1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62 
63 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
64 			     struct ttm_mem_reg *mem, unsigned num_pages,
65 			     uint64_t offset, unsigned window,
66 			     struct amdgpu_ring *ring,
67 			     uint64_t *addr);
68 
69 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
70 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
71 
72 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
73 {
74 	return 0;
75 }
76 
77 /**
78  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
79  * memory request.
80  *
81  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
82  * @type: The type of memory requested
83  * @man: The memory type manager for each domain
84  *
85  * This is called by ttm_bo_init_mm() when a buffer object is being
86  * initialized.
87  */
88 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
89 				struct ttm_mem_type_manager *man)
90 {
91 	struct amdgpu_device *adev;
92 
93 	adev = amdgpu_ttm_adev(bdev);
94 
95 	switch (type) {
96 	case TTM_PL_SYSTEM:
97 		/* System memory */
98 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
99 		man->available_caching = TTM_PL_MASK_CACHING;
100 		man->default_caching = TTM_PL_FLAG_CACHED;
101 		break;
102 	case TTM_PL_TT:
103 		/* GTT memory  */
104 		man->func = &amdgpu_gtt_mgr_func;
105 		man->gpu_offset = adev->gmc.gart_start;
106 		man->available_caching = TTM_PL_MASK_CACHING;
107 		man->default_caching = TTM_PL_FLAG_CACHED;
108 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
109 		break;
110 	case TTM_PL_VRAM:
111 		/* "On-card" video ram */
112 		man->func = &amdgpu_vram_mgr_func;
113 		man->gpu_offset = adev->gmc.vram_start;
114 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
115 			     TTM_MEMTYPE_FLAG_MAPPABLE;
116 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
117 		man->default_caching = TTM_PL_FLAG_WC;
118 		break;
119 	case AMDGPU_PL_GDS:
120 	case AMDGPU_PL_GWS:
121 	case AMDGPU_PL_OA:
122 		/* On-chip GDS memory*/
123 		man->func = &ttm_bo_manager_func;
124 		man->gpu_offset = 0;
125 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
126 		man->available_caching = TTM_PL_FLAG_UNCACHED;
127 		man->default_caching = TTM_PL_FLAG_UNCACHED;
128 		break;
129 	default:
130 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
131 		return -EINVAL;
132 	}
133 	return 0;
134 }
135 
136 /**
137  * amdgpu_evict_flags - Compute placement flags
138  *
139  * @bo: The buffer object to evict
140  * @placement: Possible destination(s) for evicted BO
141  *
142  * Fill in placement data when ttm_bo_evict() is called
143  */
144 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
145 				struct ttm_placement *placement)
146 {
147 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
148 	struct amdgpu_bo *abo;
149 	static const struct ttm_place placements = {
150 		.fpfn = 0,
151 		.lpfn = 0,
152 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
153 	};
154 
155 	/* Don't handle scatter gather BOs */
156 	if (bo->type == ttm_bo_type_sg) {
157 		placement->num_placement = 0;
158 		placement->num_busy_placement = 0;
159 		return;
160 	}
161 
162 	/* Object isn't an AMDGPU object so ignore */
163 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
164 		placement->placement = &placements;
165 		placement->busy_placement = &placements;
166 		placement->num_placement = 1;
167 		placement->num_busy_placement = 1;
168 		return;
169 	}
170 
171 	abo = ttm_to_amdgpu_bo(bo);
172 	switch (bo->mem.mem_type) {
173 	case AMDGPU_PL_GDS:
174 	case AMDGPU_PL_GWS:
175 	case AMDGPU_PL_OA:
176 		placement->num_placement = 0;
177 		placement->num_busy_placement = 0;
178 		return;
179 
180 	case TTM_PL_VRAM:
181 		if (!adev->mman.buffer_funcs_enabled) {
182 			/* Move to system memory */
183 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
184 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
185 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
186 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
187 
188 			/* Try evicting to the CPU inaccessible part of VRAM
189 			 * first, but only set GTT as busy placement, so this
190 			 * BO will be evicted to GTT rather than causing other
191 			 * BOs to be evicted from VRAM
192 			 */
193 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
194 							 AMDGPU_GEM_DOMAIN_GTT);
195 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
196 			abo->placements[0].lpfn = 0;
197 			abo->placement.busy_placement = &abo->placements[1];
198 			abo->placement.num_busy_placement = 1;
199 		} else {
200 			/* Move to GTT memory */
201 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
202 		}
203 		break;
204 	case TTM_PL_TT:
205 	default:
206 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
207 		break;
208 	}
209 	*placement = abo->placement;
210 }
211 
212 /**
213  * amdgpu_verify_access - Verify access for a mmap call
214  *
215  * @bo:	The buffer object to map
216  * @filp: The file pointer from the process performing the mmap
217  *
218  * This is called by ttm_bo_mmap() to verify whether a process
219  * has the right to mmap a BO to their process space.
220  */
221 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
222 {
223 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
224 
225 	/*
226 	 * Don't verify access for KFD BOs. They don't have a GEM
227 	 * object associated with them.
228 	 */
229 	if (abo->kfd_bo)
230 		return 0;
231 
232 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
233 		return -EPERM;
234 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
235 					  filp->private_data);
236 }
237 
238 /**
239  * amdgpu_move_null - Register memory for a buffer object
240  *
241  * @bo: The bo to assign the memory to
242  * @new_mem: The memory to be assigned.
243  *
244  * Assign the memory from new_mem to the memory of the buffer object bo.
245  */
246 static void amdgpu_move_null(struct ttm_buffer_object *bo,
247 			     struct ttm_mem_reg *new_mem)
248 {
249 	struct ttm_mem_reg *old_mem = &bo->mem;
250 
251 	BUG_ON(old_mem->mm_node != NULL);
252 	*old_mem = *new_mem;
253 	new_mem->mm_node = NULL;
254 }
255 
256 /**
257  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
258  *
259  * @bo: The bo to assign the memory to.
260  * @mm_node: Memory manager node for drm allocator.
261  * @mem: The region where the bo resides.
262  *
263  */
264 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
265 				    struct drm_mm_node *mm_node,
266 				    struct ttm_mem_reg *mem)
267 {
268 	uint64_t addr = 0;
269 
270 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
271 		addr = mm_node->start << PAGE_SHIFT;
272 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
273 	}
274 	return addr;
275 }
276 
277 /**
278  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
279  * @offset. It also modifies the offset to be within the drm_mm_node returned
280  *
281  * @mem: The region where the bo resides.
282  * @offset: The offset that drm_mm_node is used for finding.
283  *
284  */
285 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
286 					       unsigned long *offset)
287 {
288 	struct drm_mm_node *mm_node = mem->mm_node;
289 
290 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
291 		*offset -= (mm_node->size << PAGE_SHIFT);
292 		++mm_node;
293 	}
294 	return mm_node;
295 }
296 
297 /**
298  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
299  *
300  * The function copies @size bytes from {src->mem + src->offset} to
301  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
302  * move and different for a BO to BO copy.
303  *
304  * @f: Returns the last fence if multiple jobs are submitted.
