587 	default:
588 		return -EINVAL;
589 	}
590 	return 0;
591 }
592 
593 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
594 					   unsigned long page_offset)
595 {
596 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
597 	struct amdgpu_res_cursor cursor;
598 
599 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
600 			 &cursor);
601 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
602 }
603 
604 /**
605  * amdgpu_ttm_domain_start - Returns GPU start address
606  * @adev: amdgpu device object
607  * @type: type of the memory
608  *
609  * Returns:
610  * GPU start address of a memory domain
611  */
612 
613 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
614 {
615 	switch (type) {
616 	case TTM_PL_TT:
617 		return adev->gmc.gart_start;
618 	case TTM_PL_VRAM:
619 		return adev->gmc.vram_start;
620 	}
621 
622 	return 0;
623 }
624 
625 /*
626  * TTM backend functions.
627  */
628 struct amdgpu_ttm_tt {
629 	struct ttm_tt	ttm;
630 	struct drm_gem_object	*gobj;
631 	u64			offset;
632 	uint64_t		userptr;
633 	struct task_struct	*usertask;
634 	uint32_t		userflags;
635 	bool			bound;
636 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
637 	struct hmm_range	*range;
638 #endif
639 };
640 
641 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
642 
643 #ifdef CONFIG_DRM_AMDGPU_USERPTR
644 /*
645  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
646  * memory and start HMM tracking CPU page table update
647  *
648  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
649  * once afterwards to stop HMM tracking
650  */
651 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
652 {
653 	struct ttm_tt *ttm = bo->tbo.ttm;
654 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
655 	unsigned long start = gtt->userptr;
656 	struct vm_area_struct *vma;
657 	struct mm_struct *mm;
658 	bool readonly;
659 	int r = 0;
660 
661 	mm = bo->notifier.mm;
662 	if (unlikely(!mm)) {
663 		DRM_DEBUG_DRIVER("BO is not registered?\n");
664 		return -EFAULT;
665 	}
666 
667 	/* Another get_user_pages is running at the same time?? */
668 	if (WARN_ON(gtt->range))
669 		return -EFAULT;
670 
671 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
672 		return -ESRCH;
673 
674 	mmap_read_lock(mm);
675 	vma = vma_lookup(mm, start);
676 	if (unlikely(!vma)) {
677 		r = -EFAULT;
678 		goto out_unlock;
679 	}
680 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
681 		vma->vm_file)) {
682 		r = -EPERM;
683 		goto out_unlock;
684 	}
685 
686 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
687 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
688 				       ttm->num_pages, &gtt->range, readonly,
689 				       true, NULL);
690 out_unlock:
691 	mmap_read_unlock(mm);
692 	if (r)
693 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
694 
695 	mmput(mm);
696 
697 	return r;
698 }
699 
700 /*
701  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
702  * Check if the pages backing this ttm range have been invalidated
703  *
704  * Returns: true if pages are still valid
705  */
706 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
707 {
708 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
709 	bool r = false;
710 
711 	if (!gtt || !gtt->userptr)
712 		return false;
713 
714 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
715 		gtt->userptr, ttm->num_pages);
716 
717 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
718 		"No user pages to check\n");
719 
720 	if (gtt->range) {
721 		/*
722 		 * FIXME: Must always hold notifier_lock for this, and must
723 		 * not ignore the return code.
724 		 */
725 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
726 		gtt->range = NULL;
727 	}
728 
729 	return !r;
730 }
731 #endif
732 
733 /*
734  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
735  *
736  * Called by amdgpu_cs_list_validate(). This creates the page list
737  * that backs user memory and will ultimately be mapped into the device
738  * address space.
739  */
740 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
741 {
742 	unsigned long i;
743 
744 	for (i = 0; i < ttm->num_pages; ++i)
745 		ttm->pages[i] = pages ? pages[i] : NULL;
746 }
747 
748 /*
749  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
750  *
751  * Called by amdgpu_ttm_backend_bind()
752  **/
753 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
754 				     struct ttm_tt *ttm)
755 {
756 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
757 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
758 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
759 	enum dma_data_direction direction = write ?
760 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
761 	int r;
762 
763 	/* Allocate an SG array and squash pages into it */
764 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
765 				      (u64)ttm->num_pages << PAGE_SHIFT,
766 				      GFP_KERNEL);
767 	if (r)
768 		goto release_sg;
769 
770 	/* Map SG to device */
771 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
772 	if (r)
773 		goto release_sg;
774 
775 	/* convert SG to linear array of pages and dma addresses */
776 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
777 				       ttm->num_pages);
778 
779 	return 0;
780 
781 release_sg:
782 	kfree(ttm->sg);
783 	ttm->sg = NULL;
784 	return r;
785 }
786 
787 /*
788  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
789  */
790 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
791 					struct ttm_tt *ttm)
792 {
793 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
794 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
795 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
796 	enum dma_data_direction direction = write ?
797 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
798 
799 	/* double check that we don't free the table twice */
800 	if (!ttm->sg || !ttm->sg->sgl)
801 		return;
802 
803 	/* unmap the pages mapped to the device */
804 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
805 	sg_free_table(ttm->sg);
806 
807 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
808 	if (gtt->range) {
809 		unsigned long i;
810 
811 		for (i = 0; i < ttm->num_pages; i++) {
812 			if (ttm->pages[i] !=
813 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
814 				break;
815 		}
816 
817 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
818 	}
819 #endif
820 }
821 
822 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
823 				 struct ttm_buffer_object *tbo,
824 				 uint64_t flags)
825 {
826 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
827 	struct ttm_tt *ttm = tbo->ttm;
828 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
829 
830 	if (amdgpu_bo_encrypted(abo))
831 		flags |= AMDGPU_PTE_TMZ;
832 
833 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
834 		uint64_t page_idx = 1;
835 
836 		amdgpu_gart_bind(adev, gtt->offset, page_idx,
837 				 gtt->ttm.dma_address, flags);
838 
839 		/* The memory type of the first page defaults to UC. Now
840 		 * modify the memory type to NC from the second page of
841 		 * the BO onward.
