1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 #include <drm/ttm/ttm_bo_api.h> 33 #include <drm/ttm/ttm_bo_driver.h> 34 #include <drm/ttm/ttm_placement.h> 35 #include <drm/ttm/ttm_module.h> 36 #include <drm/ttm/ttm_page_alloc.h> 37 #include <drm/drmP.h> 38 #include <drm/amdgpu_drm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swiotlb.h> 42 #include <linux/swap.h> 43 #include <linux/pagemap.h> 44 #include <linux/debugfs.h> 45 #include <linux/iommu.h> 46 #include "amdgpu.h" 47 #include "amdgpu_object.h" 48 #include "amdgpu_trace.h" 49 #include "amdgpu_amdkfd.h" 50 #include "bif/bif_4_1_d.h" 51 52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT) 53 54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 55 struct ttm_mem_reg *mem, unsigned num_pages, 56 uint64_t offset, unsigned window, 57 struct amdgpu_ring *ring, 58 uint64_t *addr); 59 60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 62 63 /* 64 * Global memory. 65 */ 66 67 /** 68 * amdgpu_ttm_mem_global_init - Initialize and acquire reference to 69 * memory object 70 * 71 * @ref: Object for initialization. 72 * 73 * This is called by drm_global_item_ref() when an object is being 74 * initialized. 75 */ 76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref) 77 { 78 return ttm_mem_global_init(ref->object); 79 } 80 81 /** 82 * amdgpu_ttm_mem_global_release - Drop reference to a memory object 83 * 84 * @ref: Object being removed 85 * 86 * This is called by drm_global_item_unref() when an object is being 87 * released. 88 */ 89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref) 90 { 91 ttm_mem_global_release(ref->object); 92 } 93 94 /** 95 * amdgpu_ttm_global_init - Initialize global TTM memory reference 96 * structures. 97 * 98 * @adev: AMDGPU device for which the global structures need to be 99 * registered. 100 * 101 * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init() 102 * during bring up. 103 */ 104 static int amdgpu_ttm_global_init(struct amdgpu_device *adev) 105 { 106 struct drm_global_reference *global_ref; 107 struct amdgpu_ring *ring; 108 struct drm_sched_rq *rq; 109 int r; 110 111 /* ensure reference is false in case init fails */ 112 adev->mman.mem_global_referenced = false; 113 114 global_ref = &adev->mman.mem_global_ref; 115 global_ref->global_type = DRM_GLOBAL_TTM_MEM; 116 global_ref->size = sizeof(struct ttm_mem_global); 117 global_ref->init = &amdgpu_ttm_mem_global_init; 118 global_ref->release = &amdgpu_ttm_mem_global_release; 119 r = drm_global_item_ref(global_ref); 120 if (r) { 121 DRM_ERROR("Failed setting up TTM memory accounting " 122 "subsystem.\n"); 123 goto error_mem; 124 } 125 126 adev->mman.bo_global_ref.mem_glob = 127 adev->mman.mem_global_ref.object; 128 global_ref = &adev->mman.bo_global_ref.ref; 129 global_ref->global_type = DRM_GLOBAL_TTM_BO; 130 global_ref->size = sizeof(struct ttm_bo_global); 131 global_ref->init = &ttm_bo_global_init; 132 global_ref->release = &ttm_bo_global_release; 133 r = drm_global_item_ref(global_ref); 134 if (r) { 135 DRM_ERROR("Failed setting up TTM BO subsystem.\n"); 136 goto error_bo; 137 } 138 139 mutex_init(&adev->mman.gtt_window_lock); 140 141 ring = adev->mman.buffer_funcs_ring; 142 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 143 r = drm_sched_entity_init(&ring->sched, &adev->mman.entity, 144 rq, NULL); 145 if (r) { 146 DRM_ERROR("Failed setting up TTM BO move run queue.\n"); 147 goto error_entity; 148 } 149 150 adev->mman.mem_global_referenced = true; 151 152 return 0; 153 154 error_entity: 155 drm_global_item_unref(&adev->mman.bo_global_ref.ref); 156 error_bo: 157 drm_global_item_unref(&adev->mman.mem_global_ref); 158 error_mem: 159 return r; 160 } 161 162 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev) 163 { 164 if (adev->mman.mem_global_referenced) { 165 drm_sched_entity_fini(adev->mman.entity.sched, 166 &adev->mman.entity); 167 mutex_destroy(&adev->mman.gtt_window_lock); 168 drm_global_item_unref(&adev->mman.bo_global_ref.ref); 169 drm_global_item_unref(&adev->mman.mem_global_ref); 170 adev->mman.mem_global_referenced = false; 171 } 172 } 173 174 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 175 { 176 return 0; 177 } 178 179 /** 180 * amdgpu_init_mem_type - Initialize a memory manager for a specific 181 * type of memory request. 182 * 183 * @bdev: The TTM BO device object (contains a reference to 184 * amdgpu_device) 185 * @type: The type of memory requested 186 * @man: 187 * 188 * This is called by ttm_bo_init_mm() when a buffer object is being 189 * initialized. 190 */ 191 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 192 struct ttm_mem_type_manager *man) 193 { 194 struct amdgpu_device *adev; 195 196 adev = amdgpu_ttm_adev(bdev); 197 198 switch (type) { 199 case TTM_PL_SYSTEM: 200 /* System memory */ 201 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 202 man->available_caching = TTM_PL_MASK_CACHING; 203 man->default_caching = TTM_PL_FLAG_CACHED; 204 break; 205 case TTM_PL_TT: 206 /* GTT memory */ 207 man->func = &amdgpu_gtt_mgr_func; 208 man->gpu_offset = adev->gmc.gart_start; 209 man->available_caching = TTM_PL_MASK_CACHING; 210 man->default_caching = TTM_PL_FLAG_CACHED; 211 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 212 break; 213 case TTM_PL_VRAM: 214 /* "On-card" video ram */ 215 man->func = &amdgpu_vram_mgr_func; 216 man->gpu_offset = adev->gmc.vram_start; 217 man->flags = TTM_MEMTYPE_FLAG_FIXED | 218 TTM_MEMTYPE_FLAG_MAPPABLE; 219 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 220 man->default_caching = TTM_PL_FLAG_WC; 221 break; 222 case AMDGPU_PL_GDS: 223 case AMDGPU_PL_GWS: 224 case AMDGPU_PL_OA: 225 /* On-chip GDS memory*/ 226 man->func = &ttm_bo_manager_func; 227 man->gpu_offset = 0; 228 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 229 man->available_caching = TTM_PL_FLAG_UNCACHED; 230 man->default_caching = TTM_PL_FLAG_UNCACHED; 231 break; 232 default: 233 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 234 return -EINVAL; 235 } 236 return 0; 237 } 238 239 /** 240 * amdgpu_evict_flags - Compute placement flags 241 * 242 * @bo: The buffer object to evict 243 * @placement: Possible destination(s) for evicted BO 244 * 245 * Fill in placement data when ttm_bo_evict() is called 246 */ 247 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 248 struct ttm_placement *placement) 249 { 250 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 251 struct amdgpu_bo *abo; 252 static const struct ttm_place placements = { 253 .fpfn = 0, 254 .lpfn = 0, 255 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 256 }; 257 258 /* Don't handle scatter gather BOs */ 259 if (bo->type == ttm_bo_type_sg) { 260 placement->num_placement = 0; 261 placement->num_busy_placement = 0; 262 return; 263 } 264 265 /* Object isn't an AMDGPU object so ignore */ 266 if (!amdgpu_ttm_bo_is_amdgpu_bo(bo)) { 267 placement->placement = &placements; 268 placement->busy_placement = &placements; 269 placement->num_placement = 1; 270 placement->num_busy_placement = 1; 271 return; 272 } 273 274 abo = ttm_to_amdgpu_bo(bo); 275 switch (bo->mem.mem_type) { 276 case TTM_PL_VRAM: 277 if (!adev->mman.buffer_funcs_enabled) { 278 /* Move to system memory */ 279 amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 280 } else if (adev->gmc.visible_vram_size < adev->gmc.real_vram_size && 281 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 282 amdgpu_bo_in_cpu_visible_vram(abo)) { 283 284 /* Try evicting to the CPU inaccessible part of VRAM 285 * first, but only set GTT as busy placement, so this 286 * BO will be evicted to GTT rather than causing other 287 * BOs to be evicted from VRAM 288 */ 289 amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 290 AMDGPU_GEM_DOMAIN_GTT); 291 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 292 abo->placements[0].lpfn = 0; 293 abo->placement.busy_placement = &abo->placements[1]; 294 abo->placement.num_busy_placement = 1; 295 } else { 296 /* Move to GTT memory */ 297 amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 298 } 299 break; 300 case TTM_PL_TT: 301 default: 302 amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 303 } 304 *placement = abo->placement; 305 } 306 307 /** 308 * amdgpu_verify_access - Verify access for a mmap call 309 * 310 * @bo: The buffer object to map 311 * @filp: The file pointer from the process performing the mmap 312 * 313 * This is called by ttm_bo_mmap() to verify whether a process 314 * has the right to mmap a BO to their process space. 315 */ 316 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 317 { 318 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 319 320 /* 321 * Don't verify access for KFD BOs. They don't have a GEM 322 * object associated with them. 323 */ 324 if (abo->kfd_bo) 325 return 0; 326 327 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 328 return -EPERM; 329 return drm_vma_node_verify_access(&abo->gem_base.vma_node, 330 filp->private_data); 331 } 332 333 /** 334 * amdgpu_move_null - Register memory for a buffer object 335 * 336 * @bo: The bo to assign the memory to 337 * @new_mem: The memory to be assigned. 