305  */
306 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
307 			       struct amdgpu_copy_mem *src,
308 			       struct amdgpu_copy_mem *dst,
309 			       uint64_t size,
310 			       struct dma_resv *resv,
311 			       struct dma_fence **f)
312 {
313 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
314 	struct drm_mm_node *src_mm, *dst_mm;
315 	uint64_t src_node_start, dst_node_start, src_node_size,
316 		 dst_node_size, src_page_offset, dst_page_offset;
317 	struct dma_fence *fence = NULL;
318 	int r = 0;
319 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
320 					AMDGPU_GPU_PAGE_SIZE);
321 
322 	if (!adev->mman.buffer_funcs_enabled) {
323 		DRM_ERROR("Trying to move memory with ring turned off.\n");
324 		return -EINVAL;
325 	}
326 
327 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
328 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
329 					     src->offset;
330 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
331 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
332 
333 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
334 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
335 					     dst->offset;
336 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
337 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
338 
339 	mutex_lock(&adev->mman.gtt_window_lock);
340 
341 	while (size) {
342 		unsigned long cur_size;
343 		uint64_t from = src_node_start, to = dst_node_start;
344 		struct dma_fence *next;
345 
346 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
347 		 * begins at an offset, then adjust the size accordingly
348 		 */
349 		cur_size = min3(min(src_node_size, dst_node_size), size,
350 				GTT_MAX_BYTES);
351 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
352 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
353 			cur_size -= max(src_page_offset, dst_page_offset);
354 
355 		/* Map only what needs to be accessed. Map src to window 0 and
356 		 * dst to window 1
357 		 */
358 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
359 			r = amdgpu_map_buffer(src->bo, src->mem,
360 					PFN_UP(cur_size + src_page_offset),
361 					src_node_start, 0, ring,
362 					&from);
363 			if (r)
364 				goto error;
365 			/* Adjust the offset because amdgpu_map_buffer returns
366 			 * start of mapped page
367 			 */
368 			from += src_page_offset;
369 		}
370 
371 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
372 			r = amdgpu_map_buffer(dst->bo, dst->mem,
373 					PFN_UP(cur_size + dst_page_offset),
374 					dst_node_start, 1, ring,
375 					&to);
376 			if (r)
377 				goto error;
378 			to += dst_page_offset;
379 		}
380 
381 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
382 				       resv, &next, false, true);
383 		if (r)
384 			goto error;
385 
386 		dma_fence_put(fence);
387 		fence = next;
388 
389 		size -= cur_size;
390 		if (!size)
391 			break;
392 
393 		src_node_size -= cur_size;
394 		if (!src_node_size) {
395 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
396 							     src->mem);
397 			src_node_size = (src_mm->size << PAGE_SHIFT);
398 			src_page_offset = 0;
399 		} else {
400 			src_node_start += cur_size;
401 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
402 		}
403 		dst_node_size -= cur_size;
404 		if (!dst_node_size) {
405 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
406 							     dst->mem);
407 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
408 			dst_page_offset = 0;
409 		} else {
410 			dst_node_start += cur_size;
411 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
412 		}
413 	}
414 error:
415 	mutex_unlock(&adev->mman.gtt_window_lock);
416 	if (f)
417 		*f = dma_fence_get(fence);
418 	dma_fence_put(fence);
419 	return r;
420 }
421 
422 /**
423  * amdgpu_move_blit - Copy an entire buffer to another buffer
424  *
425  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
426  * help move buffers to and from VRAM.
427  */
428 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
429 			    bool evict, bool no_wait_gpu,
430 			    struct ttm_mem_reg *new_mem,
431 			    struct ttm_mem_reg *old_mem)
432 {
433 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
434 	struct amdgpu_copy_mem src, dst;
435 	struct dma_fence *fence = NULL;
436 	int r;
437 
438 	src.bo = bo;
439 	dst.bo = bo;
440 	src.mem = old_mem;
441 	dst.mem = new_mem;
442 	src.offset = 0;
443 	dst.offset = 0;
444 
445 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
446 				       new_mem->num_pages << PAGE_SHIFT,
447 				       bo->base.resv, &fence);
448 	if (r)
449 		goto error;
450 
451 	/* clear the space being freed */
452 	if (old_mem->mem_type == TTM_PL_VRAM &&
453 	    (ttm_to_amdgpu_bo(bo)->flags &
454 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
455 		struct dma_fence *wipe_fence = NULL;
456 
457 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
458 				       NULL, &wipe_fence);
459 		if (r) {
460 			goto error;
461 		} else if (wipe_fence) {
462 			dma_fence_put(fence);
463 			fence = wipe_fence;
464 		}
465 	}
466 
467 	/* Always block for VM page tables before committing the new location */
468 	if (bo->type == ttm_bo_type_kernel)
469 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
470 	else
471 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
472 	dma_fence_put(fence);
473 	return r;
474 
475 error:
476 	if (fence)
477 		dma_fence_wait(fence, false);
478 	dma_fence_put(fence);
479 	return r;
480 }
481 
482 /**
483  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
484  *
485  * Called by amdgpu_bo_move().
486  */
487 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
488 				struct ttm_operation_ctx *ctx,
489 				struct ttm_mem_reg *new_mem)
490 {
491 	struct ttm_mem_reg *old_mem = &bo->mem;
492 	struct ttm_mem_reg tmp_mem;
493 	struct ttm_place placements;
494 	struct ttm_placement placement;
495 	int r;
496 
497 	/* create space/pages for new_mem in GTT space */
498 	tmp_mem = *new_mem;
499 	tmp_mem.mm_node = NULL;
500 	placement.num_placement = 1;
501 	placement.placement = &placements;
502 	placement.num_busy_placement = 1;
503 	placement.busy_placement = &placements;
504 	placements.fpfn = 0;
505 	placements.lpfn = 0;
506 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
507 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
508 	if (unlikely(r)) {
509 		pr_err("Failed to find GTT space for blit from VRAM\n");
510 		return r;
511 	}
512 
513 	/* set caching flags */
514 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
515 	if (unlikely(r)) {
516 		goto out_cleanup;
517 	}
518 
519 	/* Bind the memory to the GTT space */
520 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
521 	if (unlikely(r)) {
522 		goto out_cleanup;
523 	}
524 
525 	/* blit VRAM to GTT */
526 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
527 	if (unlikely(r)) {
528 		goto out_cleanup;
529 	}
530 
531 	/* move BO (in tmp_mem) to new_mem */
532 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
533 out_cleanup:
534 	ttm_bo_mem_put(bo, &tmp_mem);
535 	return r;
536 }
537 
538 /**
539  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
540  *
541  * Called by amdgpu_bo_move().
542  */
543 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
544 				struct ttm_operation_ctx *ctx,
545 				struct ttm_mem_reg *new_mem)
546 {
547 	struct ttm_mem_reg *old_mem = &bo->mem;
548 	struct ttm_mem_reg tmp_mem;
549 	struct ttm_placement placement;
550 	struct ttm_place placements;
551 	int r;
552 
553 	/* make space in GTT for old_mem buffer */
554 	tmp_mem = *new_mem;
555 	tmp_mem.mm_node = NULL;
556 	placement.num_placement = 1;
557 	placement.placement = &placements;
558 	placement.num_busy_placement = 1;
559 	placement.busy_placement = &placements;
560 	placements.fpfn = 0;
561 	placements.lpfn = 0;
562 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
563 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
564 	if (unlikely(r)) {
565 		pr_err("Failed to find GTT space for blit to VRAM\n");
566 		return r;
567 	}
568 
569 	/* move/bind old memory to GTT space */
570 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
571 	if (unlikely(r)) {
572 		goto out_cleanup;
573 	}
574 
575 	/* copy to VRAM */
576 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
577 	if (unlikely(r)) {
578 		goto out_cleanup;
579 	}
580 out_cleanup:
581 	ttm_bo_mem_put(bo, &tmp_mem);
582 	return r;
583 }
584 
585 /**
586  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
587  *
588  * Called by amdgpu_bo_move()
589  */
590 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
591 			       struct ttm_mem_reg *mem)
592 {
593 	struct drm_mm_node *nodes = mem->mm_node;
594 
595 	if (mem->mem_type == TTM_PL_SYSTEM ||
596 	    mem->mem_type == TTM_PL_TT)
597 		return true;
598 	if (mem->mem_type != TTM_PL_VRAM)
599 		return false;
600 
601 	/* ttm_mem_reg_ioremap only supports contiguous memory */
602 	if (nodes->size != mem->num_pages)
603 		return false;
604 
605 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
606 		<= adev->gmc.visible_vram_size;
607 }
608 
609 /**
610  * amdgpu_bo_move - Move a buffer object to a new memory location
611  *
612  * Called by ttm_bo_handle_move_mem()
613  */
614 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
615 			  struct ttm_operation_ctx *ctx,
616 			  struct ttm_mem_reg *new_mem)
617 {
618 	struct amdgpu_device *adev;
619 	struct amdgpu_bo *abo;
620 	struct ttm_mem_reg *old_mem = &bo->mem;
621 	int r;
622 
623 	/* Can't move a pinned BO */
624 	abo = ttm_to_amdgpu_bo(bo);
625 	if (WARN_ON_ONCE(abo->pin_count > 0))
626 		return -EINVAL;
627 
628 	adev = amdgpu_ttm_adev(bo->bdev);
629 
630 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
631 		amdgpu_move_null(bo, new_mem);
632 		return 0;
633 	}
634 	if ((old_mem->mem_type == TTM_PL_TT &&
635 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
636 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
637 	     new_mem->mem_type == TTM_PL_TT)) {
638 		/* bind is enough */
639 		amdgpu_move_null(bo, new_mem);
640 		return 0;
641 	}
642 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
643 	    old_mem->mem_type == AMDGPU_PL_GWS ||
644 	    old_mem->mem_type == AMDGPU_PL_OA ||
645 	    new_mem->mem_type == AMDGPU_PL_GDS ||
646 	    new_mem->mem_type == AMDGPU_PL_GWS ||
647 	    new_mem->mem_type == AMDGPU_PL_OA) {
648 		/* Nothing to save here */
649 		amdgpu_move_null(bo, new_mem);
650 		return 0;
651 	}
652 
653 	if (!adev->mman.buffer_funcs_enabled) {
654 		r = -ENODEV;
655 		goto memcpy;
656 	}
657 
658 	if (old_mem->mem_type == TTM_PL_VRAM &&
659 	    new_mem->mem_type == TTM_PL_SYSTEM) {
660 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
661 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
662 		   new_mem->mem_type == TTM_PL_VRAM) {
663 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
664 	} else {
665 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
666 				     new_mem, old_mem);
667 	}
668 
669 	if (r) {
670 memcpy:
671 		/* Check that all memory is CPU accessible */
672 		if (!amdgpu_mem_visible(adev, old_mem) ||
673 		    !amdgpu_mem_visible(adev, new_mem)) {
674 			pr_err("Move buffer fallback to memcpy unavailable\n");
675 			return r;
676 		}
677 
678 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
679 		if (r)
680 			return r;
681 	}
682 
683 	if (bo->type == ttm_bo_type_device &&
684 	    new_mem->mem_type == TTM_PL_VRAM &&
685 	    old_mem->mem_type != TTM_PL_VRAM) {
686 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
687 		 * accesses the BO after it's moved.