842 		 */
843 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
844 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
845 
846 		amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
847 				 ttm->num_pages - page_idx,
848 				 &(gtt->ttm.dma_address[page_idx]), flags);
849 	} else {
850 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
851 				 gtt->ttm.dma_address, flags);
852 	}
853 }
854 
855 /*
856  * amdgpu_ttm_backend_bind - Bind GTT memory
857  *
858  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
859  * This handles binding GTT memory to the device address space.
860  */
861 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
862 				   struct ttm_tt *ttm,
863 				   struct ttm_resource *bo_mem)
864 {
865 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
866 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
867 	uint64_t flags;
868 	int r;
869 
870 	if (!bo_mem)
871 		return -EINVAL;
872 
873 	if (gtt->bound)
874 		return 0;
875 
876 	if (gtt->userptr) {
877 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
878 		if (r) {
879 			DRM_ERROR("failed to pin userptr\n");
880 			return r;
881 		}
882 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
883 		if (!ttm->sg) {
884 			struct dma_buf_attachment *attach;
885 			struct sg_table *sgt;
886 
887 			attach = gtt->gobj->import_attach;
888 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
889 			if (IS_ERR(sgt))
890 				return PTR_ERR(sgt);
891 
892 			ttm->sg = sgt;
893 		}
894 
895 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
896 					       ttm->num_pages);
897 	}
898 
899 	if (!ttm->num_pages) {
900 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
901 		     ttm->num_pages, bo_mem, ttm);
902 	}
903 
904 	if (bo_mem->mem_type != TTM_PL_TT ||
905 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
906 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
907 		return 0;
908 	}
909 
910 	/* compute PTE flags relevant to this BO memory */
911 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
912 
913 	/* bind pages into GART page tables */
914 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
915 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
916 			 gtt->ttm.dma_address, flags);
917 	gtt->bound = true;
918 	return 0;
919 }
920 
921 /*
922  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
923  * through AGP or GART aperture.
924  *
925  * If bo is accessible through AGP aperture, then use AGP aperture
926  * to access bo; otherwise allocate logical space in GART aperture
927  * and map bo to GART aperture.
928  */
929 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
930 {
931 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
932 	struct ttm_operation_ctx ctx = { false, false };
933 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
934 	struct ttm_placement placement;
935 	struct ttm_place placements;
936 	struct ttm_resource *tmp;
937 	uint64_t addr, flags;
938 	int r;
939 
940 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
941 		return 0;
942 
943 	addr = amdgpu_gmc_agp_addr(bo);
944 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
945 		bo->resource->start = addr >> PAGE_SHIFT;
946 		return 0;
947 	}
948 
949 	/* allocate GART space */
950 	placement.num_placement = 1;
951 	placement.placement = &placements;
952 	placement.num_busy_placement = 1;
953 	placement.busy_placement = &placements;
954 	placements.fpfn = 0;
955 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
956 	placements.mem_type = TTM_PL_TT;
957 	placements.flags = bo->resource->placement;
958 
959 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
960 	if (unlikely(r))
961 		return r;
962 
963 	/* compute PTE flags for this buffer object */
964 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
965 
966 	/* Bind pages */
967 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
968 	amdgpu_ttm_gart_bind(adev, bo, flags);
969 	amdgpu_gart_invalidate_tlb(adev);
970 	ttm_resource_free(bo, &bo->resource);
971 	ttm_bo_assign_mem(bo, tmp);
972 
973 	return 0;
974 }
975 
976 /*
977  * amdgpu_ttm_recover_gart - Rebind GTT pages
978  *
979  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
980  * rebind GTT pages during a GPU reset.
981  */
982 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
983 {
984 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
985 	uint64_t flags;
986 
987 	if (!tbo->ttm)
988 		return;
989 
990 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
991 	amdgpu_ttm_gart_bind(adev, tbo, flags);
992 }
993 
994 /*
995  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
996  *
997  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
998  * ttm_tt_destroy().
999  */
1000 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1001 				      struct ttm_tt *ttm)
1002 {
1003 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1004 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1005 
1006 	/* if the pages have userptr pinning then clear that first */
1007 	if (gtt->userptr) {
1008 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1009 	} else if (ttm->sg && gtt->gobj->import_attach) {
1010 		struct dma_buf_attachment *attach;
1011 
1012 		attach = gtt->gobj->import_attach;
1013 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1014 		ttm->sg = NULL;
1015 	}
1016 
1017 	if (!gtt->bound)
1018 		return;
1019 
1020 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1021 		return;
1022 
1023 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1024 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1025 	gtt->bound = false;
1026 }
1027 
1028 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1029 				       struct ttm_tt *ttm)
1030 {
1031 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1032 
1033 	if (gtt->usertask)
1034 		put_task_struct(gtt->usertask);
1035 
1036 	ttm_tt_fini(&gtt->ttm);
1037 	kfree(gtt);
1038 }
1039 
1040 /**
1041  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1042  *
1043  * @bo: The buffer object to create a GTT ttm_tt object around
1044  * @page_flags: Page flags to be added to the ttm_tt object
1045  *
1046  * Called by ttm_tt_create().
1047  */
1048 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1049 					   uint32_t page_flags)
1050 {
1051 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1052 	struct amdgpu_ttm_tt *gtt;
1053 	enum ttm_caching caching;
1054 
1055 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1056 	if (gtt == NULL) {
1057 		return NULL;
1058 	}
1059 	gtt->gobj = &bo->base;
1060 
1061 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1062 		caching = ttm_write_combined;
1063 	else
1064 		caching = ttm_cached;
1065 
1066 	/* allocate space for the uninitialized page entries */
1067 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1068 		kfree(gtt);
1069 		return NULL;
1070 	}
1071 	return &gtt->ttm;
1072 }
1073 
1074 /*
1075  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1076  *
1077  * Map the pages of a ttm_tt object to an address space visible
1078  * to the underlying device.