338 * 339 * Assign the memory from new_mem to the memory of the buffer object 340 * bo. 341 */ 342 static void amdgpu_move_null(struct ttm_buffer_object *bo, 343 struct ttm_mem_reg *new_mem) 344 { 345 struct ttm_mem_reg *old_mem = &bo->mem; 346 347 BUG_ON(old_mem->mm_node != NULL); 348 *old_mem = *new_mem; 349 new_mem->mm_node = NULL; 350 } 351 352 /** 353 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT 354 * buffer. 355 */ 356 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 357 struct drm_mm_node *mm_node, 358 struct ttm_mem_reg *mem) 359 { 360 uint64_t addr = 0; 361 362 if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) { 363 addr = mm_node->start << PAGE_SHIFT; 364 addr += bo->bdev->man[mem->mem_type].gpu_offset; 365 } 366 return addr; 367 } 368 369 /** 370 * amdgpu_find_mm_node - Helper function finds the drm_mm_node 371 * corresponding to @offset. It also modifies 372 * the offset to be within the drm_mm_node 373 * returned 374 */ 375 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 376 unsigned long *offset) 377 { 378 struct drm_mm_node *mm_node = mem->mm_node; 379 380 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 381 *offset -= (mm_node->size << PAGE_SHIFT); 382 ++mm_node; 383 } 384 return mm_node; 385 } 386 387 /** 388 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 389 * 390 * The function copies @size bytes from {src->mem + src->offset} to 391 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 392 * move and different for a BO to BO copy. 393 * 394 * @f: Returns the last fence if multiple jobs are submitted. 395 */ 396 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 397 struct amdgpu_copy_mem *src, 398 struct amdgpu_copy_mem *dst, 399 uint64_t size, 400 struct reservation_object *resv, 401 struct dma_fence **f) 402 { 403 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 404 struct drm_mm_node *src_mm, *dst_mm; 405 uint64_t src_node_start, dst_node_start, src_node_size, 406 dst_node_size, src_page_offset, dst_page_offset; 407 struct dma_fence *fence = NULL; 408 int r = 0; 409 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 410 AMDGPU_GPU_PAGE_SIZE); 411 412 if (!adev->mman.buffer_funcs_enabled) { 413 DRM_ERROR("Trying to move memory with ring turned off.\n"); 414 return -EINVAL; 415 } 416 417 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 418 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 419 src->offset; 420 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 421 src_page_offset = src_node_start & (PAGE_SIZE - 1); 422 423 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 424 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 425 dst->offset; 426 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 427 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 428 429 mutex_lock(&adev->mman.gtt_window_lock); 430 431 while (size) { 432 unsigned long cur_size; 433 uint64_t from = src_node_start, to = dst_node_start; 434 struct dma_fence *next; 435 436 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 437 * begins at an offset, then adjust the size accordingly 438 */ 439 cur_size = min3(min(src_node_size, dst_node_size), size, 440 GTT_MAX_BYTES); 441 if (cur_size + src_page_offset > GTT_MAX_BYTES || 442 cur_size + dst_page_offset > GTT_MAX_BYTES) 443 cur_size -= max(src_page_offset, dst_page_offset); 444 445 /* Map only what needs to be accessed. Map src to window 0 and 446 * dst to window 1 447 */ 448 if (src->mem->mem_type == TTM_PL_TT && 449 !amdgpu_gtt_mgr_has_gart_addr(src->mem)) { 450 r = amdgpu_map_buffer(src->bo, src->mem, 451 PFN_UP(cur_size + src_page_offset), 452 src_node_start, 0, ring, 453 &from); 454 if (r) 455 goto error; 456 /* Adjust the offset because amdgpu_map_buffer returns 457 * start of mapped page 458 */ 459 from += src_page_offset; 460 } 461 462 if (dst->mem->mem_type == TTM_PL_TT && 463 !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) { 464 r = amdgpu_map_buffer(dst->bo, dst->mem, 465 PFN_UP(cur_size + dst_page_offset), 466 dst_node_start, 1, ring, 467 &to); 468 if (r) 469 goto error; 470 to += dst_page_offset; 471 } 472 473 r = amdgpu_copy_buffer(ring, from, to, cur_size, 474 resv, &next, false, true); 475 if (r) 476 goto error; 477 478 dma_fence_put(fence); 479 fence = next; 480 481 size -= cur_size; 482 if (!size) 483 break; 484 485 src_node_size -= cur_size; 486 if (!src_node_size) { 487 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 488 src->mem); 489 src_node_size = (src_mm->size << PAGE_SHIFT); 490 } else { 491 src_node_start += cur_size; 492 src_page_offset = src_node_start & (PAGE_SIZE - 1); 493 } 494 dst_node_size -= cur_size; 495 if (!dst_node_size) { 496 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 497 dst->mem); 498 dst_node_size = (dst_mm->size << PAGE_SHIFT); 499 } else { 500 dst_node_start += cur_size; 501 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 502 } 503 } 504 error: 505 mutex_unlock(&adev->mman.gtt_window_lock); 506 if (f) 507 *f = dma_fence_get(fence); 508 dma_fence_put(fence); 509 return r; 510 } 511 512 /** 513 * amdgpu_move_blit - Copy an entire buffer to another buffer 514 * 515 * This is a helper called by amdgpu_bo_move() and 516 * amdgpu_move_vram_ram() to help move buffers to and from VRAM. 517 */ 518 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 519 bool evict, bool no_wait_gpu, 520 struct ttm_mem_reg *new_mem, 521 struct ttm_mem_reg *old_mem) 522 { 523 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 524 struct amdgpu_copy_mem src, dst; 525 struct dma_fence *fence = NULL; 526 int r; 527 528 src.bo = bo; 529 dst.bo = bo; 530 src.mem = old_mem; 531 dst.mem = new_mem; 532 src.offset = 0; 533 dst.offset = 0; 534 535 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 536 new_mem->num_pages << PAGE_SHIFT, 537 bo->resv, &fence); 538 if (r) 539 goto error; 540 541 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 542 dma_fence_put(fence); 543 return r; 544 545 error: 546 if (fence) 547 dma_fence_wait(fence, false); 548 dma_fence_put(fence); 549 return r; 550 } 551 552 /** 553 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 554 * 555 * Called by amdgpu_bo_move(). 556 */ 557 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 558 struct ttm_operation_ctx *ctx, 559 struct ttm_mem_reg *new_mem) 560 { 561 struct amdgpu_device *adev; 562 struct ttm_mem_reg *old_mem = &bo->mem; 563 struct ttm_mem_reg tmp_mem; 564 struct ttm_place placements; 565 struct ttm_placement placement; 566 int r; 567 568 adev = amdgpu_ttm_adev(bo->bdev); 569 570 /* create space/pages for new_mem in GTT space */ 571 tmp_mem = *new_mem; 572 tmp_mem.mm_node = NULL; 573 placement.num_placement = 1; 574 placement.placement = &placements; 575 placement.num_busy_placement = 1; 576 placement.busy_placement = &placements; 577 placements.fpfn = 0; 578 placements.lpfn = 0; 579 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 580 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 581 if (unlikely(r)) { 582 return r; 583 } 584 585 /* set caching flags */ 586 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 587 if (unlikely(r)) { 588 goto out_cleanup; 589 } 590 591 /* Bind the memory to the GTT space */ 592 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 593 if (unlikely(r)) { 594 goto out_cleanup; 595 } 596 597 /* blit VRAM to GTT */ 598 r = amdgpu_move_blit(bo, true, ctx->no_wait_gpu, &tmp_mem, old_mem); 599 if (unlikely(r)) { 600 goto out_cleanup; 601 } 602 603 /* move BO (in tmp_mem) to new_mem */ 604 r = ttm_bo_move_ttm(bo, ctx, new_mem); 605 out_cleanup: 606 ttm_bo_mem_put(bo, &tmp_mem); 607 return r; 608 } 609 610 /** 611 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 612 * 613 * Called by amdgpu_bo_move(). 