688 		 */
689 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
690 	}
691 
692 	/* update statistics */
693 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
694 	return 0;
695 }
696 
697 /**
698  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
699  *
700  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
701  */
702 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
703 {
704 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
705 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
706 	struct drm_mm_node *mm_node = mem->mm_node;
707 
708 	mem->bus.addr = NULL;
709 	mem->bus.offset = 0;
710 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
711 	mem->bus.base = 0;
712 	mem->bus.is_iomem = false;
713 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
714 		return -EINVAL;
715 	switch (mem->mem_type) {
716 	case TTM_PL_SYSTEM:
717 		/* system memory */
718 		return 0;
719 	case TTM_PL_TT:
720 		break;
721 	case TTM_PL_VRAM:
722 		mem->bus.offset = mem->start << PAGE_SHIFT;
723 		/* check if it's visible */
724 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
725 			return -EINVAL;
726 		/* Only physically contiguous buffers apply. In a contiguous
727 		 * buffer, size of the first mm_node would match the number of
728 		 * pages in ttm_mem_reg.
729 		 */
730 		if (adev->mman.aper_base_kaddr &&
731 		    (mm_node->size == mem->num_pages))
732 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
733 					mem->bus.offset;
734 
735 		mem->bus.base = adev->gmc.aper_base;
736 		mem->bus.is_iomem = true;
737 		break;
738 	default:
739 		return -EINVAL;
740 	}
741 	return 0;
742 }
743 
744 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
745 {
746 }
747 
748 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
749 					   unsigned long page_offset)
750 {
751 	struct drm_mm_node *mm;
752 	unsigned long offset = (page_offset << PAGE_SHIFT);
753 
754 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
755 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
756 		(offset >> PAGE_SHIFT);
757 }
758 
759 /*
760  * TTM backend functions.
761  */
762 struct amdgpu_ttm_tt {
763 	struct ttm_dma_tt	ttm;
764 	struct drm_gem_object	*gobj;
765 	u64			offset;
766 	uint64_t		userptr;
767 	struct task_struct	*usertask;
768 	uint32_t		userflags;
769 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
770 	struct hmm_range	*range;
771 #endif
772 };
773 
774 #ifdef CONFIG_DRM_AMDGPU_USERPTR
775 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
776 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
777 	(1 << 0), /* HMM_PFN_VALID */
778 	(1 << 1), /* HMM_PFN_WRITE */
779 	0 /* HMM_PFN_DEVICE_PRIVATE */
780 };
781 
782 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
783 	0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
784 	0, /* HMM_PFN_NONE */
785 	0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
786 };
787 
788 /**
789  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
790  * memory and start HMM tracking CPU page table update
791  *
792  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
793  * once afterwards to stop HMM tracking
794  */
795 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
796 {
797 	struct ttm_tt *ttm = bo->tbo.ttm;
798 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
799 	unsigned long start = gtt->userptr;
800 	struct vm_area_struct *vma;
801 	struct hmm_range *range;
802 	unsigned long timeout;
803 	struct mm_struct *mm;
804 	unsigned long i;
805 	int r = 0;
806 
807 	mm = bo->notifier.mm;
808 	if (unlikely(!mm)) {
809 		DRM_DEBUG_DRIVER("BO is not registered?\n");
810 		return -EFAULT;
811 	}
812 
813 	/* Another get_user_pages is running at the same time?? */
814 	if (WARN_ON(gtt->range))
815 		return -EFAULT;
816 
817 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
818 		return -ESRCH;
819 
820 	range = kzalloc(sizeof(*range), GFP_KERNEL);
821 	if (unlikely(!range)) {
822 		r = -ENOMEM;
823 		goto out;
824 	}
825 	range->notifier = &bo->notifier;
826 	range->flags = hmm_range_flags;
827 	range->values = hmm_range_values;
828 	range->pfn_shift = PAGE_SHIFT;
829 	range->start = bo->notifier.interval_tree.start;
830 	range->end = bo->notifier.interval_tree.last + 1;
831 	range->default_flags = hmm_range_flags[HMM_PFN_VALID];
832 	if (!amdgpu_ttm_tt_is_readonly(ttm))
833 		range->default_flags |= range->flags[HMM_PFN_WRITE];
834 
835 	range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
836 				     GFP_KERNEL);
837 	if (unlikely(!range->pfns)) {
838 		r = -ENOMEM;
839 		goto out_free_ranges;
840 	}
841 
842 	down_read(&mm->mmap_sem);
843 	vma = find_vma(mm, start);
844 	if (unlikely(!vma || start < vma->vm_start)) {
845 		r = -EFAULT;
846 		goto out_unlock;
847 	}
848 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
849 		vma->vm_file)) {
850 		r = -EPERM;
851 		goto out_unlock;
852 	}
853 	up_read(&mm->mmap_sem);
854 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
855 
856 retry:
857 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
858 
859 	down_read(&mm->mmap_sem);
860 	r = hmm_range_fault(range, 0);
861 	up_read(&mm->mmap_sem);
862 	if (unlikely(r <= 0)) {
863 		/*
864 		 * FIXME: This timeout should encompass the retry from
865 		 * mmu_interval_read_retry() as well.
866 		 */
867 		if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
868 			goto retry;
869 		goto out_free_pfns;
870 	}
871 
872 	for (i = 0; i < ttm->num_pages; i++) {
873 		/* FIXME: The pages cannot be touched outside the notifier_lock */
874 		pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
875 		if (unlikely(!pages[i])) {
876 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
877 			       i, range->pfns[i]);
878 			r = -ENOMEM;
879 
880 			goto out_free_pfns;
881 		}
882 	}
883 
884 	gtt->range = range;
885 	mmput(mm);
886 
887 	return 0;
888 
889 out_unlock:
890 	up_read(&mm->mmap_sem);
891 out_free_pfns:
892 	kvfree(range->pfns);
893 out_free_ranges:
894 	kfree(range);
895 out:
896 	mmput(mm);
897 	return r;
898 }
899 
900 /**
901  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
902  * Check if the pages backing this ttm range have been invalidated
903  *
904  * Returns: true if pages are still valid
905  */
906 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
907 {
908 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
909 	bool r = false;
910 
911 	if (!gtt || !gtt->userptr)
912 		return false;
913 
914 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
915 		gtt->userptr, ttm->num_pages);
916 
917 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
918 		"No user pages to check\n");
919 
920 	if (gtt->range) {
921 		/*
922 		 * FIXME: Must always hold notifier_lock for this, and must
923 		 * not ignore the return code.
924 		 */
925 		r = mmu_interval_read_retry(gtt->range->notifier,
926 					 gtt->range->notifier_seq);
927 		kvfree(gtt->range->pfns);
928 		kfree(gtt->range);
929 		gtt->range = NULL;
930 	}
931 
932 	return !r;
933 }
934 #endif
935 
936 /**
937  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
938  *
939  * Called by amdgpu_cs_list_validate(). This creates the page list
940  * that backs user memory and will ultimately be mapped into the device
941  * address space.
942  */
943 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
944 {
945 	unsigned long i;
946 
947 	for (i = 0; i < ttm->num_pages; ++i)
948 		ttm->pages[i] = pages ? pages[i] : NULL;
949 }
950 
951 /**
952  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
953  *
954  * Called by amdgpu_ttm_backend_bind()
955  **/
956 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
957 {
958 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
959 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
960 	unsigned nents;
961 	int r;
962 
963 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
964 	enum dma_data_direction direction = write ?
