xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "bif/bif_4_1_d.h"
51 
52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
53 
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55 			     struct ttm_mem_reg *mem, unsigned num_pages,
56 			     uint64_t offset, unsigned window,
57 			     struct amdgpu_ring *ring,
58 			     uint64_t *addr);
59 
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
62 
63 /*
64  * Global memory.
65  */
66 
67 /**
68  * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
69  * memory object
70  *
71  * @ref: Object for initialization.
72  *
73  * This is called by drm_global_item_ref() when an object is being
74  * initialized.
75  */
76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
77 {
78 	return ttm_mem_global_init(ref->object);
79 }
80 
81 /**
82  * amdgpu_ttm_mem_global_release - Drop reference to a memory object
83  *
84  * @ref: Object being removed
85  *
86  * This is called by drm_global_item_unref() when an object is being
87  * released.
88  */
89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
90 {
91 	ttm_mem_global_release(ref->object);
92 }
93 
94 /**
95  * amdgpu_ttm_global_init - Initialize global TTM memory reference
96  * 							structures.
97  *
98  * @adev:  	AMDGPU device for which the global structures need to be
99  *			registered.
100  *
101  * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
102  * during bring up.
103  */
104 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
105 {
106 	struct drm_global_reference *global_ref;
107 	struct amdgpu_ring *ring;
108 	struct drm_sched_rq *rq;
109 	int r;
110 
111 	/* ensure reference is false in case init fails */
112 	adev->mman.mem_global_referenced = false;
113 
114 	global_ref = &adev->mman.mem_global_ref;
115 	global_ref->global_type = DRM_GLOBAL_TTM_MEM;
116 	global_ref->size = sizeof(struct ttm_mem_global);
117 	global_ref->init = &amdgpu_ttm_mem_global_init;
118 	global_ref->release = &amdgpu_ttm_mem_global_release;
119 	r = drm_global_item_ref(global_ref);
120 	if (r) {
121 		DRM_ERROR("Failed setting up TTM memory accounting "
122 			  "subsystem.\n");
123 		goto error_mem;
124 	}
125 
126 	adev->mman.bo_global_ref.mem_glob =
127 		adev->mman.mem_global_ref.object;
128 	global_ref = &adev->mman.bo_global_ref.ref;
129 	global_ref->global_type = DRM_GLOBAL_TTM_BO;
130 	global_ref->size = sizeof(struct ttm_bo_global);
131 	global_ref->init = &ttm_bo_global_init;
132 	global_ref->release = &ttm_bo_global_release;
133 	r = drm_global_item_ref(global_ref);
134 	if (r) {
135 		DRM_ERROR("Failed setting up TTM BO subsystem.\n");
136 		goto error_bo;
137 	}
138 
139 	mutex_init(&adev->mman.gtt_window_lock);
140 
141 	ring = adev->mman.buffer_funcs_ring;
142 	rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
143 	r = drm_sched_entity_init(&ring->sched, &adev->mman.entity,
144 				  rq, NULL);
145 	if (r) {
146 		DRM_ERROR("Failed setting up TTM BO move run queue.\n");
147 		goto error_entity;
148 	}
149 
150 	adev->mman.mem_global_referenced = true;
151 
152 	return 0;
153 
154 error_entity:
155 	drm_global_item_unref(&adev->mman.bo_global_ref.ref);
156 error_bo:
157 	drm_global_item_unref(&adev->mman.mem_global_ref);
158 error_mem:
159 	return r;
160 }
161 
162 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
163 {
164 	if (adev->mman.mem_global_referenced) {
165 		drm_sched_entity_fini(adev->mman.entity.sched,
166 				      &adev->mman.entity);
167 		mutex_destroy(&adev->mman.gtt_window_lock);
168 		drm_global_item_unref(&adev->mman.bo_global_ref.ref);
169 		drm_global_item_unref(&adev->mman.mem_global_ref);
170 		adev->mman.mem_global_referenced = false;
171 	}
172 }
173 
174 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
175 {
176 	return 0;
177 }
178 
179 /**
180  * amdgpu_init_mem_type - 	Initialize a memory manager for a specific
181  * 							type of memory request.
182  *
183  * @bdev:	The TTM BO device object (contains a reference to
184  * 			amdgpu_device)
185  * @type:	The type of memory requested
186  * @man:
187  *
188  * This is called by ttm_bo_init_mm() when a buffer object is being
189  * initialized.
190  */
191 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
192 				struct ttm_mem_type_manager *man)
193 {
194 	struct amdgpu_device *adev;
195 
196 	adev = amdgpu_ttm_adev(bdev);
197 
198 	switch (type) {
199 	case TTM_PL_SYSTEM:
200 		/* System memory */
201 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
202 		man->available_caching = TTM_PL_MASK_CACHING;
203 		man->default_caching = TTM_PL_FLAG_CACHED;
204 		break;
205 	case TTM_PL_TT:
206 		/* GTT memory  */
207 		man->func = &amdgpu_gtt_mgr_func;
208 		man->gpu_offset = adev->gmc.gart_start;
209 		man->available_caching = TTM_PL_MASK_CACHING;
210 		man->default_caching = TTM_PL_FLAG_CACHED;
211 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
212 		break;
213 	case TTM_PL_VRAM:
214 		/* "On-card" video ram */
215 		man->func = &amdgpu_vram_mgr_func;
216 		man->gpu_offset = adev->gmc.vram_start;
217 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
218 			     TTM_MEMTYPE_FLAG_MAPPABLE;
219 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
220 		man->default_caching = TTM_PL_FLAG_WC;
221 		break;
222 	case AMDGPU_PL_GDS:
223 	case AMDGPU_PL_GWS:
224 	case AMDGPU_PL_OA:
225 		/* On-chip GDS memory*/
226 		man->func = &ttm_bo_manager_func;
227 		man->gpu_offset = 0;
228 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
229 		man->available_caching = TTM_PL_FLAG_UNCACHED;
230 		man->default_caching = TTM_PL_FLAG_UNCACHED;
231 		break;
232 	default:
233 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
234 		return -EINVAL;
235 	}
236 	return 0;
237 }
238 
239 /**
240  * amdgpu_evict_flags - Compute placement flags
241  *
242  * @bo: The buffer object to evict
243  * @placement: Possible destination(s) for evicted BO
244  *
245  * Fill in placement data when ttm_bo_evict() is called
246  */
247 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
248 				struct ttm_placement *placement)
249 {
250 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
251 	struct amdgpu_bo *abo;
252 	static const struct ttm_place placements = {
253 		.fpfn = 0,
254 		.lpfn = 0,
255 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
256 	};
257 
258 	/* Don't handle scatter gather BOs */
259 	if (bo->type == ttm_bo_type_sg) {
260 		placement->num_placement = 0;
261 		placement->num_busy_placement = 0;
262 		return;
263 	}
264 
265 	/* Object isn't an AMDGPU object so ignore */
266 	if (!amdgpu_ttm_bo_is_amdgpu_bo(bo)) {
267 		placement->placement = &placements;
268 		placement->busy_placement = &placements;
269 		placement->num_placement = 1;
270 		placement->num_busy_placement = 1;
271 		return;
272 	}
273 
274 	abo = ttm_to_amdgpu_bo(bo);
275 	switch (bo->mem.mem_type) {
276 	case TTM_PL_VRAM:
277 		if (!adev->mman.buffer_funcs_enabled) {
278 			/* Move to system memory */
279 			amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
280 		} else if (adev->gmc.visible_vram_size < adev->gmc.real_vram_size &&
281 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
282 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
283 
284 			/* Try evicting to the CPU inaccessible part of VRAM
285 			 * first, but only set GTT as busy placement, so this
286 			 * BO will be evicted to GTT rather than causing other
287 			 * BOs to be evicted from VRAM
288 			 */
289 			amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
290 							 AMDGPU_GEM_DOMAIN_GTT);
291 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
292 			abo->placements[0].lpfn = 0;
293 			abo->placement.busy_placement = &abo->placements[1];
294 			abo->placement.num_busy_placement = 1;
295 		} else {
296 			/* Move to GTT memory */
297 			amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
298 		}
299 		break;
300 	case TTM_PL_TT:
301 	default:
302 		amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
303 	}
304 	*placement = abo->placement;
305 }
306 
307 /**
308  * amdgpu_verify_access - Verify access for a mmap call
309  *
310  * @bo:		The buffer object to map
311  * @filp:	The file pointer from the process performing the mmap
312  *
313  * This is called by ttm_bo_mmap() to verify whether a process
314  * has the right to mmap a BO to their process space.
315  */
316 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
317 {
318 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
319 
320 	/*
321 	 * Don't verify access for KFD BOs. They don't have a GEM
322 	 * object associated with them.
323 	 */
324 	if (abo->kfd_bo)
325 		return 0;
326 
327 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
328 		return -EPERM;
329 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
330 					  filp->private_data);
331 }
332 
333 /**
334  * amdgpu_move_null - Register memory for a buffer object
335  *
336  * @bo:			The bo to assign the memory to
337  * @new_mem:	The memory to be assigned.
