1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_module.h> 50 #include <drm/ttm/ttm_page_alloc.h> 51 52 #include <drm/drm_debugfs.h> 53 #include <drm/amdgpu_drm.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "bif/bif_4_1_d.h" 62 63 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 64 struct ttm_mem_reg *mem, unsigned num_pages, 65 uint64_t offset, unsigned window, 66 struct amdgpu_ring *ring, 67 uint64_t *addr); 68 69 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 70 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 71 72 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 73 { 74 return 0; 75 } 76 77 /** 78 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 79 * memory request. 80 * 81 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 82 * @type: The type of memory requested 83 * @man: The memory type manager for each domain 84 * 85 * This is called by ttm_bo_init_mm() when a buffer object is being 86 * initialized. 87 */ 88 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 89 struct ttm_mem_type_manager *man) 90 { 91 struct amdgpu_device *adev; 92 93 adev = amdgpu_ttm_adev(bdev); 94 95 switch (type) { 96 case TTM_PL_SYSTEM: 97 /* System memory */ 98 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 99 man->available_caching = TTM_PL_MASK_CACHING; 100 man->default_caching = TTM_PL_FLAG_CACHED; 101 break; 102 case TTM_PL_TT: 103 /* GTT memory */ 104 man->func = &amdgpu_gtt_mgr_func; 105 man->gpu_offset = adev->gmc.gart_start; 106 man->available_caching = TTM_PL_MASK_CACHING; 107 man->default_caching = TTM_PL_FLAG_CACHED; 108 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 109 break; 110 case TTM_PL_VRAM: 111 /* "On-card" video ram */ 112 man->func = &amdgpu_vram_mgr_func; 113 man->gpu_offset = adev->gmc.vram_start; 114 man->flags = TTM_MEMTYPE_FLAG_FIXED | 115 TTM_MEMTYPE_FLAG_MAPPABLE; 116 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 117 man->default_caching = TTM_PL_FLAG_WC; 118 break; 119 case AMDGPU_PL_GDS: 120 case AMDGPU_PL_GWS: 121 case AMDGPU_PL_OA: 122 /* On-chip GDS memory*/ 123 man->func = &ttm_bo_manager_func; 124 man->gpu_offset = 0; 125 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 126 man->available_caching = TTM_PL_FLAG_UNCACHED; 127 man->default_caching = TTM_PL_FLAG_UNCACHED; 128 break; 129 default: 130 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 131 return -EINVAL; 132 } 133 return 0; 134 } 135 136 /** 137 * amdgpu_evict_flags - Compute placement flags 138 * 139 * @bo: The buffer object to evict 140 * @placement: Possible destination(s) for evicted BO 141 * 142 * Fill in placement data when ttm_bo_evict() is called 143 */ 144 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 145 struct ttm_placement *placement) 146 { 147 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 148 struct amdgpu_bo *abo; 149 static const struct ttm_place placements = { 150 .fpfn = 0, 151 .lpfn = 0, 152 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 153 }; 154 155 /* Don't handle scatter gather BOs */ 156 if (bo->type == ttm_bo_type_sg) { 157 placement->num_placement = 0; 158 placement->num_busy_placement = 0; 159 return; 160 } 161 162 /* Object isn't an AMDGPU object so ignore */ 163 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 164 placement->placement = &placements; 165 placement->busy_placement = &placements; 166 placement->num_placement = 1; 167 placement->num_busy_placement = 1; 168 return; 169 } 170 171 abo = ttm_to_amdgpu_bo(bo); 172 switch (bo->mem.mem_type) { 173 case AMDGPU_PL_GDS: 174 case AMDGPU_PL_GWS: 175 case AMDGPU_PL_OA: 176 placement->num_placement = 0; 177 placement->num_busy_placement = 0; 178 return; 179 180 case TTM_PL_VRAM: 181 if (!adev->mman.buffer_funcs_enabled) { 182 /* Move to system memory */ 183 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 184 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 185 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 186 amdgpu_bo_in_cpu_visible_vram(abo)) { 187 188 /* Try evicting to the CPU inaccessible part of VRAM 189 * first, but only set GTT as busy placement, so this 190 * BO will be evicted to GTT rather than causing other 191 * BOs to be evicted from VRAM 192 */ 193 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 194 AMDGPU_GEM_DOMAIN_GTT); 195 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 196 abo->placements[0].lpfn = 0; 197 abo->placement.busy_placement = &abo->placements[1]; 198 abo->placement.num_busy_placement = 1; 199 } else { 200 /* Move to GTT memory */ 201 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 202 } 203 break; 204 case TTM_PL_TT: 205 default: 206 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 207 break; 208 } 209 *placement = abo->placement; 210 } 211 212 /** 213 * amdgpu_verify_access - Verify access for a mmap call 214 * 215 * @bo: The buffer object to map 216 * @filp: The file pointer from the process performing the mmap 217 * 218 * This is called by ttm_bo_mmap() to verify whether a process 219 * has the right to mmap a BO to their process space. 220 */ 221 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 222 { 223 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 224 225 /* 226 * Don't verify access for KFD BOs. They don't have a GEM 227 * object associated with them. 228 */ 229 if (abo->kfd_bo) 230 return 0; 231 232 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 233 return -EPERM; 234 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 235 filp->private_data); 236 } 237 238 /** 239 * amdgpu_move_null - Register memory for a buffer object 240 * 241 * @bo: The bo to assign the memory to 242 * @new_mem: The memory to be assigned. 243 * 244 * Assign the memory from new_mem to the memory of the buffer object bo. 245 */ 246 static void amdgpu_move_null(struct ttm_buffer_object *bo, 247 struct ttm_mem_reg *new_mem) 248 { 249 struct ttm_mem_reg *old_mem = &bo->mem; 250 251 BUG_ON(old_mem->mm_node != NULL); 252 *old_mem = *new_mem; 253 new_mem->mm_node = NULL; 254 } 255 256 /** 257 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 258 * 259 * @bo: The bo to assign the memory to. 260 * @mm_node: Memory manager node for drm allocator. 261 * @mem: The region where the bo resides. 262 * 263 */ 264 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 265 struct drm_mm_node *mm_node, 266 struct ttm_mem_reg *mem) 267 { 268 uint64_t addr = 0; 269 270 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 271 addr = mm_node->start << PAGE_SHIFT; 272 addr += bo->bdev->man[mem->mem_type].gpu_offset; 273 } 274 return addr; 275 } 276 277 /** 278 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 279 * @offset. It also modifies the offset to be within the drm_mm_node returned 280 * 281 * @mem: The region where the bo resides. 282 * @offset: The offset that drm_mm_node is used for finding. 283 * 284 */ 285 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 286 unsigned long *offset) 287 { 288 struct drm_mm_node *mm_node = mem->mm_node; 289 290 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 291 *offset -= (mm_node->size << PAGE_SHIFT); 292 ++mm_node; 293 } 294 return mm_node; 295 } 296 297 /** 298 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 299 * 300 * The function copies @size bytes from {src->mem + src->offset} to 301 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 302 * move and different for a BO to BO copy. 303 * 304 * @f: Returns the last fence if multiple jobs are submitted. 305 */ 306 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 307 struct amdgpu_copy_mem *src, 308 struct amdgpu_copy_mem *dst, 309 uint64_t size, 310 struct dma_resv *resv, 311 struct dma_fence **f) 312 { 313 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 314 struct drm_mm_node *src_mm, *dst_mm; 315 uint64_t src_node_start, dst_node_start, src_node_size, 316 dst_node_size, src_page_offset, dst_page_offset; 317 struct dma_fence *fence = NULL; 318 int r = 0; 319 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 320 AMDGPU_GPU_PAGE_SIZE); 321 322 if (!adev->mman.buffer_funcs_enabled) { 323 DRM_ERROR("Trying to move memory with ring turned off.