1079  */
1080 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1081 				  struct ttm_tt *ttm,
1082 				  struct ttm_operation_ctx *ctx)
1083 {
1084 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1085 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1086 	pgoff_t i;
1087 	int ret;
1088 
1089 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1090 	if (gtt->userptr) {
1091 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1092 		if (!ttm->sg)
1093 			return -ENOMEM;
1094 		return 0;
1095 	}
1096 
1097 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1098 		return 0;
1099 
1100 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1101 	if (ret)
1102 		return ret;
1103 
1104 	for (i = 0; i < ttm->num_pages; ++i)
1105 		ttm->pages[i]->mapping = bdev->dev_mapping;
1106 
1107 	return 0;
1108 }
1109 
1110 /*
1111  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1112  *
1113  * Unmaps pages of a ttm_tt object from the device address space and
1114  * unpopulates the page array backing it.
1115  */
1116 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1117 				     struct ttm_tt *ttm)
1118 {
1119 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1120 	struct amdgpu_device *adev;
1121 	pgoff_t i;
1122 
1123 	amdgpu_ttm_backend_unbind(bdev, ttm);
1124 
1125 	if (gtt->userptr) {
1126 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1127 		kfree(ttm->sg);
1128 		ttm->sg = NULL;
1129 		return;
1130 	}
1131 
1132 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1133 		return;
1134 
1135 	for (i = 0; i < ttm->num_pages; ++i)
1136 		ttm->pages[i]->mapping = NULL;
1137 
1138 	adev = amdgpu_ttm_adev(bdev);
1139 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1140 }
1141 
1142 /**
1143  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1144  * task
1145  *
1146  * @tbo: The ttm_buffer_object that contains the userptr
1147  * @user_addr:  The returned value
1148  */
1149 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1150 			      uint64_t *user_addr)
1151 {
1152 	struct amdgpu_ttm_tt *gtt;
1153 
1154 	if (!tbo->ttm)
1155 		return -EINVAL;
1156 
1157 	gtt = (void *)tbo->ttm;
1158 	*user_addr = gtt->userptr;
1159 	return 0;
1160 }
1161 
1162 /**
1163  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1164  * task
1165  *
1166  * @bo: The ttm_buffer_object to bind this userptr to
1167  * @addr:  The address in the current tasks VM space to use
1168  * @flags: Requirements of userptr object.
1169  *
1170  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1171  * to current task
1172  */
1173 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1174 			      uint64_t addr, uint32_t flags)
1175 {
1176 	struct amdgpu_ttm_tt *gtt;
1177 
1178 	if (!bo->ttm) {
1179 		/* TODO: We want a separate TTM object type for userptrs */
1180 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1181 		if (bo->ttm == NULL)
1182 			return -ENOMEM;
1183 	}
1184 
1185 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1186 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1187 
1188 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1189 	gtt->userptr = addr;
1190 	gtt->userflags = flags;
1191 
1192 	if (gtt->usertask)
1193 		put_task_struct(gtt->usertask);
1194 	gtt->usertask = current->group_leader;
1195 	get_task_struct(gtt->usertask);
1196 
1197 	return 0;
1198 }
1199 
1200 /*
1201  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1202  */
1203 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1204 {
1205 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1206 
1207 	if (gtt == NULL)
1208 		return NULL;
1209 
1210 	if (gtt->usertask == NULL)
1211 		return NULL;
1212 
1213 	return gtt->usertask->mm;
1214 }
1215 
1216 /*
1217  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1218  * address range for the current task.
1219  *
1220  */
1221 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1222 				  unsigned long end, unsigned long *userptr)
1223 {
1224 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1225 	unsigned long size;
1226 
1227 	if (gtt == NULL || !gtt->userptr)
1228 		return false;
1229 
1230 	/* Return false if no part of the ttm_tt object lies within
1231 	 * the range
1232 	 */
1233 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1234 	if (gtt->userptr > end || gtt->userptr + size <= start)
1235 		return false;
1236 
1237 	if (userptr)
1238 		*userptr = gtt->userptr;
1239 	return true;
1240 }
1241 
1242 /*
1243  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1244  */
1245 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1246 {
1247 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1248 
1249 	if (gtt == NULL || !gtt->userptr)
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 /*
1256  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1257  */
1258 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1259 {
1260 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1261 
1262 	if (gtt == NULL)
1263 		return false;
1264 
1265 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1266 }
1267 
1268 /**
1269  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1270  *
1271  * @ttm: The ttm_tt object to compute the flags for
1272  * @mem: The memory registry backing this ttm_tt object
1273  *
1274  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1275  */
1276 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1277 {
1278 	uint64_t flags = 0;
1279 
1280 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1281 		flags |= AMDGPU_PTE_VALID;
1282 
1283 	if (mem && (mem->mem_type == TTM_PL_TT ||
1284 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1285 		flags |= AMDGPU_PTE_SYSTEM;
1286 
1287 		if (ttm->caching == ttm_cached)
1288 			flags |= AMDGPU_PTE_SNOOPED;
1289 	}
1290 
1291 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1292 			mem->bus.caching == ttm_cached)
1293 		flags |= AMDGPU_PTE_SNOOPED;
1294 
1295 	return flags;
1296 }
1297 
1298 /**
1299  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1300  *
1301  * @adev: amdgpu_device pointer
1302  * @ttm: The ttm_tt object to compute the flags for
1303  * @mem: The memory registry backing this ttm_tt object
1304  *
1305  * Figure out the flags to use for a VM PTE (Page Table Entry).
1306  */
1307 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1308 				 struct ttm_resource *mem)
1309 {
1310 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1311 
1312 	flags |= adev->gart.gart_pte_flags;
1313 	flags |= AMDGPU_PTE_READABLE;
1314 
1315 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1316 		flags |= AMDGPU_PTE_WRITEABLE;
1317 
1318 	return flags;
1319 }
1320 
1321 /*
1322  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1323  * object.
1324  *
1325  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1326  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1327  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1328  * used to clean out a memory space.