965 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
966 
967 	/* Allocate an SG array and squash pages into it */
968 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
969 				      ttm->num_pages << PAGE_SHIFT,
970 				      GFP_KERNEL);
971 	if (r)
972 		goto release_sg;
973 
974 	/* Map SG to device */
975 	r = -ENOMEM;
976 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
977 	if (nents != ttm->sg->nents)
978 		goto release_sg;
979 
980 	/* convert SG to linear array of pages and dma addresses */
981 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
982 					 gtt->ttm.dma_address, ttm->num_pages);
983 
984 	return 0;
985 
986 release_sg:
987 	kfree(ttm->sg);
988 	return r;
989 }
990 
991 /**
992  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
993  */
994 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
995 {
996 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
997 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
998 
999 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1000 	enum dma_data_direction direction = write ?
1001 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1002 
1003 	/* double check that we don't free the table twice */
1004 	if (!ttm->sg->sgl)
1005 		return;
1006 
1007 	/* unmap the pages mapped to the device */
1008 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1009 
1010 	sg_free_table(ttm->sg);
1011 
1012 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1013 	if (gtt->range) {
1014 		unsigned long i;
1015 
1016 		for (i = 0; i < ttm->num_pages; i++) {
1017 			if (ttm->pages[i] !=
1018 				hmm_device_entry_to_page(gtt->range,
1019 					      gtt->range->pfns[i]))
1020 				break;
1021 		}
1022 
1023 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1024 	}
1025 #endif
1026 }
1027 
1028 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1029 				struct ttm_buffer_object *tbo,
1030 				uint64_t flags)
1031 {
1032 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1033 	struct ttm_tt *ttm = tbo->ttm;
1034 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1035 	int r;
1036 
1037 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1038 		uint64_t page_idx = 1;
1039 
1040 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1041 				ttm->pages, gtt->ttm.dma_address, flags);
1042 		if (r)
1043 			goto gart_bind_fail;
1044 
1045 		/* Patch mtype of the second part BO */
1046 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1047 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1048 
1049 		r = amdgpu_gart_bind(adev,
1050 				gtt->offset + (page_idx << PAGE_SHIFT),
1051 				ttm->num_pages - page_idx,
1052 				&ttm->pages[page_idx],
1053 				&(gtt->ttm.dma_address[page_idx]), flags);
1054 	} else {
1055 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1056 				     ttm->pages, gtt->ttm.dma_address, flags);
1057 	}
1058 
1059 gart_bind_fail:
1060 	if (r)
1061 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1062 			  ttm->num_pages, gtt->offset);
1063 
1064 	return r;
1065 }
1066 
1067 /**
1068  * amdgpu_ttm_backend_bind - Bind GTT memory
1069  *
1070  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1071  * This handles binding GTT memory to the device address space.
1072  */
1073 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1074 				   struct ttm_mem_reg *bo_mem)
1075 {
1076 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1077 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1078 	uint64_t flags;
1079 	int r = 0;
1080 
1081 	if (gtt->userptr) {
1082 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1083 		if (r) {
1084 			DRM_ERROR("failed to pin userptr\n");
1085 			return r;
1086 		}
1087 	}
1088 	if (!ttm->num_pages) {
1089 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1090 		     ttm->num_pages, bo_mem, ttm);
1091 	}
1092 
1093 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1094 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1095 	    bo_mem->mem_type == AMDGPU_PL_OA)
1096 		return -EINVAL;
1097 
1098 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1099 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1100 		return 0;
1101 	}
1102 
1103 	/* compute PTE flags relevant to this BO memory */
1104 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1105 
1106 	/* bind pages into GART page tables */
1107 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1108 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1109 		ttm->pages, gtt->ttm.dma_address, flags);
1110 
1111 	if (r)
1112 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1113 			  ttm->num_pages, gtt->offset);
1114 	return r;
1115 }
1116 
1117 /**
1118  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1119  */
1120 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1121 {
1122 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1123 	struct ttm_operation_ctx ctx = { false, false };
1124 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1125 	struct ttm_mem_reg tmp;
1126 	struct ttm_placement placement;
1127 	struct ttm_place placements;
1128 	uint64_t addr, flags;
1129 	int r;
1130 
1131 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1132 		return 0;
1133 
1134 	addr = amdgpu_gmc_agp_addr(bo);
1135 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1136 		bo->mem.start = addr >> PAGE_SHIFT;
1137 	} else {
1138 
1139 		/* allocate GART space */
1140 		tmp = bo->mem;
1141 		tmp.mm_node = NULL;
1142 		placement.num_placement = 1;
1143 		placement.placement = &placements;
1144 		placement.num_busy_placement = 1;
1145 		placement.busy_placement = &placements;
1146 		placements.fpfn = 0;
1147 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1148 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1149 			TTM_PL_FLAG_TT;
1150 
1151 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1152 		if (unlikely(r))
1153 			return r;
1154 
1155 		/* compute PTE flags for this buffer object */
1156 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1157 
1158 		/* Bind pages */
1159 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1160 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1161 		if (unlikely(r)) {
1162 			ttm_bo_mem_put(bo, &tmp);
1163 			return r;
1164 		}
1165 
1166 		ttm_bo_mem_put(bo, &bo->mem);
1167 		bo->mem = tmp;
1168 	}
1169 
1170 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1171 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1172 
1173 	return 0;
1174 }
1175 
1176 /**
1177  * amdgpu_ttm_recover_gart - Rebind GTT pages
1178  *
1179  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1180  * rebind GTT pages during a GPU reset.
1181  */
1182 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1183 {
1184 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1185 	uint64_t flags;
1186 	int r;
1187 
1188 	if (!tbo->ttm)
1189 		return 0;
1190 
1191 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1192 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1193 
1194 	return r;
1195 }
1196 
1197 /**
1198  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1199  *
1200  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1201  * ttm_tt_destroy().
1202  */
1203 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1204 {
1205 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1206 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1207 	int r;
1208 
1209 	/* if the pages have userptr pinning then clear that first */
1210 	if (gtt->userptr)
1211 		amdgpu_ttm_tt_unpin_userptr(ttm);
1212 
1213 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1214 		return 0;
1215 
1216 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1217 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1218 	if (r)
1219 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1220 			  gtt->ttm.ttm.num_pages, gtt->offset);
1221 	return r;
1222 }
1223 
1224 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1225 {
1226 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1227 
1228 	if (gtt->usertask)
1229 		put_task_struct(gtt->usertask);
1230 
1231 	ttm_dma_tt_fini(&gtt->ttm);
1232 	kfree(gtt);
1233 }
1234 
1235 static struct ttm_backend_func amdgpu_backend_func = {
1236 	.bind = &amdgpu_ttm_backend_bind,
1237 	.unbind = &amdgpu_ttm_backend_unbind,
1238 	.destroy = &amdgpu_ttm_backend_destroy,
1239 };
1240 
1241 /**
1242  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1243  *
1244  * @bo: The buffer object to create a GTT ttm_tt object around
1245  *
1246  * Called by ttm_tt_create().
1247  */
1248 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1249 					   uint32_t page_flags)
1250 {
1251 	struct amdgpu_ttm_tt *gtt;
1252 
1253 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1254 	if (gtt == NULL) {
1255 		return NULL;
1256 	}
1257 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1258 	gtt->gobj = &bo->base;
1259 
1260 	/* allocate space for the uninitialized page entries */
1261 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1262 		kfree(gtt);
1263 		return NULL;
1264 	}
1265 	return &gtt->ttm.ttm;
1266 }
1267 
1268 /**
1269  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1270  *
1271  * Map the pages of a ttm_tt object to an address space visible
1272  * to the underlying device.
1273  */
1274 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1275 			struct ttm_operation_ctx *ctx)
1276 {
1277 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1278 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1279 
1280 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1281 	if (gtt && gtt->userptr) {
1282 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1283 		if (!ttm->sg)
1284 			return -ENOMEM;
1285 
1286 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1287 		ttm->state = tt_unbound;
1288 		return 0;
1289 	}
1290 
1291 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1292 		if (!ttm->sg) {
1293 			struct dma_buf_attachment *attach;
1294 			struct sg_table *sgt;
1295 
1296 			attach = gtt->gobj->import_attach;
1297 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1298 			if (IS_ERR(sgt))
1299 				return PTR_ERR(sgt);
1300 
1301 			ttm->sg = sgt;
1302 		}
1303 
1304 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1305 						 gtt->ttm.dma_address,
1306 						 ttm->num_pages);
1307 		ttm->state = tt_unbound;
1308 		return 0;
1309 	}
1310 
1311 #ifdef CONFIG_SWIOTLB
1312 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1313 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1314 	}
1315 #endif
1316 
1317 	/* fall back to generic helper to populate the page array
1318 	 * and map them to the device */
1319 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1320 }
1321 
1322 /**
1323  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1324  *
1325  * Unmaps pages of a ttm_tt object from the device address space and
1326  * unpopulates the page array backing it.