\n"); 324 return -EINVAL; 325 } 326 327 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 328 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 329 src->offset; 330 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 331 src_page_offset = src_node_start & (PAGE_SIZE - 1); 332 333 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 334 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 335 dst->offset; 336 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 337 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 338 339 mutex_lock(&adev->mman.gtt_window_lock); 340 341 while (size) { 342 unsigned long cur_size; 343 uint64_t from = src_node_start, to = dst_node_start; 344 struct dma_fence *next; 345 346 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 347 * begins at an offset, then adjust the size accordingly 348 */ 349 cur_size = min3(min(src_node_size, dst_node_size), size, 350 GTT_MAX_BYTES); 351 if (cur_size + src_page_offset > GTT_MAX_BYTES || 352 cur_size + dst_page_offset > GTT_MAX_BYTES) 353 cur_size -= max(src_page_offset, dst_page_offset); 354 355 /* Map only what needs to be accessed. Map src to window 0 and 356 * dst to window 1 357 */ 358 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 359 r = amdgpu_map_buffer(src->bo, src->mem, 360 PFN_UP(cur_size + src_page_offset), 361 src_node_start, 0, ring, 362 &from); 363 if (r) 364 goto error; 365 /* Adjust the offset because amdgpu_map_buffer returns 366 * start of mapped page 367 */ 368 from += src_page_offset; 369 } 370 371 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 372 r = amdgpu_map_buffer(dst->bo, dst->mem, 373 PFN_UP(cur_size + dst_page_offset), 374 dst_node_start, 1, ring, 375 &to); 376 if (r) 377 goto error; 378 to += dst_page_offset; 379 } 380 381 r = amdgpu_copy_buffer(ring, from, to, cur_size, 382 resv, &next, false, true); 383 if (r) 384 goto error; 385 386 dma_fence_put(fence); 387 fence = next; 388 389 size -= cur_size; 390 if (!size) 391 break; 392 393 src_node_size -= cur_size; 394 if (!src_node_size) { 395 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 396 src->mem); 397 src_node_size = (src_mm->size << PAGE_SHIFT); 398 src_page_offset = 0; 399 } else { 400 src_node_start += cur_size; 401 src_page_offset = src_node_start & (PAGE_SIZE - 1); 402 } 403 dst_node_size -= cur_size; 404 if (!dst_node_size) { 405 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 406 dst->mem); 407 dst_node_size = (dst_mm->size << PAGE_SHIFT); 408 dst_page_offset = 0; 409 } else { 410 dst_node_start += cur_size; 411 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 412 } 413 } 414 error: 415 mutex_unlock(&adev->mman.gtt_window_lock); 416 if (f) 417 *f = dma_fence_get(fence); 418 dma_fence_put(fence); 419 return r; 420 } 421 422 /** 423 * amdgpu_move_blit - Copy an entire buffer to another buffer 424 * 425 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 426 * help move buffers to and from VRAM. 427 */ 428 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 429 bool evict, bool no_wait_gpu, 430 struct ttm_mem_reg *new_mem, 431 struct ttm_mem_reg *old_mem) 432 { 433 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 434 struct amdgpu_copy_mem src, dst; 435 struct dma_fence *fence = NULL; 436 int r; 437 438 src.bo = bo; 439 dst.bo = bo; 440 src.mem = old_mem; 441 dst.mem = new_mem; 442 src.offset = 0; 443 dst.offset = 0; 444 445 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 446 new_mem->num_pages << PAGE_SHIFT, 447 bo->base.resv, &fence); 448 if (r) 449 goto error; 450 451 /* clear the space being freed */ 452 if (old_mem->mem_type == TTM_PL_VRAM && 453 (ttm_to_amdgpu_bo(bo)->flags & 454 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 455 struct dma_fence *wipe_fence = NULL; 456 457 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 458 NULL, &wipe_fence); 459 if (r) { 460 goto error; 461 } else if (wipe_fence) { 462 dma_fence_put(fence); 463 fence = wipe_fence; 464 } 465 } 466 467 /* Always block for VM page tables before committing the new location */ 468 if (bo->type == ttm_bo_type_kernel) 469 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 470 else 471 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 472 dma_fence_put(fence); 473 return r; 474 475 error: 476 if (fence) 477 dma_fence_wait(fence, false); 478 dma_fence_put(fence); 479 return r; 480 } 481 482 /** 483 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 484 * 485 * Called by amdgpu_bo_move(). 486 */ 487 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 488 struct ttm_operation_ctx *ctx, 489 struct ttm_mem_reg *new_mem) 490 { 491 struct ttm_mem_reg *old_mem = &bo->mem; 492 struct ttm_mem_reg tmp_mem; 493 struct ttm_place placements; 494 struct ttm_placement placement; 495 int r; 496 497 /* create space/pages for new_mem in GTT space */ 498 tmp_mem = *new_mem; 499 tmp_mem.mm_node = NULL; 500 placement.num_placement = 1; 501 placement.placement = &placements; 502 placement.num_busy_placement = 1; 503 placement.busy_placement = &placements; 504 placements.fpfn = 0; 505 placements.lpfn = 0; 506 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 507 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 508 if (unlikely(r)) { 509 pr_err("Failed to find GTT space for blit from VRAM\n"); 510 return r; 511 } 512 513 /* set caching flags */ 514 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 515 if (unlikely(r)) { 516 goto out_cleanup; 517 } 518 519 /* Bind the memory to the GTT space */ 520 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 521 if (unlikely(r)) { 522 goto out_cleanup; 523 } 524 525 /* blit VRAM to GTT */ 526 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 527 if (unlikely(r)) { 528 goto out_cleanup; 529 } 530 531 /* move BO (in tmp_mem) to new_mem */ 532 r = ttm_bo_move_ttm(bo, ctx, new_mem); 533 out_cleanup: 534 ttm_bo_mem_put(bo, &tmp_mem); 535 return r; 536 } 537 538 /** 539 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 540 * 541 * Called by amdgpu_bo_move(). 542 */ 543 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 544 struct ttm_operation_ctx *ctx, 545 struct ttm_mem_reg *new_mem) 546 { 547 struct ttm_mem_reg *old_mem = &bo->mem; 548 struct ttm_mem_reg tmp_mem; 549 struct ttm_placement placement; 550 struct ttm_place placements; 551 int r; 552 553 /* make space in GTT for old_mem buffer */ 554 tmp_mem = *new_mem; 555 tmp_mem.mm_node = NULL; 556 placement.num_placement = 1; 557 placement.placement = &placements; 558 placement.num_busy_placement = 1; 559 placement.busy_placement = &placements; 560 placements.fpfn = 0; 561 placements.lpfn = 0; 562 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 563 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 564 if (unlikely(r)) { 565 pr_err("Failed to find GTT space for blit to VRAM\n"); 566 return r; 567 } 568 569 /* move/bind old memory to GTT space */ 570 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 571 if (unlikely(r)) { 572 goto out_cleanup; 573 } 574 575 /* copy to VRAM */ 576 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 577 if (unlikely(r)) { 578 goto out_cleanup; 579 } 580 out_cleanup: 581 ttm_bo_mem_put(bo, &tmp_mem); 582 return r; 583 } 584 585 /** 586 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 587 * 588 * Called by amdgpu_bo_move() 589 */ 590 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 591 struct ttm_mem_reg *mem) 592 { 593 struct drm_mm_node *nodes = mem->mm_node; 594 595 if (mem->mem_type == TTM_PL_SYSTEM || 596 mem->mem_type == TTM_PL_TT) 597 return true; 598 if (mem->mem_type != TTM_PL_VRAM) 599 return false; 600 601 /* ttm_mem_reg_ioremap only supports contiguous memory */ 602 if (nodes->size != mem->num_pages) 603 return false; 604 605 return ((nodes->start + nodes->size) << PAGE_SHIFT) 606 <= adev->gmc.visible_vram_size; 607 } 608 609 /** 610 * amdgpu_bo_move - Move a buffer object to a new memory location 611 * 612 * Called by ttm_bo_handle_move_mem() 613 */ 614 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 615 struct ttm_operation_ctx *ctx, 616 struct ttm_mem_reg *new_mem) 617 { 618 struct amdgpu_device *adev; 619 struct amdgpu_bo *abo; 620 struct ttm_mem_reg *old_mem = &bo->mem; 621 int r; 622 623 /* Can't move a pinned BO */ 624 abo = ttm_to_amdgpu_bo(bo); 625 if (WARN_ON_ONCE(abo->pin_count > 0)) 626 return -EINVAL; 627 628 adev = amdgpu_ttm_adev(bo->bdev); 629 630 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 631 amdgpu_move_null(bo, new_mem); 632 return 0; 633 } 634 if ((old_mem->mem_type == TTM_PL_TT && 635 new_mem->mem_type == TTM_PL_SYSTEM) || 636 (old_mem->mem_type == TTM_PL_SYSTEM && 637 new_mem->mem_type == TTM_PL_TT)) { 638 /* bind is enough */ 639 amdgpu_move_null(bo, new_mem); 640 return 0; 641 } 642 if (old_mem->mem_type == AMDGPU_PL_GDS || 643 old_mem->mem_type == AMDGPU_PL_GWS || 644 old_mem->mem_type == AMDGPU_PL_OA || 645 new_mem->mem_type == AMDGPU_PL_GDS || 646 new_mem->mem_type == AMDGPU_PL_GWS || 647 new_mem->mem_type == AMDGPU_PL_OA) { 648 /* Nothing to save here */ 649 amdgpu_move_null(bo, new_mem); 650 return 0; 651 } 652 653 if (!adev->mman.buffer_funcs_enabled) { 654 r = -ENODEV; 655 goto memcpy; 656 } 657 658 if (old_mem->mem_type == TTM_PL_VRAM && 659 new_mem->mem_type == TTM_PL_SYSTEM) { 660 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 661 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 662 new_mem->mem_type == TTM_PL_VRAM) { 663 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 664 } else { 665 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 666 new_mem, old_mem); 667 } 668 669 if (r) { 670 memcpy: 671 /* Check that all memory is CPU accessible */ 672 if (!amdgpu_mem_visible(adev, old_mem) || 673 !amdgpu_mem_visible(adev, new_mem)) { 674 pr_err("Move buffer fallback to memcpy unavailable\n"); 675 return r; 676 } 677 678 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 679 if (r) 680 return r; 681 } 682 683 if (bo->type == ttm_bo_type_device && 684 new_mem->mem_type == TTM_PL_VRAM && 685 old_mem->mem_type != TTM_PL_VRAM) { 686 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 687 * accesses the BO after it's moved. 