1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62 
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
64 
65 
66 /**
67  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
68  * memory request.
69  *
70  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
71  * @type: The type of memory requested
72  * @man: The memory type manager for each domain
73  *
74  * This is called by ttm_bo_init_mm() when a buffer object is being
75  * initialized.
76  */
77 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
78 				struct ttm_mem_type_manager *man)
79 {
80 	struct amdgpu_device *adev;
81 
82 	adev = amdgpu_ttm_adev(bdev);
83 
84 	switch (type) {
85 	case TTM_PL_SYSTEM:
86 		/* System memory */
87 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
88 		man->available_caching = TTM_PL_MASK_CACHING;
89 		man->default_caching = TTM_PL_FLAG_CACHED;
90 		break;
91 	case TTM_PL_TT:
92 		/* GTT memory  */
93 		man->func = &amdgpu_gtt_mgr_func;
94 		man->available_caching = TTM_PL_MASK_CACHING;
95 		man->default_caching = TTM_PL_FLAG_CACHED;
96 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
97 		break;
98 	case TTM_PL_VRAM:
99 		/* "On-card" video ram */
100 		man->func = &amdgpu_vram_mgr_func;
101 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
102 			     TTM_MEMTYPE_FLAG_MAPPABLE;
103 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
104 		man->default_caching = TTM_PL_FLAG_WC;
105 		break;
106 	case AMDGPU_PL_GDS:
107 	case AMDGPU_PL_GWS:
108 	case AMDGPU_PL_OA:
109 		/* On-chip GDS memory*/
110 		man->func = &ttm_bo_manager_func;
111 		man->flags = TTM_MEMTYPE_FLAG_FIXED;
112 		man->available_caching = TTM_PL_FLAG_UNCACHED;
113 		man->default_caching = TTM_PL_FLAG_UNCACHED;
114 		break;
115 	default:
116 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
117 		return -EINVAL;
118 	}
119 	return 0;
120 }
121 
122 /**
123  * amdgpu_evict_flags - Compute placement flags
124  *
125  * @bo: The buffer object to evict
126  * @placement: Possible destination(s) for evicted BO
127  *
128  * Fill in placement data when ttm_bo_evict() is called
129  */
130 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
131 				struct ttm_placement *placement)
132 {
133 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
134 	struct amdgpu_bo *abo;
135 	static const struct ttm_place placements = {
136 		.fpfn = 0,
137 		.lpfn = 0,
138 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
139 	};
140 
141 	/* Don't handle scatter gather BOs */
142 	if (bo->type == ttm_bo_type_sg) {
143 		placement->num_placement = 0;
144 		placement->num_busy_placement = 0;
145 		return;
146 	}
147 
148 	/* Object isn't an AMDGPU object so ignore */
149 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
150 		placement->placement = &placements;
151 		placement->busy_placement = &placements;
152 		placement->num_placement = 1;
153 		placement->num_busy_placement = 1;
154 		return;
155 	}
156 
157 	abo = ttm_to_amdgpu_bo(bo);
158 	switch (bo->mem.mem_type) {
159 	case AMDGPU_PL_GDS:
160 	case AMDGPU_PL_GWS:
161 	case AMDGPU_PL_OA:
162 		placement->num_placement = 0;
163 		placement->num_busy_placement = 0;
164 		return;
165 
166 	case TTM_PL_VRAM:
167 		if (!adev->mman.buffer_funcs_enabled) {
168 			/* Move to system memory */
169 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
170 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
171 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
172 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
173 
174 			/* Try evicting to the CPU inaccessible part of VRAM
175 			 * first, but only set GTT as busy placement, so this
176 			 * BO will be evicted to GTT rather than causing other
177 			 * BOs to be evicted from VRAM
178 			 */
179 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
180 							 AMDGPU_GEM_DOMAIN_GTT);
181 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
182 			abo->placements[0].lpfn = 0;
183 			abo->placement.busy_placement = &abo->placements[1];
184 			abo->placement.num_busy_placement = 1;
185 		} else {
186 			/* Move to GTT memory */
187 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
188 		}
189 		break;
190 	case TTM_PL_TT:
191 	default:
192 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
193 		break;
194 	}
195 	*placement = abo->placement;
196 }
197 
198 /**
199  * amdgpu_verify_access - Verify access for a mmap call
200  *
201  * @bo:	The buffer object to map
202  * @filp: The file pointer from the process performing the mmap
203  *
204  * This is called by ttm_bo_mmap() to verify whether a process
205  * has the right to mmap a BO to their process space.
206  */
207 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
208 {
209 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
210 
211 	/*
212 	 * Don't verify access for KFD BOs. They don't have a GEM
213 	 * object associated with them.
214 	 */
215 	if (abo->kfd_bo)
216 		return 0;
217 
218 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
219 		return -EPERM;
220 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
221 					  filp->private_data);
222 }
223 
224 /**
225  * amdgpu_move_null - Register memory for a buffer object
226  *
227  * @bo: The bo to assign the memory to
228  * @new_mem: The memory to be assigned.
229  *
230  * Assign the memory from new_mem to the memory of the buffer object bo.
231  */
232 static void amdgpu_move_null(struct ttm_buffer_object *bo,
233 			     struct ttm_mem_reg *new_mem)
234 {
235 	struct ttm_mem_reg *old_mem = &bo->mem;
236 
237 	BUG_ON(old_mem->mm_node != NULL);
238 	*old_mem = *new_mem;
239 	new_mem->mm_node = NULL;
240 }
241 
242 /**
243  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
244  *
245  * @bo: The bo to assign the memory to.
246  * @mm_node: Memory manager node for drm allocator.
247  * @mem: The region where the bo resides.
248  *
249  */
250 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
251 				    struct drm_mm_node *mm_node,
252 				    struct ttm_mem_reg *mem)
253 {
254 	uint64_t addr = 0;
255 
256 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
257 		addr = mm_node->start << PAGE_SHIFT;
258 		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
259 						mem->mem_type);
260 	}
261 	return addr;
262 }
263 
264 /**
265  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
266  * @offset. It also modifies the offset to be within the drm_mm_node returned
267  *
268  * @mem: The region where the bo resides.
269  * @offset: The offset that drm_mm_node is used for finding.
270  *
271  */
272 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
273 					       uint64_t *offset)
274 {
275 	struct drm_mm_node *mm_node = mem->mm_node;
276 
277 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
278 		*offset -= (mm_node->size << PAGE_SHIFT);
279 		++mm_node;
280 	}
281 	return mm_node;
282 }
283 
284 /**
285  * amdgpu_ttm_map_buffer - Map memory into the GART windows
286  * @bo: buffer object to map
287  * @mem: memory object to map
288  * @mm_node: drm_mm node object to map
289  * @num_pages: number of pages to map
290  * @offset: offset into @mm_node where to start
291  * @window: which GART window to use
292  * @ring: DMA ring to use for the copy
293  * @tmz: if we should setup a TMZ enabled mapping
294  * @addr: resulting address inside the MC address space
295  *
296  * Setup one of the GART windows to access a specific piece of memory or return
297  * the physical address for local memory.
298  */
299 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
300 				 struct ttm_mem_reg *mem,
301 				 struct drm_mm_node *mm_node,
302 				 unsigned num_pages, uint64_t offset,
303 				 unsigned window, struct amdgpu_ring *ring,
304 				 bool tmz, uint64_t *addr)
305 {
306 	struct amdgpu_device *adev = ring->adev;
307 	struct amdgpu_job *job;
308 	unsigned num_dw, num_bytes;
309 	struct dma_fence *fence;
310 	uint64_t src_addr, dst_addr;
311 	void *cpu_addr;
312 	uint64_t flags;
313 	unsigned int i;
314 	int r;
315 
316 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
317 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
318 
319 	/* Map only what can't be accessed directly */
320 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
321 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
322 		return 0;
323 	}
324 
325 	*addr = adev->gmc.gart_start;
326 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
327 		AMDGPU_GPU_PAGE_SIZE;
328 	*addr += offset & ~PAGE_MASK;
329 
330 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
331 	num_bytes = num_pages * 8;
332 
333 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
334 				     AMDGPU_IB_POOL_DELAYED, &job);
335 	if (r)
336 		return r;
337 
338 	src_addr = num_dw * 4;
339 	src_addr += job->ibs[0].gpu_addr;
340 
341 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
342 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
343 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
344 				dst_addr, num_bytes, false);
345 
346 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
347 	WARN_ON(job->ibs[0].length_dw > num_dw);
348 
349 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
350 	if (tmz)
351 		flags |= AMDGPU_PTE_TMZ;
352 
353 	cpu_addr = &job->ibs[0].ptr[num_dw];
354 
355 	if (mem->mem_type == TTM_PL_TT) {
356 		struct ttm_dma_tt *dma;
357 		dma_addr_t *dma_address;
358 
359 		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
360 		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
361 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
362 				    cpu_addr);
363 		if (r)
364 			goto error_free;
365 	} else {
366 		dma_addr_t dma_address;
367 
368 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
369 		dma_address += adev->vm_manager.vram_base_offset;
370 
371 		for (i = 0; i < num_pages; ++i) {
372 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
373 					    &dma_address, flags, cpu_addr);
374 			if (r)
375 				goto error_free;
376 
377 			dma_address += PAGE_SIZE;
378 		}
379 	}
380 
381 	r = amdgpu_job_submit(job, &adev->mman.entity,
382 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
383 	if (r)
384 		goto error_free;
385 
386 	dma_fence_put(fence);
387 
388 	return r;
389 
390 error_free:
391 	amdgpu_job_free(job);
392 	return r;
393 }
394 
395 /**
396  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
397  * @adev: amdgpu device
398  * @src: buffer/address where to read from
399  * @dst: buffer/address where to write to
400  * @size: number of bytes to copy
401  * @tmz: if a secure copy should be used
402  * @resv: resv object to sync to
403  * @f: Returns the last fence if multiple jobs are submitted.