338  *
339  * Assign the memory from new_mem to the memory of the buffer object
340  * bo.
341  */
342 static void amdgpu_move_null(struct ttm_buffer_object *bo,
343 			     struct ttm_mem_reg *new_mem)
344 {
345 	struct ttm_mem_reg *old_mem = &bo->mem;
346 
347 	BUG_ON(old_mem->mm_node != NULL);
348 	*old_mem = *new_mem;
349 	new_mem->mm_node = NULL;
350 }
351 
352 /**
353  * amdgpu_mm_node_addr -	Compute the GPU relative offset of a GTT
354  * 							buffer.
355  */
356 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
357 				    struct drm_mm_node *mm_node,
358 				    struct ttm_mem_reg *mem)
359 {
360 	uint64_t addr = 0;
361 
362 	if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) {
363 		addr = mm_node->start << PAGE_SHIFT;
364 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
365 	}
366 	return addr;
367 }
368 
369 /**
370  * amdgpu_find_mm_node -	Helper function finds the drm_mm_node
371  *  						corresponding to @offset. It also modifies
372  * 							the offset to be within the drm_mm_node
373  * 							returned
374  */
375 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
376 					       unsigned long *offset)
377 {
378 	struct drm_mm_node *mm_node = mem->mm_node;
379 
380 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
381 		*offset -= (mm_node->size << PAGE_SHIFT);
382 		++mm_node;
383 	}
384 	return mm_node;
385 }
386 
387 /**
388  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
389  *
390  * The function copies @size bytes from {src->mem + src->offset} to
391  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
392  * move and different for a BO to BO copy.
393  *
394  * @f: Returns the last fence if multiple jobs are submitted.
395  */
396 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
397 			       struct amdgpu_copy_mem *src,
398 			       struct amdgpu_copy_mem *dst,
399 			       uint64_t size,
400 			       struct reservation_object *resv,
401 			       struct dma_fence **f)
402 {
403 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
404 	struct drm_mm_node *src_mm, *dst_mm;
405 	uint64_t src_node_start, dst_node_start, src_node_size,
406 		 dst_node_size, src_page_offset, dst_page_offset;
407 	struct dma_fence *fence = NULL;
408 	int r = 0;
409 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
410 					AMDGPU_GPU_PAGE_SIZE);
411 
412 	if (!adev->mman.buffer_funcs_enabled) {
413 		DRM_ERROR("Trying to move memory with ring turned off.\n");
414 		return -EINVAL;
415 	}
416 
417 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
418 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
419 					     src->offset;
420 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
421 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
422 
423 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
424 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
425 					     dst->offset;
426 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
427 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
428 
429 	mutex_lock(&adev->mman.gtt_window_lock);
430 
431 	while (size) {
432 		unsigned long cur_size;
433 		uint64_t from = src_node_start, to = dst_node_start;
434 		struct dma_fence *next;
435 
436 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
437 		 * begins at an offset, then adjust the size accordingly
438 		 */
439 		cur_size = min3(min(src_node_size, dst_node_size), size,
440 				GTT_MAX_BYTES);
441 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
442 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
443 			cur_size -= max(src_page_offset, dst_page_offset);
444 
445 		/* Map only what needs to be accessed. Map src to window 0 and
446 		 * dst to window 1
447 		 */
448 		if (src->mem->mem_type == TTM_PL_TT &&
449 		    !amdgpu_gtt_mgr_has_gart_addr(src->mem)) {
450 			r = amdgpu_map_buffer(src->bo, src->mem,
451 					PFN_UP(cur_size + src_page_offset),
452 					src_node_start, 0, ring,
453 					&from);
454 			if (r)
455 				goto error;
456 			/* Adjust the offset because amdgpu_map_buffer returns
457 			 * start of mapped page
458 			 */
459 			from += src_page_offset;
460 		}
461 
462 		if (dst->mem->mem_type == TTM_PL_TT &&
463 		    !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) {
464 			r = amdgpu_map_buffer(dst->bo, dst->mem,
465 					PFN_UP(cur_size + dst_page_offset),
466 					dst_node_start, 1, ring,
467 					&to);
468 			if (r)
469 				goto error;
470 			to += dst_page_offset;
471 		}
472 
473 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
474 				       resv, &next, false, true);
475 		if (r)
476 			goto error;
477 
478 		dma_fence_put(fence);
479 		fence = next;
480 
481 		size -= cur_size;
482 		if (!size)
483 			break;
484 
485 		src_node_size -= cur_size;
486 		if (!src_node_size) {
487 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
488 							     src->mem);
489 			src_node_size = (src_mm->size << PAGE_SHIFT);
490 		} else {
491 			src_node_start += cur_size;
492 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
493 		}
494 		dst_node_size -= cur_size;
495 		if (!dst_node_size) {
496 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
497 							     dst->mem);
498 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
499 		} else {
500 			dst_node_start += cur_size;
501 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
502 		}
503 	}
504 error:
505 	mutex_unlock(&adev->mman.gtt_window_lock);
506 	if (f)
507 		*f = dma_fence_get(fence);
508 	dma_fence_put(fence);
509 	return r;
510 }
511 
512 /**
513  * amdgpu_move_blit - Copy an entire buffer to another buffer
514  *
515  * This is a helper called by amdgpu_bo_move() and
516  * amdgpu_move_vram_ram() to help move buffers to and from VRAM.
517  */
518 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
519 			    bool evict, bool no_wait_gpu,
520 			    struct ttm_mem_reg *new_mem,
521 			    struct ttm_mem_reg *old_mem)
522 {
523 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
524 	struct amdgpu_copy_mem src, dst;
525 	struct dma_fence *fence = NULL;
526 	int r;
527 
528 	src.bo = bo;
529 	dst.bo = bo;
530 	src.mem = old_mem;
531 	dst.mem = new_mem;
532 	src.offset = 0;
533 	dst.offset = 0;
534 
535 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
536 				       new_mem->num_pages << PAGE_SHIFT,
537 				       bo->resv, &fence);
538 	if (r)
539 		goto error;
540 
541 	r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
542 	dma_fence_put(fence);
543 	return r;
544 
545 error:
546 	if (fence)
547 		dma_fence_wait(fence, false);
548 	dma_fence_put(fence);
549 	return r;
550 }
551 
552 /**
553  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
554  *
555  * Called by amdgpu_bo_move().
556  */
557 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
558 				struct ttm_operation_ctx *ctx,
559 				struct ttm_mem_reg *new_mem)
560 {
561 	struct amdgpu_device *adev;
562 	struct ttm_mem_reg *old_mem = &bo->mem;
563 	struct ttm_mem_reg tmp_mem;
564 	struct ttm_place placements;
565 	struct ttm_placement placement;
566 	int r;
567 
568 	adev = amdgpu_ttm_adev(bo->bdev);
569 
570 	/* create space/pages for new_mem in GTT space */
571 	tmp_mem = *new_mem;
572 	tmp_mem.mm_node = NULL;
573 	placement.num_placement = 1;
574 	placement.placement = &placements;
575 	placement.num_busy_placement = 1;
576 	placement.busy_placement = &placements;
577 	placements.fpfn = 0;
578 	placements.lpfn = 0;
579 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
580 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
581 	if (unlikely(r)) {
582 		return r;
583 	}
584 
585 	/* set caching flags */
586 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
587 	if (unlikely(r)) {
588 		goto out_cleanup;
589 	}
590 
591 	/* Bind the memory to the GTT space */
592 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
593 	if (unlikely(r)) {
594 		goto out_cleanup;
595 	}
596 
597 	/* blit VRAM to GTT */
598 	r = amdgpu_move_blit(bo, true, ctx->no_wait_gpu, &tmp_mem, old_mem);
599 	if (unlikely(r)) {
600 		goto out_cleanup;
601 	}
602 
603 	/* move BO (in tmp_mem) to new_mem */
604 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
605 out_cleanup:
606 	ttm_bo_mem_put(bo, &tmp_mem);
607 	return r;
608 }
609 
610 /**
611  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
612  *
613  * Called by amdgpu_bo_move().