688 */ 689 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 690 } 691 692 /* update statistics */ 693 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 694 return 0; 695 } 696 697 /** 698 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 699 * 700 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 701 */ 702 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 703 { 704 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 705 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 706 struct drm_mm_node *mm_node = mem->mm_node; 707 708 mem->bus.addr = NULL; 709 mem->bus.offset = 0; 710 mem->bus.size = mem->num_pages << PAGE_SHIFT; 711 mem->bus.base = 0; 712 mem->bus.is_iomem = false; 713 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 714 return -EINVAL; 715 switch (mem->mem_type) { 716 case TTM_PL_SYSTEM: 717 /* system memory */ 718 return 0; 719 case TTM_PL_TT: 720 break; 721 case TTM_PL_VRAM: 722 mem->bus.offset = mem->start << PAGE_SHIFT; 723 /* check if it's visible */ 724 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 725 return -EINVAL; 726 /* Only physically contiguous buffers apply. In a contiguous 727 * buffer, size of the first mm_node would match the number of 728 * pages in ttm_mem_reg. 729 */ 730 if (adev->mman.aper_base_kaddr && 731 (mm_node->size == mem->num_pages)) 732 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 733 mem->bus.offset; 734 735 mem->bus.base = adev->gmc.aper_base; 736 mem->bus.is_iomem = true; 737 break; 738 default: 739 return -EINVAL; 740 } 741 return 0; 742 } 743 744 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 745 { 746 } 747 748 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 749 unsigned long page_offset) 750 { 751 struct drm_mm_node *mm; 752 unsigned long offset = (page_offset << PAGE_SHIFT); 753 754 mm = amdgpu_find_mm_node(&bo->mem, &offset); 755 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 756 (offset >> PAGE_SHIFT); 757 } 758 759 /* 760 * TTM backend functions. 761 */ 762 struct amdgpu_ttm_tt { 763 struct ttm_dma_tt ttm; 764 struct drm_gem_object *gobj; 765 u64 offset; 766 uint64_t userptr; 767 struct task_struct *usertask; 768 uint32_t userflags; 769 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 770 struct hmm_range *range; 771 #endif 772 }; 773 774 #ifdef CONFIG_DRM_AMDGPU_USERPTR 775 /* flags used by HMM internal, not related to CPU/GPU PTE flags */ 776 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = { 777 (1 << 0), /* HMM_PFN_VALID */ 778 (1 << 1), /* HMM_PFN_WRITE */ 779 0 /* HMM_PFN_DEVICE_PRIVATE */ 780 }; 781 782 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = { 783 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */ 784 0, /* HMM_PFN_NONE */ 785 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */ 786 }; 787 788 /** 789 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 790 * memory and start HMM tracking CPU page table update 791 * 792 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 793 * once afterwards to stop HMM tracking 794 */ 795 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 796 { 797 struct ttm_tt *ttm = bo->tbo.ttm; 798 struct amdgpu_ttm_tt *gtt = (void *)ttm; 799 unsigned long start = gtt->userptr; 800 struct vm_area_struct *vma; 801 struct hmm_range *range; 802 unsigned long timeout; 803 struct mm_struct *mm; 804 unsigned long i; 805 int r = 0; 806 807 mm = bo->notifier.mm; 808 if (unlikely(!mm)) { 809 DRM_DEBUG_DRIVER("BO is not registered?\n"); 810 return -EFAULT; 811 } 812 813 /* Another get_user_pages is running at the same time?? */ 814 if (WARN_ON(gtt->range)) 815 return -EFAULT; 816 817 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 818 return -ESRCH; 819 820 range = kzalloc(sizeof(*range), GFP_KERNEL); 821 if (unlikely(!range)) { 822 r = -ENOMEM; 823 goto out; 824 } 825 range->notifier = &bo->notifier; 826 range->flags = hmm_range_flags; 827 range->values = hmm_range_values; 828 range->pfn_shift = PAGE_SHIFT; 829 range->start = bo->notifier.interval_tree.start; 830 range->end = bo->notifier.interval_tree.last + 1; 831 range->default_flags = hmm_range_flags[HMM_PFN_VALID]; 832 if (!amdgpu_ttm_tt_is_readonly(ttm)) 833 range->default_flags |= range->flags[HMM_PFN_WRITE]; 834 835 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns), 836 GFP_KERNEL); 837 if (unlikely(!range->pfns)) { 838 r = -ENOMEM; 839 goto out_free_ranges; 840 } 841 842 down_read(&mm->mmap_sem); 843 vma = find_vma(mm, start); 844 if (unlikely(!vma || start < vma->vm_start)) { 845 r = -EFAULT; 846 goto out_unlock; 847 } 848 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 849 vma->vm_file)) { 850 r = -EPERM; 851 goto out_unlock; 852 } 853 up_read(&mm->mmap_sem); 854 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 855 856 retry: 857 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 858 859 down_read(&mm->mmap_sem); 860 r = hmm_range_fault(range, 0); 861 up_read(&mm->mmap_sem); 862 if (unlikely(r <= 0)) { 863 /* 864 * FIXME: This timeout should encompass the retry from 865 * mmu_interval_read_retry() as well. 866 */ 867 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout)) 868 goto retry; 869 goto out_free_pfns; 870 } 871 872 for (i = 0; i < ttm->num_pages; i++) { 873 /* FIXME: The pages cannot be touched outside the notifier_lock */ 874 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]); 875 if (unlikely(!pages[i])) { 876 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 877 i, range->pfns[i]); 878 r = -ENOMEM; 879 880 goto out_free_pfns; 881 } 882 } 883 884 gtt->range = range; 885 mmput(mm); 886 887 return 0; 888 889 out_unlock: 890 up_read(&mm->mmap_sem); 891 out_free_pfns: 892 kvfree(range->pfns); 893 out_free_ranges: 894 kfree(range); 895 out: 896 mmput(mm); 897 return r; 898 } 899 900 /** 901 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 902 * Check if the pages backing this ttm range have been invalidated 903 * 904 * Returns: true if pages are still valid 905 */ 906 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 907 { 908 struct amdgpu_ttm_tt *gtt = (void *)ttm; 909 bool r = false; 910 911 if (!gtt || !gtt->userptr) 912 return false; 913 914 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 915 gtt->userptr, ttm->num_pages); 916 917 WARN_ONCE(!gtt->range || !gtt->range->pfns, 918 "No user pages to check\n"); 919 920 if (gtt->range) { 921 /* 922 * FIXME: Must always hold notifier_lock for this, and must 923 * not ignore the return code. 924 */ 925 r = mmu_interval_read_retry(gtt->range->notifier, 926 gtt->range->notifier_seq); 927 kvfree(gtt->range->pfns); 928 kfree(gtt->range); 929 gtt->range = NULL; 930 } 931 932 return !r; 933 } 934 #endif 935 936 /** 937 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 938 * 939 * Called by amdgpu_cs_list_validate(). This creates the page list 940 * that backs user memory and will ultimately be mapped into the device 941 * address space. 942 */ 943 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 944 { 945 unsigned long i; 946 947 for (i = 0; i < ttm->num_pages; ++i) 948 ttm->pages[i] = pages ? pages[i] : NULL; 949 } 950 951 /** 952 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 953 * 954 * Called by amdgpu_ttm_backend_bind() 955 **/ 956 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 957 { 958 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 959 struct amdgpu_ttm_tt *gtt = (void *)ttm; 960 unsigned nents; 961 int r; 962 963 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 964 enum dma_data_direction direction = write ? 965 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 966 967 /* Allocate an SG array and squash pages into it */ 968 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 969 ttm->num_pages << PAGE_SHIFT, 970 GFP_KERNEL); 971 if (r) 972 goto release_sg; 973 974 /* Map SG to device */ 975 r = -ENOMEM; 976 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 977 if (nents != ttm->sg->nents) 978 goto release_sg; 979 980 /* convert SG to linear array of pages and dma addresses */ 981 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 982 gtt->ttm.dma_address, ttm->num_pages); 983 984 return 0; 985 986 release_sg: 987 kfree(ttm->sg); 988 return r; 989 } 990 991 /** 992 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 993 */ 994 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 995 { 996 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 997 struct amdgpu_ttm_tt *gtt = (void *)ttm; 998 999 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1000 enum dma_data_direction direction = write ? 