404  *
405  * The function copies @size bytes from {src->mem + src->offset} to
406  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
407  * move and different for a BO to BO copy.
408  *
409  */
410 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
411 			       const struct amdgpu_copy_mem *src,
412 			       const struct amdgpu_copy_mem *dst,
413 			       uint64_t size, bool tmz,
414 			       struct dma_resv *resv,
415 			       struct dma_fence **f)
416 {
417 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
418 					AMDGPU_GPU_PAGE_SIZE);
419 
420 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
421 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
422 	struct drm_mm_node *src_mm, *dst_mm;
423 	struct dma_fence *fence = NULL;
424 	int r = 0;
425 
426 	if (!adev->mman.buffer_funcs_enabled) {
427 		DRM_ERROR("Trying to move memory with ring turned off.\n");
428 		return -EINVAL;
429 	}
430 
431 	src_offset = src->offset;
432 	if (src->mem->mm_node) {
433 		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
434 		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
435 	} else {
436 		src_mm = NULL;
437 		src_node_size = ULLONG_MAX;
438 	}
439 
440 	dst_offset = dst->offset;
441 	if (dst->mem->mm_node) {
442 		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
443 		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
444 	} else {
445 		dst_mm = NULL;
446 		dst_node_size = ULLONG_MAX;
447 	}
448 
449 	mutex_lock(&adev->mman.gtt_window_lock);
450 
451 	while (size) {
452 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
453 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
454 		struct dma_fence *next;
455 		uint32_t cur_size;
456 		uint64_t from, to;
457 
458 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
459 		 * begins at an offset, then adjust the size accordingly
460 		 */
461 		cur_size = max(src_page_offset, dst_page_offset);
462 		cur_size = min(min3(src_node_size, dst_node_size, size),
463 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
464 
465 		/* Map src to window 0 and dst to window 1. */
466 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
467 					  PFN_UP(cur_size + src_page_offset),
468 					  src_offset, 0, ring, tmz, &from);
469 		if (r)
470 			goto error;
471 
472 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
473 					  PFN_UP(cur_size + dst_page_offset),
474 					  dst_offset, 1, ring, tmz, &to);
475 		if (r)
476 			goto error;
477 
478 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
479 				       resv, &next, false, true, tmz);
480 		if (r)
481 			goto error;
482 
483 		dma_fence_put(fence);
484 		fence = next;
485 
486 		size -= cur_size;
487 		if (!size)
488 			break;
489 
490 		src_node_size -= cur_size;
491 		if (!src_node_size) {
492 			++src_mm;
493 			src_node_size = src_mm->size << PAGE_SHIFT;
494 			src_offset = 0;
495 		} else {
496 			src_offset += cur_size;
497 		}
498 
499 		dst_node_size -= cur_size;
500 		if (!dst_node_size) {
501 			++dst_mm;
502 			dst_node_size = dst_mm->size << PAGE_SHIFT;
503 			dst_offset = 0;
504 		} else {
505 			dst_offset += cur_size;
506 		}
507 	}
508 error:
509 	mutex_unlock(&adev->mman.gtt_window_lock);
510 	if (f)
511 		*f = dma_fence_get(fence);
512 	dma_fence_put(fence);
513 	return r;
514 }
515 
516 /**
517  * amdgpu_move_blit - Copy an entire buffer to another buffer
518  *
519  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
520  * help move buffers to and from VRAM.
521  */
522 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
523 			    bool evict, bool no_wait_gpu,
524 			    struct ttm_mem_reg *new_mem,
525 			    struct ttm_mem_reg *old_mem)
526 {
527 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
528 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
529 	struct amdgpu_copy_mem src, dst;
530 	struct dma_fence *fence = NULL;
531 	int r;
532 
533 	src.bo = bo;
534 	dst.bo = bo;
535 	src.mem = old_mem;
536 	dst.mem = new_mem;
537 	src.offset = 0;
538 	dst.offset = 0;
539 
540 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
541 				       new_mem->num_pages << PAGE_SHIFT,
542 				       amdgpu_bo_encrypted(abo),
543 				       bo->base.resv, &fence);
544 	if (r)
545 		goto error;
546 
547 	/* clear the space being freed */
548 	if (old_mem->mem_type == TTM_PL_VRAM &&
549 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
550 		struct dma_fence *wipe_fence = NULL;
551 
552 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
553 				       NULL, &wipe_fence);
554 		if (r) {
555 			goto error;
556 		} else if (wipe_fence) {
557 			dma_fence_put(fence);
558 			fence = wipe_fence;
559 		}
560 	}
561 
562 	/* Always block for VM page tables before committing the new location */
563 	if (bo->type == ttm_bo_type_kernel)
564 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
565 	else
566 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
567 	dma_fence_put(fence);
568 	return r;
569 
570 error:
571 	if (fence)
572 		dma_fence_wait(fence, false);
573 	dma_fence_put(fence);
574 	return r;
575 }
576 
577 /**
578  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
579  *
580  * Called by amdgpu_bo_move().
581  */
582 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
583 				struct ttm_operation_ctx *ctx,
584 				struct ttm_mem_reg *new_mem)
585 {
586 	struct ttm_mem_reg *old_mem = &bo->mem;
587 	struct ttm_mem_reg tmp_mem;
588 	struct ttm_place placements;
589 	struct ttm_placement placement;
590 	int r;
591 
592 	/* create space/pages for new_mem in GTT space */
593 	tmp_mem = *new_mem;
594 	tmp_mem.mm_node = NULL;
595 	placement.num_placement = 1;
596 	placement.placement = &placements;
597 	placement.num_busy_placement = 1;
598 	placement.busy_placement = &placements;
599 	placements.fpfn = 0;
600 	placements.lpfn = 0;
601 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
602 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
603 	if (unlikely(r)) {
604 		pr_err("Failed to find GTT space for blit from VRAM\n");
605 		return r;
606 	}
607 
608 	/* set caching flags */
609 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
610 	if (unlikely(r)) {
611 		goto out_cleanup;
612 	}
613 
614 	/* Bind the memory to the GTT space */
615 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
616 	if (unlikely(r)) {
617 		goto out_cleanup;
618 	}
619 
620 	/* blit VRAM to GTT */
621 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
622 	if (unlikely(r)) {
623 		goto out_cleanup;
624 	}
625 
626 	/* move BO (in tmp_mem) to new_mem */
627 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
628 out_cleanup:
629 	ttm_bo_mem_put(bo, &tmp_mem);
630 	return r;
631 }
632 
633 /**
634  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
635  *
636  * Called by amdgpu_bo_move().