614  */
615 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
616 				struct ttm_operation_ctx *ctx,
617 				struct ttm_mem_reg *new_mem)
618 {
619 	struct amdgpu_device *adev;
620 	struct ttm_mem_reg *old_mem = &bo->mem;
621 	struct ttm_mem_reg tmp_mem;
622 	struct ttm_placement placement;
623 	struct ttm_place placements;
624 	int r;
625 
626 	adev = amdgpu_ttm_adev(bo->bdev);
627 
628 	/* make space in GTT for old_mem buffer */
629 	tmp_mem = *new_mem;
630 	tmp_mem.mm_node = NULL;
631 	placement.num_placement = 1;
632 	placement.placement = &placements;
633 	placement.num_busy_placement = 1;
634 	placement.busy_placement = &placements;
635 	placements.fpfn = 0;
636 	placements.lpfn = 0;
637 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
638 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
639 	if (unlikely(r)) {
640 		return r;
641 	}
642 
643 	/* move/bind old memory to GTT space */
644 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
645 	if (unlikely(r)) {
646 		goto out_cleanup;
647 	}
648 
649 	/* copy to VRAM */
650 	r = amdgpu_move_blit(bo, true, ctx->no_wait_gpu, new_mem, old_mem);
651 	if (unlikely(r)) {
652 		goto out_cleanup;
653 	}
654 out_cleanup:
655 	ttm_bo_mem_put(bo, &tmp_mem);
656 	return r;
657 }
658 
659 /**
660  * amdgpu_bo_move - Move a buffer object to a new memory location
661  *
662  * Called by ttm_bo_handle_move_mem()
663  */
664 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
665 			  struct ttm_operation_ctx *ctx,
666 			  struct ttm_mem_reg *new_mem)
667 {
668 	struct amdgpu_device *adev;
669 	struct amdgpu_bo *abo;
670 	struct ttm_mem_reg *old_mem = &bo->mem;
671 	int r;
672 
673 	/* Can't move a pinned BO */
674 	abo = ttm_to_amdgpu_bo(bo);
675 	if (WARN_ON_ONCE(abo->pin_count > 0))
676 		return -EINVAL;
677 
678 	adev = amdgpu_ttm_adev(bo->bdev);
679 
680 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
681 		amdgpu_move_null(bo, new_mem);
682 		return 0;
683 	}
684 	if ((old_mem->mem_type == TTM_PL_TT &&
685 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
686 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
687 	     new_mem->mem_type == TTM_PL_TT)) {
688 		/* bind is enough */
689 		amdgpu_move_null(bo, new_mem);
690 		return 0;
691 	}
692 
693 	if (!adev->mman.buffer_funcs_enabled)
694 		goto memcpy;
695 
696 	if (old_mem->mem_type == TTM_PL_VRAM &&
697 	    new_mem->mem_type == TTM_PL_SYSTEM) {
698 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
699 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
700 		   new_mem->mem_type == TTM_PL_VRAM) {
701 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
702 	} else {
703 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
704 				     new_mem, old_mem);
705 	}
706 
707 	if (r) {
708 memcpy:
709 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
710 		if (r) {
711 			return r;
712 		}
713 	}
714 
715 	if (bo->type == ttm_bo_type_device &&
716 	    new_mem->mem_type == TTM_PL_VRAM &&
717 	    old_mem->mem_type != TTM_PL_VRAM) {
718 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
719 		 * accesses the BO after it's moved.
720 		 */
721 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
722 	}
723 
724 	/* update statistics */
725 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
726 	return 0;
727 }
728 
729 /**
730  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
731  *
732  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
733  */
734 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
735 {
736 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
737 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
738 	struct drm_mm_node *mm_node = mem->mm_node;
739 
740 	mem->bus.addr = NULL;
741 	mem->bus.offset = 0;
742 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
743 	mem->bus.base = 0;
744 	mem->bus.is_iomem = false;
745 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
746 		return -EINVAL;
747 	switch (mem->mem_type) {
748 	case TTM_PL_SYSTEM:
749 		/* system memory */
750 		return 0;
751 	case TTM_PL_TT:
752 		break;
753 	case TTM_PL_VRAM:
754 		mem->bus.offset = mem->start << PAGE_SHIFT;
755 		/* check if it's visible */
756 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
757 			return -EINVAL;
758 		/* Only physically contiguous buffers apply. In a contiguous
759 		 * buffer, size of the first mm_node would match the number of
760 		 * pages in ttm_mem_reg.
761 		 */
762 		if (adev->mman.aper_base_kaddr &&
763 		    (mm_node->size == mem->num_pages))
764 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
765 					mem->bus.offset;
766 
767 		mem->bus.base = adev->gmc.aper_base;
768 		mem->bus.is_iomem = true;
769 		break;
770 	default:
771 		return -EINVAL;
772 	}
773 	return 0;
774 }
775 
776 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
777 {
778 }
779 
780 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
781 					   unsigned long page_offset)
782 {
783 	struct drm_mm_node *mm;
784 	unsigned long offset = (page_offset << PAGE_SHIFT);
785 
786 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
787 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
788 		(offset >> PAGE_SHIFT);
789 }
790 
791 /*
792  * TTM backend functions.
793  */
794 struct amdgpu_ttm_gup_task_list {
795 	struct list_head	list;
796 	struct task_struct	*task;
797 };
798 
799 struct amdgpu_ttm_tt {
800 	struct ttm_dma_tt	ttm;
801 	u64			offset;
802 	uint64_t		userptr;
803 	struct task_struct	*usertask;
804 	uint32_t		userflags;
805 	spinlock_t              guptasklock;
806 	struct list_head        guptasks;
807 	atomic_t		mmu_invalidations;
808 	uint32_t		last_set_pages;
809 };
810 
811 /**
812  * amdgpu_ttm_tt_get_user_pages - 	Pin pages of memory pointed to
813  * 									by a USERPTR pointer to memory
814  *
815  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
816  * This provides a wrapper around the get_user_pages() call to provide
817  * device accessible pages that back user memory.
818  */
819 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
820 {
821 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
822 	struct mm_struct *mm = gtt->usertask->mm;
823 	unsigned int flags = 0;
824 	unsigned pinned = 0;
825 	int r;
826 
827 	if (!mm) /* Happens during process shutdown */
828 		return -ESRCH;
829 
830 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
831 		flags |= FOLL_WRITE;
832 
833 	down_read(&mm->mmap_sem);
834 
835 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
836 		/* check that we only use anonymous memory
837 		   to prevent problems with writeback */
838 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
839 		struct vm_area_struct *vma;
840 
841 		vma = find_vma(mm, gtt->userptr);
842 		if (!vma || vma->vm_file || vma->vm_end < end) {
843 			up_read(&mm->mmap_sem);
844 			return -EPERM;
845 		}
846 	}
847 
848 	/* loop enough times using contiguous pages of memory */
849 	do {
850 		unsigned num_pages = ttm->num_pages - pinned;
851 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
852 		struct page **p = pages + pinned;
853 		struct amdgpu_ttm_gup_task_list guptask;
854 
855 		guptask.task = current;
856 		spin_lock(&gtt->guptasklock);
857 		list_add(&guptask.list, &gtt->guptasks);
858 		spin_unlock(&gtt->guptasklock);
859 
860 		if (mm == current->mm)
861 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
862 		else
863 			r = get_user_pages_remote(gtt->usertask,
864 					mm, userptr, num_pages,
865 					flags, p, NULL, NULL);
866 
867 		spin_lock(&gtt->guptasklock);
868 		list_del(&guptask.list);
869 		spin_unlock(&gtt->guptasklock);
870 
871 		if (r < 0)
872 			goto release_pages;
873 
874 		pinned += r;
875 
876 	} while (pinned < ttm->num_pages);
877 
878 	up_read(&mm->mmap_sem);
879 	return 0;
880 
881 release_pages:
882 	release_pages(pages, pinned);
883 	up_read(&mm->mmap_sem);
884 	return r;
885 }
886 
887 /**
888  * amdgpu_ttm_tt_set_user_pages - 	Copy pages in, putting old pages
889  * 									as necessary.
890  *
891  * Called by amdgpu_cs_list_validate().  This creates the page list
892  * that backs user memory and will ultimately be mapped into the device
893  * address space.
894  */
895 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
896 {
897 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
898 	unsigned i;
899 
900 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
901 	for (i = 0; i < ttm->num_pages; ++i) {
902 		if (ttm->pages[i])
903 			put_page(ttm->pages[i]);
904 
905 		ttm->pages[i] = pages ? pages[i] : NULL;
906 	}
907 }
908 
909 /**
910  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
911  *
912  * Called while unpinning userptr pages
913  */
914 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
915 {
916 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
917 	unsigned i;
918 
919 	for (i = 0; i < ttm->num_pages; ++i) {
920 		struct page *page = ttm->pages[i];
921 
922 		if (!page)
923 			continue;
924 
925 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
926 			set_page_dirty(page);
927 
928 		mark_page_accessed(page);
929 	}
930 }
931 
932 /**
933  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the
934  * 								user pages
935  *
936  * Called by amdgpu_ttm_backend_bind()
937  **/
938 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
939 {
940 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
941 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
942 	unsigned nents;
943 	int r;
944 
945 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
946 	enum dma_data_direction direction = write ?