1329  */
1330 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1331 					    const struct ttm_place *place)
1332 {
1333 	struct dma_resv_iter resv_cursor;
1334 	struct dma_fence *f;
1335 
1336 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1337 		return ttm_bo_eviction_valuable(bo, place);
1338 
1339 	/* Swapout? */
1340 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1341 		return true;
1342 
1343 	if (bo->type == ttm_bo_type_kernel &&
1344 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1345 		return false;
1346 
1347 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1348 	 * If true, then return false as any KFD process needs all its BOs to
1349 	 * be resident to run successfully
1350 	 */
1351 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1352 				DMA_RESV_USAGE_BOOKKEEP, f) {
1353 		if (amdkfd_fence_check_mm(f, current->mm))
1354 			return false;
1355 	}
1356 
1357 	/* Preemptible BOs don't own system resources managed by the
1358 	 * driver (pages, VRAM, GART space). They point to resources
1359 	 * owned by someone else (e.g. pageable memory in user mode
1360 	 * or a DMABuf). They are used in a preemptible context so we
1361 	 * can guarantee no deadlocks and good QoS in case of MMU
1362 	 * notifiers or DMABuf move notifiers from the resource owner.
1363 	 */
1364 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1365 		return false;
1366 
1367 	if (bo->resource->mem_type == TTM_PL_TT &&
1368 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1369 		return false;
1370 
1371 	return ttm_bo_eviction_valuable(bo, place);
1372 }
1373 
1374 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1375 				      void *buf, size_t size, bool write)
1376 {
1377 	while (size) {
1378 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1379 		uint64_t bytes = 4 - (pos & 0x3);
1380 		uint32_t shift = (pos & 0x3) * 8;
1381 		uint32_t mask = 0xffffffff << shift;
1382 		uint32_t value = 0;
1383 
1384 		if (size < bytes) {
1385 			mask &= 0xffffffff >> (bytes - size) * 8;
1386 			bytes = size;
1387 		}
1388 
1389 		if (mask != 0xffffffff) {
1390 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1391 			if (write) {
1392 				value &= ~mask;
1393 				value |= (*(uint32_t *)buf << shift) & mask;
1394 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1395 			} else {
1396 				value = (value & mask) >> shift;
1397 				memcpy(buf, &value, bytes);
1398 			}
1399 		} else {
1400 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1401 		}
1402 
1403 		pos += bytes;
1404 		buf += bytes;
1405 		size -= bytes;
1406 	}
1407 }
1408 
1409 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1410 					unsigned long offset, void *buf, int len, int write)
1411 {
1412 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1413 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1414 	struct amdgpu_res_cursor src_mm;
1415 	struct amdgpu_job *job;
1416 	struct dma_fence *fence;
1417 	uint64_t src_addr, dst_addr;
1418 	unsigned int num_dw;
1419 	int r, idx;
1420 
1421 	if (len != PAGE_SIZE)
1422 		return -EINVAL;
1423 
1424 	if (!adev->mman.sdma_access_ptr)
1425 		return -EACCES;
1426 
1427 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1428 		return -ENODEV;
1429 
1430 	if (write)
1431 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1432 
1433 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1434 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1435 	if (r)
1436 		goto out;
1437 
1438 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1439 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1440 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1441 	if (write)
1442 		swap(src_addr, dst_addr);
1443 
1444 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1445 
1446 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1447 	WARN_ON(job->ibs[0].length_dw > num_dw);
1448 
1449 	r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1450 	if (r) {
1451 		amdgpu_job_free(job);
1452 		goto out;
1453 	}
1454 
1455 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1456 		r = -ETIMEDOUT;
1457 	dma_fence_put(fence);
1458 
1459 	if (!(r || write))
1460 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1461 out:
1462 	drm_dev_exit(idx);
1463 	return r;
1464 }
1465 
1466 /**
1467  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1468  *
1469  * @bo:  The buffer object to read/write
1470  * @offset:  Offset into buffer object
1471  * @buf:  Secondary buffer to write/read from
1472  * @len: Length in bytes of access
1473  * @write:  true if writing
1474  *
1475  * This is used to access VRAM that backs a buffer object via MMIO
1476  * access for debugging purposes.
1477  */
1478 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1479 				    unsigned long offset, void *buf, int len,
1480 				    int write)
1481 {
1482 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1483 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1484 	struct amdgpu_res_cursor cursor;
1485 	int ret = 0;
1486 
1487 	if (bo->resource->mem_type != TTM_PL_VRAM)
1488 		return -EIO;
1489 
1490 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1491 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1492 		return len;
1493 
1494 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1495 	while (cursor.remaining) {
1496 		size_t count, size = cursor.size;
1497 		loff_t pos = cursor.start;
1498 
1499 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1500 		size -= count;
1501 		if (size) {
1502 			/* using MM to access rest vram and handle un-aligned address */
1503 			pos += count;
1504 			buf += count;
1505 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1506 		}
1507 
1508 		ret += cursor.size;
1509 		buf += cursor.size;
1510 		amdgpu_res_next(&cursor, cursor.size);
1511 	}
1512 
1513 	return ret;
1514 }
1515 
1516 static void
1517 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1518 {
1519 	amdgpu_bo_move_notify(bo, false, NULL);
1520 }
1521 
1522 static struct ttm_device_funcs amdgpu_bo_driver = {
1523 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1524 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1525 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1526 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1527 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1528 	.evict_flags = &amdgpu_evict_flags,
1529 	.move = &amdgpu_bo_move,
1530 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1531 	.release_notify = &amdgpu_bo_release_notify,
1532 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1533 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1534 	.access_memory = &amdgpu_ttm_access_memory,
1535 };
1536 
1537 /*
1538  * Firmware Reservation functions
1539  */
1540 /**
1541  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1542  *
1543  * @adev: amdgpu_device pointer
1544  *
1545  * free fw reserved vram if it has been reserved.
1546  */
1547 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1548 {
1549 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1550 		NULL, &adev->mman.fw_vram_usage_va);
1551 }
1552 
1553 /**
1554  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1555  *
1556  * @adev: amdgpu_device pointer
1557  *
1558  * create bo vram reservation from fw.
1559  */
1560 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1561 {
1562 	uint64_t vram_size = adev->gmc.visible_vram_size;
1563 
1564 	adev->mman.fw_vram_usage_va = NULL;
1565 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1566 
1567 	if (adev->mman.fw_vram_usage_size == 0 ||
1568 	    adev->mman.fw_vram_usage_size > vram_size)
1569 		return 0;
1570 
1571 	return amdgpu_bo_create_kernel_at(adev,
1572 					  adev->mman.fw_vram_usage_start_offset,
1573 					  adev->mman.fw_vram_usage_size,
1574 					  AMDGPU_GEM_DOMAIN_VRAM,
1575 					  &adev->mman.fw_vram_usage_reserved_bo,
1576 					  &adev->mman.fw_vram_usage_va);
1577 }
1578 
1579 /*
1580  * Memoy training reservation functions
1581  */
1582 
1583 /**
1584  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1585  *
1586  * @adev: amdgpu_device pointer
1587  *
1588  * free memory training reserved vram if it has been reserved.