637  */
638 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
639 				struct ttm_operation_ctx *ctx,
640 				struct ttm_mem_reg *new_mem)
641 {
642 	struct ttm_mem_reg *old_mem = &bo->mem;
643 	struct ttm_mem_reg tmp_mem;
644 	struct ttm_placement placement;
645 	struct ttm_place placements;
646 	int r;
647 
648 	/* make space in GTT for old_mem buffer */
649 	tmp_mem = *new_mem;
650 	tmp_mem.mm_node = NULL;
651 	placement.num_placement = 1;
652 	placement.placement = &placements;
653 	placement.num_busy_placement = 1;
654 	placement.busy_placement = &placements;
655 	placements.fpfn = 0;
656 	placements.lpfn = 0;
657 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
658 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
659 	if (unlikely(r)) {
660 		pr_err("Failed to find GTT space for blit to VRAM\n");
661 		return r;
662 	}
663 
664 	/* move/bind old memory to GTT space */
665 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
666 	if (unlikely(r)) {
667 		goto out_cleanup;
668 	}
669 
670 	/* copy to VRAM */
671 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
672 	if (unlikely(r)) {
673 		goto out_cleanup;
674 	}
675 out_cleanup:
676 	ttm_bo_mem_put(bo, &tmp_mem);
677 	return r;
678 }
679 
680 /**
681  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
682  *
683  * Called by amdgpu_bo_move()
684  */
685 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
686 			       struct ttm_mem_reg *mem)
687 {
688 	struct drm_mm_node *nodes = mem->mm_node;
689 
690 	if (mem->mem_type == TTM_PL_SYSTEM ||
691 	    mem->mem_type == TTM_PL_TT)
692 		return true;
693 	if (mem->mem_type != TTM_PL_VRAM)
694 		return false;
695 
696 	/* ttm_mem_reg_ioremap only supports contiguous memory */
697 	if (nodes->size != mem->num_pages)
698 		return false;
699 
700 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
701 		<= adev->gmc.visible_vram_size;
702 }
703 
704 /**
705  * amdgpu_bo_move - Move a buffer object to a new memory location
706  *
707  * Called by ttm_bo_handle_move_mem()
708  */
709 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
710 			  struct ttm_operation_ctx *ctx,
711 			  struct ttm_mem_reg *new_mem)
712 {
713 	struct amdgpu_device *adev;
714 	struct amdgpu_bo *abo;
715 	struct ttm_mem_reg *old_mem = &bo->mem;
716 	int r;
717 
718 	/* Can't move a pinned BO */
719 	abo = ttm_to_amdgpu_bo(bo);
720 	if (WARN_ON_ONCE(abo->pin_count > 0))
721 		return -EINVAL;
722 
723 	adev = amdgpu_ttm_adev(bo->bdev);
724 
725 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
726 		amdgpu_move_null(bo, new_mem);
727 		return 0;
728 	}
729 	if ((old_mem->mem_type == TTM_PL_TT &&
730 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
731 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
732 	     new_mem->mem_type == TTM_PL_TT)) {
733 		/* bind is enough */
734 		amdgpu_move_null(bo, new_mem);
735 		return 0;
736 	}
737 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
738 	    old_mem->mem_type == AMDGPU_PL_GWS ||
739 	    old_mem->mem_type == AMDGPU_PL_OA ||
740 	    new_mem->mem_type == AMDGPU_PL_GDS ||
741 	    new_mem->mem_type == AMDGPU_PL_GWS ||
742 	    new_mem->mem_type == AMDGPU_PL_OA) {
743 		/* Nothing to save here */
744 		amdgpu_move_null(bo, new_mem);
745 		return 0;
746 	}
747 
748 	if (!adev->mman.buffer_funcs_enabled) {
749 		r = -ENODEV;
750 		goto memcpy;
751 	}
752 
753 	if (old_mem->mem_type == TTM_PL_VRAM &&
754 	    new_mem->mem_type == TTM_PL_SYSTEM) {
755 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
756 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
757 		   new_mem->mem_type == TTM_PL_VRAM) {
758 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
759 	} else {
760 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
761 				     new_mem, old_mem);
762 	}
763 
764 	if (r) {
765 memcpy:
766 		/* Check that all memory is CPU accessible */
767 		if (!amdgpu_mem_visible(adev, old_mem) ||
768 		    !amdgpu_mem_visible(adev, new_mem)) {
769 			pr_err("Move buffer fallback to memcpy unavailable\n");
770 			return r;
771 		}
772 
773 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
774 		if (r)
775 			return r;
776 	}
777 
778 	if (bo->type == ttm_bo_type_device &&
779 	    new_mem->mem_type == TTM_PL_VRAM &&
780 	    old_mem->mem_type != TTM_PL_VRAM) {
781 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
782 		 * accesses the BO after it's moved.
783 		 */
784 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
785 	}
786 
787 	/* update statistics */
788 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
789 	return 0;
790 }
791 
792 /**
793  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
794  *
795  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
796  */
797 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
798 {
799 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
800 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
801 	struct drm_mm_node *mm_node = mem->mm_node;
802 
803 	mem->bus.addr = NULL;
804 	mem->bus.offset = 0;
805 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
806 	mem->bus.base = 0;
807 	mem->bus.is_iomem = false;
808 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
809 		return -EINVAL;
810 	switch (mem->mem_type) {
811 	case TTM_PL_SYSTEM:
812 		/* system memory */
813 		return 0;
814 	case TTM_PL_TT:
815 		break;
816 	case TTM_PL_VRAM:
817 		mem->bus.offset = mem->start << PAGE_SHIFT;
818 		/* check if it's visible */
819 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
820 			return -EINVAL;
821 		/* Only physically contiguous buffers apply. In a contiguous
822 		 * buffer, size of the first mm_node would match the number of
823 		 * pages in ttm_mem_reg.
824 		 */
825 		if (adev->mman.aper_base_kaddr &&
826 		    (mm_node->size == mem->num_pages))
827 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
828 					mem->bus.offset;
829 
830 		mem->bus.base = adev->gmc.aper_base;
831 		mem->bus.is_iomem = true;
832 		break;
833 	default:
834 		return -EINVAL;
835 	}
836 	return 0;
837 }
838 
839 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
840 					   unsigned long page_offset)
841 {
842 	uint64_t offset = (page_offset << PAGE_SHIFT);
843 	struct drm_mm_node *mm;
844 
845 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
846 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
847 		(offset >> PAGE_SHIFT);
848 }
849 
850 /**
851  * amdgpu_ttm_domain_start - Returns GPU start address
852  * @adev: amdgpu device object
853  * @type: type of the memory
854  *
855  * Returns:
856  * GPU start address of a memory domain
857  */
858 
859 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
860 {
861 	switch (type) {
862 	case TTM_PL_TT:
863 		return adev->gmc.gart_start;
864 	case TTM_PL_VRAM:
865 		return adev->gmc.vram_start;
866 	}
867 
868 	return 0;
869 }
870 
871 /*
872  * TTM backend functions.
873  */
874 struct amdgpu_ttm_tt {
875 	struct ttm_dma_tt	ttm;
876 	struct drm_gem_object	*gobj;
877 	u64			offset;
878 	uint64_t		userptr;
879 	struct task_struct	*usertask;
880 	uint32_t		userflags;
881 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
882 	struct hmm_range	*range;
883 #endif
884 };
885 
886 #ifdef CONFIG_DRM_AMDGPU_USERPTR
887 /**
888  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
889  * memory and start HMM tracking CPU page table update
890  *
891  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
892  * once afterwards to stop HMM tracking
893  */
894 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
895 {
896 	struct ttm_tt *ttm = bo->tbo.ttm;
897 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
898 	unsigned long start = gtt->userptr;
899 	struct vm_area_struct *vma;
900 	struct hmm_range *range;
901 	unsigned long timeout;
902 	struct mm_struct *mm;
903 	unsigned long i;
904 	int r = 0;
905 
906 	mm = bo->notifier.mm;
907 	if (unlikely(!mm)) {
908 		DRM_DEBUG_DRIVER("BO is not registered?\n");
909 		return -EFAULT;
910 	}
911 
912 	/* Another get_user_pages is running at the same time?? */
913 	if (WARN_ON(gtt->range))
914 		return -EFAULT;
915 
916 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
917 		return -ESRCH;
918 
919 	range = kzalloc(sizeof(*range), GFP_KERNEL);
920 	if (unlikely(!range)) {
921 		r = -ENOMEM;
922 		goto out;
923 	}
924 	range->notifier = &bo->notifier;
925 	range->start = bo->notifier.interval_tree.start;
926 	range->end = bo->notifier.interval_tree.last + 1;
927 	range->default_flags = HMM_PFN_REQ_FAULT;
928 	if (!amdgpu_ttm_tt_is_readonly(ttm))
929 		range->default_flags |= HMM_PFN_REQ_WRITE;
930 
931 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
932 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
933 	if (unlikely(!range->hmm_pfns)) {
934 		r = -ENOMEM;
935 		goto out_free_ranges;
936 	}
937 
938 	mmap_read_lock(mm);
939 	vma = find_vma(mm, start);
940 	if (unlikely(!vma || start < vma->vm_start)) {
941 		r = -EFAULT;
942 		goto out_unlock;
943 	}
944 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
945 		vma->vm_file)) {
946 		r = -EPERM;
947 		goto out_unlock;
948 	}
949 	mmap_read_unlock(mm);
950 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
951 
952 retry:
953 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
954 
955 	mmap_read_lock(mm);
956 	r = hmm_range_fault(range);
957 	mmap_read_unlock(mm);
958 	if (unlikely(r)) {
959 		/*
960 		 * FIXME: This timeout should encompass the retry from
961 		 * mmu_interval_read_retry() as well.