1001 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1002 1003 /* double check that we don't free the table twice */ 1004 if (!ttm->sg->sgl) 1005 return; 1006 1007 /* unmap the pages mapped to the device */ 1008 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 1009 1010 sg_free_table(ttm->sg); 1011 1012 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1013 if (gtt->range) { 1014 unsigned long i; 1015 1016 for (i = 0; i < ttm->num_pages; i++) { 1017 if (ttm->pages[i] != 1018 hmm_device_entry_to_page(gtt->range, 1019 gtt->range->pfns[i])) 1020 break; 1021 } 1022 1023 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 1024 } 1025 #endif 1026 } 1027 1028 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1029 struct ttm_buffer_object *tbo, 1030 uint64_t flags) 1031 { 1032 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1033 struct ttm_tt *ttm = tbo->ttm; 1034 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1035 int r; 1036 1037 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1038 uint64_t page_idx = 1; 1039 1040 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1041 ttm->pages, gtt->ttm.dma_address, flags); 1042 if (r) 1043 goto gart_bind_fail; 1044 1045 /* Patch mtype of the second part BO */ 1046 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1047 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1048 1049 r = amdgpu_gart_bind(adev, 1050 gtt->offset + (page_idx << PAGE_SHIFT), 1051 ttm->num_pages - page_idx, 1052 &ttm->pages[page_idx], 1053 &(gtt->ttm.dma_address[page_idx]), flags); 1054 } else { 1055 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1056 ttm->pages, gtt->ttm.dma_address, flags); 1057 } 1058 1059 gart_bind_fail: 1060 if (r) 1061 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1062 ttm->num_pages, gtt->offset); 1063 1064 return r; 1065 } 1066 1067 /** 1068 * amdgpu_ttm_backend_bind - Bind GTT memory 1069 * 1070 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1071 * This handles binding GTT memory to the device address space. 1072 */ 1073 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1074 struct ttm_mem_reg *bo_mem) 1075 { 1076 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1077 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1078 uint64_t flags; 1079 int r = 0; 1080 1081 if (gtt->userptr) { 1082 r = amdgpu_ttm_tt_pin_userptr(ttm); 1083 if (r) { 1084 DRM_ERROR("failed to pin userptr\n"); 1085 return r; 1086 } 1087 } 1088 if (!ttm->num_pages) { 1089 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1090 ttm->num_pages, bo_mem, ttm); 1091 } 1092 1093 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1094 bo_mem->mem_type == AMDGPU_PL_GWS || 1095 bo_mem->mem_type == AMDGPU_PL_OA) 1096 return -EINVAL; 1097 1098 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1099 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1100 return 0; 1101 } 1102 1103 /* compute PTE flags relevant to this BO memory */ 1104 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1105 1106 /* bind pages into GART page tables */ 1107 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1108 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1109 ttm->pages, gtt->ttm.dma_address, flags); 1110 1111 if (r) 1112 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1113 ttm->num_pages, gtt->offset); 1114 return r; 1115 } 1116 1117 /** 1118 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1119 */ 1120 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1121 { 1122 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1123 struct ttm_operation_ctx ctx = { false, false }; 1124 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1125 struct ttm_mem_reg tmp; 1126 struct ttm_placement placement; 1127 struct ttm_place placements; 1128 uint64_t addr, flags; 1129 int r; 1130 1131 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1132 return 0; 1133 1134 addr = amdgpu_gmc_agp_addr(bo); 1135 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1136 bo->mem.start = addr >> PAGE_SHIFT; 1137 } else { 1138 1139 /* allocate GART space */ 1140 tmp = bo->mem; 1141 tmp.mm_node = NULL; 1142 placement.num_placement = 1; 1143 placement.placement = &placements; 1144 placement.num_busy_placement = 1; 1145 placement.busy_placement = &placements; 1146 placements.fpfn = 0; 1147 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1148 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1149 TTM_PL_FLAG_TT; 1150 1151 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1152 if (unlikely(r)) 1153 return r; 1154 1155 /* compute PTE flags for this buffer object */ 1156 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1157 1158 /* Bind pages */ 1159 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1160 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1161 if (unlikely(r)) { 1162 ttm_bo_mem_put(bo, &tmp); 1163 return r; 1164 } 1165 1166 ttm_bo_mem_put(bo, &bo->mem); 1167 bo->mem = tmp; 1168 } 1169 1170 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1171 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1172 1173 return 0; 1174 } 1175 1176 /** 1177 * amdgpu_ttm_recover_gart - Rebind GTT pages 1178 * 1179 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1180 * rebind GTT pages during a GPU reset. 1181 */ 1182 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1183 { 1184 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1185 uint64_t flags; 1186 int r; 1187 1188 if (!tbo->ttm) 1189 return 0; 1190 1191 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1192 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1193 1194 return r; 1195 } 1196 1197 /** 1198 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1199 * 1200 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1201 * ttm_tt_destroy(). 1202 */ 1203 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1204 { 1205 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1206 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1207 int r; 1208 1209 /* if the pages have userptr pinning then clear that first */ 1210 if (gtt->userptr) 1211 amdgpu_ttm_tt_unpin_userptr(ttm); 1212 1213 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1214 return 0; 1215 1216 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1217 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1218 if (r) 1219 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1220 gtt->ttm.ttm.num_pages, gtt->offset); 1221 return r; 1222 } 1223 1224 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1225 { 1226 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1227 1228 if (gtt->usertask) 1229 put_task_struct(gtt->usertask); 1230 1231 ttm_dma_tt_fini(>t->ttm); 1232 kfree(gtt); 1233 } 1234 1235 static struct ttm_backend_func amdgpu_backend_func = { 1236 .bind = &amdgpu_ttm_backend_bind, 1237 .unbind = &amdgpu_ttm_backend_unbind, 1238 .destroy = &amdgpu_ttm_backend_destroy, 1239 }; 1240 1241 /** 1242 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1243 * 1244 * @bo: The buffer object to create a GTT ttm_tt object around 1245 * 1246 * Called by ttm_tt_create(). 1247 */ 1248 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1249 uint32_t page_flags) 1250 { 1251 struct amdgpu_ttm_tt *gtt; 1252 1253 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1254 if (gtt == NULL) { 1255 return NULL; 1256 } 1257 gtt->ttm.ttm.func = &amdgpu_backend_func; 1258 gtt->gobj = &bo->base; 1259 1260 /* allocate space for the uninitialized page entries */ 1261 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1262 kfree(gtt); 1263 return NULL; 1264 } 1265 return >t->ttm.ttm; 1266 } 1267 1268 /** 1269 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1270 * 1271 * Map the pages of a ttm_tt object to an address space visible 1272 * to the underlying device. 