1589  */
1590 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1591 {
1592 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1593 
1594 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1595 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1596 	ctx->c2p_bo = NULL;
1597 
1598 	return 0;
1599 }
1600 
1601 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1602 {
1603 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1604 
1605 	memset(ctx, 0, sizeof(*ctx));
1606 
1607 	ctx->c2p_train_data_offset =
1608 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1609 	ctx->p2c_train_data_offset =
1610 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1611 	ctx->train_data_size =
1612 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1613 
1614 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1615 			ctx->train_data_size,
1616 			ctx->p2c_train_data_offset,
1617 			ctx->c2p_train_data_offset);
1618 }
1619 
1620 /*
1621  * reserve TMR memory at the top of VRAM which holds
1622  * IP Discovery data and is protected by PSP.
1623  */
1624 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1625 {
1626 	int ret;
1627 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1628 	bool mem_train_support = false;
1629 
1630 	if (!amdgpu_sriov_vf(adev)) {
1631 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1632 			mem_train_support = true;
1633 		else
1634 			DRM_DEBUG("memory training does not support!\n");
1635 	}
1636 
1637 	/*
1638 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1639 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1640 	 *
1641 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1642 	 * discovery data and G6 memory training data respectively
1643 	 */
1644 	adev->mman.discovery_tmr_size =
1645 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1646 	if (!adev->mman.discovery_tmr_size)
1647 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1648 
1649 	if (mem_train_support) {
1650 		/* reserve vram for mem train according to TMR location */
1651 		amdgpu_ttm_training_data_block_init(adev);
1652 		ret = amdgpu_bo_create_kernel_at(adev,
1653 					 ctx->c2p_train_data_offset,
1654 					 ctx->train_data_size,
1655 					 AMDGPU_GEM_DOMAIN_VRAM,
1656 					 &ctx->c2p_bo,
1657 					 NULL);
1658 		if (ret) {
1659 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1660 			amdgpu_ttm_training_reserve_vram_fini(adev);
1661 			return ret;
1662 		}
1663 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1664 	}
1665 
1666 	ret = amdgpu_bo_create_kernel_at(adev,
1667 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1668 				adev->mman.discovery_tmr_size,
1669 				AMDGPU_GEM_DOMAIN_VRAM,
1670 				&adev->mman.discovery_memory,
1671 				NULL);
1672 	if (ret) {
1673 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1674 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1675 		return ret;
1676 	}
1677 
1678 	return 0;
1679 }
1680 
1681 /*
1682  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1683  * gtt/vram related fields.
1684  *
1685  * This initializes all of the memory space pools that the TTM layer
1686  * will need such as the GTT space (system memory mapped to the device),
1687  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1688  * can be mapped per VMID.
1689  */
1690 int amdgpu_ttm_init(struct amdgpu_device *adev)
1691 {
1692 	uint64_t gtt_size;
1693 	int r;
1694 	u64 vis_vram_limit;
1695 
1696 	mutex_init(&adev->mman.gtt_window_lock);
1697 
1698 	/* No others user of address space so set it to 0 */
1699 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1700 			       adev_to_drm(adev)->anon_inode->i_mapping,
1701 			       adev_to_drm(adev)->vma_offset_manager,
1702 			       adev->need_swiotlb,
1703 			       dma_addressing_limited(adev->dev));
1704 	if (r) {
1705 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1706 		return r;
1707 	}
1708 	adev->mman.initialized = true;
1709 
1710 	/* Initialize VRAM pool with all of VRAM divided into pages */
1711 	r = amdgpu_vram_mgr_init(adev);
1712 	if (r) {
1713 		DRM_ERROR("Failed initializing VRAM heap.\n");
1714 		return r;
1715 	}
1716 
1717 	/* Reduce size of CPU-visible VRAM if requested */
1718 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1719 	if (amdgpu_vis_vram_limit > 0 &&
1720 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1721 		adev->gmc.visible_vram_size = vis_vram_limit;
1722 
1723 	/* Change the size here instead of the init above so only lpfn is affected */
1724 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1725 #ifdef CONFIG_64BIT
1726 #ifdef CONFIG_X86
1727 	if (adev->gmc.xgmi.connected_to_cpu)
1728 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1729 				adev->gmc.visible_vram_size);
1730 
1731 	else
1732 #endif
1733 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1734 				adev->gmc.visible_vram_size);
1735 #endif
1736 
1737 	/*
1738 	 *The reserved vram for firmware must be pinned to the specified
1739 	 *place on the VRAM, so reserve it early.
1740 	 */
1741 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1742 	if (r) {
1743 		return r;
1744 	}
1745 
1746 	/*
1747 	 * only NAVI10 and onwards ASIC support for IP discovery.
1748 	 * If IP discovery enabled, a block of memory should be
1749 	 * reserved for IP discovey.