962 		 */
963 		if (r == -EBUSY && !time_after(jiffies, timeout))
964 			goto retry;
965 		goto out_free_pfns;
966 	}
967 
968 	/*
969 	 * Due to default_flags, all pages are HMM_PFN_VALID or
970 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
971 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
972 	 */
973 	for (i = 0; i < ttm->num_pages; i++)
974 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
975 
976 	gtt->range = range;
977 	mmput(mm);
978 
979 	return 0;
980 
981 out_unlock:
982 	mmap_read_unlock(mm);
983 out_free_pfns:
984 	kvfree(range->hmm_pfns);
985 out_free_ranges:
986 	kfree(range);
987 out:
988 	mmput(mm);
989 	return r;
990 }
991 
992 /**
993  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
994  * Check if the pages backing this ttm range have been invalidated
995  *
996  * Returns: true if pages are still valid
997  */
998 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
999 {
1000 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1001 	bool r = false;
1002 
1003 	if (!gtt || !gtt->userptr)
1004 		return false;
1005 
1006 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
1007 		gtt->userptr, ttm->num_pages);
1008 
1009 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
1010 		"No user pages to check\n");
1011 
1012 	if (gtt->range) {
1013 		/*
1014 		 * FIXME: Must always hold notifier_lock for this, and must
1015 		 * not ignore the return code.
1016 		 */
1017 		r = mmu_interval_read_retry(gtt->range->notifier,
1018 					 gtt->range->notifier_seq);
1019 		kvfree(gtt->range->hmm_pfns);
1020 		kfree(gtt->range);
1021 		gtt->range = NULL;
1022 	}
1023 
1024 	return !r;
1025 }
1026 #endif
1027 
1028 /**
1029  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1030  *
1031  * Called by amdgpu_cs_list_validate(). This creates the page list
1032  * that backs user memory and will ultimately be mapped into the device
1033  * address space.
1034  */
1035 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1036 {
1037 	unsigned long i;
1038 
1039 	for (i = 0; i < ttm->num_pages; ++i)
1040 		ttm->pages[i] = pages ? pages[i] : NULL;
1041 }
1042 
1043 /**
1044  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
1045  *
1046  * Called by amdgpu_ttm_backend_bind()
1047  **/
1048 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
1049 {
1050 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1051 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1052 	int r;
1053 
1054 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1055 	enum dma_data_direction direction = write ?
1056 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1057 
1058 	/* Allocate an SG array and squash pages into it */
1059 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1060 				      ttm->num_pages << PAGE_SHIFT,
1061 				      GFP_KERNEL);
1062 	if (r)
1063 		goto release_sg;
1064 
1065 	/* Map SG to device */
1066 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1067 	if (r)
1068 		goto release_sg;
1069 
1070 	/* convert SG to linear array of pages and dma addresses */
1071 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1072 					 gtt->ttm.dma_address, ttm->num_pages);
1073 
1074 	return 0;
1075 
1076 release_sg:
1077 	kfree(ttm->sg);
1078 	return r;
1079 }
1080 
1081 /**
1082  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1083  */
1084 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1085 {
1086 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1087 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1088 
1089 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1090 	enum dma_data_direction direction = write ?
1091 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1092 
1093 	/* double check that we don't free the table twice */
1094 	if (!ttm->sg->sgl)
1095 		return;
1096 
1097 	/* unmap the pages mapped to the device */
1098 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1099 	sg_free_table(ttm->sg);
1100 
1101 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1102 	if (gtt->range) {
1103 		unsigned long i;
1104 
1105 		for (i = 0; i < ttm->num_pages; i++) {
1106 			if (ttm->pages[i] !=
1107 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1108 				break;
1109 		}
1110 
1111 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1112 	}
1113 #endif
1114 }
1115 
1116 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1117 				struct ttm_buffer_object *tbo,
1118 				uint64_t flags)
1119 {
1120 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1121 	struct ttm_tt *ttm = tbo->ttm;
1122 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1123 	int r;
1124 
1125 	if (amdgpu_bo_encrypted(abo))
1126 		flags |= AMDGPU_PTE_TMZ;
1127 
1128 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1129 		uint64_t page_idx = 1;
1130 
1131 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1132 				ttm->pages, gtt->ttm.dma_address, flags);
1133 		if (r)
1134 			goto gart_bind_fail;
1135 
1136 		/* The memory type of the first page defaults to UC. Now
1137 		 * modify the memory type to NC from the second page of
1138 		 * the BO onward.
1139 		 */
1140 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1141 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1142 
1143 		r = amdgpu_gart_bind(adev,
1144 				gtt->offset + (page_idx << PAGE_SHIFT),
1145 				ttm->num_pages - page_idx,
1146 				&ttm->pages[page_idx],
1147 				&(gtt->ttm.dma_address[page_idx]), flags);
1148 	} else {
1149 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1150 				     ttm->pages, gtt->ttm.dma_address, flags);
1151 	}
1152 
1153 gart_bind_fail:
1154 	if (r)
1155 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1156 			  ttm->num_pages, gtt->offset);
1157 
1158 	return r;
1159 }
1160 
1161 /**
1162  * amdgpu_ttm_backend_bind - Bind GTT memory
1163  *
1164  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1165  * This handles binding GTT memory to the device address space.
1166  */
1167 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1168 				   struct ttm_mem_reg *bo_mem)
1169 {
1170 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1171 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1172 	uint64_t flags;
1173 	int r = 0;
1174 
1175 	if (gtt->userptr) {
1176 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1177 		if (r) {
1178 			DRM_ERROR("failed to pin userptr\n");
1179 			return r;
1180 		}
1181 	}
1182 	if (!ttm->num_pages) {
1183 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1184 		     ttm->num_pages, bo_mem, ttm);
1185 	}
1186 
1187 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1188 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1189 	    bo_mem->mem_type == AMDGPU_PL_OA)
1190 		return -EINVAL;
1191 
1192 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1193 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1194 		return 0;
1195 	}
1196 
1197 	/* compute PTE flags relevant to this BO memory */
1198 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1199 
1200 	/* bind pages into GART page tables */
1201 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1202 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1203 		ttm->pages, gtt->ttm.dma_address, flags);
1204 
1205 	if (r)
1206 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1207 			  ttm->num_pages, gtt->offset);
1208 	return r;
1209 }
1210 
1211 /**
1212  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1213  */
1214 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1215 {
1216 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1217 	struct ttm_operation_ctx ctx = { false, false };
1218 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1219 	struct ttm_mem_reg tmp;
1220 	struct ttm_placement placement;
1221 	struct ttm_place placements;
1222 	uint64_t addr, flags;
1223 	int r;
1224 
1225 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1226 		return 0;
1227 
1228 	addr = amdgpu_gmc_agp_addr(bo);
1229 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1230 		bo->mem.start = addr >> PAGE_SHIFT;
1231 	} else {
1232 
1233 		/* allocate GART space */
1234 		tmp = bo->mem;
1235 		tmp.mm_node = NULL;
1236 		placement.num_placement = 1;
1237 		placement.placement = &placements;
1238 		placement.num_busy_placement = 1;
1239 		placement.busy_placement = &placements;
1240 		placements.fpfn = 0;
1241 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1242 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1243 			TTM_PL_FLAG_TT;
1244 
1245 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1246 		if (unlikely(r))
1247 			return r;
1248 
1249 		/* compute PTE flags for this buffer object */
1250 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1251 
1252 		/* Bind pages */
1253 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1254 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1255 		if (unlikely(r)) {
1256 			ttm_bo_mem_put(bo, &tmp);
1257 			return r;
1258 		}
1259 
1260 		ttm_bo_mem_put(bo, &bo->mem);
1261 		bo->mem = tmp;
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 /**
1268  * amdgpu_ttm_recover_gart - Rebind GTT pages
1269  *
1270  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1271  * rebind GTT pages during a GPU reset.
1272  */
1273 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1274 {
1275 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1276 	uint64_t flags;
1277 	int r;
1278 
1279 	if (!tbo->ttm)
1280 		return 0;
1281 
1282 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1283 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1284 
1285 	return r;
1286 }
1287 
1288 /**
1289  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1290  *
1291  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1292  * ttm_tt_destroy().
1293  */
1294 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1295 {
1296 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1297 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1298 	int r;
1299 
1300 	/* if the pages have userptr pinning then clear that first */
1301 	if (gtt->userptr)
1302 		amdgpu_ttm_tt_unpin_userptr(ttm);
1303 
1304 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1305 		return 0;
1306 
1307 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1308 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1309 	if (r)
1310 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1311 			  gtt->ttm.ttm.num_pages, gtt->offset);
1312 	return r;
1313 }
1314 
1315 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1316 {
1317 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1318 
1319 	if (gtt->usertask)
1320 		put_task_struct(gtt->usertask);
1321 
1322 	ttm_dma_tt_fini(&gtt->ttm);
1323 	kfree(gtt);
1324 }
1325 
1326 static struct ttm_backend_func amdgpu_backend_func = {
1327 	.bind = &amdgpu_ttm_backend_bind,
1328 	.unbind = &amdgpu_ttm_backend_unbind,
1329 	.destroy = &amdgpu_ttm_backend_destroy,
1330 };
1331 
1332 /**
1333  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1334  *
1335  * @bo: The buffer object to create a GTT ttm_tt object around
1336  *
1337  * Called by ttm_tt_create().