947 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
948 
949 	/* Allocate an SG array and squash pages into it */
950 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
951 				      ttm->num_pages << PAGE_SHIFT,
952 				      GFP_KERNEL);
953 	if (r)
954 		goto release_sg;
955 
956 	/* Map SG to device */
957 	r = -ENOMEM;
958 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
959 	if (nents != ttm->sg->nents)
960 		goto release_sg;
961 
962 	/* convert SG to linear array of pages and dma addresses */
963 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
964 					 gtt->ttm.dma_address, ttm->num_pages);
965 
966 	return 0;
967 
968 release_sg:
969 	kfree(ttm->sg);
970 	return r;
971 }
972 
973 /**
974  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
975  */
976 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
977 {
978 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
979 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
980 
981 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
982 	enum dma_data_direction direction = write ?
983 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
984 
985 	/* double check that we don't free the table twice */
986 	if (!ttm->sg->sgl)
987 		return;
988 
989 	/* unmap the pages mapped to the device */
990 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
991 
992 	/* mark the pages as dirty */
993 	amdgpu_ttm_tt_mark_user_pages(ttm);
994 
995 	sg_free_table(ttm->sg);
996 }
997 
998 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
999 				struct ttm_buffer_object *tbo,
1000 				uint64_t flags)
1001 {
1002 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1003 	struct ttm_tt *ttm = tbo->ttm;
1004 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1005 	int r;
1006 
1007 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1008 		uint64_t page_idx = 1;
1009 
1010 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1011 				ttm->pages, gtt->ttm.dma_address, flags);
1012 		if (r)
1013 			goto gart_bind_fail;
1014 
1015 		/* Patch mtype of the second part BO */
1016 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
1017 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1018 
1019 		r = amdgpu_gart_bind(adev,
1020 				gtt->offset + (page_idx << PAGE_SHIFT),
1021 				ttm->num_pages - page_idx,
1022 				&ttm->pages[page_idx],
1023 				&(gtt->ttm.dma_address[page_idx]), flags);
1024 	} else {
1025 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1026 				     ttm->pages, gtt->ttm.dma_address, flags);
1027 	}
1028 
1029 gart_bind_fail:
1030 	if (r)
1031 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1032 			  ttm->num_pages, gtt->offset);
1033 
1034 	return r;
1035 }
1036 
1037 /**
1038  * amdgpu_ttm_backend_bind - Bind GTT memory
1039  *
1040  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1041  * This handles binding GTT memory to the device address space.
1042  */
1043 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1044 				   struct ttm_mem_reg *bo_mem)
1045 {
1046 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1047 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1048 	uint64_t flags;
1049 	int r = 0;
1050 
1051 	if (gtt->userptr) {
1052 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1053 		if (r) {
1054 			DRM_ERROR("failed to pin userptr\n");
1055 			return r;
1056 		}
1057 	}
1058 	if (!ttm->num_pages) {
1059 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1060 		     ttm->num_pages, bo_mem, ttm);
1061 	}
1062 
1063 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1064 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1065 	    bo_mem->mem_type == AMDGPU_PL_OA)
1066 		return -EINVAL;
1067 
1068 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1069 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1070 		return 0;
1071 	}
1072 
1073 	/* compute PTE flags relevant to this BO memory */
1074 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1075 
1076 	/* bind pages into GART page tables */
1077 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1078 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1079 		ttm->pages, gtt->ttm.dma_address, flags);
1080 
1081 	if (r)
1082 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1083 			  ttm->num_pages, gtt->offset);
1084 	return r;
1085 }
1086 
1087 /**
1088  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1089  */
1090 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1091 {
1092 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1093 	struct ttm_operation_ctx ctx = { false, false };
1094 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1095 	struct ttm_mem_reg tmp;
1096 	struct ttm_placement placement;
1097 	struct ttm_place placements;
1098 	uint64_t flags;
1099 	int r;
1100 
1101 	if (bo->mem.mem_type != TTM_PL_TT ||
1102 	    amdgpu_gtt_mgr_has_gart_addr(&bo->mem))
1103 		return 0;
1104 
1105 	/* allocate GTT space */
1106 	tmp = bo->mem;
1107 	tmp.mm_node = NULL;
1108 	placement.num_placement = 1;
1109 	placement.placement = &placements;
1110 	placement.num_busy_placement = 1;
1111 	placement.busy_placement = &placements;
1112 	placements.fpfn = 0;
1113 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1114 	placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1115 		TTM_PL_FLAG_TT;
1116 
1117 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1118 	if (unlikely(r))
1119 		return r;
1120 
1121 	/* compute PTE flags for this buffer object */
1122 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1123 
1124 	/* Bind pages */
1125 	gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1126 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
1127 	if (unlikely(r)) {
1128 		ttm_bo_mem_put(bo, &tmp);
1129 		return r;
1130 	}
1131 
1132 	ttm_bo_mem_put(bo, &bo->mem);
1133 	bo->mem = tmp;
1134 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1135 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1136 
1137 	return 0;
1138 }
1139 
1140 /**
1141  * amdgpu_ttm_recover_gart - Rebind GTT pages
1142  *
1143  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1144  * rebind GTT pages during a GPU reset.
1145  */
1146 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1147 {
1148 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1149 	uint64_t flags;
1150 	int r;
1151 
1152 	if (!tbo->ttm)
1153 		return 0;
1154 
1155 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1156 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1157 
1158 	return r;
1159 }
1160 
1161 /**
1162  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1163  *
1164  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1165  * ttm_tt_destroy().
1166  */
1167 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1168 {
1169 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1170 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1171 	int r;
1172 
1173 	/* if the pages have userptr pinning then clear that first */
1174 	if (gtt->userptr)
1175 		amdgpu_ttm_tt_unpin_userptr(ttm);
1176 
1177 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1178 		return 0;
1179 
1180 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1181 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1182 	if (r)
1183 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1184 			  gtt->ttm.ttm.num_pages, gtt->offset);
1185 	return r;
1186 }
1187 
1188 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1189 {
1190 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1191 
1192 	if (gtt->usertask)
1193 		put_task_struct(gtt->usertask);
1194 
1195 	ttm_dma_tt_fini(&gtt->ttm);
1196 	kfree(gtt);
1197 }
1198 
1199 static struct ttm_backend_func amdgpu_backend_func = {
1200 	.bind = &amdgpu_ttm_backend_bind,
1201 	.unbind = &amdgpu_ttm_backend_unbind,
1202 	.destroy = &amdgpu_ttm_backend_destroy,
1203 };
1204 
1205 /**
1206  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1207  *
1208  * @bo: The buffer object to create a GTT ttm_tt object around
1209  *
1210  * Called by ttm_tt_create().
1211  */
1212 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1213 					   uint32_t page_flags)
1214 {
1215 	struct amdgpu_device *adev;
1216 	struct amdgpu_ttm_tt *gtt;
1217 
1218 	adev = amdgpu_ttm_adev(bo->bdev);
1219 
1220 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1221 	if (gtt == NULL) {
1222 		return NULL;
1223 	}
1224 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1225 
1226 	/* allocate space for the uninitialized page entries */
1227 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1228 		kfree(gtt);
1229 		return NULL;
1230 	}
1231 	return &gtt->ttm.ttm;
1232 }
1233 
1234 /**
1235  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1236  *
1237  * Map the pages of a ttm_tt object to an address space visible
1238  * to the underlying device.
1239  */
1240 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1241 			struct ttm_operation_ctx *ctx)
1242 {
1243 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1244 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1245 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1246 
1247 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1248 	if (gtt && gtt->userptr) {
1249 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1250 		if (!ttm->sg)
1251 			return -ENOMEM;
1252 
1253 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1254 		ttm->state = tt_unbound;
1255 		return 0;
1256 	}
1257 
1258 	if (slave && ttm->sg) {
1259 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1260 						 gtt->ttm.dma_address,
1261 						 ttm->num_pages);
1262 		ttm->state = tt_unbound;
1263 		return 0;
1264 	}
1265 
1266 #ifdef CONFIG_SWIOTLB
1267 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1268 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1269 	}
1270 #endif
1271 
1272 	/* fall back to generic helper to populate the page array
1273 	 * and map them to the device */
1274 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1275 }
1276 
1277 /**
1278  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1279  *
1280  * Unmaps pages of a ttm_tt object from the device address space and
1281  * unpopulates the page array backing it.
1282  */
1283 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1284 {
1285 	struct amdgpu_device *adev;
1286 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1287 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1288 
1289 	if (gtt && gtt->userptr) {
1290 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1291 		kfree(ttm->sg);
1292 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1293 		return;
1294 	}
1295 
1296 	if (slave)
1297 		return;
1298 
1299 	adev = amdgpu_ttm_adev(ttm->bdev);
1300 
1301 #ifdef CONFIG_SWIOTLB
1302 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1303 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1304 		return;
1305 	}
1306 #endif
1307 
1308 	/* fall back to generic helper to unmap and unpopulate array */
1309 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1310 }
1311 
1312 /**
1313  * amdgpu_ttm_tt_set_userptr -	Initialize userptr GTT ttm_tt
1314  * 								for the current task
1315  *
1316  * @ttm: The ttm_tt object to bind this userptr object to
1317  * @addr:  The address in the current tasks VM space to use
1318  * @flags: Requirements of userptr object.