1750 	 */
1751 	if (adev->mman.discovery_bin) {
1752 		r = amdgpu_ttm_reserve_tmr(adev);
1753 		if (r)
1754 			return r;
1755 	}
1756 
1757 	/* allocate memory as required for VGA
1758 	 * This is used for VGA emulation and pre-OS scanout buffers to
1759 	 * avoid display artifacts while transitioning between pre-OS
1760 	 * and driver.  */
1761 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1762 				       AMDGPU_GEM_DOMAIN_VRAM,
1763 				       &adev->mman.stolen_vga_memory,
1764 				       NULL);
1765 	if (r)
1766 		return r;
1767 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1768 				       adev->mman.stolen_extended_size,
1769 				       AMDGPU_GEM_DOMAIN_VRAM,
1770 				       &adev->mman.stolen_extended_memory,
1771 				       NULL);
1772 	if (r)
1773 		return r;
1774 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1775 				       adev->mman.stolen_reserved_size,
1776 				       AMDGPU_GEM_DOMAIN_VRAM,
1777 				       &adev->mman.stolen_reserved_memory,
1778 				       NULL);
1779 	if (r)
1780 		return r;
1781 
1782 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1783 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1784 
1785 	/* Compute GTT size, either based on 1/2 the size of RAM size
1786 	 * or whatever the user passed on module init */
1787 	if (amdgpu_gtt_size == -1) {
1788 		struct sysinfo si;
1789 
1790 		si_meminfo(&si);
1791 		/* Certain GL unit tests for large textures can cause problems
1792 		 * with the OOM killer since there is no way to link this memory
1793 		 * to a process.  This was originally mitigated (but not necessarily
1794 		 * eliminated) by limiting the GTT size.  The problem is this limit
1795 		 * is often too low for many modern games so just make the limit 1/2
1796 		 * of system memory which aligns with TTM. The OOM accounting needs
1797 		 * to be addressed, but we shouldn't prevent common 3D applications
1798 		 * from being usable just to potentially mitigate that corner case.
1799 		 */
1800 		gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1801 			       (u64)si.totalram * si.mem_unit / 2);
1802 	} else {
1803 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1804 	}
1805 
1806 	/* Initialize GTT memory pool */
1807 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1808 	if (r) {
1809 		DRM_ERROR("Failed initializing GTT heap.\n");
1810 		return r;
1811 	}
1812 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1813 		 (unsigned)(gtt_size / (1024 * 1024)));
1814 
1815 	/* Initialize preemptible memory pool */
1816 	r = amdgpu_preempt_mgr_init(adev);
1817 	if (r) {
1818 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1819 		return r;
1820 	}
1821 
1822 	/* Initialize various on-chip memory pools */
1823 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1824 	if (r) {
1825 		DRM_ERROR("Failed initializing GDS heap.\n");
1826 		return r;
1827 	}
1828 
1829 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1830 	if (r) {
1831 		DRM_ERROR("Failed initializing gws heap.\n");
1832 		return r;
1833 	}
1834 
1835 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1836 	if (r) {
1837 		DRM_ERROR("Failed initializing oa heap.\n");
1838 		return r;
1839 	}
1840 
1841 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1842 				AMDGPU_GEM_DOMAIN_GTT,
1843 				&adev->mman.sdma_access_bo, NULL,
1844 				&adev->mman.sdma_access_ptr))
1845 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1846 
1847 	return 0;
1848 }
1849 
1850 /*
1851  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1852  */
1853 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1854 {
1855 	int idx;
1856 	if (!adev->mman.initialized)
1857 		return;
1858 
1859 	amdgpu_ttm_training_reserve_vram_fini(adev);
1860 	/* return the stolen vga memory back to VRAM */
1861 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1862 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1863 	/* return the IP Discovery TMR memory back to VRAM */
1864 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1865 	if (adev->mman.stolen_reserved_size)
1866 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1867 				      NULL, NULL);
1868 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1869 					&adev->mman.sdma_access_ptr);
1870 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1871 
1872 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1873 
1874 		if (adev->mman.aper_base_kaddr)
1875 			iounmap(adev->mman.aper_base_kaddr);
1876 		adev->mman.aper_base_kaddr = NULL;
1877 
1878 		drm_dev_exit(idx);
1879 	}
1880 
1881 	amdgpu_vram_mgr_fini(adev);
1882 	amdgpu_gtt_mgr_fini(adev);
1883 	amdgpu_preempt_mgr_fini(adev);
1884 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1885 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1886 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1887 	ttm_device_fini(&adev->mman.bdev);
1888 	adev->mman.initialized = false;
1889 	DRM_INFO("amdgpu: ttm finalized\n");
1890 }
1891 
1892 /**
1893  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1894  *
1895  * @adev: amdgpu_device pointer
1896  * @enable: true when we can use buffer functions.
1897  *
1898  * Enable/disable use of buffer functions during suspend/resume. This should
1899  * only be called at bootup or when userspace isn't running.
1900  */
1901 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1902 {
1903 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1904 	uint64_t size;
1905 	int r;
1906 
1907 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1908 	    adev->mman.buffer_funcs_enabled == enable)
1909 		return;
1910 
1911 	if (enable) {
1912 		struct amdgpu_ring *ring;
1913 		struct drm_gpu_scheduler *sched;
1914 
1915 		ring = adev->mman.buffer_funcs_ring;
1916 		sched = &ring->sched;
1917 		r = drm_sched_entity_init(&adev->mman.entity,
1918 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1919 					  1, NULL);
1920 		if (r) {
1921 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1922 				  r);
1923 			return;
1924 		}
1925 	} else {
1926 		drm_sched_entity_destroy(&adev->mman.entity);
1927 		dma_fence_put(man->move);
1928 		man->move = NULL;
1929 	}
1930 
1931 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1932 	if (enable)
1933 		size = adev->gmc.real_vram_size;
1934 	else
1935 		size = adev->gmc.visible_vram_size;
1936 	man->size = size;
1937 	adev->mman.buffer_funcs_enabled = enable;
1938 }
1939 
1940 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1941 				  bool direct_submit,
1942 				  unsigned int num_dw,
1943 				  struct dma_resv *resv,
1944 				  bool vm_needs_flush,
1945 				  struct amdgpu_job **job)
1946 {
1947 	enum amdgpu_ib_pool_type pool = direct_submit ?