614 */ 615 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 616 struct ttm_operation_ctx *ctx, 617 struct ttm_mem_reg *new_mem) 618 { 619 struct amdgpu_device *adev; 620 struct ttm_mem_reg *old_mem = &bo->mem; 621 struct ttm_mem_reg tmp_mem; 622 struct ttm_placement placement; 623 struct ttm_place placements; 624 int r; 625 626 adev = amdgpu_ttm_adev(bo->bdev); 627 628 /* make space in GTT for old_mem buffer */ 629 tmp_mem = *new_mem; 630 tmp_mem.mm_node = NULL; 631 placement.num_placement = 1; 632 placement.placement = &placements; 633 placement.num_busy_placement = 1; 634 placement.busy_placement = &placements; 635 placements.fpfn = 0; 636 placements.lpfn = 0; 637 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 638 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 639 if (unlikely(r)) { 640 return r; 641 } 642 643 /* move/bind old memory to GTT space */ 644 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 645 if (unlikely(r)) { 646 goto out_cleanup; 647 } 648 649 /* copy to VRAM */ 650 r = amdgpu_move_blit(bo, true, ctx->no_wait_gpu, new_mem, old_mem); 651 if (unlikely(r)) { 652 goto out_cleanup; 653 } 654 out_cleanup: 655 ttm_bo_mem_put(bo, &tmp_mem); 656 return r; 657 } 658 659 /** 660 * amdgpu_bo_move - Move a buffer object to a new memory location 661 * 662 * Called by ttm_bo_handle_move_mem() 663 */ 664 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 665 struct ttm_operation_ctx *ctx, 666 struct ttm_mem_reg *new_mem) 667 { 668 struct amdgpu_device *adev; 669 struct amdgpu_bo *abo; 670 struct ttm_mem_reg *old_mem = &bo->mem; 671 int r; 672 673 /* Can't move a pinned BO */ 674 abo = ttm_to_amdgpu_bo(bo); 675 if (WARN_ON_ONCE(abo->pin_count > 0)) 676 return -EINVAL; 677 678 adev = amdgpu_ttm_adev(bo->bdev); 679 680 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 681 amdgpu_move_null(bo, new_mem); 682 return 0; 683 } 684 if ((old_mem->mem_type == TTM_PL_TT && 685 new_mem->mem_type == TTM_PL_SYSTEM) || 686 (old_mem->mem_type == TTM_PL_SYSTEM && 687 new_mem->mem_type == TTM_PL_TT)) { 688 /* bind is enough */ 689 amdgpu_move_null(bo, new_mem); 690 return 0; 691 } 692 693 if (!adev->mman.buffer_funcs_enabled) 694 goto memcpy; 695 696 if (old_mem->mem_type == TTM_PL_VRAM && 697 new_mem->mem_type == TTM_PL_SYSTEM) { 698 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 699 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 700 new_mem->mem_type == TTM_PL_VRAM) { 701 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 702 } else { 703 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 704 new_mem, old_mem); 705 } 706 707 if (r) { 708 memcpy: 709 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 710 if (r) { 711 return r; 712 } 713 } 714 715 if (bo->type == ttm_bo_type_device && 716 new_mem->mem_type == TTM_PL_VRAM && 717 old_mem->mem_type != TTM_PL_VRAM) { 718 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 719 * accesses the BO after it's moved. 720 */ 721 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 722 } 723 724 /* update statistics */ 725 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 726 return 0; 727 } 728 729 /** 730 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 731 * 732 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 733 */ 734 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 735 { 736 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 737 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 738 struct drm_mm_node *mm_node = mem->mm_node; 739 740 mem->bus.addr = NULL; 741 mem->bus.offset = 0; 742 mem->bus.size = mem->num_pages << PAGE_SHIFT; 743 mem->bus.base = 0; 744 mem->bus.is_iomem = false; 745 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 746 return -EINVAL; 747 switch (mem->mem_type) { 748 case TTM_PL_SYSTEM: 749 /* system memory */ 750 return 0; 751 case TTM_PL_TT: 752 break; 753 case TTM_PL_VRAM: 754 mem->bus.offset = mem->start << PAGE_SHIFT; 755 /* check if it's visible */ 756 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 757 return -EINVAL; 758 /* Only physically contiguous buffers apply. In a contiguous 759 * buffer, size of the first mm_node would match the number of 760 * pages in ttm_mem_reg. 761 */ 762 if (adev->mman.aper_base_kaddr && 763 (mm_node->size == mem->num_pages)) 764 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 765 mem->bus.offset; 766 767 mem->bus.base = adev->gmc.aper_base; 768 mem->bus.is_iomem = true; 769 break; 770 default: 771 return -EINVAL; 772 } 773 return 0; 774 } 775 776 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 777 { 778 } 779 780 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 781 unsigned long page_offset) 782 { 783 struct drm_mm_node *mm; 784 unsigned long offset = (page_offset << PAGE_SHIFT); 785 786 mm = amdgpu_find_mm_node(&bo->mem, &offset); 787 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 788 (offset >> PAGE_SHIFT); 789 } 790 791 /* 792 * TTM backend functions. 793 */ 794 struct amdgpu_ttm_gup_task_list { 795 struct list_head list; 796 struct task_struct *task; 797 }; 798 799 struct amdgpu_ttm_tt { 800 struct ttm_dma_tt ttm; 801 u64 offset; 802 uint64_t userptr; 803 struct task_struct *usertask; 804 uint32_t userflags; 805 spinlock_t guptasklock; 806 struct list_head guptasks; 807 atomic_t mmu_invalidations; 808 uint32_t last_set_pages; 809 }; 810 811 /** 812 * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to 813 * by a USERPTR pointer to memory 814 * 815 * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos(). 816 * This provides a wrapper around the get_user_pages() call to provide 817 * device accessible pages that back user memory. 818 */ 819 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages) 820 { 821 struct amdgpu_ttm_tt *gtt = (void *)ttm; 822 struct mm_struct *mm = gtt->usertask->mm; 823 unsigned int flags = 0; 824 unsigned pinned = 0; 825 int r; 826 827 if (!mm) /* Happens during process shutdown */ 828 return -ESRCH; 829 830 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 831 flags |= FOLL_WRITE; 832 833 down_read(&mm->mmap_sem); 834 835 if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) { 836 /* check that we only use anonymous memory 837 to prevent problems with writeback */ 838 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE; 839 struct vm_area_struct *vma; 840 841 vma = find_vma(mm, gtt->userptr); 842 if (!vma || vma->vm_file || vma->vm_end < end) { 843 up_read(&mm->mmap_sem); 844 return -EPERM; 845 } 846 } 847 848 /* loop enough times using contiguous pages of memory */ 849 do { 850 unsigned num_pages = ttm->num_pages - pinned; 851 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE; 852 struct page **p = pages + pinned; 853 struct amdgpu_ttm_gup_task_list guptask; 854 855 guptask.task = current; 856 spin_lock(>t->guptasklock); 857 list_add(&guptask.list, >t->guptasks); 858 spin_unlock(>t->guptasklock); 859 860 if (mm == current->mm) 861 r = get_user_pages(userptr, num_pages, flags, p, NULL); 862 else 863 r = get_user_pages_remote(gtt->usertask, 864 mm, userptr, num_pages, 865 flags, p, NULL, NULL); 866 867 spin_lock(>t->guptasklock); 868 list_del(&guptask.list); 869 spin_unlock(>t->guptasklock); 870 871 if (r < 0) 872 goto release_pages; 873 874 pinned += r; 875 876 } while (pinned < ttm->num_pages); 877 878 up_read(&mm->mmap_sem); 879 return 0; 880 881 release_pages: 882 release_pages(pages, pinned); 883 up_read(&mm->mmap_sem); 884 return r; 885 } 886 887 /** 888 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages 889 * as necessary. 890 * 891 * Called by amdgpu_cs_list_validate(). This creates the page list 892 * that backs user memory and will ultimately be mapped into the device 893 * address space. 894 */ 895 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 896 { 897 struct amdgpu_ttm_tt *gtt = (void *)ttm; 898 unsigned i; 899 900 gtt->last_set_pages = atomic_read(>t->mmu_invalidations); 901 for (i = 0; i < ttm->num_pages; ++i) { 902 if (ttm->pages[i]) 903 put_page(ttm->pages[i]); 904 905 ttm->pages[i] = pages ? pages[i] : NULL; 906 } 907 } 908 909 /** 910 * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty 911 * 912 * Called while unpinning userptr pages 913 */ 914 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm) 915 { 916 struct amdgpu_ttm_tt *gtt = (void *)ttm; 917 unsigned i; 918 919 for (i = 0; i < ttm->num_pages; ++i) { 920 struct page *page = ttm->pages[i]; 921 922 if (!page) 923 continue; 924 925 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 926 set_page_dirty(page); 927 928 mark_page_accessed(page); 929 } 930 } 931 932 /** 933 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the 934 * user pages 935 * 936 * Called by amdgpu_ttm_backend_bind() 937 **/ 938 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 939 { 940 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 941 struct amdgpu_ttm_tt *gtt = (void *)ttm; 942 unsigned nents; 943 int r; 944 945 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 946 enum dma_data_direction direction = write ? 947 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 948 949 /* Allocate an SG array and squash pages into it */ 950 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 951 ttm->num_pages << PAGE_SHIFT, 952 GFP_KERNEL); 953 if (r) 954 goto release_sg; 955 956 /* Map SG to device */ 957 r = -ENOMEM; 958 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 959 if (nents != ttm->sg->nents) 960 goto release_sg; 961 962 /* convert SG to linear array of pages and dma addresses */ 963 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 964 gtt->ttm.dma_address, ttm->num_pages); 965 966 return 0; 967 968 release_sg: 969 kfree(ttm->sg); 970 return r; 971 } 972 973 /** 974 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 975 */ 976 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 977 { 978 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 979 struct amdgpu_ttm_tt *gtt = (void *)ttm; 980 981 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 982 enum dma_data_direction direction = write ? 