1319  *
1320  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1321  * to current task
1322  */
1323 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1324 			      uint32_t flags)
1325 {
1326 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1327 
1328 	if (gtt == NULL)
1329 		return -EINVAL;
1330 
1331 	gtt->userptr = addr;
1332 	gtt->userflags = flags;
1333 
1334 	if (gtt->usertask)
1335 		put_task_struct(gtt->usertask);
1336 	gtt->usertask = current->group_leader;
1337 	get_task_struct(gtt->usertask);
1338 
1339 	spin_lock_init(&gtt->guptasklock);
1340 	INIT_LIST_HEAD(&gtt->guptasks);
1341 	atomic_set(&gtt->mmu_invalidations, 0);
1342 	gtt->last_set_pages = 0;
1343 
1344 	return 0;
1345 }
1346 
1347 /**
1348  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1349  */
1350 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1351 {
1352 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1353 
1354 	if (gtt == NULL)
1355 		return NULL;
1356 
1357 	if (gtt->usertask == NULL)
1358 		return NULL;
1359 
1360 	return gtt->usertask->mm;
1361 }
1362 
1363 /**
1364  * amdgpu_ttm_tt_affect_userptr -	Determine if a ttm_tt object lays
1365  * 									inside an address range for the
1366  * 									current task.
1367  *
1368  */
1369 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1370 				  unsigned long end)
1371 {
1372 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1373 	struct amdgpu_ttm_gup_task_list *entry;
1374 	unsigned long size;
1375 
1376 	if (gtt == NULL || !gtt->userptr)
1377 		return false;
1378 
1379 	/* Return false if no part of the ttm_tt object lies within
1380 	 * the range
1381 	 */
1382 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1383 	if (gtt->userptr > end || gtt->userptr + size <= start)
1384 		return false;
1385 
1386 	/* Search the lists of tasks that hold this mapping and see
1387 	 * if current is one of them.  If it is return false.
1388 	 */
1389 	spin_lock(&gtt->guptasklock);
1390 	list_for_each_entry(entry, &gtt->guptasks, list) {
1391 		if (entry->task == current) {
1392 			spin_unlock(&gtt->guptasklock);
1393 			return false;
1394 		}
1395 	}
1396 	spin_unlock(&gtt->guptasklock);
1397 
1398 	atomic_inc(&gtt->mmu_invalidations);
1399 
1400 	return true;
1401 }
1402 
1403 /**
1404  * amdgpu_ttm_tt_userptr_invalidated -	Has the ttm_tt object been
1405  * 										invalidated?
1406  */
1407 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1408 				       int *last_invalidated)
1409 {
1410 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1411 	int prev_invalidated = *last_invalidated;
1412 
1413 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1414 	return prev_invalidated != *last_invalidated;
1415 }
1416 
1417 /**
1418  * amdgpu_ttm_tt_userptr_needs_pages -	Have the pages backing this
1419  * 										ttm_tt object been invalidated
1420  * 										since the last time they've
1421  * 										been set?
1422  */
1423 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1424 {
1425 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1426 
1427 	if (gtt == NULL || !gtt->userptr)
1428 		return false;
1429 
1430 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1431 }
1432 
1433 /**
1434  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1435  */
1436 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1437 {
1438 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1439 
1440 	if (gtt == NULL)
1441 		return false;
1442 
1443 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1444 }
1445 
1446 /**
1447  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1448  *
1449  * @ttm: The ttm_tt object to compute the flags for
1450  * @mem: The memory registry backing this ttm_tt object
1451  */
1452 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1453 				 struct ttm_mem_reg *mem)
1454 {
1455 	uint64_t flags = 0;
1456 
1457 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1458 		flags |= AMDGPU_PTE_VALID;
1459 
1460 	if (mem && mem->mem_type == TTM_PL_TT) {
1461 		flags |= AMDGPU_PTE_SYSTEM;
1462 
1463 		if (ttm->caching_state == tt_cached)
1464 			flags |= AMDGPU_PTE_SNOOPED;
1465 	}
1466 
1467 	flags |= adev->gart.gart_pte_flags;
1468 	flags |= AMDGPU_PTE_READABLE;
1469 
1470 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1471 		flags |= AMDGPU_PTE_WRITEABLE;
1472 
1473 	return flags;
1474 }
1475 
1476 /**
1477  * amdgpu_ttm_bo_eviction_valuable -	Check to see if we can evict
1478  * 										a buffer object.
1479  *
1480  * Return true if eviction is sensible.  Called by
1481  * ttm_mem_evict_first() on behalf of ttm_bo_mem_force_space()
1482  * which tries to evict buffer objects until it can find space
1483  * for a new object and by ttm_bo_force_list_clean() which is
1484  * used to clean out a memory space.
1485  */
1486 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1487 					    const struct ttm_place *place)
1488 {
1489 	unsigned long num_pages = bo->mem.num_pages;
1490 	struct drm_mm_node *node = bo->mem.mm_node;
1491 	struct reservation_object_list *flist;
1492 	struct dma_fence *f;
1493 	int i;
1494 
1495 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1496 	 * If true, then return false as any KFD process needs all its BOs to
1497 	 * be resident to run successfully
1498 	 */
1499 	flist = reservation_object_get_list(bo->resv);
1500 	if (flist) {
1501 		for (i = 0; i < flist->shared_count; ++i) {
1502 			f = rcu_dereference_protected(flist->shared[i],
1503 				reservation_object_held(bo->resv));
1504 			if (amdkfd_fence_check_mm(f, current->mm))
1505 				return false;
1506 		}
1507 	}
1508 
1509 	switch (bo->mem.mem_type) {
1510 	case TTM_PL_TT:
1511 		return true;
1512 
1513 	case TTM_PL_VRAM:
1514 		/* Check each drm MM node individually */
1515 		while (num_pages) {
1516 			if (place->fpfn < (node->start + node->size) &&
1517 			    !(place->lpfn && place->lpfn <= node->start))
1518 				return true;
1519 
1520 			num_pages -= node->size;
1521 			++node;
1522 		}
1523 		return false;
1524 
1525 	default:
1526 		break;
1527 	}
1528 
1529 	return ttm_bo_eviction_valuable(bo, place);
1530 }
1531 
1532 /**
1533  * amdgpu_ttm_access_memory -	Read or Write memory that backs a
1534  * 								buffer object.
1535  *
1536  * @bo:  The buffer object to read/write
1537  * @offset:  Offset into buffer object
1538  * @buf:  Secondary buffer to write/read from
1539  * @len: Length in bytes of access
1540  * @write:  true if writing
1541  *
1542  * This is used to access VRAM that backs a buffer object via MMIO
1543  * access for debugging purposes.
1544  */
1545 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1546 				    unsigned long offset,
1547 				    void *buf, int len, int write)
1548 {
1549 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1550 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1551 	struct drm_mm_node *nodes;
1552 	uint32_t value = 0;
1553 	int ret = 0;
1554 	uint64_t pos;
1555 	unsigned long flags;
1556 
1557 	if (bo->mem.mem_type != TTM_PL_VRAM)
1558 		return -EIO;
1559 
1560 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1561 	pos = (nodes->start << PAGE_SHIFT) + offset;
1562 
1563 	while (len && pos < adev->gmc.mc_vram_size) {
1564 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1565 		uint32_t bytes = 4 - (pos & 3);
1566 		uint32_t shift = (pos & 3) * 8;
1567 		uint32_t mask = 0xffffffff << shift;
1568 
1569 		if (len < bytes) {
1570 			mask &= 0xffffffff >> (bytes - len) * 8;
1571 			bytes = len;
1572 		}
1573 
1574 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1575 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1576 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1577 		if (!write || mask != 0xffffffff)
1578 			value = RREG32_NO_KIQ(mmMM_DATA);
1579 		if (write) {
1580 			value &= ~mask;
1581 			value |= (*(uint32_t *)buf << shift) & mask;
1582 			WREG32_NO_KIQ(mmMM_DATA, value);
1583 		}
1584 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1585 		if (!write) {
1586 			value = (value & mask) >> shift;
1587 			memcpy(buf, &value, bytes);
1588 		}
1589 
1590 		ret += bytes;
1591 		buf = (uint8_t *)buf + bytes;
1592 		pos += bytes;
1593 		len -= bytes;
1594 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1595 			++nodes;
1596 			pos = (nodes->start << PAGE_SHIFT);
1597 		}
1598 	}
1599 
1600 	return ret;
1601 }
1602 
1603 static struct ttm_bo_driver amdgpu_bo_driver = {
1604 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1605 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1606 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1607 	.invalidate_caches = &amdgpu_invalidate_caches,
1608 	.init_mem_type = &amdgpu_init_mem_type,
1609 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1610 	.evict_flags = &amdgpu_evict_flags,
1611 	.move = &amdgpu_bo_move,
1612 	.verify_access = &amdgpu_verify_access,
1613 	.move_notify = &amdgpu_bo_move_notify,
1614 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1615 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1616 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1617 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1618 	.access_memory = &amdgpu_ttm_access_memory
1619 };
1620 
1621 /*
1622  * Firmware Reservation functions
1623  */
1624 /**
1625  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1626  *
1627  * @adev: amdgpu_device pointer
1628  *
1629  * free fw reserved vram if it has been reserved.