1338  */
1339 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1340 					   uint32_t page_flags)
1341 {
1342 	struct amdgpu_ttm_tt *gtt;
1343 
1344 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1345 	if (gtt == NULL) {
1346 		return NULL;
1347 	}
1348 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1349 	gtt->gobj = &bo->base;
1350 
1351 	/* allocate space for the uninitialized page entries */
1352 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1353 		kfree(gtt);
1354 		return NULL;
1355 	}
1356 	return &gtt->ttm.ttm;
1357 }
1358 
1359 /**
1360  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1361  *
1362  * Map the pages of a ttm_tt object to an address space visible
1363  * to the underlying device.
1364  */
1365 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1366 			struct ttm_operation_ctx *ctx)
1367 {
1368 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1369 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1370 
1371 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1372 	if (gtt && gtt->userptr) {
1373 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1374 		if (!ttm->sg)
1375 			return -ENOMEM;
1376 
1377 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1378 		ttm->state = tt_unbound;
1379 		return 0;
1380 	}
1381 
1382 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1383 		if (!ttm->sg) {
1384 			struct dma_buf_attachment *attach;
1385 			struct sg_table *sgt;
1386 
1387 			attach = gtt->gobj->import_attach;
1388 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1389 			if (IS_ERR(sgt))
1390 				return PTR_ERR(sgt);
1391 
1392 			ttm->sg = sgt;
1393 		}
1394 
1395 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1396 						 gtt->ttm.dma_address,
1397 						 ttm->num_pages);
1398 		ttm->state = tt_unbound;
1399 		return 0;
1400 	}
1401 
1402 #ifdef CONFIG_SWIOTLB
1403 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1404 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1405 	}
1406 #endif
1407 
1408 	/* fall back to generic helper to populate the page array
1409 	 * and map them to the device */
1410 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1411 }
1412 
1413 /**
1414  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1415  *
1416  * Unmaps pages of a ttm_tt object from the device address space and
1417  * unpopulates the page array backing it.
1418  */
1419 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1420 {
1421 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1422 	struct amdgpu_device *adev;
1423 
1424 	if (gtt && gtt->userptr) {
1425 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1426 		kfree(ttm->sg);
1427 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1428 		return;
1429 	}
1430 
1431 	if (ttm->sg && gtt->gobj->import_attach) {
1432 		struct dma_buf_attachment *attach;
1433 
1434 		attach = gtt->gobj->import_attach;
1435 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1436 		ttm->sg = NULL;
1437 		return;
1438 	}
1439 
1440 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1441 		return;
1442 
1443 	adev = amdgpu_ttm_adev(ttm->bdev);
1444 
1445 #ifdef CONFIG_SWIOTLB
1446 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1447 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1448 		return;
1449 	}
1450 #endif
1451 
1452 	/* fall back to generic helper to unmap and unpopulate array */
1453 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1454 }
1455 
1456 /**
1457  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1458  * task
1459  *
1460  * @ttm: The ttm_tt object to bind this userptr object to
1461  * @addr:  The address in the current tasks VM space to use
1462  * @flags: Requirements of userptr object.
1463  *
1464  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1465  * to current task
1466  */
1467 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1468 			      uint32_t flags)
1469 {
1470 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1471 
1472 	if (gtt == NULL)
1473 		return -EINVAL;
1474 
1475 	gtt->userptr = addr;
1476 	gtt->userflags = flags;
1477 
1478 	if (gtt->usertask)
1479 		put_task_struct(gtt->usertask);
1480 	gtt->usertask = current->group_leader;
1481 	get_task_struct(gtt->usertask);
1482 
1483 	return 0;
1484 }
1485 
1486 /**
1487  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1488  */
1489 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1490 {
1491 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1492 
1493 	if (gtt == NULL)
1494 		return NULL;
1495 
1496 	if (gtt->usertask == NULL)
1497 		return NULL;
1498 
1499 	return gtt->usertask->mm;
1500 }
1501 
1502 /**
1503  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1504  * address range for the current task.
1505  *
1506  */
1507 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1508 				  unsigned long end)
1509 {
1510 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1511 	unsigned long size;
1512 
1513 	if (gtt == NULL || !gtt->userptr)
1514 		return false;
1515 
1516 	/* Return false if no part of the ttm_tt object lies within
1517 	 * the range
1518 	 */
1519 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1520 	if (gtt->userptr > end || gtt->userptr + size <= start)
1521 		return false;
1522 
1523 	return true;
1524 }
1525 
1526 /**
1527  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1528  */
1529 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1530 {
1531 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1532 
1533 	if (gtt == NULL || !gtt->userptr)
1534 		return false;
1535 
1536 	return true;
1537 }
1538 
1539 /**
1540  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1541  */
1542 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1543 {
1544 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1545 
1546 	if (gtt == NULL)
1547 		return false;
1548 
1549 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1550 }
1551 
1552 /**
1553  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1554  *
1555  * @ttm: The ttm_tt object to compute the flags for
1556  * @mem: The memory registry backing this ttm_tt object
1557  *
1558  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1559  */
1560 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1561 {
1562 	uint64_t flags = 0;
1563 
1564 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1565 		flags |= AMDGPU_PTE_VALID;
1566 
1567 	if (mem && mem->mem_type == TTM_PL_TT) {
1568 		flags |= AMDGPU_PTE_SYSTEM;
1569 
1570 		if (ttm->caching_state == tt_cached)
1571 			flags |= AMDGPU_PTE_SNOOPED;
1572 	}
1573 
1574 	return flags;
1575 }
1576 
1577 /**
1578  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1579  *
1580  * @ttm: The ttm_tt object to compute the flags for
1581  * @mem: The memory registry backing this ttm_tt object
1582 
1583  * Figure out the flags to use for a VM PTE (Page Table Entry).
1584  */
1585 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1586 				 struct ttm_mem_reg *mem)
1587 {
1588 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1589 
1590 	flags |= adev->gart.gart_pte_flags;
1591 	flags |= AMDGPU_PTE_READABLE;
1592 
1593 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1594 		flags |= AMDGPU_PTE_WRITEABLE;
1595 
1596 	return flags;
1597 }
1598 
1599 /**
1600  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1601  * object.
1602  *
1603  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1604  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1605  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1606  * used to clean out a memory space.
1607  */
1608 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1609 					    const struct ttm_place *place)
1610 {
1611 	unsigned long num_pages = bo->mem.num_pages;
1612 	struct drm_mm_node *node = bo->mem.mm_node;
1613 	struct dma_resv_list *flist;
1614 	struct dma_fence *f;
1615 	int i;
1616 
1617 	if (bo->type == ttm_bo_type_kernel &&
1618 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1619 		return false;
1620 
1621 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1622 	 * If true, then return false as any KFD process needs all its BOs to
1623 	 * be resident to run successfully
1624 	 */
1625 	flist = dma_resv_get_list(bo->base.resv);
1626 	if (flist) {
1627 		for (i = 0; i < flist->shared_count; ++i) {
1628 			f = rcu_dereference_protected(flist->shared[i],
1629 				dma_resv_held(bo->base.resv));
1630 			if (amdkfd_fence_check_mm(f, current->mm))
1631 				return false;
1632 		}
1633 	}
1634 
1635 	switch (bo->mem.mem_type) {
1636 	case TTM_PL_TT:
1637 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1638 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1639 			return false;
1640 		return true;
1641 
1642 	case TTM_PL_VRAM:
1643 		/* Check each drm MM node individually */
1644 		while (num_pages) {
1645 			if (place->fpfn < (node->start + node->size) &&
1646 			    !(place->lpfn && place->lpfn <= node->start))
1647 				return true;
1648 
1649 			num_pages -= node->size;
1650 			++node;
1651 		}
1652 		return false;
1653 
1654 	default:
1655 		break;
1656 	}
1657 
1658 	return ttm_bo_eviction_valuable(bo, place);
1659 }
1660 
1661 /**
1662  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1663  *
1664  * @bo:  The buffer object to read/write
1665  * @offset:  Offset into buffer object
1666  * @buf:  Secondary buffer to write/read from
1667  * @len: Length in bytes of access
1668  * @write:  true if writing
1669  *
1670  * This is used to access VRAM that backs a buffer object via MMIO
1671  * access for debugging purposes.