983 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 984 985 /* double check that we don't free the table twice */ 986 if (!ttm->sg->sgl) 987 return; 988 989 /* unmap the pages mapped to the device */ 990 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 991 992 /* mark the pages as dirty */ 993 amdgpu_ttm_tt_mark_user_pages(ttm); 994 995 sg_free_table(ttm->sg); 996 } 997 998 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 999 struct ttm_buffer_object *tbo, 1000 uint64_t flags) 1001 { 1002 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1003 struct ttm_tt *ttm = tbo->ttm; 1004 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1005 int r; 1006 1007 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1008 uint64_t page_idx = 1; 1009 1010 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1011 ttm->pages, gtt->ttm.dma_address, flags); 1012 if (r) 1013 goto gart_bind_fail; 1014 1015 /* Patch mtype of the second part BO */ 1016 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1017 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC); 1018 1019 r = amdgpu_gart_bind(adev, 1020 gtt->offset + (page_idx << PAGE_SHIFT), 1021 ttm->num_pages - page_idx, 1022 &ttm->pages[page_idx], 1023 &(gtt->ttm.dma_address[page_idx]), flags); 1024 } else { 1025 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1026 ttm->pages, gtt->ttm.dma_address, flags); 1027 } 1028 1029 gart_bind_fail: 1030 if (r) 1031 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1032 ttm->num_pages, gtt->offset); 1033 1034 return r; 1035 } 1036 1037 /** 1038 * amdgpu_ttm_backend_bind - Bind GTT memory 1039 * 1040 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1041 * This handles binding GTT memory to the device address space. 1042 */ 1043 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1044 struct ttm_mem_reg *bo_mem) 1045 { 1046 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1047 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1048 uint64_t flags; 1049 int r = 0; 1050 1051 if (gtt->userptr) { 1052 r = amdgpu_ttm_tt_pin_userptr(ttm); 1053 if (r) { 1054 DRM_ERROR("failed to pin userptr\n"); 1055 return r; 1056 } 1057 } 1058 if (!ttm->num_pages) { 1059 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1060 ttm->num_pages, bo_mem, ttm); 1061 } 1062 1063 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1064 bo_mem->mem_type == AMDGPU_PL_GWS || 1065 bo_mem->mem_type == AMDGPU_PL_OA) 1066 return -EINVAL; 1067 1068 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1069 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1070 return 0; 1071 } 1072 1073 /* compute PTE flags relevant to this BO memory */ 1074 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1075 1076 /* bind pages into GART page tables */ 1077 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1078 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1079 ttm->pages, gtt->ttm.dma_address, flags); 1080 1081 if (r) 1082 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1083 ttm->num_pages, gtt->offset); 1084 return r; 1085 } 1086 1087 /** 1088 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1089 */ 1090 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1091 { 1092 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1093 struct ttm_operation_ctx ctx = { false, false }; 1094 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1095 struct ttm_mem_reg tmp; 1096 struct ttm_placement placement; 1097 struct ttm_place placements; 1098 uint64_t flags; 1099 int r; 1100 1101 if (bo->mem.mem_type != TTM_PL_TT || 1102 amdgpu_gtt_mgr_has_gart_addr(&bo->mem)) 1103 return 0; 1104 1105 /* allocate GTT space */ 1106 tmp = bo->mem; 1107 tmp.mm_node = NULL; 1108 placement.num_placement = 1; 1109 placement.placement = &placements; 1110 placement.num_busy_placement = 1; 1111 placement.busy_placement = &placements; 1112 placements.fpfn = 0; 1113 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1114 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1115 TTM_PL_FLAG_TT; 1116 1117 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1118 if (unlikely(r)) 1119 return r; 1120 1121 /* compute PTE flags for this buffer object */ 1122 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1123 1124 /* Bind pages */ 1125 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1126 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1127 if (unlikely(r)) { 1128 ttm_bo_mem_put(bo, &tmp); 1129 return r; 1130 } 1131 1132 ttm_bo_mem_put(bo, &bo->mem); 1133 bo->mem = tmp; 1134 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1135 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1136 1137 return 0; 1138 } 1139 1140 /** 1141 * amdgpu_ttm_recover_gart - Rebind GTT pages 1142 * 1143 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1144 * rebind GTT pages during a GPU reset. 1145 */ 1146 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1147 { 1148 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1149 uint64_t flags; 1150 int r; 1151 1152 if (!tbo->ttm) 1153 return 0; 1154 1155 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1156 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1157 1158 return r; 1159 } 1160 1161 /** 1162 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1163 * 1164 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1165 * ttm_tt_destroy(). 1166 */ 1167 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1168 { 1169 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1170 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1171 int r; 1172 1173 /* if the pages have userptr pinning then clear that first */ 1174 if (gtt->userptr) 1175 amdgpu_ttm_tt_unpin_userptr(ttm); 1176 1177 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1178 return 0; 1179 1180 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1181 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1182 if (r) 1183 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1184 gtt->ttm.ttm.num_pages, gtt->offset); 1185 return r; 1186 } 1187 1188 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1189 { 1190 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1191 1192 if (gtt->usertask) 1193 put_task_struct(gtt->usertask); 1194 1195 ttm_dma_tt_fini(>t->ttm); 1196 kfree(gtt); 1197 } 1198 1199 static struct ttm_backend_func amdgpu_backend_func = { 1200 .bind = &amdgpu_ttm_backend_bind, 1201 .unbind = &amdgpu_ttm_backend_unbind, 1202 .destroy = &amdgpu_ttm_backend_destroy, 1203 }; 1204 1205 /** 1206 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1207 * 1208 * @bo: The buffer object to create a GTT ttm_tt object around 1209 * 1210 * Called by ttm_tt_create(). 1211 */ 1212 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1213 uint32_t page_flags) 1214 { 1215 struct amdgpu_device *adev; 1216 struct amdgpu_ttm_tt *gtt; 1217 1218 adev = amdgpu_ttm_adev(bo->bdev); 1219 1220 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1221 if (gtt == NULL) { 1222 return NULL; 1223 } 1224 gtt->ttm.ttm.func = &amdgpu_backend_func; 1225 1226 /* allocate space for the uninitialized page entries */ 1227 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1228 kfree(gtt); 1229 return NULL; 1230 } 1231 return >t->ttm.ttm; 1232 } 1233 1234 /** 1235 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1236 * 1237 * Map the pages of a ttm_tt object to an address space visible 1238 * to the underlying device. 1239 */ 1240 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1241 struct ttm_operation_ctx *ctx) 1242 { 1243 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1244 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1245 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1246 1247 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1248 if (gtt && gtt->userptr) { 1249 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1250 if (!ttm->sg) 1251 return -ENOMEM; 1252 1253 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1254 ttm->state = tt_unbound; 1255 return 0; 1256 } 1257 1258 if (slave && ttm->sg) { 1259 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1260 gtt->ttm.dma_address, 1261 ttm->num_pages); 1262 ttm->state = tt_unbound; 1263 return 0; 1264 } 1265 1266 #ifdef CONFIG_SWIOTLB 1267 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1268 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1269 } 1270 #endif 1271 1272 /* fall back to generic helper to populate the page array 1273 * and map them to the device */ 1274 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1275 } 1276 1277 /** 1278 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1279 * 1280 * Unmaps pages of a ttm_tt object from the device address space and 1281 * unpopulates the page array backing it. 1282 */ 1283 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1284 { 1285 struct amdgpu_device *adev; 1286 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1287 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1288 1289 if (gtt && gtt->userptr) { 1290 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1291 kfree(ttm->sg); 1292 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1293 return; 1294 } 1295 1296 if (slave) 1297 return; 1298 1299 adev = amdgpu_ttm_adev(ttm->bdev); 1300 1301 #ifdef CONFIG_SWIOTLB 1302 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1303 ttm_dma_unpopulate(>t->ttm, adev->dev); 1304 return; 1305 } 1306 #endif 1307 1308 /* fall back to generic helper to unmap and unpopulate array */ 1309 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1310 } 1311 1312 /** 1313 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt 1314 * for the current task 1315 * 1316 * @ttm: The ttm_tt object to bind this userptr object to 1317 * @addr: The address in the current tasks VM space to use 1318 * @flags: Requirements of userptr object. 