1630  */
1631 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1632 {
1633 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1634 		NULL, &adev->fw_vram_usage.va);
1635 }
1636 
1637 /**
1638  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1639  *
1640  * @adev: amdgpu_device pointer
1641  *
1642  * create bo vram reservation from fw.
1643  */
1644 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1645 {
1646 	struct ttm_operation_ctx ctx = { false, false };
1647 	struct amdgpu_bo_param bp;
1648 	int r = 0;
1649 	int i;
1650 	u64 vram_size = adev->gmc.visible_vram_size;
1651 	u64 offset = adev->fw_vram_usage.start_offset;
1652 	u64 size = adev->fw_vram_usage.size;
1653 	struct amdgpu_bo *bo;
1654 
1655 	memset(&bp, 0, sizeof(bp));
1656 	bp.size = adev->fw_vram_usage.size;
1657 	bp.byte_align = PAGE_SIZE;
1658 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1659 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1660 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1661 	bp.type = ttm_bo_type_kernel;
1662 	bp.resv = NULL;
1663 	adev->fw_vram_usage.va = NULL;
1664 	adev->fw_vram_usage.reserved_bo = NULL;
1665 
1666 	if (adev->fw_vram_usage.size > 0 &&
1667 		adev->fw_vram_usage.size <= vram_size) {
1668 
1669 		r = amdgpu_bo_create(adev, &bp,
1670 				     &adev->fw_vram_usage.reserved_bo);
1671 		if (r)
1672 			goto error_create;
1673 
1674 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1675 		if (r)
1676 			goto error_reserve;
1677 
1678 		/* remove the original mem node and create a new one at the
1679 		 * request position
1680 		 */
1681 		bo = adev->fw_vram_usage.reserved_bo;
1682 		offset = ALIGN(offset, PAGE_SIZE);
1683 		for (i = 0; i < bo->placement.num_placement; ++i) {
1684 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1685 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1686 		}
1687 
1688 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1689 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1690 				     &bo->tbo.mem, &ctx);
1691 		if (r)
1692 			goto error_pin;
1693 
1694 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1695 			AMDGPU_GEM_DOMAIN_VRAM,
1696 			adev->fw_vram_usage.start_offset,
1697 			(adev->fw_vram_usage.start_offset +
1698 			adev->fw_vram_usage.size), NULL);
1699 		if (r)
1700 			goto error_pin;
1701 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1702 			&adev->fw_vram_usage.va);
1703 		if (r)
1704 			goto error_kmap;
1705 
1706 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1707 	}
1708 	return r;
1709 
1710 error_kmap:
1711 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1712 error_pin:
1713 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1714 error_reserve:
1715 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1716 error_create:
1717 	adev->fw_vram_usage.va = NULL;
1718 	adev->fw_vram_usage.reserved_bo = NULL;
1719 	return r;
1720 }
1721 /**
1722  * amdgpu_ttm_init -	Init the memory management (ttm) as well as
1723  * 						various gtt/vram related fields.
1724  *
1725  * This initializes all of the memory space pools that the TTM layer
1726  * will need such as the GTT space (system memory mapped to the device),
1727  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1728  * can be mapped per VMID.
1729  */
1730 int amdgpu_ttm_init(struct amdgpu_device *adev)
1731 {
1732 	uint64_t gtt_size;
1733 	int r;
1734 	u64 vis_vram_limit;
1735 
1736 	/* initialize global references for vram/gtt */
1737 	r = amdgpu_ttm_global_init(adev);
1738 	if (r) {
1739 		return r;
1740 	}
1741 	/* No others user of address space so set it to 0 */
1742 	r = ttm_bo_device_init(&adev->mman.bdev,
1743 			       adev->mman.bo_global_ref.ref.object,
1744 			       &amdgpu_bo_driver,
1745 			       adev->ddev->anon_inode->i_mapping,
1746 			       DRM_FILE_PAGE_OFFSET,
1747 			       adev->need_dma32);
1748 	if (r) {
1749 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1750 		return r;
1751 	}
1752 	adev->mman.initialized = true;
1753 
1754 	/* We opt to avoid OOM on system pages allocations */
1755 	adev->mman.bdev.no_retry = true;
1756 
1757 	/* Initialize VRAM pool with all of VRAM divided into pages */
1758 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1759 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1760 	if (r) {
1761 		DRM_ERROR("Failed initializing VRAM heap.\n");
1762 		return r;
1763 	}
1764 
1765 	/* Reduce size of CPU-visible VRAM if requested */
1766 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1767 	if (amdgpu_vis_vram_limit > 0 &&
1768 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1769 		adev->gmc.visible_vram_size = vis_vram_limit;
1770 
1771 	/* Change the size here instead of the init above so only lpfn is affected */
1772 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1773 #ifdef CONFIG_64BIT
1774 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1775 						adev->gmc.visible_vram_size);
1776 #endif
1777 
1778 	/*
1779 	 *The reserved vram for firmware must be pinned to the specified
1780 	 *place on the VRAM, so reserve it early.
1781 	 */
1782 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1783 	if (r) {
1784 		return r;
1785 	}
1786 
1787 	/* allocate memory as required for VGA
1788 	 * This is used for VGA emulation and pre-OS scanout buffers to
1789 	 * avoid display artifacts while transitioning between pre-OS
1790 	 * and driver.  */
1791 	if (adev->gmc.stolen_size) {
1792 		r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1793 					    AMDGPU_GEM_DOMAIN_VRAM,
1794 					    &adev->stolen_vga_memory,
1795 					    NULL, NULL);
1796 		if (r)
1797 			return r;
1798 	}
1799 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1800 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1801 
1802 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1803 	 * or whatever the user passed on module init */
1804 	if (amdgpu_gtt_size == -1) {
1805 		struct sysinfo si;
1806 
1807 		si_meminfo(&si);
1808 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1809 			       adev->gmc.mc_vram_size),
1810 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1811 	}
1812 	else
1813 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1814 
1815 	/* Initialize GTT memory pool */
1816 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1817 	if (r) {
1818 		DRM_ERROR("Failed initializing GTT heap.\n");
1819 		return r;
1820 	}
1821 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1822 		 (unsigned)(gtt_size / (1024 * 1024)));
1823 
1824 	/* Initialize various on-chip memory pools */
1825 	adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
1826 	adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
1827 	adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
1828 	adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
1829 	adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
1830 	adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
1831 	adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
1832 	adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
1833 	adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
1834 	/* GDS Memory */
1835 	if (adev->gds.mem.total_size) {
1836 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1837 				   adev->gds.mem.total_size >> PAGE_SHIFT);
1838 		if (r) {
1839 			DRM_ERROR("Failed initializing GDS heap.\n");
1840 			return r;
1841 		}
1842 	}
1843 
1844 	/* GWS */
1845 	if (adev->gds.gws.total_size) {
1846 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1847 				   adev->gds.gws.total_size >> PAGE_SHIFT);
1848 		if (r) {
1849 			DRM_ERROR("Failed initializing gws heap.\n");
1850 			return r;
1851 		}
1852 	}
1853 
1854 	/* OA */
1855 	if (adev->gds.oa.total_size) {
1856 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1857 				   adev->gds.oa.total_size >> PAGE_SHIFT);
1858 		if (r) {
1859 			DRM_ERROR("Failed initializing oa heap.\n");
1860 			return r;
1861 		}
1862 	}
1863 
1864 	/* Register debugfs entries for amdgpu_ttm */
1865 	r = amdgpu_ttm_debugfs_init(adev);
1866 	if (r) {
1867 		DRM_ERROR("Failed to init debugfs\n");
1868 		return r;
1869 	}
1870 	return 0;
1871 }
1872 
1873 /**
1874  * amdgpu_ttm_late_init -	Handle any late initialization for
1875  * 							amdgpu_ttm
1876  */
1877 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1878 {
1879 	/* return the VGA stolen memory (if any) back to VRAM */
1880 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1881 }
1882 
1883 /**
1884  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1885  */
1886 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1887 {
1888 	if (!adev->mman.initialized)
1889 		return;
1890 
1891 	amdgpu_ttm_debugfs_fini(adev);
1892 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1893 	if (adev->mman.aper_base_kaddr)
1894 		iounmap(adev->mman.aper_base_kaddr);
1895 	adev->mman.aper_base_kaddr = NULL;
1896 
1897 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1898 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1899 	if (adev->gds.mem.total_size)
1900 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1901 	if (adev->gds.gws.total_size)
1902 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1903 	if (adev->gds.oa.total_size)
1904 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1905 	ttm_bo_device_release(&adev->mman.bdev);
1906 	amdgpu_ttm_global_fini(adev);
1907 	adev->mman.initialized = false;
1908 	DRM_INFO("amdgpu: ttm finalized\n");
1909 }
1910 
1911 /**
1912  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1913  *
1914  * @adev: amdgpu_device pointer
1915  * @enable: true when we can use buffer functions.