1273 */ 1274 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1275 struct ttm_operation_ctx *ctx) 1276 { 1277 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1278 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1279 1280 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1281 if (gtt && gtt->userptr) { 1282 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1283 if (!ttm->sg) 1284 return -ENOMEM; 1285 1286 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1287 ttm->state = tt_unbound; 1288 return 0; 1289 } 1290 1291 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1292 if (!ttm->sg) { 1293 struct dma_buf_attachment *attach; 1294 struct sg_table *sgt; 1295 1296 attach = gtt->gobj->import_attach; 1297 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1298 if (IS_ERR(sgt)) 1299 return PTR_ERR(sgt); 1300 1301 ttm->sg = sgt; 1302 } 1303 1304 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1305 gtt->ttm.dma_address, 1306 ttm->num_pages); 1307 ttm->state = tt_unbound; 1308 return 0; 1309 } 1310 1311 #ifdef CONFIG_SWIOTLB 1312 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1313 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1314 } 1315 #endif 1316 1317 /* fall back to generic helper to populate the page array 1318 * and map them to the device */ 1319 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1320 } 1321 1322 /** 1323 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1324 * 1325 * Unmaps pages of a ttm_tt object from the device address space and 1326 * unpopulates the page array backing it. 1327 */ 1328 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1329 { 1330 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1331 struct amdgpu_device *adev; 1332 1333 if (gtt && gtt->userptr) { 1334 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1335 kfree(ttm->sg); 1336 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1337 return; 1338 } 1339 1340 if (ttm->sg && gtt->gobj->import_attach) { 1341 struct dma_buf_attachment *attach; 1342 1343 attach = gtt->gobj->import_attach; 1344 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1345 ttm->sg = NULL; 1346 return; 1347 } 1348 1349 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1350 return; 1351 1352 adev = amdgpu_ttm_adev(ttm->bdev); 1353 1354 #ifdef CONFIG_SWIOTLB 1355 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1356 ttm_dma_unpopulate(>t->ttm, adev->dev); 1357 return; 1358 } 1359 #endif 1360 1361 /* fall back to generic helper to unmap and unpopulate array */ 1362 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1363 } 1364 1365 /** 1366 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1367 * task 1368 * 1369 * @ttm: The ttm_tt object to bind this userptr object to 1370 * @addr: The address in the current tasks VM space to use 1371 * @flags: Requirements of userptr object. 1372 * 1373 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1374 * to current task 1375 */ 1376 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1377 uint32_t flags) 1378 { 1379 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1380 1381 if (gtt == NULL) 1382 return -EINVAL; 1383 1384 gtt->userptr = addr; 1385 gtt->userflags = flags; 1386 1387 if (gtt->usertask) 1388 put_task_struct(gtt->usertask); 1389 gtt->usertask = current->group_leader; 1390 get_task_struct(gtt->usertask); 1391 1392 return 0; 1393 } 1394 1395 /** 1396 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1397 */ 1398 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1399 { 1400 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1401 1402 if (gtt == NULL) 1403 return NULL; 1404 1405 if (gtt->usertask == NULL) 1406 return NULL; 1407 1408 return gtt->usertask->mm; 1409 } 1410 1411 /** 1412 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1413 * address range for the current task. 1414 * 1415 */ 1416 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1417 unsigned long end) 1418 { 1419 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1420 unsigned long size; 1421 1422 if (gtt == NULL || !gtt->userptr) 1423 return false; 1424 1425 /* Return false if no part of the ttm_tt object lies within 1426 * the range 1427 */ 1428 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1429 if (gtt->userptr > end || gtt->userptr + size <= start) 1430 return false; 1431 1432 return true; 1433 } 1434 1435 /** 1436 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1437 */ 1438 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1439 { 1440 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1441 1442 if (gtt == NULL || !gtt->userptr) 1443 return false; 1444 1445 return true; 1446 } 1447 1448 /** 1449 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1450 */ 1451 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1452 { 1453 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1454 1455 if (gtt == NULL) 1456 return false; 1457 1458 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1459 } 1460 1461 /** 1462 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1463 * 1464 * @ttm: The ttm_tt object to compute the flags for 1465 * @mem: The memory registry backing this ttm_tt object 1466 * 1467 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1468 */ 1469 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1470 { 1471 uint64_t flags = 0; 1472 1473 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1474 flags |= AMDGPU_PTE_VALID; 1475 1476 if (mem && mem->mem_type == TTM_PL_TT) { 1477 flags |= AMDGPU_PTE_SYSTEM; 1478 1479 if (ttm->caching_state == tt_cached) 1480 flags |= AMDGPU_PTE_SNOOPED; 1481 } 1482 1483 return flags; 1484 } 1485 1486 /** 1487 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1488 * 1489 * @ttm: The ttm_tt object to compute the flags for 1490 * @mem: The memory registry backing this ttm_tt object 1491 1492 * Figure out the flags to use for a VM PTE (Page Table Entry). 1493 */ 1494 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1495 struct ttm_mem_reg *mem) 1496 { 1497 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1498 1499 flags |= adev->gart.gart_pte_flags; 1500 flags |= AMDGPU_PTE_READABLE; 1501 1502 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1503 flags |= AMDGPU_PTE_WRITEABLE; 1504 1505 return flags; 1506 } 1507 1508 /** 1509 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1510 * object. 1511 * 1512 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1513 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1514 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1515 * used to clean out a memory space. 1516 */ 1517 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1518 const struct ttm_place *place) 1519 { 1520 unsigned long num_pages = bo->mem.num_pages; 1521 struct drm_mm_node *node = bo->mem.mm_node; 1522 struct dma_resv_list *flist; 1523 struct dma_fence *f; 1524 int i; 1525 1526 if (bo->type == ttm_bo_type_kernel && 1527 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1528 return false; 1529 1530 /* If bo is a KFD BO, check if the bo belongs to the current process. 1531 * If true, then return false as any KFD process needs all its BOs to 1532 * be resident to run successfully 1533 */ 1534 flist = dma_resv_get_list(bo->base.resv); 1535 if (flist) { 1536 for (i = 0; i < flist->shared_count; ++i) { 1537 f = rcu_dereference_protected(flist->shared[i], 1538 dma_resv_held(bo->base.resv)); 1539 if (amdkfd_fence_check_mm(f, current->mm)) 1540 return false; 1541 } 1542 } 1543 1544 switch (bo->mem.mem_type) { 1545 case TTM_PL_TT: 1546 return true; 1547 1548 case TTM_PL_VRAM: 1549 /* Check each drm MM node individually */ 1550 while (num_pages) { 1551 if (place->fpfn < (node->start + node->size) && 1552 !(place->lpfn && place->lpfn <= node->start)) 1553 return true; 1554 1555 num_pages -= node->size; 1556 ++node; 1557 } 1558 return false; 1559 1560 default: 1561 break; 1562 } 1563 1564 return ttm_bo_eviction_valuable(bo, place); 1565 } 1566 1567 /** 1568 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1569 * 1570 * @bo: The buffer object to read/write 1571 * @offset: Offset into buffer object 1572 * @buf: Secondary buffer to write/read from 1573 * @len: Length in bytes of access 1574 * @write: true if writing 1575 * 1576 * This is used to access VRAM that backs a buffer object via MMIO 1577 * access for debugging purposes. 1578 */ 1579 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1580 unsigned long offset, 1581 void *buf, int len, int write) 1582 { 1583 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1584 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1585 struct drm_mm_node *nodes; 1586 uint32_t value = 0; 1587 int ret = 0; 1588 uint64_t pos; 1589 unsigned long flags; 1590 1591 if (bo->mem.mem_type != TTM_PL_VRAM) 1592 return -EIO; 1593 1594 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1595 pos = (nodes->start << PAGE_SHIFT) + offset; 1596 1597 while (len && pos < adev->gmc.mc_vram_size) { 1598 uint64_t aligned_pos = pos & ~(uint64_t)3; 1599 uint32_t bytes = 4 - (pos & 3); 1600 uint32_t shift = (pos & 3) * 8; 1601 uint32_t mask = 0xffffffff << shift; 1602 1603 if (len < bytes) { 1604 mask &= 0xffffffff >> (bytes - len) * 8; 1605 bytes = len; 1606 } 1607 1608 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1609 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1610 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1611 if (!write || mask != 0xffffffff) 1612 value = RREG32_NO_KIQ(mmMM_DATA); 1613 if (write) { 1614 value &= ~mask; 1615 value |= (*(uint32_t *)buf << shift) & mask; 1616 WREG32_NO_KIQ(mmMM_DATA, value); 1617 } 1618 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1619 if (!write) { 1620 value = (value & mask) >> shift; 1621 memcpy(buf, &value, bytes); 1622 } 1623 1624 ret += bytes; 1625 buf = (uint8_t *)buf + bytes; 1626 pos += bytes; 1627 len -= bytes; 1628 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1629 ++nodes; 1630 pos = (nodes->start << PAGE_SHIFT); 1631 } 1632 } 1633 1634 return ret; 1635 } 1636 1637 static struct ttm_bo_driver amdgpu_bo_driver = { 1638 .ttm_tt_create = &amdgpu_ttm_tt_create, 1639 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1640 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1641 .invalidate_caches = &amdgpu_invalidate_caches, 1642 .init_mem_type = &amdgpu_init_mem_type, 1643 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1644 .evict_flags = &amdgpu_evict_flags, 1645 .move = &amdgpu_bo_move, 1646 .verify_access = &amdgpu_verify_access, 1647 .move_notify = &amdgpu_bo_move_notify, 1648 .release_notify = &amdgpu_bo_release_notify, 1649 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1650 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1651 .io_mem_free = &amdgpu_ttm_io_mem_free, 1652 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1653 .access_memory = &amdgpu_ttm_access_memory, 1654 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1655 }; 1656 1657 /* 1658 * Firmware Reservation functions 1659 */ 1660 /** 1661 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1662 * 1663 * @adev: amdgpu_device pointer 1664 * 1665 * free fw reserved vram if it has been reserved. 