1672  */
1673 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1674 				    unsigned long offset,
1675 				    void *buf, int len, int write)
1676 {
1677 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1678 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1679 	struct drm_mm_node *nodes;
1680 	uint32_t value = 0;
1681 	int ret = 0;
1682 	uint64_t pos;
1683 	unsigned long flags;
1684 
1685 	if (bo->mem.mem_type != TTM_PL_VRAM)
1686 		return -EIO;
1687 
1688 	pos = offset;
1689 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1690 	pos += (nodes->start << PAGE_SHIFT);
1691 
1692 	while (len && pos < adev->gmc.mc_vram_size) {
1693 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1694 		uint64_t bytes = 4 - (pos & 3);
1695 		uint32_t shift = (pos & 3) * 8;
1696 		uint32_t mask = 0xffffffff << shift;
1697 
1698 		if (len < bytes) {
1699 			mask &= 0xffffffff >> (bytes - len) * 8;
1700 			bytes = len;
1701 		}
1702 
1703 		if (mask != 0xffffffff) {
1704 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1705 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1706 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1707 			if (!write || mask != 0xffffffff)
1708 				value = RREG32_NO_KIQ(mmMM_DATA);
1709 			if (write) {
1710 				value &= ~mask;
1711 				value |= (*(uint32_t *)buf << shift) & mask;
1712 				WREG32_NO_KIQ(mmMM_DATA, value);
1713 			}
1714 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1715 			if (!write) {
1716 				value = (value & mask) >> shift;
1717 				memcpy(buf, &value, bytes);
1718 			}
1719 		} else {
1720 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1721 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1722 
1723 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1724 						  bytes, write);
1725 		}
1726 
1727 		ret += bytes;
1728 		buf = (uint8_t *)buf + bytes;
1729 		pos += bytes;
1730 		len -= bytes;
1731 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1732 			++nodes;
1733 			pos = (nodes->start << PAGE_SHIFT);
1734 		}
1735 	}
1736 
1737 	return ret;
1738 }
1739 
1740 static struct ttm_bo_driver amdgpu_bo_driver = {
1741 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1742 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1743 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1744 	.init_mem_type = &amdgpu_init_mem_type,
1745 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1746 	.evict_flags = &amdgpu_evict_flags,
1747 	.move = &amdgpu_bo_move,
1748 	.verify_access = &amdgpu_verify_access,
1749 	.move_notify = &amdgpu_bo_move_notify,
1750 	.release_notify = &amdgpu_bo_release_notify,
1751 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1752 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1753 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1754 	.access_memory = &amdgpu_ttm_access_memory,
1755 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1756 };
1757 
1758 /*
1759  * Firmware Reservation functions
1760  */
1761 /**
1762  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1763  *
1764  * @adev: amdgpu_device pointer
1765  *
1766  * free fw reserved vram if it has been reserved.
1767  */
1768 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1769 {
1770 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1771 		NULL, &adev->fw_vram_usage.va);
1772 }
1773 
1774 /**
1775  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1776  *
1777  * @adev: amdgpu_device pointer
1778  *
1779  * create bo vram reservation from fw.
1780  */
1781 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1782 {
1783 	uint64_t vram_size = adev->gmc.visible_vram_size;
1784 
1785 	adev->fw_vram_usage.va = NULL;
1786 	adev->fw_vram_usage.reserved_bo = NULL;
1787 
1788 	if (adev->fw_vram_usage.size == 0 ||
1789 	    adev->fw_vram_usage.size > vram_size)
1790 		return 0;
1791 
1792 	return amdgpu_bo_create_kernel_at(adev,
1793 					  adev->fw_vram_usage.start_offset,
1794 					  adev->fw_vram_usage.size,
1795 					  AMDGPU_GEM_DOMAIN_VRAM,
1796 					  &adev->fw_vram_usage.reserved_bo,
1797 					  &adev->fw_vram_usage.va);
1798 }
1799 
1800 /*
1801  * Memoy training reservation functions
1802  */
1803 
1804 /**
1805  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1806  *
1807  * @adev: amdgpu_device pointer
1808  *
1809  * free memory training reserved vram if it has been reserved.
1810  */
1811 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1812 {
1813 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1814 
1815 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1816 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1817 	ctx->c2p_bo = NULL;
1818 
1819 	return 0;
1820 }
1821 
1822 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1823 {
1824        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1825                vram_size -= SZ_1M;
1826 
1827        return ALIGN(vram_size, SZ_1M);
1828 }
1829 
1830 /**
1831  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1832  *
1833  * @adev: amdgpu_device pointer
1834  *
1835  * create bo vram reservation from memory training.
1836  */
1837 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1838 {
1839 	int ret;
1840 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1841 
1842 	memset(ctx, 0, sizeof(*ctx));
1843 	if (!adev->fw_vram_usage.mem_train_support) {
1844 		DRM_DEBUG("memory training does not support!\n");
1845 		return 0;
1846 	}
1847 
1848 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1849 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1850 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1851 
1852 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1853 		  ctx->train_data_size,
1854 		  ctx->p2c_train_data_offset,
1855 		  ctx->c2p_train_data_offset);
1856 
1857 	ret = amdgpu_bo_create_kernel_at(adev,
1858 					 ctx->c2p_train_data_offset,
1859 					 ctx->train_data_size,
1860 					 AMDGPU_GEM_DOMAIN_VRAM,
1861 					 &ctx->c2p_bo,
1862 					 NULL);
1863 	if (ret) {
1864 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1865 		amdgpu_ttm_training_reserve_vram_fini(adev);
1866 		return ret;
1867 	}
1868 
1869 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1870 	return 0;
1871 }
1872 
1873 /**
1874  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1875  * gtt/vram related fields.
1876  *
1877  * This initializes all of the memory space pools that the TTM layer
1878  * will need such as the GTT space (system memory mapped to the device),
1879  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1880  * can be mapped per VMID.
1881  */
1882 int amdgpu_ttm_init(struct amdgpu_device *adev)
1883 {
1884 	uint64_t gtt_size;
1885 	int r;
1886 	u64 vis_vram_limit;
1887 	void *stolen_vga_buf;
1888 
1889 	mutex_init(&adev->mman.gtt_window_lock);
1890 
1891 	/* No others user of address space so set it to 0 */
1892 	r = ttm_bo_device_init(&adev->mman.bdev,
1893 			       &amdgpu_bo_driver,
1894 			       adev->ddev->anon_inode->i_mapping,
1895 			       adev->ddev->vma_offset_manager,
1896 			       dma_addressing_limited(adev->dev));
1897 	if (r) {
1898 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1899 		return r;
1900 	}
1901 	adev->mman.initialized = true;
1902 
1903 	/* We opt to avoid OOM on system pages allocations */
1904 	adev->mman.bdev.no_retry = true;
1905 
1906 	/* Initialize VRAM pool with all of VRAM divided into pages */
1907 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1908 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1909 	if (r) {
1910 		DRM_ERROR("Failed initializing VRAM heap.\n");
1911 		return r;
1912 	}
1913 
1914 	/* Reduce size of CPU-visible VRAM if requested */
1915 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1916 	if (amdgpu_vis_vram_limit > 0 &&
1917 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1918 		adev->gmc.visible_vram_size = vis_vram_limit;
1919 
1920 	/* Change the size here instead of the init above so only lpfn is affected */
1921 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1922 #ifdef CONFIG_64BIT
1923 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1924 						adev->gmc.visible_vram_size);
1925 #endif
1926 
1927 	/*
1928 	 *The reserved vram for firmware must be pinned to the specified
1929 	 *place on the VRAM, so reserve it early.
1930 	 */
1931 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1932 	if (r) {
1933 		return r;
1934 	}
1935 
1936 	/*
1937 	 *The reserved vram for memory training must be pinned to the specified
1938 	 *place on the VRAM, so reserve it early.
1939 	 */
1940 	if (!amdgpu_sriov_vf(adev)) {
1941 		r = amdgpu_ttm_training_reserve_vram_init(adev);
1942 		if (r)
1943 			return r;
1944 	}
1945 
1946 	/* allocate memory as required for VGA
1947 	 * This is used for VGA emulation and pre-OS scanout buffers to
1948 	 * avoid display artifacts while transitioning between pre-OS
1949 	 * and driver.  */
1950 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1951 				    AMDGPU_GEM_DOMAIN_VRAM,
1952 				    &adev->stolen_vga_memory,
1953 				    NULL, &stolen_vga_buf);
1954 	if (r)
1955 		return r;
1956 
1957 	/*
1958 	 * reserve TMR memory at the top of VRAM which holds
1959 	 * IP Discovery data and is protected by PSP.