1948 		AMDGPU_IB_POOL_DIRECT :
1949 		AMDGPU_IB_POOL_DELAYED;
1950 	int r;
1951 
1952 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1953 	if (r)
1954 		return r;
1955 
1956 	if (vm_needs_flush) {
1957 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1958 							adev->gmc.pdb0_bo :
1959 							adev->gart.bo);
1960 		(*job)->vm_needs_flush = true;
1961 	}
1962 	if (resv) {
1963 		r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1964 				     AMDGPU_SYNC_ALWAYS,
1965 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1966 		if (r) {
1967 			DRM_ERROR("sync failed (%d).\n", r);
1968 			amdgpu_job_free(*job);
1969 			return r;
1970 		}
1971 	}
1972 	return 0;
1973 }
1974 
1975 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1976 		       uint64_t dst_offset, uint32_t byte_count,
1977 		       struct dma_resv *resv,
1978 		       struct dma_fence **fence, bool direct_submit,
1979 		       bool vm_needs_flush, bool tmz)
1980 {
1981 	struct amdgpu_device *adev = ring->adev;
1982 	unsigned num_loops, num_dw;
1983 	struct amdgpu_job *job;
1984 	uint32_t max_bytes;
1985 	unsigned i;
1986 	int r;
1987 
1988 	if (!direct_submit && !ring->sched.ready) {
1989 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1990 		return -EINVAL;
1991 	}
1992 
1993 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1994 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1995 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1996 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
1997 				   resv, vm_needs_flush, &job);
1998 	if (r)
1999 		return r;
2000 
2001 	for (i = 0; i < num_loops; i++) {
2002 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2003 
2004 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2005 					dst_offset, cur_size_in_bytes, tmz);
2006 
2007 		src_offset += cur_size_in_bytes;
2008 		dst_offset += cur_size_in_bytes;
2009 		byte_count -= cur_size_in_bytes;
2010 	}
2011 
2012 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2013 	WARN_ON(job->ibs[0].length_dw > num_dw);
2014 	if (direct_submit)
2015 		r = amdgpu_job_submit_direct(job, ring, fence);
2016 	else
2017 		r = amdgpu_job_submit(job, &adev->mman.entity,
2018 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2019 	if (r)
2020 		goto error_free;
2021 
2022 	return r;
2023 
2024 error_free:
2025 	amdgpu_job_free(job);
2026 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2027 	return r;
2028 }
2029 
2030 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2031 			       uint64_t dst_addr, uint32_t byte_count,
2032 			       struct dma_resv *resv,
2033 			       struct dma_fence **fence,
2034 			       bool vm_needs_flush)
2035 {
2036 	struct amdgpu_device *adev = ring->adev;
2037 	unsigned int num_loops, num_dw;
2038 	struct amdgpu_job *job;
2039 	uint32_t max_bytes;
2040 	unsigned int i;
2041 	int r;
2042 
2043 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2044 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2045 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2046 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2047 				   &job);
2048 	if (r)
2049 		return r;
2050 
2051 	for (i = 0; i < num_loops; i++) {
2052 		uint32_t cur_size = min(byte_count, max_bytes);
2053 
2054 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2055 					cur_size);
2056 
2057 		dst_addr += cur_size;
2058 		byte_count -= cur_size;
2059 	}
2060 
2061 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2062 	WARN_ON(job->ibs[0].length_dw > num_dw);
2063 	r = amdgpu_job_submit(job, &adev->mman.entity,
2064 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2065 	if (r)
2066 		goto error_free;
2067 
2068 	return 0;
2069 
2070 error_free:
2071 	amdgpu_job_free(job);
2072 	return r;
2073 }
2074 
2075 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2076 			uint32_t src_data,
2077 			struct dma_resv *resv,
2078 			struct dma_fence **f)
2079 {
2080 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2081 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2082 	struct dma_fence *fence = NULL;
2083 	struct amdgpu_res_cursor dst;
2084 	int r;
2085 
2086 	if (!adev->mman.buffer_funcs_enabled) {
2087 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2088 		return -EINVAL;
2089 	}
2090 
2091 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2092 
2093 	mutex_lock(&adev->mman.gtt_window_lock);
2094 	while (dst.remaining) {
2095 		struct dma_fence *next;
2096 		uint64_t cur_size, to;
2097 
2098 		/* Never fill more than 256MiB at once to avoid timeouts */
2099 		cur_size = min(dst.size, 256ULL << 20);
2100 
2101 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2102 					  1, ring, false, &cur_size, &to);
2103 		if (r)
2104 			goto error;
2105 
2106 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2107 					&next, true);
2108 		if (r)
2109 			goto error;
2110 
2111 		dma_fence_put(fence);
2112 		fence = next;
2113 
2114 		amdgpu_res_next(&dst, cur_size);
2115 	}
2116 error:
2117 	mutex_unlock(&adev->mman.gtt_window_lock);
2118 	if (f)
2119 		*f = dma_fence_get(fence);
2120 	dma_fence_put(fence);
2121 	return r;
2122 }
2123 
2124 /**
2125  * amdgpu_ttm_evict_resources - evict memory buffers
2126  * @adev: amdgpu device object
2127  * @mem_type: evicted BO's memory type
2128  *
2129  * Evicts all @mem_type buffers on the lru list of the memory type.
2130  *
2131  * Returns:
2132  * 0 for success or a negative error code on failure.
2133  */
2134 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2135 {
2136 	struct ttm_resource_manager *man;
2137 
2138 	switch (mem_type) {
2139 	case TTM_PL_VRAM:
2140 	case TTM_PL_TT:
2141 	case AMDGPU_PL_GWS:
2142 	case AMDGPU_PL_GDS:
2143 	case AMDGPU_PL_OA:
2144 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2145 		break;
2146 	default:
2147 		DRM_ERROR("Trying to evict invalid memory type\n");
2148 		return -EINVAL;
2149 	}
2150 
2151 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2152 }
2153 
2154 #if defined(CONFIG_DEBUG_FS)
2155 
2156 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2157 {
2158 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2159 
2160 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2161 }
2162 
2163 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2164 
2165 /*
2166  * amdgpu_ttm_vram_read - Linear read access to VRAM
2167  *
2168  * Accesses VRAM via MMIO for debugging purposes.
2169  */
2170 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2171 				    size_t size, loff_t *pos)
2172 {
2173 	struct amdgpu_device *adev = file_inode(f)->i_private;
2174 	ssize_t result = 0;
2175 
2176 	if (size & 0x3 || *pos & 0x3)
2177 		return -EINVAL;
2178 
2179 	if (*pos >= adev->gmc.mc_vram_size)
2180 		return -ENXIO;
2181 
2182 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2183 	while (size) {
2184 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2185 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2186 
2187 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2188 		if (copy_to_user(buf, value, bytes))
2189 			return -EFAULT;
2190 
2191 		result += bytes;
2192 		buf += bytes;
2193 		*pos += bytes;
2194 		size -= bytes;
2195 	}
2196 
2197 	return result;
2198 }
2199 
2200 /*
2201  * amdgpu_ttm_vram_write - Linear write access to VRAM
2202  *
2203  * Accesses VRAM via MMIO for debugging purposes.