1327  */
1328 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1329 {
1330 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1331 	struct amdgpu_device *adev;
1332 
1333 	if (gtt && gtt->userptr) {
1334 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1335 		kfree(ttm->sg);
1336 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1337 		return;
1338 	}
1339 
1340 	if (ttm->sg && gtt->gobj->import_attach) {
1341 		struct dma_buf_attachment *attach;
1342 
1343 		attach = gtt->gobj->import_attach;
1344 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1345 		ttm->sg = NULL;
1346 		return;
1347 	}
1348 
1349 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1350 		return;
1351 
1352 	adev = amdgpu_ttm_adev(ttm->bdev);
1353 
1354 #ifdef CONFIG_SWIOTLB
1355 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1356 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1357 		return;
1358 	}
1359 #endif
1360 
1361 	/* fall back to generic helper to unmap and unpopulate array */
1362 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1363 }
1364 
1365 /**
1366  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1367  * task
1368  *
1369  * @ttm: The ttm_tt object to bind this userptr object to
1370  * @addr:  The address in the current tasks VM space to use
1371  * @flags: Requirements of userptr object.
1372  *
1373  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1374  * to current task
1375  */
1376 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1377 			      uint32_t flags)
1378 {
1379 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1380 
1381 	if (gtt == NULL)
1382 		return -EINVAL;
1383 
1384 	gtt->userptr = addr;
1385 	gtt->userflags = flags;
1386 
1387 	if (gtt->usertask)
1388 		put_task_struct(gtt->usertask);
1389 	gtt->usertask = current->group_leader;
1390 	get_task_struct(gtt->usertask);
1391 
1392 	return 0;
1393 }
1394 
1395 /**
1396  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1397  */
1398 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1399 {
1400 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1401 
1402 	if (gtt == NULL)
1403 		return NULL;
1404 
1405 	if (gtt->usertask == NULL)
1406 		return NULL;
1407 
1408 	return gtt->usertask->mm;
1409 }
1410 
1411 /**
1412  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1413  * address range for the current task.
1414  *
1415  */
1416 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1417 				  unsigned long end)
1418 {
1419 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1420 	unsigned long size;
1421 
1422 	if (gtt == NULL || !gtt->userptr)
1423 		return false;
1424 
1425 	/* Return false if no part of the ttm_tt object lies within
1426 	 * the range
1427 	 */
1428 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1429 	if (gtt->userptr > end || gtt->userptr + size <= start)
1430 		return false;
1431 
1432 	return true;
1433 }
1434 
1435 /**
1436  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1437  */
1438 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1439 {
1440 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1441 
1442 	if (gtt == NULL || !gtt->userptr)
1443 		return false;
1444 
1445 	return true;
1446 }
1447 
1448 /**
1449  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1450  */
1451 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1452 {
1453 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1454 
1455 	if (gtt == NULL)
1456 		return false;
1457 
1458 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1459 }
1460 
1461 /**
1462  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1463  *
1464  * @ttm: The ttm_tt object to compute the flags for
1465  * @mem: The memory registry backing this ttm_tt object
1466  *
1467  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1468  */
1469 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1470 {
1471 	uint64_t flags = 0;
1472 
1473 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1474 		flags |= AMDGPU_PTE_VALID;
1475 
1476 	if (mem && mem->mem_type == TTM_PL_TT) {
1477 		flags |= AMDGPU_PTE_SYSTEM;
1478 
1479 		if (ttm->caching_state == tt_cached)
1480 			flags |= AMDGPU_PTE_SNOOPED;
1481 	}
1482 
1483 	return flags;
1484 }
1485 
1486 /**
1487  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1488  *
1489  * @ttm: The ttm_tt object to compute the flags for
1490  * @mem: The memory registry backing this ttm_tt object
1491 
1492  * Figure out the flags to use for a VM PTE (Page Table Entry).
1493  */
1494 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1495 				 struct ttm_mem_reg *mem)
1496 {
1497 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1498 
1499 	flags |= adev->gart.gart_pte_flags;
1500 	flags |= AMDGPU_PTE_READABLE;
1501 
1502 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1503 		flags |= AMDGPU_PTE_WRITEABLE;
1504 
1505 	return flags;
1506 }
1507 
1508 /**
1509  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1510  * object.
1511  *
1512  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1513  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1514  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1515  * used to clean out a memory space.
1516  */
1517 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1518 					    const struct ttm_place *place)
1519 {
1520 	unsigned long num_pages = bo->mem.num_pages;
1521 	struct drm_mm_node *node = bo->mem.mm_node;
1522 	struct dma_resv_list *flist;
1523 	struct dma_fence *f;
1524 	int i;
1525 
1526 	if (bo->type == ttm_bo_type_kernel &&
1527 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1528 		return false;
1529 
1530 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1531 	 * If true, then return false as any KFD process needs all its BOs to
1532 	 * be resident to run successfully
1533 	 */
1534 	flist = dma_resv_get_list(bo->base.resv);
1535 	if (flist) {
1536 		for (i = 0; i < flist->shared_count; ++i) {
1537 			f = rcu_dereference_protected(flist->shared[i],
1538 				dma_resv_held(bo->base.resv));
1539 			if (amdkfd_fence_check_mm(f, current->mm))
1540 				return false;
1541 		}
1542 	}
1543 
1544 	switch (bo->mem.mem_type) {
1545 	case TTM_PL_TT:
1546 		return true;
1547 
1548 	case TTM_PL_VRAM:
1549 		/* Check each drm MM node individually */
1550 		while (num_pages) {
1551 			if (place->fpfn < (node->start + node->size) &&
1552 			    !(place->lpfn && place->lpfn <= node->start))
1553 				return true;
1554 
1555 			num_pages -= node->size;
1556 			++node;
1557 		}
1558 		return false;
1559 
1560 	default:
1561 		break;
1562 	}
1563 
1564 	return ttm_bo_eviction_valuable(bo, place);
1565 }
1566 
1567 /**
1568  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1569  *
1570  * @bo:  The buffer object to read/write
1571  * @offset:  Offset into buffer object
1572  * @buf:  Secondary buffer to write/read from
1573  * @len: Length in bytes of access
1574  * @write:  true if writing
1575  *
1576  * This is used to access VRAM that backs a buffer object via MMIO
1577  * access for debugging purposes.
1578  */
1579 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1580 				    unsigned long offset,
1581 				    void *buf, int len, int write)
1582 {
1583 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1584 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1585 	struct drm_mm_node *nodes;
1586 	uint32_t value = 0;
1587 	int ret = 0;
1588 	uint64_t pos;
1589 	unsigned long flags;
1590 
1591 	if (bo->mem.mem_type != TTM_PL_VRAM)
1592 		return -EIO;
1593 
1594 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1595 	pos = (nodes->start << PAGE_SHIFT) + offset;
1596 
1597 	while (len && pos < adev->gmc.mc_vram_size) {
1598 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1599 		uint32_t bytes = 4 - (pos & 3);
1600 		uint32_t shift = (pos & 3) * 8;
1601 		uint32_t mask = 0xffffffff << shift;
1602 
1603 		if (len < bytes) {
1604 			mask &= 0xffffffff >> (bytes - len) * 8;
1605 			bytes = len;
1606 		}
1607 
1608 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1609 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1610 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1611 		if (!write || mask != 0xffffffff)
1612 			value = RREG32_NO_KIQ(mmMM_DATA);
1613 		if (write) {
1614 			value &= ~mask;
1615 			value |= (*(uint32_t *)buf << shift) & mask;
1616 			WREG32_NO_KIQ(mmMM_DATA, value);
1617 		}
1618 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1619 		if (!write) {
1620 			value = (value & mask) >> shift;
1621 			memcpy(buf, &value, bytes);
1622 		}
1623 
1624 		ret += bytes;
1625 		buf = (uint8_t *)buf + bytes;
1626 		pos += bytes;
1627 		len -= bytes;
1628 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1629 			++nodes;
1630 			pos = (nodes->start << PAGE_SHIFT);
1631 		}
1632 	}
1633 
1634 	return ret;
1635 }
1636 
1637 static struct ttm_bo_driver amdgpu_bo_driver = {
1638 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1639 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1640 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1641 	.invalidate_caches = &amdgpu_invalidate_caches,
1642 	.init_mem_type = &amdgpu_init_mem_type,
1643 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1644 	.evict_flags = &amdgpu_evict_flags,
1645 	.move = &amdgpu_bo_move,
1646 	.verify_access = &amdgpu_verify_access,
1647 	.move_notify = &amdgpu_bo_move_notify,
1648 	.release_notify = &amdgpu_bo_release_notify,
1649 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1650 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1651 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1652 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1653 	.access_memory = &amdgpu_ttm_access_memory,
1654 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1655 };
1656 
1657 /*
1658  * Firmware Reservation functions
1659  */
1660 /**
1661  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1662  *
1663  * @adev: amdgpu_device pointer
1664  *
1665  * free fw reserved vram if it has been reserved.