1960 	 */
1961 	if (adev->discovery_tmr_size > 0) {
1962 		r = amdgpu_bo_create_kernel_at(adev,
1963 			adev->gmc.real_vram_size - adev->discovery_tmr_size,
1964 			adev->discovery_tmr_size,
1965 			AMDGPU_GEM_DOMAIN_VRAM,
1966 			&adev->discovery_memory,
1967 			NULL);
1968 		if (r)
1969 			return r;
1970 	}
1971 
1972 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1973 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1974 
1975 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1976 	 * or whatever the user passed on module init */
1977 	if (amdgpu_gtt_size == -1) {
1978 		struct sysinfo si;
1979 
1980 		si_meminfo(&si);
1981 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1982 			       adev->gmc.mc_vram_size),
1983 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1984 	}
1985 	else
1986 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1987 
1988 	/* Initialize GTT memory pool */
1989 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1990 	if (r) {
1991 		DRM_ERROR("Failed initializing GTT heap.\n");
1992 		return r;
1993 	}
1994 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1995 		 (unsigned)(gtt_size / (1024 * 1024)));
1996 
1997 	/* Initialize various on-chip memory pools */
1998 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1999 			   adev->gds.gds_size);
2000 	if (r) {
2001 		DRM_ERROR("Failed initializing GDS heap.\n");
2002 		return r;
2003 	}
2004 
2005 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2006 			   adev->gds.gws_size);
2007 	if (r) {
2008 		DRM_ERROR("Failed initializing gws heap.\n");
2009 		return r;
2010 	}
2011 
2012 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2013 			   adev->gds.oa_size);
2014 	if (r) {
2015 		DRM_ERROR("Failed initializing oa heap.\n");
2016 		return r;
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 /**
2023  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2024  */
2025 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2026 {
2027 	void *stolen_vga_buf;
2028 	/* return the VGA stolen memory (if any) back to VRAM */
2029 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2030 }
2031 
2032 /**
2033  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2034  */
2035 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2036 {
2037 	if (!adev->mman.initialized)
2038 		return;
2039 
2040 	amdgpu_ttm_training_reserve_vram_fini(adev);
2041 	/* return the IP Discovery TMR memory back to VRAM */
2042 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2043 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2044 
2045 	if (adev->mman.aper_base_kaddr)
2046 		iounmap(adev->mman.aper_base_kaddr);
2047 	adev->mman.aper_base_kaddr = NULL;
2048 
2049 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2050 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2051 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2052 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2053 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2054 	ttm_bo_device_release(&adev->mman.bdev);
2055 	adev->mman.initialized = false;
2056 	DRM_INFO("amdgpu: ttm finalized\n");
2057 }
2058 
2059 /**
2060  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2061  *
2062  * @adev: amdgpu_device pointer
2063  * @enable: true when we can use buffer functions.
2064  *
2065  * Enable/disable use of buffer functions during suspend/resume. This should
2066  * only be called at bootup or when userspace isn't running.
2067  */
2068 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2069 {
2070 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2071 	uint64_t size;
2072 	int r;
2073 
2074 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2075 	    adev->mman.buffer_funcs_enabled == enable)
2076 		return;
2077 
2078 	if (enable) {
2079 		struct amdgpu_ring *ring;
2080 		struct drm_gpu_scheduler *sched;
2081 
2082 		ring = adev->mman.buffer_funcs_ring;
2083 		sched = &ring->sched;
2084 		r = drm_sched_entity_init(&adev->mman.entity,
2085 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2086 					  1, NULL);
2087 		if (r) {
2088 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2089 				  r);
2090 			return;
2091 		}
2092 	} else {
2093 		drm_sched_entity_destroy(&adev->mman.entity);
2094 		dma_fence_put(man->move);
2095 		man->move = NULL;
2096 	}
2097 
2098 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2099 	if (enable)
2100 		size = adev->gmc.real_vram_size;
2101 	else
2102 		size = adev->gmc.visible_vram_size;
2103 	man->size = size >> PAGE_SHIFT;
2104 	adev->mman.buffer_funcs_enabled = enable;
2105 }
2106 
2107 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2108 {
2109 	struct drm_file *file_priv = filp->private_data;
2110 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2111 
2112 	if (adev == NULL)
2113 		return -EINVAL;
2114 
2115 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2116 }
2117 
2118 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2119 		       uint64_t dst_offset, uint32_t byte_count,
2120 		       struct dma_resv *resv,
2121 		       struct dma_fence **fence, bool direct_submit,
2122 		       bool vm_needs_flush, bool tmz)
2123 {
2124 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2125 		AMDGPU_IB_POOL_DELAYED;
2126 	struct amdgpu_device *adev = ring->adev;
2127 	struct amdgpu_job *job;
2128 
2129 	uint32_t max_bytes;
2130 	unsigned num_loops, num_dw;
2131 	unsigned i;
2132 	int r;
2133 
2134 	if (direct_submit && !ring->sched.ready) {
2135 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2136 		return -EINVAL;
2137 	}
2138 
2139 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2140 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2141 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2142 
2143 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2144 	if (r)
2145 		return r;
2146 
2147 	if (vm_needs_flush) {
2148 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2149 		job->vm_needs_flush = true;
2150 	}
2151 	if (resv) {
2152 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2153 				     AMDGPU_SYNC_ALWAYS,
2154 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2155 		if (r) {
2156 			DRM_ERROR("sync failed (%d).\n", r);
2157 			goto error_free;
2158 		}
2159 	}
2160 
2161 	for (i = 0; i < num_loops; i++) {
2162 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2163 
2164 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2165 					dst_offset, cur_size_in_bytes, tmz);
2166 
2167 		src_offset += cur_size_in_bytes;
2168 		dst_offset += cur_size_in_bytes;
2169 		byte_count -= cur_size_in_bytes;
2170 	}
2171 
2172 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2173 	WARN_ON(job->ibs[0].length_dw > num_dw);
2174 	if (direct_submit)
2175 		r = amdgpu_job_submit_direct(job, ring, fence);
2176 	else
2177 		r = amdgpu_job_submit(job, &adev->mman.entity,
2178 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2179 	if (r)
2180 		goto error_free;
2181 
2182 	return r;
2183 
2184 error_free:
2185 	amdgpu_job_free(job);
2186 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2187 	return r;
2188 }
2189 
2190 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2191 		       uint32_t src_data,
2192 		       struct dma_resv *resv,
2193 		       struct dma_fence **fence)
2194 {
2195 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2196 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2197 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2198 
2199 	struct drm_mm_node *mm_node;
2200 	unsigned long num_pages;
2201 	unsigned int num_loops, num_dw;
2202 
2203 	struct amdgpu_job *job;
2204 	int r;
2205 
2206 	if (!adev->mman.buffer_funcs_enabled) {
2207 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2208 		return -EINVAL;
2209 	}
2210 
2211 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2212 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2213 		if (r)
2214 			return r;
2215 	}
2216 
2217 	num_pages = bo->tbo.num_pages;
2218 	mm_node = bo->tbo.mem.mm_node;
2219 	num_loops = 0;
2220 	while (num_pages) {
2221 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2222 
2223 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2224 		num_pages -= mm_node->size;
2225 		++mm_node;
2226 	}
2227 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2228 
2229 	/* for IB padding */
2230 	num_dw += 64;
2231 
2232 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2233 				     &job);
2234 	if (r)
2235 		return r;
2236 
2237 	if (resv) {
2238 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2239 				     AMDGPU_SYNC_ALWAYS,
2240 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2241 		if (r) {
2242 			DRM_ERROR("sync failed (%d).\n", r);
2243 			goto error_free;
2244 		}
2245 	}
2246 
2247 	num_pages = bo->tbo.num_pages;
2248 	mm_node = bo->tbo.mem.mm_node;
2249 
2250 	while (num_pages) {
2251 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2252 		uint64_t dst_addr;
2253 
2254 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2255 		while (byte_count) {
2256 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2257 							   max_bytes);
2258 
2259 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2260 						dst_addr, cur_size_in_bytes);
2261 
2262 			dst_addr += cur_size_in_bytes;
2263 			byte_count -= cur_size_in_bytes;
2264 		}
2265 
2266 		num_pages -= mm_node->size;
2267 		++mm_node;
2268 	}
2269 
2270 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2271 	WARN_ON(job->ibs[0].length_dw > num_dw);
2272 	r = amdgpu_job_submit(job, &adev->mman.entity,
2273 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2274 	if (r)
2275 		goto error_free;
2276 
2277 	return 0;
2278 
2279 error_free:
2280 	amdgpu_job_free(job);
2281 	return r;
2282 }
2283 
2284 #if defined(CONFIG_DEBUG_FS)
2285 
2286 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2287 {
2288 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2289 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2290 	struct drm_device *dev = node->minor->dev;
2291 	struct amdgpu_device *adev = dev->dev_private;
2292 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2293 	struct drm_printer p = drm_seq_file_printer(m);
2294 
2295 	man->func->debug(man, &p);
2296 	return 0;
2297 }
2298 
2299 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2300 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2301 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2302 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2303 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2304 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2305 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2306 #ifdef CONFIG_SWIOTLB
2307 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2308 #endif
2309 };
2310 
2311 /**
2312  * amdgpu_ttm_vram_read - Linear read access to VRAM
2313  *
2314  * Accesses VRAM via MMIO for debugging purposes.