1319 * 1320 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1321 * to current task 1322 */ 1323 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1324 uint32_t flags) 1325 { 1326 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1327 1328 if (gtt == NULL) 1329 return -EINVAL; 1330 1331 gtt->userptr = addr; 1332 gtt->userflags = flags; 1333 1334 if (gtt->usertask) 1335 put_task_struct(gtt->usertask); 1336 gtt->usertask = current->group_leader; 1337 get_task_struct(gtt->usertask); 1338 1339 spin_lock_init(>t->guptasklock); 1340 INIT_LIST_HEAD(>t->guptasks); 1341 atomic_set(>t->mmu_invalidations, 0); 1342 gtt->last_set_pages = 0; 1343 1344 return 0; 1345 } 1346 1347 /** 1348 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1349 */ 1350 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1351 { 1352 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1353 1354 if (gtt == NULL) 1355 return NULL; 1356 1357 if (gtt->usertask == NULL) 1358 return NULL; 1359 1360 return gtt->usertask->mm; 1361 } 1362 1363 /** 1364 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays 1365 * inside an address range for the 1366 * current task. 1367 * 1368 */ 1369 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1370 unsigned long end) 1371 { 1372 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1373 struct amdgpu_ttm_gup_task_list *entry; 1374 unsigned long size; 1375 1376 if (gtt == NULL || !gtt->userptr) 1377 return false; 1378 1379 /* Return false if no part of the ttm_tt object lies within 1380 * the range 1381 */ 1382 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1383 if (gtt->userptr > end || gtt->userptr + size <= start) 1384 return false; 1385 1386 /* Search the lists of tasks that hold this mapping and see 1387 * if current is one of them. If it is return false. 1388 */ 1389 spin_lock(>t->guptasklock); 1390 list_for_each_entry(entry, >t->guptasks, list) { 1391 if (entry->task == current) { 1392 spin_unlock(>t->guptasklock); 1393 return false; 1394 } 1395 } 1396 spin_unlock(>t->guptasklock); 1397 1398 atomic_inc(>t->mmu_invalidations); 1399 1400 return true; 1401 } 1402 1403 /** 1404 * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been 1405 * invalidated? 1406 */ 1407 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm, 1408 int *last_invalidated) 1409 { 1410 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1411 int prev_invalidated = *last_invalidated; 1412 1413 *last_invalidated = atomic_read(>t->mmu_invalidations); 1414 return prev_invalidated != *last_invalidated; 1415 } 1416 1417 /** 1418 * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this 1419 * ttm_tt object been invalidated 1420 * since the last time they've 1421 * been set? 1422 */ 1423 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm) 1424 { 1425 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1426 1427 if (gtt == NULL || !gtt->userptr) 1428 return false; 1429 1430 return atomic_read(>t->mmu_invalidations) != gtt->last_set_pages; 1431 } 1432 1433 /** 1434 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1435 */ 1436 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1437 { 1438 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1439 1440 if (gtt == NULL) 1441 return false; 1442 1443 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1444 } 1445 1446 /** 1447 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1448 * 1449 * @ttm: The ttm_tt object to compute the flags for 1450 * @mem: The memory registry backing this ttm_tt object 1451 */ 1452 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1453 struct ttm_mem_reg *mem) 1454 { 1455 uint64_t flags = 0; 1456 1457 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1458 flags |= AMDGPU_PTE_VALID; 1459 1460 if (mem && mem->mem_type == TTM_PL_TT) { 1461 flags |= AMDGPU_PTE_SYSTEM; 1462 1463 if (ttm->caching_state == tt_cached) 1464 flags |= AMDGPU_PTE_SNOOPED; 1465 } 1466 1467 flags |= adev->gart.gart_pte_flags; 1468 flags |= AMDGPU_PTE_READABLE; 1469 1470 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1471 flags |= AMDGPU_PTE_WRITEABLE; 1472 1473 return flags; 1474 } 1475 1476 /** 1477 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict 1478 * a buffer object. 1479 * 1480 * Return true if eviction is sensible. Called by 1481 * ttm_mem_evict_first() on behalf of ttm_bo_mem_force_space() 1482 * which tries to evict buffer objects until it can find space 1483 * for a new object and by ttm_bo_force_list_clean() which is 1484 * used to clean out a memory space. 1485 */ 1486 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1487 const struct ttm_place *place) 1488 { 1489 unsigned long num_pages = bo->mem.num_pages; 1490 struct drm_mm_node *node = bo->mem.mm_node; 1491 struct reservation_object_list *flist; 1492 struct dma_fence *f; 1493 int i; 1494 1495 /* If bo is a KFD BO, check if the bo belongs to the current process. 1496 * If true, then return false as any KFD process needs all its BOs to 1497 * be resident to run successfully 1498 */ 1499 flist = reservation_object_get_list(bo->resv); 1500 if (flist) { 1501 for (i = 0; i < flist->shared_count; ++i) { 1502 f = rcu_dereference_protected(flist->shared[i], 1503 reservation_object_held(bo->resv)); 1504 if (amdkfd_fence_check_mm(f, current->mm)) 1505 return false; 1506 } 1507 } 1508 1509 switch (bo->mem.mem_type) { 1510 case TTM_PL_TT: 1511 return true; 1512 1513 case TTM_PL_VRAM: 1514 /* Check each drm MM node individually */ 1515 while (num_pages) { 1516 if (place->fpfn < (node->start + node->size) && 1517 !(place->lpfn && place->lpfn <= node->start)) 1518 return true; 1519 1520 num_pages -= node->size; 1521 ++node; 1522 } 1523 return false; 1524 1525 default: 1526 break; 1527 } 1528 1529 return ttm_bo_eviction_valuable(bo, place); 1530 } 1531 1532 /** 1533 * amdgpu_ttm_access_memory - Read or Write memory that backs a 1534 * buffer object. 1535 * 1536 * @bo: The buffer object to read/write 1537 * @offset: Offset into buffer object 1538 * @buf: Secondary buffer to write/read from 1539 * @len: Length in bytes of access 1540 * @write: true if writing 1541 * 1542 * This is used to access VRAM that backs a buffer object via MMIO 1543 * access for debugging purposes. 1544 */ 1545 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1546 unsigned long offset, 1547 void *buf, int len, int write) 1548 { 1549 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1550 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1551 struct drm_mm_node *nodes; 1552 uint32_t value = 0; 1553 int ret = 0; 1554 uint64_t pos; 1555 unsigned long flags; 1556 1557 if (bo->mem.mem_type != TTM_PL_VRAM) 1558 return -EIO; 1559 1560 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1561 pos = (nodes->start << PAGE_SHIFT) + offset; 1562 1563 while (len && pos < adev->gmc.mc_vram_size) { 1564 uint64_t aligned_pos = pos & ~(uint64_t)3; 1565 uint32_t bytes = 4 - (pos & 3); 1566 uint32_t shift = (pos & 3) * 8; 1567 uint32_t mask = 0xffffffff << shift; 1568 1569 if (len < bytes) { 1570 mask &= 0xffffffff >> (bytes - len) * 8; 1571 bytes = len; 1572 } 1573 1574 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1575 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1576 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1577 if (!write || mask != 0xffffffff) 1578 value = RREG32_NO_KIQ(mmMM_DATA); 1579 if (write) { 1580 value &= ~mask; 1581 value |= (*(uint32_t *)buf << shift) & mask; 1582 WREG32_NO_KIQ(mmMM_DATA, value); 1583 } 1584 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1585 if (!write) { 1586 value = (value & mask) >> shift; 1587 memcpy(buf, &value, bytes); 1588 } 1589 1590 ret += bytes; 1591 buf = (uint8_t *)buf + bytes; 1592 pos += bytes; 1593 len -= bytes; 1594 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1595 ++nodes; 1596 pos = (nodes->start << PAGE_SHIFT); 1597 } 1598 } 1599 1600 return ret; 1601 } 1602 1603 static struct ttm_bo_driver amdgpu_bo_driver = { 1604 .ttm_tt_create = &amdgpu_ttm_tt_create, 1605 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1606 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1607 .invalidate_caches = &amdgpu_invalidate_caches, 1608 .init_mem_type = &amdgpu_init_mem_type, 1609 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1610 .evict_flags = &amdgpu_evict_flags, 1611 .move = &amdgpu_bo_move, 1612 .verify_access = &amdgpu_verify_access, 1613 .move_notify = &amdgpu_bo_move_notify, 1614 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1615 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1616 .io_mem_free = &amdgpu_ttm_io_mem_free, 1617 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1618 .access_memory = &amdgpu_ttm_access_memory 1619 }; 1620 1621 /* 1622 * Firmware Reservation functions 1623 */ 1624 /** 1625 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1626 * 1627 * @adev: amdgpu_device pointer 1628 * 1629 * free fw reserved vram if it has been reserved. 