1666 */ 1667 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1668 { 1669 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1670 NULL, &adev->fw_vram_usage.va); 1671 } 1672 1673 /** 1674 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1675 * 1676 * @adev: amdgpu_device pointer 1677 * 1678 * create bo vram reservation from fw. 1679 */ 1680 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1681 { 1682 uint64_t vram_size = adev->gmc.visible_vram_size; 1683 1684 adev->fw_vram_usage.va = NULL; 1685 adev->fw_vram_usage.reserved_bo = NULL; 1686 1687 if (adev->fw_vram_usage.size == 0 || 1688 adev->fw_vram_usage.size > vram_size) 1689 return 0; 1690 1691 return amdgpu_bo_create_kernel_at(adev, 1692 adev->fw_vram_usage.start_offset, 1693 adev->fw_vram_usage.size, 1694 AMDGPU_GEM_DOMAIN_VRAM, 1695 &adev->fw_vram_usage.reserved_bo, 1696 &adev->fw_vram_usage.va); 1697 } 1698 1699 /* 1700 * Memoy training reservation functions 1701 */ 1702 1703 /** 1704 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1705 * 1706 * @adev: amdgpu_device pointer 1707 * 1708 * free memory training reserved vram if it has been reserved. 1709 */ 1710 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1711 { 1712 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1713 1714 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1715 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1716 ctx->c2p_bo = NULL; 1717 1718 return 0; 1719 } 1720 1721 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size) 1722 { 1723 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) ) 1724 vram_size -= SZ_1M; 1725 1726 return ALIGN(vram_size, SZ_1M); 1727 } 1728 1729 /** 1730 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training 1731 * 1732 * @adev: amdgpu_device pointer 1733 * 1734 * create bo vram reservation from memory training. 1735 */ 1736 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev) 1737 { 1738 int ret; 1739 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1740 1741 memset(ctx, 0, sizeof(*ctx)); 1742 if (!adev->fw_vram_usage.mem_train_support) { 1743 DRM_DEBUG("memory training does not support!\n"); 1744 return 0; 1745 } 1746 1747 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size); 1748 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1749 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1750 1751 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1752 ctx->train_data_size, 1753 ctx->p2c_train_data_offset, 1754 ctx->c2p_train_data_offset); 1755 1756 ret = amdgpu_bo_create_kernel_at(adev, 1757 ctx->c2p_train_data_offset, 1758 ctx->train_data_size, 1759 AMDGPU_GEM_DOMAIN_VRAM, 1760 &ctx->c2p_bo, 1761 NULL); 1762 if (ret) { 1763 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1764 amdgpu_ttm_training_reserve_vram_fini(adev); 1765 return ret; 1766 } 1767 1768 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1769 return 0; 1770 } 1771 1772 /** 1773 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1774 * gtt/vram related fields. 1775 * 1776 * This initializes all of the memory space pools that the TTM layer 1777 * will need such as the GTT space (system memory mapped to the device), 1778 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1779 * can be mapped per VMID. 1780 */ 1781 int amdgpu_ttm_init(struct amdgpu_device *adev) 1782 { 1783 uint64_t gtt_size; 1784 int r; 1785 u64 vis_vram_limit; 1786 void *stolen_vga_buf; 1787 1788 mutex_init(&adev->mman.gtt_window_lock); 1789 1790 /* No others user of address space so set it to 0 */ 1791 r = ttm_bo_device_init(&adev->mman.bdev, 1792 &amdgpu_bo_driver, 1793 adev->ddev->anon_inode->i_mapping, 1794 adev->ddev->vma_offset_manager, 1795 dma_addressing_limited(adev->dev)); 1796 if (r) { 1797 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1798 return r; 1799 } 1800 adev->mman.initialized = true; 1801 1802 /* We opt to avoid OOM on system pages allocations */ 1803 adev->mman.bdev.no_retry = true; 1804 1805 /* Initialize VRAM pool with all of VRAM divided into pages */ 1806 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1807 adev->gmc.real_vram_size >> PAGE_SHIFT); 1808 if (r) { 1809 DRM_ERROR("Failed initializing VRAM heap.\n"); 1810 return r; 1811 } 1812 1813 /* Reduce size of CPU-visible VRAM if requested */ 1814 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1815 if (amdgpu_vis_vram_limit > 0 && 1816 vis_vram_limit <= adev->gmc.visible_vram_size) 1817 adev->gmc.visible_vram_size = vis_vram_limit; 1818 1819 /* Change the size here instead of the init above so only lpfn is affected */ 1820 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1821 #ifdef CONFIG_64BIT 1822 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1823 adev->gmc.visible_vram_size); 1824 #endif 1825 1826 /* 1827 *The reserved vram for firmware must be pinned to the specified 1828 *place on the VRAM, so reserve it early. 1829 */ 1830 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1831 if (r) { 1832 return r; 1833 } 1834 1835 /* 1836 *The reserved vram for memory training must be pinned to the specified 1837 *place on the VRAM, so reserve it early. 1838 */ 1839 r = amdgpu_ttm_training_reserve_vram_init(adev); 1840 if (r) 1841 return r; 1842 1843 /* allocate memory as required for VGA 1844 * This is used for VGA emulation and pre-OS scanout buffers to 1845 * avoid display artifacts while transitioning between pre-OS 1846 * and driver. */ 1847 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1848 AMDGPU_GEM_DOMAIN_VRAM, 1849 &adev->stolen_vga_memory, 1850 NULL, &stolen_vga_buf); 1851 if (r) 1852 return r; 1853 1854 /* 1855 * reserve one TMR (64K) memory at the top of VRAM which holds 1856 * IP Discovery data and is protected by PSP. 1857 */ 1858 r = amdgpu_bo_create_kernel_at(adev, 1859 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE, 1860 DISCOVERY_TMR_SIZE, 1861 AMDGPU_GEM_DOMAIN_VRAM, 1862 &adev->discovery_memory, 1863 NULL); 1864 if (r) 1865 return r; 1866 1867 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1868 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1869 1870 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1871 * or whatever the user passed on module init */ 1872 if (amdgpu_gtt_size == -1) { 1873 struct sysinfo si; 1874 1875 si_meminfo(&si); 1876 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1877 adev->gmc.mc_vram_size), 1878 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1879 } 1880 else 1881 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1882 1883 /* Initialize GTT memory pool */ 1884 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1885 if (r) { 1886 DRM_ERROR("Failed initializing GTT heap.\n"); 1887 return r; 1888 } 1889 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1890 (unsigned)(gtt_size / (1024 * 1024))); 1891 1892 /* Initialize various on-chip memory pools */ 1893 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1894 adev->gds.gds_size); 1895 if (r) { 1896 DRM_ERROR("Failed initializing GDS heap.\n"); 1897 return r; 1898 } 1899 1900 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1901 adev->gds.gws_size); 1902 if (r) { 1903 DRM_ERROR("Failed initializing gws heap.\n"); 1904 return r; 1905 } 1906 1907 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1908 adev->gds.oa_size); 1909 if (r) { 1910 DRM_ERROR("Failed initializing oa heap.