1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 50 #include <drm/drm_debugfs.h> 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_atomfirmware.h" 60 #include "bif/bif_4_1_d.h" 61 62 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 63 64 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev, 65 struct ttm_tt *ttm, 66 struct ttm_resource *bo_mem); 67 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev, 68 struct ttm_tt *ttm); 69 70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 71 unsigned int type, 72 uint64_t size_in_page) 73 { 74 return ttm_range_man_init(&adev->mman.bdev, type, 75 false, size_in_page); 76 } 77 78 /** 79 * amdgpu_evict_flags - Compute placement flags 80 * 81 * @bo: The buffer object to evict 82 * @placement: Possible destination(s) for evicted BO 83 * 84 * Fill in placement data when ttm_bo_evict() is called 85 */ 86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 87 struct ttm_placement *placement) 88 { 89 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 90 struct amdgpu_bo *abo; 91 static const struct ttm_place placements = { 92 .fpfn = 0, 93 .lpfn = 0, 94 .mem_type = TTM_PL_SYSTEM, 95 .flags = 0 96 }; 97 98 /* Don't handle scatter gather BOs */ 99 if (bo->type == ttm_bo_type_sg) { 100 placement->num_placement = 0; 101 placement->num_busy_placement = 0; 102 return; 103 } 104 105 /* Object isn't an AMDGPU object so ignore */ 106 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 107 placement->placement = &placements; 108 placement->busy_placement = &placements; 109 placement->num_placement = 1; 110 placement->num_busy_placement = 1; 111 return; 112 } 113 114 abo = ttm_to_amdgpu_bo(bo); 115 switch (bo->mem.mem_type) { 116 case AMDGPU_PL_GDS: 117 case AMDGPU_PL_GWS: 118 case AMDGPU_PL_OA: 119 placement->num_placement = 0; 120 placement->num_busy_placement = 0; 121 return; 122 123 case TTM_PL_VRAM: 124 if (!adev->mman.buffer_funcs_enabled) { 125 /* Move to system memory */ 126 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 127 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 128 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 129 amdgpu_bo_in_cpu_visible_vram(abo)) { 130 131 /* Try evicting to the CPU inaccessible part of VRAM 132 * first, but only set GTT as busy placement, so this 133 * BO will be evicted to GTT rather than causing other 134 * BOs to be evicted from VRAM 135 */ 136 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 137 AMDGPU_GEM_DOMAIN_GTT); 138 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 139 abo->placements[0].lpfn = 0; 140 abo->placement.busy_placement = &abo->placements[1]; 141 abo->placement.num_busy_placement = 1; 142 } else { 143 /* Move to GTT memory */ 144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 145 } 146 break; 147 case TTM_PL_TT: 148 default: 149 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 150 break; 151 } 152 *placement = abo->placement; 153 } 154 155 /** 156 * amdgpu_verify_access - Verify access for a mmap call 157 * 158 * @bo: The buffer object to map 159 * @filp: The file pointer from the process performing the mmap 160 * 161 * This is called by ttm_bo_mmap() to verify whether a process 162 * has the right to mmap a BO to their process space. 163 */ 164 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 165 { 166 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 167 168 /* 169 * Don't verify access for KFD BOs. They don't have a GEM 170 * object associated with them. 171 */ 172 if (abo->kfd_bo) 173 return 0; 174 175 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 176 return -EPERM; 177 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 178 filp->private_data); 179 } 180 181 /** 182 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 183 * 184 * @bo: The bo to assign the memory to. 185 * @mm_node: Memory manager node for drm allocator. 186 * @mem: The region where the bo resides. 187 * 188 */ 189 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 190 struct drm_mm_node *mm_node, 191 struct ttm_resource *mem) 192 { 193 uint64_t addr = 0; 194 195 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 196 addr = mm_node->start << PAGE_SHIFT; 197 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev), 198 mem->mem_type); 199 } 200 return addr; 201 } 202 203 /** 204 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 205 * @offset. It also modifies the offset to be within the drm_mm_node returned 206 * 207 * @mem: The region where the bo resides. 208 * @offset: The offset that drm_mm_node is used for finding. 209 * 210 */ 211 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem, 212 uint64_t *offset) 213 { 214 struct drm_mm_node *mm_node = mem->mm_node; 215 216 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 217 *offset -= (mm_node->size << PAGE_SHIFT); 218 ++mm_node; 219 } 220 return mm_node; 221 } 222 223 /** 224 * amdgpu_ttm_map_buffer - Map memory into the GART windows 225 * @bo: buffer object to map 226 * @mem: memory object to map 227 * @mm_node: drm_mm node object to map 228 * @num_pages: number of pages to map 229 * @offset: offset into @mm_node where to start 230 * @window: which GART window to use 231 * @ring: DMA ring to use for the copy 232 * @tmz: if we should setup a TMZ enabled mapping 233 * @addr: resulting address inside the MC address space 234 * 235 * Setup one of the GART windows to access a specific piece of memory or return 236 * the physical address for local memory. 