1630 */ 1631 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1632 { 1633 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1634 NULL, &adev->fw_vram_usage.va); 1635 } 1636 1637 /** 1638 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1639 * 1640 * @adev: amdgpu_device pointer 1641 * 1642 * create bo vram reservation from fw. 1643 */ 1644 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1645 { 1646 struct ttm_operation_ctx ctx = { false, false }; 1647 struct amdgpu_bo_param bp; 1648 int r = 0; 1649 int i; 1650 u64 vram_size = adev->gmc.visible_vram_size; 1651 u64 offset = adev->fw_vram_usage.start_offset; 1652 u64 size = adev->fw_vram_usage.size; 1653 struct amdgpu_bo *bo; 1654 1655 memset(&bp, 0, sizeof(bp)); 1656 bp.size = adev->fw_vram_usage.size; 1657 bp.byte_align = PAGE_SIZE; 1658 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1659 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1660 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1661 bp.type = ttm_bo_type_kernel; 1662 bp.resv = NULL; 1663 adev->fw_vram_usage.va = NULL; 1664 adev->fw_vram_usage.reserved_bo = NULL; 1665 1666 if (adev->fw_vram_usage.size > 0 && 1667 adev->fw_vram_usage.size <= vram_size) { 1668 1669 r = amdgpu_bo_create(adev, &bp, 1670 &adev->fw_vram_usage.reserved_bo); 1671 if (r) 1672 goto error_create; 1673 1674 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1675 if (r) 1676 goto error_reserve; 1677 1678 /* remove the original mem node and create a new one at the 1679 * request position 1680 */ 1681 bo = adev->fw_vram_usage.reserved_bo; 1682 offset = ALIGN(offset, PAGE_SIZE); 1683 for (i = 0; i < bo->placement.num_placement; ++i) { 1684 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1685 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1686 } 1687 1688 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1689 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1690 &bo->tbo.mem, &ctx); 1691 if (r) 1692 goto error_pin; 1693 1694 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1695 AMDGPU_GEM_DOMAIN_VRAM, 1696 adev->fw_vram_usage.start_offset, 1697 (adev->fw_vram_usage.start_offset + 1698 adev->fw_vram_usage.size), NULL); 1699 if (r) 1700 goto error_pin; 1701 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1702 &adev->fw_vram_usage.va); 1703 if (r) 1704 goto error_kmap; 1705 1706 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1707 } 1708 return r; 1709 1710 error_kmap: 1711 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1712 error_pin: 1713 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1714 error_reserve: 1715 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1716 error_create: 1717 adev->fw_vram_usage.va = NULL; 1718 adev->fw_vram_usage.reserved_bo = NULL; 1719 return r; 1720 } 1721 /** 1722 * amdgpu_ttm_init - Init the memory management (ttm) as well as 1723 * various gtt/vram related fields. 1724 * 1725 * This initializes all of the memory space pools that the TTM layer 1726 * will need such as the GTT space (system memory mapped to the device), 1727 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1728 * can be mapped per VMID. 1729 */ 1730 int amdgpu_ttm_init(struct amdgpu_device *adev) 1731 { 1732 uint64_t gtt_size; 1733 int r; 1734 u64 vis_vram_limit; 1735 1736 /* initialize global references for vram/gtt */ 1737 r = amdgpu_ttm_global_init(adev); 1738 if (r) { 1739 return r; 1740 } 1741 /* No others user of address space so set it to 0 */ 1742 r = ttm_bo_device_init(&adev->mman.bdev, 1743 adev->mman.bo_global_ref.ref.object, 1744 &amdgpu_bo_driver, 1745 adev->ddev->anon_inode->i_mapping, 1746 DRM_FILE_PAGE_OFFSET, 1747 adev->need_dma32); 1748 if (r) { 1749 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1750 return r; 1751 } 1752 adev->mman.initialized = true; 1753 1754 /* We opt to avoid OOM on system pages allocations */ 1755 adev->mman.bdev.no_retry = true; 1756 1757 /* Initialize VRAM pool with all of VRAM divided into pages */ 1758 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1759 adev->gmc.real_vram_size >> PAGE_SHIFT); 1760 if (r) { 1761 DRM_ERROR("Failed initializing VRAM heap.\n"); 1762 return r; 1763 } 1764 1765 /* Reduce size of CPU-visible VRAM if requested */ 1766 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1767 if (amdgpu_vis_vram_limit > 0 && 1768 vis_vram_limit <= adev->gmc.visible_vram_size) 1769 adev->gmc.visible_vram_size = vis_vram_limit; 1770 1771 /* Change the size here instead of the init above so only lpfn is affected */ 1772 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1773 #ifdef CONFIG_64BIT 1774 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1775 adev->gmc.visible_vram_size); 1776 #endif 1777 1778 /* 1779 *The reserved vram for firmware must be pinned to the specified 1780 *place on the VRAM, so reserve it early. 1781 */ 1782 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1783 if (r) { 1784 return r; 1785 } 1786 1787 /* allocate memory as required for VGA 1788 * This is used for VGA emulation and pre-OS scanout buffers to 1789 * avoid display artifacts while transitioning between pre-OS 1790 * and driver. */ 1791 if (adev->gmc.stolen_size) { 1792 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1793 AMDGPU_GEM_DOMAIN_VRAM, 1794 &adev->stolen_vga_memory, 1795 NULL, NULL); 1796 if (r) 1797 return r; 1798 } 1799 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1800 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1801 1802 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1803 * or whatever the user passed on module init */ 1804 if (amdgpu_gtt_size == -1) { 1805 struct sysinfo si; 1806 1807 si_meminfo(&si); 1808 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1809 adev->gmc.mc_vram_size), 1810 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1811 } 1812 else 1813 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1814 1815 /* Initialize GTT memory pool */ 1816 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1817 if (r) { 1818 DRM_ERROR("Failed initializing GTT heap.\n"); 1819 return r; 1820 } 1821 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1822 (unsigned)(gtt_size / (1024 * 1024))); 1823 1824 /* Initialize various on-chip memory pools */ 1825 adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT; 1826 adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT; 1827 adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT; 1828 adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT; 1829 adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT; 1830 adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT; 1831 adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT; 1832 adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT; 1833 adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT; 1834 /* GDS Memory */ 1835 if (adev->gds.mem.total_size) { 1836 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1837 adev->gds.mem.total_size >> PAGE_SHIFT); 1838 if (r) { 1839 DRM_ERROR("Failed initializing GDS heap.\n"); 1840 return r; 1841 } 1842 } 1843 1844 /* GWS */ 1845 if (adev->gds.gws.total_size) { 1846 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1847 adev->gds.gws.total_size >> PAGE_SHIFT); 1848 if (r) { 1849 DRM_ERROR("Failed initializing gws heap.\n"); 1850 return r; 1851 } 1852 } 1853 1854 /* OA */ 1855 if (adev->gds.oa.total_size) { 1856 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1857 adev->gds.oa.total_size >> PAGE_SHIFT); 1858 if (r) { 1859 DRM_ERROR("Failed initializing oa heap.