2315  */
2316 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2317 				    size_t size, loff_t *pos)
2318 {
2319 	struct amdgpu_device *adev = file_inode(f)->i_private;
2320 	ssize_t result = 0;
2321 
2322 	if (size & 0x3 || *pos & 0x3)
2323 		return -EINVAL;
2324 
2325 	if (*pos >= adev->gmc.mc_vram_size)
2326 		return -ENXIO;
2327 
2328 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2329 	while (size) {
2330 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2331 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2332 
2333 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2334 		if (copy_to_user(buf, value, bytes))
2335 			return -EFAULT;
2336 
2337 		result += bytes;
2338 		buf += bytes;
2339 		*pos += bytes;
2340 		size -= bytes;
2341 	}
2342 
2343 	return result;
2344 }
2345 
2346 /**
2347  * amdgpu_ttm_vram_write - Linear write access to VRAM
2348  *
2349  * Accesses VRAM via MMIO for debugging purposes.
2350  */
2351 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2352 				    size_t size, loff_t *pos)
2353 {
2354 	struct amdgpu_device *adev = file_inode(f)->i_private;
2355 	ssize_t result = 0;
2356 	int r;
2357 
2358 	if (size & 0x3 || *pos & 0x3)
2359 		return -EINVAL;
2360 
2361 	if (*pos >= adev->gmc.mc_vram_size)
2362 		return -ENXIO;
2363 
2364 	while (size) {
2365 		unsigned long flags;
2366 		uint32_t value;
2367 
2368 		if (*pos >= adev->gmc.mc_vram_size)
2369 			return result;
2370 
2371 		r = get_user(value, (uint32_t *)buf);
2372 		if (r)
2373 			return r;
2374 
2375 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2376 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2377 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2378 		WREG32_NO_KIQ(mmMM_DATA, value);
2379 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2380 
2381 		result += 4;
2382 		buf += 4;
2383 		*pos += 4;
2384 		size -= 4;
2385 	}
2386 
2387 	return result;
2388 }
2389 
2390 static const struct file_operations amdgpu_ttm_vram_fops = {
2391 	.owner = THIS_MODULE,
2392 	.read = amdgpu_ttm_vram_read,
2393 	.write = amdgpu_ttm_vram_write,
2394 	.llseek = default_llseek,
2395 };
2396 
2397 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2398 
2399 /**
2400  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2401  */
2402 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2403 				   size_t size, loff_t *pos)
2404 {
2405 	struct amdgpu_device *adev = file_inode(f)->i_private;
2406 	ssize_t result = 0;
2407 	int r;
2408 
2409 	while (size) {
2410 		loff_t p = *pos / PAGE_SIZE;
2411 		unsigned off = *pos & ~PAGE_MASK;
2412 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2413 		struct page *page;
2414 		void *ptr;
2415 
2416 		if (p >= adev->gart.num_cpu_pages)
2417 			return result;
2418 
2419 		page = adev->gart.pages[p];
2420 		if (page) {
2421 			ptr = kmap(page);
2422 			ptr += off;
2423 
2424 			r = copy_to_user(buf, ptr, cur_size);
2425 			kunmap(adev->gart.pages[p]);
2426 		} else
2427 			r = clear_user(buf, cur_size);
2428 
2429 		if (r)
2430 			return -EFAULT;
2431 
2432 		result += cur_size;
2433 		buf += cur_size;
2434 		*pos += cur_size;
2435 		size -= cur_size;
2436 	}
2437 
2438 	return result;
2439 }
2440 
2441 static const struct file_operations amdgpu_ttm_gtt_fops = {
2442 	.owner = THIS_MODULE,
2443 	.read = amdgpu_ttm_gtt_read,
2444 	.llseek = default_llseek
2445 };
2446 
2447 #endif
2448 
2449 /**
2450  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2451  *
2452  * This function is used to read memory that has been mapped to the
2453  * GPU and the known addresses are not physical addresses but instead
2454  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2455  */
2456 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2457 				 size_t size, loff_t *pos)
2458 {
2459 	struct amdgpu_device *adev = file_inode(f)->i_private;
2460 	struct iommu_domain *dom;
2461 	ssize_t result = 0;
2462 	int r;
2463 
2464 	/* retrieve the IOMMU domain if any for this device */
2465 	dom = iommu_get_domain_for_dev(adev->dev);
2466 
2467 	while (size) {
2468 		phys_addr_t addr = *pos & PAGE_MASK;
2469 		loff_t off = *pos & ~PAGE_MASK;
2470 		size_t bytes = PAGE_SIZE - off;
2471 		unsigned long pfn;
2472 		struct page *p;
2473 		void *ptr;
2474 
2475 		bytes = bytes < size ? bytes : size;
2476 
2477 		/* Translate the bus address to a physical address.  If
2478 		 * the domain is NULL it means there is no IOMMU active
2479 		 * and the address translation is the identity
2480 		 */
2481 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2482 
2483 		pfn = addr >> PAGE_SHIFT;
2484 		if (!pfn_valid(pfn))
2485 			return -EPERM;
2486 
2487 		p = pfn_to_page(pfn);
2488 		if (p->mapping != adev->mman.bdev.dev_mapping)
2489 			return -EPERM;
2490 
2491 		ptr = kmap(p);
2492 		r = copy_to_user(buf, ptr + off, bytes);
2493 		kunmap(p);
2494 		if (r)
2495 			return -EFAULT;
2496 
2497 		size -= bytes;
2498 		*pos += bytes;
2499 		result += bytes;
2500 	}
2501 
2502 	return result;
2503 }
2504 
2505 /**
2506  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2507  *
2508  * This function is used to write memory that has been mapped to the
2509  * GPU and the known addresses are not physical addresses but instead
2510  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2511  */
2512 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2513 				 size_t size, loff_t *pos)
2514 {
2515 	struct amdgpu_device *adev = file_inode(f)->i_private;
2516 	struct iommu_domain *dom;
2517 	ssize_t result = 0;
2518 	int r;
2519 
2520 	dom = iommu_get_domain_for_dev(adev->dev);
2521 
2522 	while (size) {
2523 		phys_addr_t addr = *pos & PAGE_MASK;
2524 		loff_t off = *pos & ~PAGE_MASK;
2525 		size_t bytes = PAGE_SIZE - off;
2526 		unsigned long pfn;
2527 		struct page *p;
2528 		void *ptr;
2529 
2530 		bytes = bytes < size ? bytes : size;
2531 
2532 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2533 
2534 		pfn = addr >> PAGE_SHIFT;
2535 		if (!pfn_valid(pfn))
2536 			return -EPERM;
2537 
2538 		p = pfn_to_page(pfn);
2539 		if (p->mapping != adev->mman.bdev.dev_mapping)
2540 			return -EPERM;
2541 
2542 		ptr = kmap(p);
2543 		r = copy_from_user(ptr + off, buf, bytes);
2544 		kunmap(p);
2545 		if (r)
2546 			return -EFAULT;
2547 
2548 		size -= bytes;
2549 		*pos += bytes;
2550 		result += bytes;
2551 	}
2552 
2553 	return result;
2554 }
2555 
2556 static const struct file_operations amdgpu_ttm_iomem_fops = {
2557 	.owner = THIS_MODULE,
2558 	.read = amdgpu_iomem_read,
2559 	.write = amdgpu_iomem_write,
2560 	.llseek = default_llseek
2561 };
2562 
2563 static const struct {
2564 	char *name;
2565 	const struct file_operations *fops;
2566 	int domain;
2567 } ttm_debugfs_entries[] = {
2568 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2569 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2570 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2571 #endif
2572 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2573 };
2574 
2575 #endif
2576 
2577 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2578 {
2579 #if defined(CONFIG_DEBUG_FS)
2580 	unsigned count;
2581 
2582 	struct drm_minor *minor = adev->ddev->primary;
2583 	struct dentry *ent, *root = minor->debugfs_root;
2584 
2585 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2586 		ent = debugfs_create_file(
2587 				ttm_debugfs_entries[count].name,
2588 				S_IFREG | S_IRUGO, root,
2589 				adev,
2590 				ttm_debugfs_entries[count].fops);
2591 		if (IS_ERR(ent))
2592 			return PTR_ERR(ent);
2593 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2594 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2595 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2596 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2597 		adev->mman.debugfs_entries[count] = ent;
2598 	}
2599 
2600 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2601 
2602 #ifdef CONFIG_SWIOTLB
2603 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2604 		--count;
2605 #endif
2606 
2607 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2608 #else
2609 	return 0;
2610 #endif
2611 }
2612