1666  */
1667 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1668 {
1669 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1670 		NULL, &adev->fw_vram_usage.va);
1671 }
1672 
1673 /**
1674  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1675  *
1676  * @adev: amdgpu_device pointer
1677  *
1678  * create bo vram reservation from fw.
1679  */
1680 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1681 {
1682 	uint64_t vram_size = adev->gmc.visible_vram_size;
1683 
1684 	adev->fw_vram_usage.va = NULL;
1685 	adev->fw_vram_usage.reserved_bo = NULL;
1686 
1687 	if (adev->fw_vram_usage.size == 0 ||
1688 	    adev->fw_vram_usage.size > vram_size)
1689 		return 0;
1690 
1691 	return amdgpu_bo_create_kernel_at(adev,
1692 					  adev->fw_vram_usage.start_offset,
1693 					  adev->fw_vram_usage.size,
1694 					  AMDGPU_GEM_DOMAIN_VRAM,
1695 					  &adev->fw_vram_usage.reserved_bo,
1696 					  &adev->fw_vram_usage.va);
1697 }
1698 
1699 /*
1700  * Memoy training reservation functions
1701  */
1702 
1703 /**
1704  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1705  *
1706  * @adev: amdgpu_device pointer
1707  *
1708  * free memory training reserved vram if it has been reserved.
1709  */
1710 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1711 {
1712 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1713 
1714 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1715 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1716 	ctx->c2p_bo = NULL;
1717 
1718 	return 0;
1719 }
1720 
1721 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1722 {
1723        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1724                vram_size -= SZ_1M;
1725 
1726        return ALIGN(vram_size, SZ_1M);
1727 }
1728 
1729 /**
1730  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1731  *
1732  * @adev: amdgpu_device pointer
1733  *
1734  * create bo vram reservation from memory training.
1735  */
1736 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1737 {
1738 	int ret;
1739 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1740 
1741 	memset(ctx, 0, sizeof(*ctx));
1742 	if (!adev->fw_vram_usage.mem_train_support) {
1743 		DRM_DEBUG("memory training does not support!\n");
1744 		return 0;
1745 	}
1746 
1747 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1748 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1749 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1750 
1751 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1752 		  ctx->train_data_size,
1753 		  ctx->p2c_train_data_offset,
1754 		  ctx->c2p_train_data_offset);
1755 
1756 	ret = amdgpu_bo_create_kernel_at(adev,
1757 					 ctx->c2p_train_data_offset,
1758 					 ctx->train_data_size,
1759 					 AMDGPU_GEM_DOMAIN_VRAM,
1760 					 &ctx->c2p_bo,
1761 					 NULL);
1762 	if (ret) {
1763 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1764 		amdgpu_ttm_training_reserve_vram_fini(adev);
1765 		return ret;
1766 	}
1767 
1768 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1769 	return 0;
1770 }
1771 
1772 /**
1773  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1774  * gtt/vram related fields.
1775  *
1776  * This initializes all of the memory space pools that the TTM layer
1777  * will need such as the GTT space (system memory mapped to the device),
1778  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1779  * can be mapped per VMID.
1780  */
1781 int amdgpu_ttm_init(struct amdgpu_device *adev)
1782 {
1783 	uint64_t gtt_size;
1784 	int r;
1785 	u64 vis_vram_limit;
1786 	void *stolen_vga_buf;
1787 
1788 	mutex_init(&adev->mman.gtt_window_lock);
1789 
1790 	/* No others user of address space so set it to 0 */
1791 	r = ttm_bo_device_init(&adev->mman.bdev,
1792 			       &amdgpu_bo_driver,
1793 			       adev->ddev->anon_inode->i_mapping,
1794 			       adev->ddev->vma_offset_manager,
1795 			       dma_addressing_limited(adev->dev));
1796 	if (r) {
1797 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1798 		return r;
1799 	}
1800 	adev->mman.initialized = true;
1801 
1802 	/* We opt to avoid OOM on system pages allocations */
1803 	adev->mman.bdev.no_retry = true;
1804 
1805 	/* Initialize VRAM pool with all of VRAM divided into pages */
1806 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1807 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1808 	if (r) {
1809 		DRM_ERROR("Failed initializing VRAM heap.\n");
1810 		return r;
1811 	}
1812 
1813 	/* Reduce size of CPU-visible VRAM if requested */
1814 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1815 	if (amdgpu_vis_vram_limit > 0 &&
1816 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1817 		adev->gmc.visible_vram_size = vis_vram_limit;
1818 
1819 	/* Change the size here instead of the init above so only lpfn is affected */
1820 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1821 #ifdef CONFIG_64BIT
1822 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1823 						adev->gmc.visible_vram_size);
1824 #endif
1825 
1826 	/*
1827 	 *The reserved vram for firmware must be pinned to the specified
1828 	 *place on the VRAM, so reserve it early.
1829 	 */
1830 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1831 	if (r) {
1832 		return r;
1833 	}
1834 
1835 	/*
1836 	 *The reserved vram for memory training must be pinned to the specified
1837 	 *place on the VRAM, so reserve it early.
1838 	 */
1839 	r = amdgpu_ttm_training_reserve_vram_init(adev);
1840 	if (r)
1841 		return r;
1842 
1843 	/* allocate memory as required for VGA
1844 	 * This is used for VGA emulation and pre-OS scanout buffers to
1845 	 * avoid display artifacts while transitioning between pre-OS
1846 	 * and driver.  */
1847 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1848 				    AMDGPU_GEM_DOMAIN_VRAM,
1849 				    &adev->stolen_vga_memory,
1850 				    NULL, &stolen_vga_buf);
1851 	if (r)
1852 		return r;
1853 
1854 	/*
1855 	 * reserve one TMR (64K) memory at the top of VRAM which holds
1856 	 * IP Discovery data and is protected by PSP.
1857 	 */
1858 	r = amdgpu_bo_create_kernel_at(adev,
1859 				       adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1860 				       DISCOVERY_TMR_SIZE,
1861 				       AMDGPU_GEM_DOMAIN_VRAM,
1862 				       &adev->discovery_memory,
1863 				       NULL);
1864 	if (r)
1865 		return r;
1866 
1867 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1868 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1869 
1870 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1871 	 * or whatever the user passed on module init */
1872 	if (amdgpu_gtt_size == -1) {
1873 		struct sysinfo si;
1874 
1875 		si_meminfo(&si);
1876 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1877 			       adev->gmc.mc_vram_size),
1878 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1879 	}
1880 	else
1881 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1882 
1883 	/* Initialize GTT memory pool */
1884 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1885 	if (r) {
1886 		DRM_ERROR("Failed initializing GTT heap.\n");
1887 		return r;
1888 	}
1889 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1890 		 (unsigned)(gtt_size / (1024 * 1024)));
1891 
1892 	/* Initialize various on-chip memory pools */
1893 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1894 			   adev->gds.gds_size);
1895 	if (r) {
1896 		DRM_ERROR("Failed initializing GDS heap.\n");
1897 		return r;
1898 	}
1899 
1900 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1901 			   adev->gds.gws_size);
1902 	if (r) {
1903 		DRM_ERROR("Failed initializing gws heap.\n");
1904 		return r;
1905 	}
1906 
1907 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1908 			   adev->gds.oa_size);
1909 	if (r) {
1910 		DRM_ERROR("Failed initializing oa heap.\n");
1911 		return r;
1912 	}
1913 
1914 	/* Register debugfs entries for amdgpu_ttm */
1915 	r = amdgpu_ttm_debugfs_init(adev);
1916 	if (r) {
1917 		DRM_ERROR("Failed to init debugfs\n");
1918 		return r;
1919 	}
1920 	return 0;
1921 }
1922 
1923 /**
1924  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1925  */
1926 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1927 {
1928 	void *stolen_vga_buf;
1929 	/* return the VGA stolen memory (if any) back to VRAM */
1930 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1931 }
1932 
1933 /**
1934  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1935  */
1936 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1937 {
1938 	if (!adev->mman.initialized)
1939 		return;
1940 
1941 	amdgpu_ttm_debugfs_fini(adev);
1942 	amdgpu_ttm_training_reserve_vram_fini(adev);
1943 	/* return the IP Discovery TMR memory back to VRAM */
1944 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1945 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1946 
1947 	if (adev->mman.aper_base_kaddr)
1948 		iounmap(adev->mman.aper_base_kaddr);
1949 	adev->mman.aper_base_kaddr = NULL;
1950 
1951 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1952 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1953 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1954 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1955 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1956 	ttm_bo_device_release(&adev->mman.bdev);
1957 	adev->mman.initialized = false;
1958 	DRM_INFO("amdgpu: ttm finalized\n");
1959 }
1960 
1961 /**
1962  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1963  *
1964  * @adev: amdgpu_device pointer
1965  * @enable: true when we can use buffer functions.