\n"); 1911 return r; 1912 } 1913 1914 /* Register debugfs entries for amdgpu_ttm */ 1915 r = amdgpu_ttm_debugfs_init(adev); 1916 if (r) { 1917 DRM_ERROR("Failed to init debugfs\n"); 1918 return r; 1919 } 1920 return 0; 1921 } 1922 1923 /** 1924 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1925 */ 1926 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1927 { 1928 void *stolen_vga_buf; 1929 /* return the VGA stolen memory (if any) back to VRAM */ 1930 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); 1931 } 1932 1933 /** 1934 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1935 */ 1936 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1937 { 1938 if (!adev->mman.initialized) 1939 return; 1940 1941 amdgpu_ttm_debugfs_fini(adev); 1942 amdgpu_ttm_training_reserve_vram_fini(adev); 1943 /* return the IP Discovery TMR memory back to VRAM */ 1944 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); 1945 amdgpu_ttm_fw_reserve_vram_fini(adev); 1946 1947 if (adev->mman.aper_base_kaddr) 1948 iounmap(adev->mman.aper_base_kaddr); 1949 adev->mman.aper_base_kaddr = NULL; 1950 1951 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1952 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1953 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1954 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1955 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1956 ttm_bo_device_release(&adev->mman.bdev); 1957 adev->mman.initialized = false; 1958 DRM_INFO("amdgpu: ttm finalized\n"); 1959 } 1960 1961 /** 1962 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1963 * 1964 * @adev: amdgpu_device pointer 1965 * @enable: true when we can use buffer functions. 1966 * 1967 * Enable/disable use of buffer functions during suspend/resume. This should 1968 * only be called at bootup or when userspace isn't running. 1969 */ 1970 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1971 { 1972 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1973 uint64_t size; 1974 int r; 1975 1976 if (!adev->mman.initialized || adev->in_gpu_reset || 1977 adev->mman.buffer_funcs_enabled == enable) 1978 return; 1979 1980 if (enable) { 1981 struct amdgpu_ring *ring; 1982 struct drm_gpu_scheduler *sched; 1983 1984 ring = adev->mman.buffer_funcs_ring; 1985 sched = &ring->sched; 1986 r = drm_sched_entity_init(&adev->mman.entity, 1987 DRM_SCHED_PRIORITY_KERNEL, &sched, 1988 1, NULL); 1989 if (r) { 1990 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1991 r); 1992 return; 1993 } 1994 } else { 1995 drm_sched_entity_destroy(&adev->mman.entity); 1996 dma_fence_put(man->move); 1997 man->move = NULL; 1998 } 1999 2000 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2001 if (enable) 2002 size = adev->gmc.real_vram_size; 2003 else 2004 size = adev->gmc.visible_vram_size; 2005 man->size = size >> PAGE_SHIFT; 2006 adev->mman.buffer_funcs_enabled = enable; 2007 } 2008 2009 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2010 { 2011 struct drm_file *file_priv = filp->private_data; 2012 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 2013 2014 if (adev == NULL) 2015 return -EINVAL; 2016 2017 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2018 } 2019 2020 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 2021 struct ttm_mem_reg *mem, unsigned num_pages, 2022 uint64_t offset, unsigned window, 2023 struct amdgpu_ring *ring, 2024 uint64_t *addr) 2025 { 2026 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 2027 struct amdgpu_device *adev = ring->adev; 2028 struct ttm_tt *ttm = bo->ttm; 2029 struct amdgpu_job *job; 2030 unsigned num_dw, num_bytes; 2031 dma_addr_t *dma_address; 2032 struct dma_fence *fence; 2033 uint64_t src_addr, dst_addr; 2034 uint64_t flags; 2035 int r; 2036 2037 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 2038 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 2039 2040 *addr = adev->gmc.gart_start; 2041 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 2042 AMDGPU_GPU_PAGE_SIZE; 2043 2044 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 2045 num_bytes = num_pages * 8; 2046 2047 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 2048 if (r) 2049 return r; 2050 2051 src_addr = num_dw * 4; 2052 src_addr += job->ibs[0].gpu_addr; 2053 2054 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 2055 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 2056 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 2057 dst_addr, num_bytes); 2058 2059 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2060 WARN_ON(job->ibs[0].length_dw > num_dw); 2061 2062 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2063 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2064 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2065 &job->ibs[0].ptr[num_dw]); 2066 if (r) 2067 goto error_free; 2068 2069 r = amdgpu_job_submit(job, &adev->mman.entity, 2070 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2071 if (r) 2072 goto error_free; 2073 2074 dma_fence_put(fence); 2075 2076 return r; 2077 2078 error_free: 2079 amdgpu_job_free(job); 2080 return r; 2081 } 2082 2083 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2084 uint64_t dst_offset, uint32_t byte_count, 2085 struct dma_resv *resv, 2086 struct dma_fence **fence, bool direct_submit, 2087 bool vm_needs_flush) 2088 { 2089 struct amdgpu_device *adev = ring->adev; 2090 struct amdgpu_job *job; 2091 2092 uint32_t max_bytes; 2093 unsigned num_loops, num_dw; 2094 unsigned i; 2095 int r; 2096 2097 if (direct_submit && !ring->sched.ready) { 2098 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2099 return -EINVAL; 2100 } 2101 2102 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2103 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2104 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2105 2106 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2107 if (r) 2108 return r; 2109 2110 if (vm_needs_flush) { 2111 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2112 job->vm_needs_flush = true; 2113 } 2114 if (resv) { 2115 r = amdgpu_sync_resv(adev, &job->sync, resv, 2116 AMDGPU_FENCE_OWNER_UNDEFINED, 2117 false); 2118 if (r) { 2119 DRM_ERROR("sync failed (%d).\n", r); 2120 goto error_free; 2121 } 2122 } 2123 2124 for (i = 0; i < num_loops; i++) { 2125 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2126 2127 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2128 dst_offset, cur_size_in_bytes); 2129 2130 src_offset += cur_size_in_bytes; 2131 dst_offset += cur_size_in_bytes; 2132 byte_count -= cur_size_in_bytes; 2133 } 2134 2135 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2136 WARN_ON(job->ibs[0].length_dw > num_dw); 2137 if (direct_submit) 2138 r = amdgpu_job_submit_direct(job, ring, fence); 2139 else 2140 r = amdgpu_job_submit(job, &adev->mman.entity, 2141 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2142 if (r) 2143 goto error_free; 2144 2145 return r; 2146 2147 error_free: 2148 amdgpu_job_free(job); 2149 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2150 return r; 2151 } 2152 2153 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2154 uint32_t src_data, 2155 struct dma_resv *resv, 2156 struct dma_fence **fence) 2157 { 2158 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2159 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2160 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2161 2162 struct drm_mm_node *mm_node; 2163 unsigned long num_pages; 2164 unsigned int num_loops, num_dw; 2165 2166 struct amdgpu_job *job; 2167 int r; 2168 2169 if (!adev->mman.buffer_funcs_enabled) { 2170 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2171 return -EINVAL; 2172 } 2173 2174 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2175 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2176 if (r) 2177 return r; 2178 } 2179 2180 num_pages = bo->tbo.num_pages; 2181 mm_node = bo->tbo.mem.mm_node; 2182 num_loops = 0; 2183 while (num_pages) { 2184 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2185 2186 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2187 num_pages -= mm_node->size; 2188 ++mm_node; 2189 } 2190 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2191 2192 /* for IB padding */ 2193 num_dw += 64; 2194 2195 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2196 if (r) 2197 return r; 2198 2199 if (resv) { 2200 r = amdgpu_sync_resv(adev, &job->sync, resv, 2201 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2202 if (r) { 2203 DRM_ERROR("sync failed (%d).\n", r); 2204 goto error_free; 2205 } 2206 } 2207 2208 num_pages = bo->tbo.num_pages; 2209 mm_node = bo->tbo.mem.mm_node; 2210 2211 while (num_pages) { 2212 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2213 uint64_t dst_addr; 2214 2215 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2216 while (byte_count) { 2217 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2218 max_bytes); 2219 2220 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2221 dst_addr, cur_size_in_bytes); 2222 2223 dst_addr += cur_size_in_bytes; 2224 byte_count -= cur_size_in_bytes; 2225 } 2226 2227 num_pages -= mm_node->size; 2228 ++mm_node; 2229 } 2230 2231 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2232 WARN_ON(job->ibs[0].length_dw > num_dw); 2233 r = amdgpu_job_submit(job, &adev->mman.entity, 2234 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2235 if (r) 2236 goto error_free; 2237 2238 return 0; 2239 2240 error_free: 2241 amdgpu_job_free(job); 2242 return r; 2243 } 2244 2245 #if defined(CONFIG_DEBUG_FS) 2246 2247 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2248 { 2249 struct drm_info_node *node = (struct drm_info_node *)m->private; 2250 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2251 struct drm_device *dev = node->minor->dev; 2252 struct amdgpu_device *adev = dev->dev_private; 2253 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2254 struct drm_printer p = drm_seq_file_printer(m); 2255 2256 man->func->debug(man, &p); 2257 return 0; 2258 } 2259 2260 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2261 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2262 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2263 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2264 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2265 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2266 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2267 #ifdef CONFIG_SWIOTLB 2268 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2269 #endif 2270 }; 2271 2272 /** 2273 * amdgpu_ttm_vram_read - Linear read access to VRAM 2274 * 2275 * Accesses VRAM via MMIO for debugging purposes. 