2204  */
2205 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2206 				    size_t size, loff_t *pos)
2207 {
2208 	struct amdgpu_device *adev = file_inode(f)->i_private;
2209 	ssize_t result = 0;
2210 	int r;
2211 
2212 	if (size & 0x3 || *pos & 0x3)
2213 		return -EINVAL;
2214 
2215 	if (*pos >= adev->gmc.mc_vram_size)
2216 		return -ENXIO;
2217 
2218 	while (size) {
2219 		uint32_t value;
2220 
2221 		if (*pos >= adev->gmc.mc_vram_size)
2222 			return result;
2223 
2224 		r = get_user(value, (uint32_t *)buf);
2225 		if (r)
2226 			return r;
2227 
2228 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2229 
2230 		result += 4;
2231 		buf += 4;
2232 		*pos += 4;
2233 		size -= 4;
2234 	}
2235 
2236 	return result;
2237 }
2238 
2239 static const struct file_operations amdgpu_ttm_vram_fops = {
2240 	.owner = THIS_MODULE,
2241 	.read = amdgpu_ttm_vram_read,
2242 	.write = amdgpu_ttm_vram_write,
2243 	.llseek = default_llseek,
2244 };
2245 
2246 /*
2247  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2248  *
2249  * This function is used to read memory that has been mapped to the
2250  * GPU and the known addresses are not physical addresses but instead
2251  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2252  */
2253 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2254 				 size_t size, loff_t *pos)
2255 {
2256 	struct amdgpu_device *adev = file_inode(f)->i_private;
2257 	struct iommu_domain *dom;
2258 	ssize_t result = 0;
2259 	int r;
2260 
2261 	/* retrieve the IOMMU domain if any for this device */
2262 	dom = iommu_get_domain_for_dev(adev->dev);
2263 
2264 	while (size) {
2265 		phys_addr_t addr = *pos & PAGE_MASK;
2266 		loff_t off = *pos & ~PAGE_MASK;
2267 		size_t bytes = PAGE_SIZE - off;
2268 		unsigned long pfn;
2269 		struct page *p;
2270 		void *ptr;
2271 
2272 		bytes = bytes < size ? bytes : size;
2273 
2274 		/* Translate the bus address to a physical address.  If
2275 		 * the domain is NULL it means there is no IOMMU active
2276 		 * and the address translation is the identity
2277 		 */
2278 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2279 
2280 		pfn = addr >> PAGE_SHIFT;
2281 		if (!pfn_valid(pfn))
2282 			return -EPERM;
2283 
2284 		p = pfn_to_page(pfn);
2285 		if (p->mapping != adev->mman.bdev.dev_mapping)
2286 			return -EPERM;
2287 
2288 		ptr = kmap(p);
2289 		r = copy_to_user(buf, ptr + off, bytes);
2290 		kunmap(p);
2291 		if (r)
2292 			return -EFAULT;
2293 
2294 		size -= bytes;
2295 		*pos += bytes;
2296 		result += bytes;
2297 	}
2298 
2299 	return result;
2300 }
2301 
2302 /*
2303  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2304  *
2305  * This function is used to write memory that has been mapped to the
2306  * GPU and the known addresses are not physical addresses but instead
2307  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2308  */
2309 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2310 				 size_t size, loff_t *pos)
2311 {
2312 	struct amdgpu_device *adev = file_inode(f)->i_private;
2313 	struct iommu_domain *dom;
2314 	ssize_t result = 0;
2315 	int r;
2316 
2317 	dom = iommu_get_domain_for_dev(adev->dev);
2318 
2319 	while (size) {
2320 		phys_addr_t addr = *pos & PAGE_MASK;
2321 		loff_t off = *pos & ~PAGE_MASK;
2322 		size_t bytes = PAGE_SIZE - off;
2323 		unsigned long pfn;
2324 		struct page *p;
2325 		void *ptr;
2326 
2327 		bytes = bytes < size ? bytes : size;
2328 
2329 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2330 
2331 		pfn = addr >> PAGE_SHIFT;
2332 		if (!pfn_valid(pfn))
2333 			return -EPERM;
2334 
2335 		p = pfn_to_page(pfn);
2336 		if (p->mapping != adev->mman.bdev.dev_mapping)
2337 			return -EPERM;
2338 
2339 		ptr = kmap(p);
2340 		r = copy_from_user(ptr + off, buf, bytes);
2341 		kunmap(p);
2342 		if (r)
2343 			return -EFAULT;
2344 
2345 		size -= bytes;
2346 		*pos += bytes;
2347 		result += bytes;
2348 	}
2349 
2350 	return result;
2351 }
2352 
2353 static const struct file_operations amdgpu_ttm_iomem_fops = {
2354 	.owner = THIS_MODULE,
2355 	.read = amdgpu_iomem_read,
2356 	.write = amdgpu_iomem_write,
2357 	.llseek = default_llseek
2358 };
2359 
2360 #endif
2361 
2362 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2363 {
2364 #if defined(CONFIG_DEBUG_FS)
2365 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2366 	struct dentry *root = minor->debugfs_root;
2367 
2368 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2369 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2370 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2371 			    &amdgpu_ttm_iomem_fops);
2372 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2373 			    &amdgpu_ttm_page_pool_fops);
2374 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2375 							     TTM_PL_VRAM),
2376 					    root, "amdgpu_vram_mm");
2377 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2378 							     TTM_PL_TT),
2379 					    root, "amdgpu_gtt_mm");
2380 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2381 							     AMDGPU_PL_GDS),
2382 					    root, "amdgpu_gds_mm");
2383 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2384 							     AMDGPU_PL_GWS),
2385 					    root, "amdgpu_gws_mm");
2386 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2387 							     AMDGPU_PL_OA),
2388 					    root, "amdgpu_oa_mm");
2389 
2390 #endif
2391 }
2392