1966  *
1967  * Enable/disable use of buffer functions during suspend/resume. This should
1968  * only be called at bootup or when userspace isn't running.
1969  */
1970 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1971 {
1972 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1973 	uint64_t size;
1974 	int r;
1975 
1976 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1977 	    adev->mman.buffer_funcs_enabled == enable)
1978 		return;
1979 
1980 	if (enable) {
1981 		struct amdgpu_ring *ring;
1982 		struct drm_gpu_scheduler *sched;
1983 
1984 		ring = adev->mman.buffer_funcs_ring;
1985 		sched = &ring->sched;
1986 		r = drm_sched_entity_init(&adev->mman.entity,
1987 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
1988 					  1, NULL);
1989 		if (r) {
1990 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1991 				  r);
1992 			return;
1993 		}
1994 	} else {
1995 		drm_sched_entity_destroy(&adev->mman.entity);
1996 		dma_fence_put(man->move);
1997 		man->move = NULL;
1998 	}
1999 
2000 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2001 	if (enable)
2002 		size = adev->gmc.real_vram_size;
2003 	else
2004 		size = adev->gmc.visible_vram_size;
2005 	man->size = size >> PAGE_SHIFT;
2006 	adev->mman.buffer_funcs_enabled = enable;
2007 }
2008 
2009 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2010 {
2011 	struct drm_file *file_priv = filp->private_data;
2012 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2013 
2014 	if (adev == NULL)
2015 		return -EINVAL;
2016 
2017 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2018 }
2019 
2020 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2021 			     struct ttm_mem_reg *mem, unsigned num_pages,
2022 			     uint64_t offset, unsigned window,
2023 			     struct amdgpu_ring *ring,
2024 			     uint64_t *addr)
2025 {
2026 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2027 	struct amdgpu_device *adev = ring->adev;
2028 	struct ttm_tt *ttm = bo->ttm;
2029 	struct amdgpu_job *job;
2030 	unsigned num_dw, num_bytes;
2031 	dma_addr_t *dma_address;
2032 	struct dma_fence *fence;
2033 	uint64_t src_addr, dst_addr;
2034 	uint64_t flags;
2035 	int r;
2036 
2037 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2038 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2039 
2040 	*addr = adev->gmc.gart_start;
2041 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2042 		AMDGPU_GPU_PAGE_SIZE;
2043 
2044 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2045 	num_bytes = num_pages * 8;
2046 
2047 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2048 	if (r)
2049 		return r;
2050 
2051 	src_addr = num_dw * 4;
2052 	src_addr += job->ibs[0].gpu_addr;
2053 
2054 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2055 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2056 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2057 				dst_addr, num_bytes);
2058 
2059 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2060 	WARN_ON(job->ibs[0].length_dw > num_dw);
2061 
2062 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2063 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2064 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2065 			    &job->ibs[0].ptr[num_dw]);
2066 	if (r)
2067 		goto error_free;
2068 
2069 	r = amdgpu_job_submit(job, &adev->mman.entity,
2070 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2071 	if (r)
2072 		goto error_free;
2073 
2074 	dma_fence_put(fence);
2075 
2076 	return r;
2077 
2078 error_free:
2079 	amdgpu_job_free(job);
2080 	return r;
2081 }
2082 
2083 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2084 		       uint64_t dst_offset, uint32_t byte_count,
2085 		       struct dma_resv *resv,
2086 		       struct dma_fence **fence, bool direct_submit,
2087 		       bool vm_needs_flush)
2088 {
2089 	struct amdgpu_device *adev = ring->adev;
2090 	struct amdgpu_job *job;
2091 
2092 	uint32_t max_bytes;
2093 	unsigned num_loops, num_dw;
2094 	unsigned i;
2095 	int r;
2096 
2097 	if (direct_submit && !ring->sched.ready) {
2098 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2099 		return -EINVAL;
2100 	}
2101 
2102 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2103 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2104 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2105 
2106 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2107 	if (r)
2108 		return r;
2109 
2110 	if (vm_needs_flush) {
2111 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2112 		job->vm_needs_flush = true;
2113 	}
2114 	if (resv) {
2115 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2116 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2117 				     false);
2118 		if (r) {
2119 			DRM_ERROR("sync failed (%d).\n", r);
2120 			goto error_free;
2121 		}
2122 	}
2123 
2124 	for (i = 0; i < num_loops; i++) {
2125 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2126 
2127 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2128 					dst_offset, cur_size_in_bytes);
2129 
2130 		src_offset += cur_size_in_bytes;
2131 		dst_offset += cur_size_in_bytes;
2132 		byte_count -= cur_size_in_bytes;
2133 	}
2134 
2135 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2136 	WARN_ON(job->ibs[0].length_dw > num_dw);
2137 	if (direct_submit)
2138 		r = amdgpu_job_submit_direct(job, ring, fence);
2139 	else
2140 		r = amdgpu_job_submit(job, &adev->mman.entity,
2141 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2142 	if (r)
2143 		goto error_free;
2144 
2145 	return r;
2146 
2147 error_free:
2148 	amdgpu_job_free(job);
2149 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2150 	return r;
2151 }
2152 
2153 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2154 		       uint32_t src_data,
2155 		       struct dma_resv *resv,
2156 		       struct dma_fence **fence)
2157 {
2158 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2159 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2160 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2161 
2162 	struct drm_mm_node *mm_node;
2163 	unsigned long num_pages;
2164 	unsigned int num_loops, num_dw;
2165 
2166 	struct amdgpu_job *job;
2167 	int r;
2168 
2169 	if (!adev->mman.buffer_funcs_enabled) {
2170 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2171 		return -EINVAL;
2172 	}
2173 
2174 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2175 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2176 		if (r)
2177 			return r;
2178 	}
2179 
2180 	num_pages = bo->tbo.num_pages;
2181 	mm_node = bo->tbo.mem.mm_node;
2182 	num_loops = 0;
2183 	while (num_pages) {
2184 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2185 
2186 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2187 		num_pages -= mm_node->size;
2188 		++mm_node;
2189 	}
2190 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2191 
2192 	/* for IB padding */
2193 	num_dw += 64;
2194 
2195 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2196 	if (r)
2197 		return r;
2198 
2199 	if (resv) {
2200 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2201 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2202 		if (r) {
2203 			DRM_ERROR("sync failed (%d).\n", r);
2204 			goto error_free;
2205 		}
2206 	}
2207 
2208 	num_pages = bo->tbo.num_pages;
2209 	mm_node = bo->tbo.mem.mm_node;
2210 
2211 	while (num_pages) {
2212 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2213 		uint64_t dst_addr;
2214 
2215 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2216 		while (byte_count) {
2217 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2218 							   max_bytes);
2219 
2220 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2221 						dst_addr, cur_size_in_bytes);
2222 
2223 			dst_addr += cur_size_in_bytes;
2224 			byte_count -= cur_size_in_bytes;
2225 		}
2226 
2227 		num_pages -= mm_node->size;
2228 		++mm_node;
2229 	}
2230 
2231 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2232 	WARN_ON(job->ibs[0].length_dw > num_dw);
2233 	r = amdgpu_job_submit(job, &adev->mman.entity,
2234 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2235 	if (r)
2236 		goto error_free;
2237 
2238 	return 0;
2239 
2240 error_free:
2241 	amdgpu_job_free(job);
2242 	return r;
2243 }
2244 
2245 #if defined(CONFIG_DEBUG_FS)
2246 
2247 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2248 {
2249 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2250 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2251 	struct drm_device *dev = node->minor->dev;
2252 	struct amdgpu_device *adev = dev->dev_private;
2253 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2254 	struct drm_printer p = drm_seq_file_printer(m);
2255 
2256 	man->func->debug(man, &p);
2257 	return 0;
2258 }
2259 
2260 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2261 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2262 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2263 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2264 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2265 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2266 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2267 #ifdef CONFIG_SWIOTLB
2268 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2269 #endif
2270 };
2271 
2272 /**
2273  * amdgpu_ttm_vram_read - Linear read access to VRAM
2274  *
2275  * Accesses VRAM via MMIO for debugging purposes.