\n"); 1860 return r; 1861 } 1862 } 1863 1864 /* Register debugfs entries for amdgpu_ttm */ 1865 r = amdgpu_ttm_debugfs_init(adev); 1866 if (r) { 1867 DRM_ERROR("Failed to init debugfs\n"); 1868 return r; 1869 } 1870 return 0; 1871 } 1872 1873 /** 1874 * amdgpu_ttm_late_init - Handle any late initialization for 1875 * amdgpu_ttm 1876 */ 1877 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1878 { 1879 /* return the VGA stolen memory (if any) back to VRAM */ 1880 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1881 } 1882 1883 /** 1884 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1885 */ 1886 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1887 { 1888 if (!adev->mman.initialized) 1889 return; 1890 1891 amdgpu_ttm_debugfs_fini(adev); 1892 amdgpu_ttm_fw_reserve_vram_fini(adev); 1893 if (adev->mman.aper_base_kaddr) 1894 iounmap(adev->mman.aper_base_kaddr); 1895 adev->mman.aper_base_kaddr = NULL; 1896 1897 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1898 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1899 if (adev->gds.mem.total_size) 1900 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1901 if (adev->gds.gws.total_size) 1902 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1903 if (adev->gds.oa.total_size) 1904 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1905 ttm_bo_device_release(&adev->mman.bdev); 1906 amdgpu_ttm_global_fini(adev); 1907 adev->mman.initialized = false; 1908 DRM_INFO("amdgpu: ttm finalized\n"); 1909 } 1910 1911 /** 1912 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1913 * 1914 * @adev: amdgpu_device pointer 1915 * @enable: true when we can use buffer functions. 1916 * 1917 * Enable/disable use of buffer functions during suspend/resume. This should 1918 * only be called at bootup or when userspace isn't running. 1919 */ 1920 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1921 { 1922 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1923 uint64_t size; 1924 1925 if (!adev->mman.initialized || adev->in_gpu_reset) 1926 return; 1927 1928 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1929 if (enable) 1930 size = adev->gmc.real_vram_size; 1931 else 1932 size = adev->gmc.visible_vram_size; 1933 man->size = size >> PAGE_SHIFT; 1934 adev->mman.buffer_funcs_enabled = enable; 1935 } 1936 1937 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1938 { 1939 struct drm_file *file_priv; 1940 struct amdgpu_device *adev; 1941 1942 if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET)) 1943 return -EINVAL; 1944 1945 file_priv = filp->private_data; 1946 adev = file_priv->minor->dev->dev_private; 1947 if (adev == NULL) 1948 return -EINVAL; 1949 1950 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1951 } 1952 1953 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1954 struct ttm_mem_reg *mem, unsigned num_pages, 1955 uint64_t offset, unsigned window, 1956 struct amdgpu_ring *ring, 1957 uint64_t *addr) 1958 { 1959 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1960 struct amdgpu_device *adev = ring->adev; 1961 struct ttm_tt *ttm = bo->ttm; 1962 struct amdgpu_job *job; 1963 unsigned num_dw, num_bytes; 1964 dma_addr_t *dma_address; 1965 struct dma_fence *fence; 1966 uint64_t src_addr, dst_addr; 1967 uint64_t flags; 1968 int r; 1969 1970 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1971 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1972 1973 *addr = adev->gmc.gart_start; 1974 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1975 AMDGPU_GPU_PAGE_SIZE; 1976 1977 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1978 while (num_dw & 0x7) 1979 num_dw++; 1980 1981 num_bytes = num_pages * 8; 1982 1983 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1984 if (r) 1985 return r; 1986 1987 src_addr = num_dw * 4; 1988 src_addr += job->ibs[0].gpu_addr; 1989 1990 dst_addr = adev->gart.table_addr; 1991 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1992 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1993 dst_addr, num_bytes); 1994 1995 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1996 WARN_ON(job->ibs[0].length_dw > num_dw); 1997 1998 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 1999 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2000 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2001 &job->ibs[0].ptr[num_dw]); 2002 if (r) 2003 goto error_free; 2004 2005 r = amdgpu_job_submit(job, ring, &adev->mman.entity, 2006 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2007 if (r) 2008 goto error_free; 2009 2010 dma_fence_put(fence); 2011 2012 return r; 2013 2014 error_free: 2015 amdgpu_job_free(job); 2016 return r; 2017 } 2018 2019 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2020 uint64_t dst_offset, uint32_t byte_count, 2021 struct reservation_object *resv, 2022 struct dma_fence **fence, bool direct_submit, 2023 bool vm_needs_flush) 2024 { 2025 struct amdgpu_device *adev = ring->adev; 2026 struct amdgpu_job *job; 2027 2028 uint32_t max_bytes; 2029 unsigned num_loops, num_dw; 2030 unsigned i; 2031 int r; 2032 2033 if (direct_submit && !ring->ready) { 2034 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2035 return -EINVAL; 2036 } 2037 2038 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2039 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2040 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 2041 2042 /* for IB padding */ 2043 while (num_dw & 0x7) 2044 num_dw++; 2045 2046 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2047 if (r) 2048 return r; 2049 2050 job->vm_needs_flush = vm_needs_flush; 2051 if (resv) { 2052 r = amdgpu_sync_resv(adev, &job->sync, resv, 2053 AMDGPU_FENCE_OWNER_UNDEFINED, 2054 false); 2055 if (r) { 2056 DRM_ERROR("sync failed (%d).\n", r); 2057 goto error_free; 2058 } 2059 } 2060 2061 for (i = 0; i < num_loops; i++) { 2062 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2063 2064 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2065 dst_offset, cur_size_in_bytes); 2066 2067 src_offset += cur_size_in_bytes; 2068 dst_offset += cur_size_in_bytes; 2069 byte_count -= cur_size_in_bytes; 2070 } 2071 2072 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2073 WARN_ON(job->ibs[0].length_dw > num_dw); 2074 if (direct_submit) { 2075 r = amdgpu_ib_schedule(ring, job->num_ibs, job->ibs, 2076 NULL, fence); 2077 job->fence = dma_fence_get(*fence); 2078 if (r) 2079 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2080 amdgpu_job_free(job); 2081 } else { 2082 r = amdgpu_job_submit(job, ring, &adev->mman.entity, 2083 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2084 if (r) 2085 goto error_free; 2086 } 2087 2088 return r; 2089 2090 error_free: 2091 amdgpu_job_free(job); 2092 return r; 2093 } 2094 2095 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2096 uint32_t src_data, 2097 struct reservation_object *resv, 2098 struct dma_fence **fence) 2099 { 2100 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2101 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2102 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2103 2104 struct drm_mm_node *mm_node; 2105 unsigned long num_pages; 2106 unsigned int num_loops, num_dw; 2107 2108 struct amdgpu_job *job; 2109 int r; 2110 2111 if (!adev->mman.buffer_funcs_enabled) { 2112 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2113 return -EINVAL; 2114 } 2115 2116 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2117 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2118 if (r) 2119 return r; 2120 } 2121 2122 num_pages = bo->tbo.num_pages; 2123 mm_node = bo->tbo.mem.mm_node; 2124 num_loops = 0; 2125 while (num_pages) { 2126 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2127 2128 num_loops += DIV_ROUND_UP(byte_count, max_bytes); 2129 num_pages -= mm_node->size; 2130 ++mm_node; 2131 } 2132 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2133 2134 /* for IB padding */ 2135 num_dw += 64; 2136 2137 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2138 if (r) 2139 return r; 2140 2141 if (resv) { 2142 r = amdgpu_sync_resv(adev, &job->sync, resv, 2143 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2144 if (r) { 2145 DRM_ERROR("sync failed (%d).\n", r); 2146 goto error_free; 2147 } 2148 } 2149 2150 num_pages = bo->tbo.num_pages; 2151 mm_node = bo->tbo.mem.mm_node; 2152 2153 while (num_pages) { 2154 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2155 uint64_t dst_addr; 2156 2157 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2158 while (byte_count) { 2159 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2160 2161 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2162 dst_addr, cur_size_in_bytes); 2163 2164 dst_addr += cur_size_in_bytes; 2165 byte_count -= cur_size_in_bytes; 2166 } 2167 2168 num_pages -= mm_node->size; 2169 ++mm_node; 2170 } 2171 2172 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2173 WARN_ON(job->ibs[0].length_dw > num_dw); 2174 r = amdgpu_job_submit(job, ring, &adev->mman.entity, 2175 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2176 if (r) 2177 goto error_free; 2178 2179 return 0; 2180 2181 error_free: 2182 amdgpu_job_free(job); 2183 return r; 2184 } 2185 2186 #if defined(CONFIG_DEBUG_FS) 2187 2188 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2189 { 2190 struct drm_info_node *node = (struct drm_info_node *)m->private; 2191 unsigned ttm_pl = *(int *)node->info_ent->data; 2192 struct drm_device *dev = node->minor->dev; 2193 struct amdgpu_device *adev = dev->dev_private; 2194 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2195 struct drm_printer p = drm_seq_file_printer(m); 2196 2197 man->func->debug(man, &p); 2198 return 0; 2199 } 2200 2201 static int ttm_pl_vram = TTM_PL_VRAM; 2202 static int ttm_pl_tt = TTM_PL_TT; 2203 2204 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2205 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram}, 2206 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt}, 2207 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2208 #ifdef CONFIG_SWIOTLB 2209 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2210 #endif 2211 }; 2212 2213 /** 2214 * amdgpu_ttm_vram_read - Linear read access to VRAM 2215 * 2216 * Accesses VRAM via MMIO for debugging purposes. 