1916  *
1917  * Enable/disable use of buffer functions during suspend/resume. This should
1918  * only be called at bootup or when userspace isn't running.
1919  */
1920 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1921 {
1922 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1923 	uint64_t size;
1924 
1925 	if (!adev->mman.initialized || adev->in_gpu_reset)
1926 		return;
1927 
1928 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1929 	if (enable)
1930 		size = adev->gmc.real_vram_size;
1931 	else
1932 		size = adev->gmc.visible_vram_size;
1933 	man->size = size >> PAGE_SHIFT;
1934 	adev->mman.buffer_funcs_enabled = enable;
1935 }
1936 
1937 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1938 {
1939 	struct drm_file *file_priv;
1940 	struct amdgpu_device *adev;
1941 
1942 	if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
1943 		return -EINVAL;
1944 
1945 	file_priv = filp->private_data;
1946 	adev = file_priv->minor->dev->dev_private;
1947 	if (adev == NULL)
1948 		return -EINVAL;
1949 
1950 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1951 }
1952 
1953 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1954 			     struct ttm_mem_reg *mem, unsigned num_pages,
1955 			     uint64_t offset, unsigned window,
1956 			     struct amdgpu_ring *ring,
1957 			     uint64_t *addr)
1958 {
1959 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1960 	struct amdgpu_device *adev = ring->adev;
1961 	struct ttm_tt *ttm = bo->ttm;
1962 	struct amdgpu_job *job;
1963 	unsigned num_dw, num_bytes;
1964 	dma_addr_t *dma_address;
1965 	struct dma_fence *fence;
1966 	uint64_t src_addr, dst_addr;
1967 	uint64_t flags;
1968 	int r;
1969 
1970 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1971 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1972 
1973 	*addr = adev->gmc.gart_start;
1974 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1975 		AMDGPU_GPU_PAGE_SIZE;
1976 
1977 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1978 	while (num_dw & 0x7)
1979 		num_dw++;
1980 
1981 	num_bytes = num_pages * 8;
1982 
1983 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1984 	if (r)
1985 		return r;
1986 
1987 	src_addr = num_dw * 4;
1988 	src_addr += job->ibs[0].gpu_addr;
1989 
1990 	dst_addr = adev->gart.table_addr;
1991 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1992 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1993 				dst_addr, num_bytes);
1994 
1995 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1996 	WARN_ON(job->ibs[0].length_dw > num_dw);
1997 
1998 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1999 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2000 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2001 			    &job->ibs[0].ptr[num_dw]);
2002 	if (r)
2003 		goto error_free;
2004 
2005 	r = amdgpu_job_submit(job, ring, &adev->mman.entity,
2006 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2007 	if (r)
2008 		goto error_free;
2009 
2010 	dma_fence_put(fence);
2011 
2012 	return r;
2013 
2014 error_free:
2015 	amdgpu_job_free(job);
2016 	return r;
2017 }
2018 
2019 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2020 		       uint64_t dst_offset, uint32_t byte_count,
2021 		       struct reservation_object *resv,
2022 		       struct dma_fence **fence, bool direct_submit,
2023 		       bool vm_needs_flush)
2024 {
2025 	struct amdgpu_device *adev = ring->adev;
2026 	struct amdgpu_job *job;
2027 
2028 	uint32_t max_bytes;
2029 	unsigned num_loops, num_dw;
2030 	unsigned i;
2031 	int r;
2032 
2033 	if (direct_submit && !ring->ready) {
2034 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2035 		return -EINVAL;
2036 	}
2037 
2038 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2039 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2040 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2041 
2042 	/* for IB padding */
2043 	while (num_dw & 0x7)
2044 		num_dw++;
2045 
2046 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2047 	if (r)
2048 		return r;
2049 
2050 	job->vm_needs_flush = vm_needs_flush;
2051 	if (resv) {
2052 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2053 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2054 				     false);
2055 		if (r) {
2056 			DRM_ERROR("sync failed (%d).\n", r);
2057 			goto error_free;
2058 		}
2059 	}
2060 
2061 	for (i = 0; i < num_loops; i++) {
2062 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2063 
2064 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2065 					dst_offset, cur_size_in_bytes);
2066 
2067 		src_offset += cur_size_in_bytes;
2068 		dst_offset += cur_size_in_bytes;
2069 		byte_count -= cur_size_in_bytes;
2070 	}
2071 
2072 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2073 	WARN_ON(job->ibs[0].length_dw > num_dw);
2074 	if (direct_submit) {
2075 		r = amdgpu_ib_schedule(ring, job->num_ibs, job->ibs,
2076 				       NULL, fence);
2077 		job->fence = dma_fence_get(*fence);
2078 		if (r)
2079 			DRM_ERROR("Error scheduling IBs (%d)\n", r);
2080 		amdgpu_job_free(job);
2081 	} else {
2082 		r = amdgpu_job_submit(job, ring, &adev->mman.entity,
2083 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2084 		if (r)
2085 			goto error_free;
2086 	}
2087 
2088 	return r;
2089 
2090 error_free:
2091 	amdgpu_job_free(job);
2092 	return r;
2093 }
2094 
2095 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2096 		       uint32_t src_data,
2097 		       struct reservation_object *resv,
2098 		       struct dma_fence **fence)
2099 {
2100 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2101 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2102 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2103 
2104 	struct drm_mm_node *mm_node;
2105 	unsigned long num_pages;
2106 	unsigned int num_loops, num_dw;
2107 
2108 	struct amdgpu_job *job;
2109 	int r;
2110 
2111 	if (!adev->mman.buffer_funcs_enabled) {
2112 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2113 		return -EINVAL;
2114 	}
2115 
2116 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2117 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2118 		if (r)
2119 			return r;
2120 	}
2121 
2122 	num_pages = bo->tbo.num_pages;
2123 	mm_node = bo->tbo.mem.mm_node;
2124 	num_loops = 0;
2125 	while (num_pages) {
2126 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2127 
2128 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2129 		num_pages -= mm_node->size;
2130 		++mm_node;
2131 	}
2132 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2133 
2134 	/* for IB padding */
2135 	num_dw += 64;
2136 
2137 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2138 	if (r)
2139 		return r;
2140 
2141 	if (resv) {
2142 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2143 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2144 		if (r) {
2145 			DRM_ERROR("sync failed (%d).\n", r);
2146 			goto error_free;
2147 		}
2148 	}
2149 
2150 	num_pages = bo->tbo.num_pages;
2151 	mm_node = bo->tbo.mem.mm_node;
2152 
2153 	while (num_pages) {
2154 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2155 		uint64_t dst_addr;
2156 
2157 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2158 		while (byte_count) {
2159 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2160 
2161 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2162 						dst_addr, cur_size_in_bytes);
2163 
2164 			dst_addr += cur_size_in_bytes;
2165 			byte_count -= cur_size_in_bytes;
2166 		}
2167 
2168 		num_pages -= mm_node->size;
2169 		++mm_node;
2170 	}
2171 
2172 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2173 	WARN_ON(job->ibs[0].length_dw > num_dw);
2174 	r = amdgpu_job_submit(job, ring, &adev->mman.entity,
2175 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2176 	if (r)
2177 		goto error_free;
2178 
2179 	return 0;
2180 
2181 error_free:
2182 	amdgpu_job_free(job);
2183 	return r;
2184 }
2185 
2186 #if defined(CONFIG_DEBUG_FS)
2187 
2188 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2189 {
2190 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2191 	unsigned ttm_pl = *(int *)node->info_ent->data;
2192 	struct drm_device *dev = node->minor->dev;
2193 	struct amdgpu_device *adev = dev->dev_private;
2194 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2195 	struct drm_printer p = drm_seq_file_printer(m);
2196 
2197 	man->func->debug(man, &p);
2198 	return 0;
2199 }
2200 
2201 static int ttm_pl_vram = TTM_PL_VRAM;
2202 static int ttm_pl_tt = TTM_PL_TT;
2203 
2204 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2205 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
2206 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
2207 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2208 #ifdef CONFIG_SWIOTLB
2209 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2210 #endif
2211 };
2212 
2213 /**
2214  * amdgpu_ttm_vram_read - Linear read access to VRAM
2215  *
2216  * Accesses VRAM via MMIO for debugging purposes.