2276 */ 2277 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2278 size_t size, loff_t *pos) 2279 { 2280 struct amdgpu_device *adev = file_inode(f)->i_private; 2281 ssize_t result = 0; 2282 int r; 2283 2284 if (size & 0x3 || *pos & 0x3) 2285 return -EINVAL; 2286 2287 if (*pos >= adev->gmc.mc_vram_size) 2288 return -ENXIO; 2289 2290 while (size) { 2291 unsigned long flags; 2292 uint32_t value; 2293 2294 if (*pos >= adev->gmc.mc_vram_size) 2295 return result; 2296 2297 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2298 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2299 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2300 value = RREG32_NO_KIQ(mmMM_DATA); 2301 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2302 2303 r = put_user(value, (uint32_t *)buf); 2304 if (r) 2305 return r; 2306 2307 result += 4; 2308 buf += 4; 2309 *pos += 4; 2310 size -= 4; 2311 } 2312 2313 return result; 2314 } 2315 2316 /** 2317 * amdgpu_ttm_vram_write - Linear write access to VRAM 2318 * 2319 * Accesses VRAM via MMIO for debugging purposes. 2320 */ 2321 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2322 size_t size, loff_t *pos) 2323 { 2324 struct amdgpu_device *adev = file_inode(f)->i_private; 2325 ssize_t result = 0; 2326 int r; 2327 2328 if (size & 0x3 || *pos & 0x3) 2329 return -EINVAL; 2330 2331 if (*pos >= adev->gmc.mc_vram_size) 2332 return -ENXIO; 2333 2334 while (size) { 2335 unsigned long flags; 2336 uint32_t value; 2337 2338 if (*pos >= adev->gmc.mc_vram_size) 2339 return result; 2340 2341 r = get_user(value, (uint32_t *)buf); 2342 if (r) 2343 return r; 2344 2345 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2346 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2347 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2348 WREG32_NO_KIQ(mmMM_DATA, value); 2349 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2350 2351 result += 4; 2352 buf += 4; 2353 *pos += 4; 2354 size -= 4; 2355 } 2356 2357 return result; 2358 } 2359 2360 static const struct file_operations amdgpu_ttm_vram_fops = { 2361 .owner = THIS_MODULE, 2362 .read = amdgpu_ttm_vram_read, 2363 .write = amdgpu_ttm_vram_write, 2364 .llseek = default_llseek, 2365 }; 2366 2367 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2368 2369 /** 2370 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2371 */ 2372 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2373 size_t size, loff_t *pos) 2374 { 2375 struct amdgpu_device *adev = file_inode(f)->i_private; 2376 ssize_t result = 0; 2377 int r; 2378 2379 while (size) { 2380 loff_t p = *pos / PAGE_SIZE; 2381 unsigned off = *pos & ~PAGE_MASK; 2382 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2383 struct page *page; 2384 void *ptr; 2385 2386 if (p >= adev->gart.num_cpu_pages) 2387 return result; 2388 2389 page = adev->gart.pages[p]; 2390 if (page) { 2391 ptr = kmap(page); 2392 ptr += off; 2393 2394 r = copy_to_user(buf, ptr, cur_size); 2395 kunmap(adev->gart.pages[p]); 2396 } else 2397 r = clear_user(buf, cur_size); 2398 2399 if (r) 2400 return -EFAULT; 2401 2402 result += cur_size; 2403 buf += cur_size; 2404 *pos += cur_size; 2405 size -= cur_size; 2406 } 2407 2408 return result; 2409 } 2410 2411 static const struct file_operations amdgpu_ttm_gtt_fops = { 2412 .owner = THIS_MODULE, 2413 .read = amdgpu_ttm_gtt_read, 2414 .llseek = default_llseek 2415 }; 2416 2417 #endif 2418 2419 /** 2420 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2421 * 2422 * This function is used to read memory that has been mapped to the 2423 * GPU and the known addresses are not physical addresses but instead 2424 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2425 */ 2426 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2427 size_t size, loff_t *pos) 2428 { 2429 struct amdgpu_device *adev = file_inode(f)->i_private; 2430 struct iommu_domain *dom; 2431 ssize_t result = 0; 2432 int r; 2433 2434 /* retrieve the IOMMU domain if any for this device */ 2435 dom = iommu_get_domain_for_dev(adev->dev); 2436 2437 while (size) { 2438 phys_addr_t addr = *pos & PAGE_MASK; 2439 loff_t off = *pos & ~PAGE_MASK; 2440 size_t bytes = PAGE_SIZE - off; 2441 unsigned long pfn; 2442 struct page *p; 2443 void *ptr; 2444 2445 bytes = bytes < size ? bytes : size; 2446 2447 /* Translate the bus address to a physical address. If 2448 * the domain is NULL it means there is no IOMMU active 2449 * and the address translation is the identity 2450 */ 2451 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2452 2453 pfn = addr >> PAGE_SHIFT; 2454 if (!pfn_valid(pfn)) 2455 return -EPERM; 2456 2457 p = pfn_to_page(pfn); 2458 if (p->mapping != adev->mman.bdev.dev_mapping) 2459 return -EPERM; 2460 2461 ptr = kmap(p); 2462 r = copy_to_user(buf, ptr + off, bytes); 2463 kunmap(p); 2464 if (r) 2465 return -EFAULT; 2466 2467 size -= bytes; 2468 *pos += bytes; 2469 result += bytes; 2470 } 2471 2472 return result; 2473 } 2474 2475 /** 2476 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2477 * 2478 * This function is used to write memory that has been mapped to the 2479 * GPU and the known addresses are not physical addresses but instead 2480 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2481 */ 2482 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2483 size_t size, loff_t *pos) 2484 { 2485 struct amdgpu_device *adev = file_inode(f)->i_private; 2486 struct iommu_domain *dom; 2487 ssize_t result = 0; 2488 int r; 2489 2490 dom = iommu_get_domain_for_dev(adev->dev); 2491 2492 while (size) { 2493 phys_addr_t addr = *pos & PAGE_MASK; 2494 loff_t off = *pos & ~PAGE_MASK; 2495 size_t bytes = PAGE_SIZE - off; 2496 unsigned long pfn; 2497 struct page *p; 2498 void *ptr; 2499 2500 bytes = bytes < size ? bytes : size; 2501 2502 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2503 2504 pfn = addr >> PAGE_SHIFT; 2505 if (!pfn_valid(pfn)) 2506 return -EPERM; 2507 2508 p = pfn_to_page(pfn); 2509 if (p->mapping != adev->mman.bdev.dev_mapping) 2510 return -EPERM; 2511 2512 ptr = kmap(p); 2513 r = copy_from_user(ptr + off, buf, bytes); 2514 kunmap(p); 2515 if (r) 2516 return -EFAULT; 2517 2518 size -= bytes; 2519 *pos += bytes; 2520 result += bytes; 2521 } 2522 2523 return result; 2524 } 2525 2526 static const struct file_operations amdgpu_ttm_iomem_fops = { 2527 .owner = THIS_MODULE, 2528 .read = amdgpu_iomem_read, 2529 .write = amdgpu_iomem_write, 2530 .llseek = default_llseek 2531 }; 2532 2533 static const struct { 2534 char *name; 2535 const struct file_operations *fops; 2536 int domain; 2537 } ttm_debugfs_entries[] = { 2538 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2539 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2540 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2541 #endif 2542 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2543 }; 2544 2545 #endif 2546 2547 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2548 { 2549 #if defined(CONFIG_DEBUG_FS) 2550 unsigned count; 2551 2552 struct drm_minor *minor = adev->ddev->primary; 2553 struct dentry *ent, *root = minor->debugfs_root; 2554 2555 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2556 ent = debugfs_create_file( 2557 ttm_debugfs_entries[count].name, 2558 S_IFREG | S_IRUGO, root, 2559 adev, 2560 ttm_debugfs_entries[count].fops); 2561 if (IS_ERR(ent)) 2562 return PTR_ERR(ent); 2563 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2564 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2565 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2566 i_size_write(ent->d_inode, adev->gmc.gart_size); 2567 adev->mman.debugfs_entries[count] = ent; 2568 } 2569 2570 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2571 2572 #ifdef CONFIG_SWIOTLB 2573 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2574 --count; 2575 #endif 2576 2577 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2578 #else 2579 return 0; 2580 #endif 2581 } 2582 2583 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2584 { 2585 #if defined(CONFIG_DEBUG_FS) 2586 unsigned i; 2587 2588 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2589 debugfs_remove(adev->mman.debugfs_entries[i]); 2590 #endif 2591 } 2592