2217 */ 2218 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2219 size_t size, loff_t *pos) 2220 { 2221 struct amdgpu_device *adev = file_inode(f)->i_private; 2222 ssize_t result = 0; 2223 int r; 2224 2225 if (size & 0x3 || *pos & 0x3) 2226 return -EINVAL; 2227 2228 if (*pos >= adev->gmc.mc_vram_size) 2229 return -ENXIO; 2230 2231 while (size) { 2232 unsigned long flags; 2233 uint32_t value; 2234 2235 if (*pos >= adev->gmc.mc_vram_size) 2236 return result; 2237 2238 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2239 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2240 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2241 value = RREG32_NO_KIQ(mmMM_DATA); 2242 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2243 2244 r = put_user(value, (uint32_t *)buf); 2245 if (r) 2246 return r; 2247 2248 result += 4; 2249 buf += 4; 2250 *pos += 4; 2251 size -= 4; 2252 } 2253 2254 return result; 2255 } 2256 2257 /** 2258 * amdgpu_ttm_vram_write - Linear write access to VRAM 2259 * 2260 * Accesses VRAM via MMIO for debugging purposes. 2261 */ 2262 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2263 size_t size, loff_t *pos) 2264 { 2265 struct amdgpu_device *adev = file_inode(f)->i_private; 2266 ssize_t result = 0; 2267 int r; 2268 2269 if (size & 0x3 || *pos & 0x3) 2270 return -EINVAL; 2271 2272 if (*pos >= adev->gmc.mc_vram_size) 2273 return -ENXIO; 2274 2275 while (size) { 2276 unsigned long flags; 2277 uint32_t value; 2278 2279 if (*pos >= adev->gmc.mc_vram_size) 2280 return result; 2281 2282 r = get_user(value, (uint32_t *)buf); 2283 if (r) 2284 return r; 2285 2286 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2287 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2288 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2289 WREG32_NO_KIQ(mmMM_DATA, value); 2290 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2291 2292 result += 4; 2293 buf += 4; 2294 *pos += 4; 2295 size -= 4; 2296 } 2297 2298 return result; 2299 } 2300 2301 static const struct file_operations amdgpu_ttm_vram_fops = { 2302 .owner = THIS_MODULE, 2303 .read = amdgpu_ttm_vram_read, 2304 .write = amdgpu_ttm_vram_write, 2305 .llseek = default_llseek, 2306 }; 2307 2308 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2309 2310 /** 2311 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2312 */ 2313 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2314 size_t size, loff_t *pos) 2315 { 2316 struct amdgpu_device *adev = file_inode(f)->i_private; 2317 ssize_t result = 0; 2318 int r; 2319 2320 while (size) { 2321 loff_t p = *pos / PAGE_SIZE; 2322 unsigned off = *pos & ~PAGE_MASK; 2323 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2324 struct page *page; 2325 void *ptr; 2326 2327 if (p >= adev->gart.num_cpu_pages) 2328 return result; 2329 2330 page = adev->gart.pages[p]; 2331 if (page) { 2332 ptr = kmap(page); 2333 ptr += off; 2334 2335 r = copy_to_user(buf, ptr, cur_size); 2336 kunmap(adev->gart.pages[p]); 2337 } else 2338 r = clear_user(buf, cur_size); 2339 2340 if (r) 2341 return -EFAULT; 2342 2343 result += cur_size; 2344 buf += cur_size; 2345 *pos += cur_size; 2346 size -= cur_size; 2347 } 2348 2349 return result; 2350 } 2351 2352 static const struct file_operations amdgpu_ttm_gtt_fops = { 2353 .owner = THIS_MODULE, 2354 .read = amdgpu_ttm_gtt_read, 2355 .llseek = default_llseek 2356 }; 2357 2358 #endif 2359 2360 /** 2361 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2362 * 2363 * This function is used to read memory that has been mapped to the 2364 * GPU and the known addresses are not physical addresses but instead 2365 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2366 */ 2367 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2368 size_t size, loff_t *pos) 2369 { 2370 struct amdgpu_device *adev = file_inode(f)->i_private; 2371 struct iommu_domain *dom; 2372 ssize_t result = 0; 2373 int r; 2374 2375 /* retrieve the IOMMU domain if any for this device */ 2376 dom = iommu_get_domain_for_dev(adev->dev); 2377 2378 while (size) { 2379 phys_addr_t addr = *pos & PAGE_MASK; 2380 loff_t off = *pos & ~PAGE_MASK; 2381 size_t bytes = PAGE_SIZE - off; 2382 unsigned long pfn; 2383 struct page *p; 2384 void *ptr; 2385 2386 bytes = bytes < size ? bytes : size; 2387 2388 /* Translate the bus address to a physical address. If 2389 * the domain is NULL it means there is no IOMMU active 2390 * and the address translation is the identity 2391 */ 2392 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2393 2394 pfn = addr >> PAGE_SHIFT; 2395 if (!pfn_valid(pfn)) 2396 return -EPERM; 2397 2398 p = pfn_to_page(pfn); 2399 if (p->mapping != adev->mman.bdev.dev_mapping) 2400 return -EPERM; 2401 2402 ptr = kmap(p); 2403 r = copy_to_user(buf, ptr + off, bytes); 2404 kunmap(p); 2405 if (r) 2406 return -EFAULT; 2407 2408 size -= bytes; 2409 *pos += bytes; 2410 result += bytes; 2411 } 2412 2413 return result; 2414 } 2415 2416 /** 2417 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2418 * 2419 * This function is used to write memory that has been mapped to the 2420 * GPU and the known addresses are not physical addresses but instead 2421 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2422 */ 2423 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2424 size_t size, loff_t *pos) 2425 { 2426 struct amdgpu_device *adev = file_inode(f)->i_private; 2427 struct iommu_domain *dom; 2428 ssize_t result = 0; 2429 int r; 2430 2431 dom = iommu_get_domain_for_dev(adev->dev); 2432 2433 while (size) { 2434 phys_addr_t addr = *pos & PAGE_MASK; 2435 loff_t off = *pos & ~PAGE_MASK; 2436 size_t bytes = PAGE_SIZE - off; 2437 unsigned long pfn; 2438 struct page *p; 2439 void *ptr; 2440 2441 bytes = bytes < size ? bytes : size; 2442 2443 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2444 2445 pfn = addr >> PAGE_SHIFT; 2446 if (!pfn_valid(pfn)) 2447 return -EPERM; 2448 2449 p = pfn_to_page(pfn); 2450 if (p->mapping != adev->mman.bdev.dev_mapping) 2451 return -EPERM; 2452 2453 ptr = kmap(p); 2454 r = copy_from_user(ptr + off, buf, bytes); 2455 kunmap(p); 2456 if (r) 2457 return -EFAULT; 2458 2459 size -= bytes; 2460 *pos += bytes; 2461 result += bytes; 2462 } 2463 2464 return result; 2465 } 2466 2467 static const struct file_operations amdgpu_ttm_iomem_fops = { 2468 .owner = THIS_MODULE, 2469 .read = amdgpu_iomem_read, 2470 .write = amdgpu_iomem_write, 2471 .llseek = default_llseek 2472 }; 2473 2474 static const struct { 2475 char *name; 2476 const struct file_operations *fops; 2477 int domain; 2478 } ttm_debugfs_entries[] = { 2479 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2480 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2481 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2482 #endif 2483 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2484 }; 2485 2486 #endif 2487 2488 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2489 { 2490 #if defined(CONFIG_DEBUG_FS) 2491 unsigned count; 2492 2493 struct drm_minor *minor = adev->ddev->primary; 2494 struct dentry *ent, *root = minor->debugfs_root; 2495 2496 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2497 ent = debugfs_create_file( 2498 ttm_debugfs_entries[count].name, 2499 S_IFREG | S_IRUGO, root, 2500 adev, 2501 ttm_debugfs_entries[count].fops); 2502 if (IS_ERR(ent)) 2503 return PTR_ERR(ent); 2504 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2505 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2506 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2507 i_size_write(ent->d_inode, adev->gmc.gart_size); 2508 adev->mman.debugfs_entries[count] = ent; 2509 } 2510 2511 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2512 2513 #ifdef CONFIG_SWIOTLB 2514 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2515 --count; 2516 #endif 2517 2518 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2519 #else 2520 return 0; 2521 #endif 2522 } 2523 2524 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2525 { 2526 #if defined(CONFIG_DEBUG_FS) 2527 unsigned i; 2528 2529 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2530 debugfs_remove(adev->mman.debugfs_entries[i]); 2531 #endif 2532 } 2533