2276  */
2277 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2278 				    size_t size, loff_t *pos)
2279 {
2280 	struct amdgpu_device *adev = file_inode(f)->i_private;
2281 	ssize_t result = 0;
2282 	int r;
2283 
2284 	if (size & 0x3 || *pos & 0x3)
2285 		return -EINVAL;
2286 
2287 	if (*pos >= adev->gmc.mc_vram_size)
2288 		return -ENXIO;
2289 
2290 	while (size) {
2291 		unsigned long flags;
2292 		uint32_t value;
2293 
2294 		if (*pos >= adev->gmc.mc_vram_size)
2295 			return result;
2296 
2297 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2298 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2299 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2300 		value = RREG32_NO_KIQ(mmMM_DATA);
2301 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2302 
2303 		r = put_user(value, (uint32_t *)buf);
2304 		if (r)
2305 			return r;
2306 
2307 		result += 4;
2308 		buf += 4;
2309 		*pos += 4;
2310 		size -= 4;
2311 	}
2312 
2313 	return result;
2314 }
2315 
2316 /**
2317  * amdgpu_ttm_vram_write - Linear write access to VRAM
2318  *
2319  * Accesses VRAM via MMIO for debugging purposes.
2320  */
2321 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2322 				    size_t size, loff_t *pos)
2323 {
2324 	struct amdgpu_device *adev = file_inode(f)->i_private;
2325 	ssize_t result = 0;
2326 	int r;
2327 
2328 	if (size & 0x3 || *pos & 0x3)
2329 		return -EINVAL;
2330 
2331 	if (*pos >= adev->gmc.mc_vram_size)
2332 		return -ENXIO;
2333 
2334 	while (size) {
2335 		unsigned long flags;
2336 		uint32_t value;
2337 
2338 		if (*pos >= adev->gmc.mc_vram_size)
2339 			return result;
2340 
2341 		r = get_user(value, (uint32_t *)buf);
2342 		if (r)
2343 			return r;
2344 
2345 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2346 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2347 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2348 		WREG32_NO_KIQ(mmMM_DATA, value);
2349 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2350 
2351 		result += 4;
2352 		buf += 4;
2353 		*pos += 4;
2354 		size -= 4;
2355 	}
2356 
2357 	return result;
2358 }
2359 
2360 static const struct file_operations amdgpu_ttm_vram_fops = {
2361 	.owner = THIS_MODULE,
2362 	.read = amdgpu_ttm_vram_read,
2363 	.write = amdgpu_ttm_vram_write,
2364 	.llseek = default_llseek,
2365 };
2366 
2367 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2368 
2369 /**
2370  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2371  */
2372 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2373 				   size_t size, loff_t *pos)
2374 {
2375 	struct amdgpu_device *adev = file_inode(f)->i_private;
2376 	ssize_t result = 0;
2377 	int r;
2378 
2379 	while (size) {
2380 		loff_t p = *pos / PAGE_SIZE;
2381 		unsigned off = *pos & ~PAGE_MASK;
2382 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2383 		struct page *page;
2384 		void *ptr;
2385 
2386 		if (p >= adev->gart.num_cpu_pages)
2387 			return result;
2388 
2389 		page = adev->gart.pages[p];
2390 		if (page) {
2391 			ptr = kmap(page);
2392 			ptr += off;
2393 
2394 			r = copy_to_user(buf, ptr, cur_size);
2395 			kunmap(adev->gart.pages[p]);
2396 		} else
2397 			r = clear_user(buf, cur_size);
2398 
2399 		if (r)
2400 			return -EFAULT;
2401 
2402 		result += cur_size;
2403 		buf += cur_size;
2404 		*pos += cur_size;
2405 		size -= cur_size;
2406 	}
2407 
2408 	return result;
2409 }
2410 
2411 static const struct file_operations amdgpu_ttm_gtt_fops = {
2412 	.owner = THIS_MODULE,
2413 	.read = amdgpu_ttm_gtt_read,
2414 	.llseek = default_llseek
2415 };
2416 
2417 #endif
2418 
2419 /**
2420  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2421  *
2422  * This function is used to read memory that has been mapped to the
2423  * GPU and the known addresses are not physical addresses but instead
2424  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2425  */
2426 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2427 				 size_t size, loff_t *pos)
2428 {
2429 	struct amdgpu_device *adev = file_inode(f)->i_private;
2430 	struct iommu_domain *dom;
2431 	ssize_t result = 0;
2432 	int r;
2433 
2434 	/* retrieve the IOMMU domain if any for this device */
2435 	dom = iommu_get_domain_for_dev(adev->dev);
2436 
2437 	while (size) {
2438 		phys_addr_t addr = *pos & PAGE_MASK;
2439 		loff_t off = *pos & ~PAGE_MASK;
2440 		size_t bytes = PAGE_SIZE - off;
2441 		unsigned long pfn;
2442 		struct page *p;
2443 		void *ptr;
2444 
2445 		bytes = bytes < size ? bytes : size;
2446 
2447 		/* Translate the bus address to a physical address.  If
2448 		 * the domain is NULL it means there is no IOMMU active
2449 		 * and the address translation is the identity
2450 		 */
2451 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2452 
2453 		pfn = addr >> PAGE_SHIFT;
2454 		if (!pfn_valid(pfn))
2455 			return -EPERM;
2456 
2457 		p = pfn_to_page(pfn);
2458 		if (p->mapping != adev->mman.bdev.dev_mapping)
2459 			return -EPERM;
2460 
2461 		ptr = kmap(p);
2462 		r = copy_to_user(buf, ptr + off, bytes);
2463 		kunmap(p);
2464 		if (r)
2465 			return -EFAULT;
2466 
2467 		size -= bytes;
2468 		*pos += bytes;
2469 		result += bytes;
2470 	}
2471 
2472 	return result;
2473 }
2474 
2475 /**
2476  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2477  *
2478  * This function is used to write memory that has been mapped to the
2479  * GPU and the known addresses are not physical addresses but instead
2480  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2481  */
2482 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2483 				 size_t size, loff_t *pos)
2484 {
2485 	struct amdgpu_device *adev = file_inode(f)->i_private;
2486 	struct iommu_domain *dom;
2487 	ssize_t result = 0;
2488 	int r;
2489 
2490 	dom = iommu_get_domain_for_dev(adev->dev);
2491 
2492 	while (size) {
2493 		phys_addr_t addr = *pos & PAGE_MASK;
2494 		loff_t off = *pos & ~PAGE_MASK;
2495 		size_t bytes = PAGE_SIZE - off;
2496 		unsigned long pfn;
2497 		struct page *p;
2498 		void *ptr;
2499 
2500 		bytes = bytes < size ? bytes : size;
2501 
2502 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2503 
2504 		pfn = addr >> PAGE_SHIFT;
2505 		if (!pfn_valid(pfn))
2506 			return -EPERM;
2507 
2508 		p = pfn_to_page(pfn);
2509 		if (p->mapping != adev->mman.bdev.dev_mapping)
2510 			return -EPERM;
2511 
2512 		ptr = kmap(p);
2513 		r = copy_from_user(ptr + off, buf, bytes);
2514 		kunmap(p);
2515 		if (r)
2516 			return -EFAULT;
2517 
2518 		size -= bytes;
2519 		*pos += bytes;
2520 		result += bytes;
2521 	}
2522 
2523 	return result;
2524 }
2525 
2526 static const struct file_operations amdgpu_ttm_iomem_fops = {
2527 	.owner = THIS_MODULE,
2528 	.read = amdgpu_iomem_read,
2529 	.write = amdgpu_iomem_write,
2530 	.llseek = default_llseek
2531 };
2532 
2533 static const struct {
2534 	char *name;
2535 	const struct file_operations *fops;
2536 	int domain;
2537 } ttm_debugfs_entries[] = {
2538 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2539 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2540 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2541 #endif
2542 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2543 };
2544 
2545 #endif
2546 
2547 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2548 {
2549 #if defined(CONFIG_DEBUG_FS)
2550 	unsigned count;
2551 
2552 	struct drm_minor *minor = adev->ddev->primary;
2553 	struct dentry *ent, *root = minor->debugfs_root;
2554 
2555 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2556 		ent = debugfs_create_file(
2557 				ttm_debugfs_entries[count].name,
2558 				S_IFREG | S_IRUGO, root,
2559 				adev,
2560 				ttm_debugfs_entries[count].fops);
2561 		if (IS_ERR(ent))
2562 			return PTR_ERR(ent);
2563 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2564 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2565 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2566 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2567 		adev->mman.debugfs_entries[count] = ent;
2568 	}
2569 
2570 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2571 
2572 #ifdef CONFIG_SWIOTLB
2573 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2574 		--count;
2575 #endif
2576 
2577 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2578 #else
2579 	return 0;
2580 #endif
2581 }
2582 
2583 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2584 {
2585 #if defined(CONFIG_DEBUG_FS)
2586 	unsigned i;
2587 
2588 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2589 		debugfs_remove(adev->mman.debugfs_entries[i]);
2590 #endif
2591 }
2592