2217  */
2218 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2219 				    size_t size, loff_t *pos)
2220 {
2221 	struct amdgpu_device *adev = file_inode(f)->i_private;
2222 	ssize_t result = 0;
2223 	int r;
2224 
2225 	if (size & 0x3 || *pos & 0x3)
2226 		return -EINVAL;
2227 
2228 	if (*pos >= adev->gmc.mc_vram_size)
2229 		return -ENXIO;
2230 
2231 	while (size) {
2232 		unsigned long flags;
2233 		uint32_t value;
2234 
2235 		if (*pos >= adev->gmc.mc_vram_size)
2236 			return result;
2237 
2238 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2239 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2240 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2241 		value = RREG32_NO_KIQ(mmMM_DATA);
2242 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2243 
2244 		r = put_user(value, (uint32_t *)buf);
2245 		if (r)
2246 			return r;
2247 
2248 		result += 4;
2249 		buf += 4;
2250 		*pos += 4;
2251 		size -= 4;
2252 	}
2253 
2254 	return result;
2255 }
2256 
2257 /**
2258  * amdgpu_ttm_vram_write - Linear write access to VRAM
2259  *
2260  * Accesses VRAM via MMIO for debugging purposes.
2261  */
2262 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2263 				    size_t size, loff_t *pos)
2264 {
2265 	struct amdgpu_device *adev = file_inode(f)->i_private;
2266 	ssize_t result = 0;
2267 	int r;
2268 
2269 	if (size & 0x3 || *pos & 0x3)
2270 		return -EINVAL;
2271 
2272 	if (*pos >= adev->gmc.mc_vram_size)
2273 		return -ENXIO;
2274 
2275 	while (size) {
2276 		unsigned long flags;
2277 		uint32_t value;
2278 
2279 		if (*pos >= adev->gmc.mc_vram_size)
2280 			return result;
2281 
2282 		r = get_user(value, (uint32_t *)buf);
2283 		if (r)
2284 			return r;
2285 
2286 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2287 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2288 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2289 		WREG32_NO_KIQ(mmMM_DATA, value);
2290 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2291 
2292 		result += 4;
2293 		buf += 4;
2294 		*pos += 4;
2295 		size -= 4;
2296 	}
2297 
2298 	return result;
2299 }
2300 
2301 static const struct file_operations amdgpu_ttm_vram_fops = {
2302 	.owner = THIS_MODULE,
2303 	.read = amdgpu_ttm_vram_read,
2304 	.write = amdgpu_ttm_vram_write,
2305 	.llseek = default_llseek,
2306 };
2307 
2308 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2309 
2310 /**
2311  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2312  */
2313 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2314 				   size_t size, loff_t *pos)
2315 {
2316 	struct amdgpu_device *adev = file_inode(f)->i_private;
2317 	ssize_t result = 0;
2318 	int r;
2319 
2320 	while (size) {
2321 		loff_t p = *pos / PAGE_SIZE;
2322 		unsigned off = *pos & ~PAGE_MASK;
2323 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2324 		struct page *page;
2325 		void *ptr;
2326 
2327 		if (p >= adev->gart.num_cpu_pages)
2328 			return result;
2329 
2330 		page = adev->gart.pages[p];
2331 		if (page) {
2332 			ptr = kmap(page);
2333 			ptr += off;
2334 
2335 			r = copy_to_user(buf, ptr, cur_size);
2336 			kunmap(adev->gart.pages[p]);
2337 		} else
2338 			r = clear_user(buf, cur_size);
2339 
2340 		if (r)
2341 			return -EFAULT;
2342 
2343 		result += cur_size;
2344 		buf += cur_size;
2345 		*pos += cur_size;
2346 		size -= cur_size;
2347 	}
2348 
2349 	return result;
2350 }
2351 
2352 static const struct file_operations amdgpu_ttm_gtt_fops = {
2353 	.owner = THIS_MODULE,
2354 	.read = amdgpu_ttm_gtt_read,
2355 	.llseek = default_llseek
2356 };
2357 
2358 #endif
2359 
2360 /**
2361  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2362  *
2363  * This function is used to read memory that has been mapped to the
2364  * GPU and the known addresses are not physical addresses but instead
2365  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2366  */
2367 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2368 				 size_t size, loff_t *pos)
2369 {
2370 	struct amdgpu_device *adev = file_inode(f)->i_private;
2371 	struct iommu_domain *dom;
2372 	ssize_t result = 0;
2373 	int r;
2374 
2375 	/* retrieve the IOMMU domain if any for this device */
2376 	dom = iommu_get_domain_for_dev(adev->dev);
2377 
2378 	while (size) {
2379 		phys_addr_t addr = *pos & PAGE_MASK;
2380 		loff_t off = *pos & ~PAGE_MASK;
2381 		size_t bytes = PAGE_SIZE - off;
2382 		unsigned long pfn;
2383 		struct page *p;
2384 		void *ptr;
2385 
2386 		bytes = bytes < size ? bytes : size;
2387 
2388 		/* Translate the bus address to a physical address.  If
2389 		 * the domain is NULL it means there is no IOMMU active
2390 		 * and the address translation is the identity
2391 		 */
2392 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2393 
2394 		pfn = addr >> PAGE_SHIFT;
2395 		if (!pfn_valid(pfn))
2396 			return -EPERM;
2397 
2398 		p = pfn_to_page(pfn);
2399 		if (p->mapping != adev->mman.bdev.dev_mapping)
2400 			return -EPERM;
2401 
2402 		ptr = kmap(p);
2403 		r = copy_to_user(buf, ptr + off, bytes);
2404 		kunmap(p);
2405 		if (r)
2406 			return -EFAULT;
2407 
2408 		size -= bytes;
2409 		*pos += bytes;
2410 		result += bytes;
2411 	}
2412 
2413 	return result;
2414 }
2415 
2416 /**
2417  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2418  *
2419  * This function is used to write memory that has been mapped to the
2420  * GPU and the known addresses are not physical addresses but instead
2421  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2422  */
2423 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2424 				 size_t size, loff_t *pos)
2425 {
2426 	struct amdgpu_device *adev = file_inode(f)->i_private;
2427 	struct iommu_domain *dom;
2428 	ssize_t result = 0;
2429 	int r;
2430 
2431 	dom = iommu_get_domain_for_dev(adev->dev);
2432 
2433 	while (size) {
2434 		phys_addr_t addr = *pos & PAGE_MASK;
2435 		loff_t off = *pos & ~PAGE_MASK;
2436 		size_t bytes = PAGE_SIZE - off;
2437 		unsigned long pfn;
2438 		struct page *p;
2439 		void *ptr;
2440 
2441 		bytes = bytes < size ? bytes : size;
2442 
2443 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2444 
2445 		pfn = addr >> PAGE_SHIFT;
2446 		if (!pfn_valid(pfn))
2447 			return -EPERM;
2448 
2449 		p = pfn_to_page(pfn);
2450 		if (p->mapping != adev->mman.bdev.dev_mapping)
2451 			return -EPERM;
2452 
2453 		ptr = kmap(p);
2454 		r = copy_from_user(ptr + off, buf, bytes);
2455 		kunmap(p);
2456 		if (r)
2457 			return -EFAULT;
2458 
2459 		size -= bytes;
2460 		*pos += bytes;
2461 		result += bytes;
2462 	}
2463 
2464 	return result;
2465 }
2466 
2467 static const struct file_operations amdgpu_ttm_iomem_fops = {
2468 	.owner = THIS_MODULE,
2469 	.read = amdgpu_iomem_read,
2470 	.write = amdgpu_iomem_write,
2471 	.llseek = default_llseek
2472 };
2473 
2474 static const struct {
2475 	char *name;
2476 	const struct file_operations *fops;
2477 	int domain;
2478 } ttm_debugfs_entries[] = {
2479 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2480 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2481 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2482 #endif
2483 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2484 };
2485 
2486 #endif
2487 
2488 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2489 {
2490 #if defined(CONFIG_DEBUG_FS)
2491 	unsigned count;
2492 
2493 	struct drm_minor *minor = adev->ddev->primary;
2494 	struct dentry *ent, *root = minor->debugfs_root;
2495 
2496 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2497 		ent = debugfs_create_file(
2498 				ttm_debugfs_entries[count].name,
2499 				S_IFREG | S_IRUGO, root,
2500 				adev,
2501 				ttm_debugfs_entries[count].fops);
2502 		if (IS_ERR(ent))
2503 			return PTR_ERR(ent);
2504 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2505 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2506 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2507 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2508 		adev->mman.debugfs_entries[count] = ent;
2509 	}
2510 
2511 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2512 
2513 #ifdef CONFIG_SWIOTLB
2514 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2515 		--count;
2516 #endif
2517 
2518 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2519 #else
2520 	return 0;
2521 #endif
2522 }
2523 
2524 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2525 {
2526 #if defined(CONFIG_DEBUG_FS)
2527 	unsigned i;
2528 
2529 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2530 		debugfs_remove(adev->mman.debugfs_entries[i]);
2531 #endif
2532 }
2533