237 */ 238 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 239 struct ttm_resource *mem, 240 struct drm_mm_node *mm_node, 241 unsigned num_pages, uint64_t offset, 242 unsigned window, struct amdgpu_ring *ring, 243 bool tmz, uint64_t *addr) 244 { 245 struct amdgpu_device *adev = ring->adev; 246 struct amdgpu_job *job; 247 unsigned num_dw, num_bytes; 248 struct dma_fence *fence; 249 uint64_t src_addr, dst_addr; 250 void *cpu_addr; 251 uint64_t flags; 252 unsigned int i; 253 int r; 254 255 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 256 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 257 258 /* Map only what can't be accessed directly */ 259 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 260 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset; 261 return 0; 262 } 263 264 *addr = adev->gmc.gart_start; 265 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 266 AMDGPU_GPU_PAGE_SIZE; 267 *addr += offset & ~PAGE_MASK; 268 269 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 270 num_bytes = num_pages * 8; 271 272 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 273 AMDGPU_IB_POOL_DELAYED, &job); 274 if (r) 275 return r; 276 277 src_addr = num_dw * 4; 278 src_addr += job->ibs[0].gpu_addr; 279 280 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 281 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 282 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 283 dst_addr, num_bytes, false); 284 285 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 286 WARN_ON(job->ibs[0].length_dw > num_dw); 287 288 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 289 if (tmz) 290 flags |= AMDGPU_PTE_TMZ; 291 292 cpu_addr = &job->ibs[0].ptr[num_dw]; 293 294 if (mem->mem_type == TTM_PL_TT) { 295 dma_addr_t *dma_address; 296 297 dma_address = &bo->ttm->dma_address[offset >> PAGE_SHIFT]; 298 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 299 cpu_addr); 300 if (r) 301 goto error_free; 302 } else { 303 dma_addr_t dma_address; 304 305 dma_address = (mm_node->start << PAGE_SHIFT) + offset; 306 dma_address += adev->vm_manager.vram_base_offset; 307 308 for (i = 0; i < num_pages; ++i) { 309 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, 310 &dma_address, flags, cpu_addr); 311 if (r) 312 goto error_free; 313 314 dma_address += PAGE_SIZE; 315 } 316 } 317 318 r = amdgpu_job_submit(job, &adev->mman.entity, 319 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 320 if (r) 321 goto error_free; 322 323 dma_fence_put(fence); 324 325 return r; 326 327 error_free: 328 amdgpu_job_free(job); 329 return r; 330 } 331 332 /** 333 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 334 * @adev: amdgpu device 335 * @src: buffer/address where to read from 336 * @dst: buffer/address where to write to 337 * @size: number of bytes to copy 338 * @tmz: if a secure copy should be used 339 * @resv: resv object to sync to 340 * @f: Returns the last fence if multiple jobs are submitted. 341 * 342 * The function copies @size bytes from {src->mem + src->offset} to 343 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 344 * move and different for a BO to BO copy. 345 * 346 */ 347 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 348 const struct amdgpu_copy_mem *src, 349 const struct amdgpu_copy_mem *dst, 350 uint64_t size, bool tmz, 351 struct dma_resv *resv, 352 struct dma_fence **f) 353 { 354 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 355 AMDGPU_GPU_PAGE_SIZE); 356 357 uint64_t src_node_size, dst_node_size, src_offset, dst_offset; 358 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 359 struct drm_mm_node *src_mm, *dst_mm; 360 struct dma_fence *fence = NULL; 361 int r = 0; 362 363 if (!adev->mman.buffer_funcs_enabled) { 364 DRM_ERROR("Trying to move memory with ring turned off.\n"); 365 return -EINVAL; 366 } 367 368 src_offset = src->offset; 369 if (src->mem->mm_node) { 370 src_mm = amdgpu_find_mm_node(src->mem, &src_offset); 371 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset; 372 } else { 373 src_mm = NULL; 374 src_node_size = ULLONG_MAX; 375 } 376 377 dst_offset = dst->offset; 378 if (dst->mem->mm_node) { 379 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset); 380 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset; 381 } else { 382 dst_mm = NULL; 383 dst_node_size = ULLONG_MAX; 384 } 385 386 mutex_lock(&adev->mman.gtt_window_lock); 387 388 while (size) { 389 uint32_t src_page_offset = src_offset & ~PAGE_MASK; 390 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK; 391 struct dma_fence *next; 392 uint32_t cur_size; 393 uint64_t from, to; 394 395 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 396 * begins at an offset, then adjust the size accordingly 397 */ 398 cur_size = max(src_page_offset, dst_page_offset); 399 cur_size = min(min3(src_node_size, dst_node_size, size), 400 (uint64_t)(GTT_MAX_BYTES - cur_size)); 401 402 /* Map src to window 0 and dst to window 1. */ 403 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm, 404 PFN_UP(cur_size + src_page_offset), 405 src_offset, 0, ring, tmz, &from); 406 if (r) 407 goto error; 408 409 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm, 410 PFN_UP(cur_size + dst_page_offset), 411 dst_offset, 1, ring, tmz, &to); 412 if (r) 413 goto error; 414 415 r = amdgpu_copy_buffer(ring, from, to, cur_size, 416 resv, &next, false, true, tmz); 417 if (r) 418 goto error; 419 420 dma_fence_put(fence); 421 fence = next; 422 423 size -= cur_size; 424 if (!size) 425 break; 426 427 src_node_size -= cur_size; 428 if (!src_node_size) { 429 ++src_mm; 430 src_node_size = src_mm->size << PAGE_SHIFT; 431 src_offset = 0; 432 } else { 433 src_offset += cur_size; 434 } 435 436 dst_node_size -= cur_size; 437 if (!dst_node_size) { 438 ++dst_mm; 439 dst_node_size = dst_mm->size << PAGE_SHIFT; 440 dst_offset = 0; 441 } else { 442 dst_offset += cur_size; 443 } 444 } 445 error: 446 mutex_unlock(&adev->mman.gtt_window_lock); 447 if (f) 448 *f = dma_fence_get(fence); 449 dma_fence_put(fence); 450 return r; 451 } 452 453 /* 454 * amdgpu_move_blit - Copy an entire buffer to another buffer 455 * 456 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 457 * help move buffers to and from VRAM. 458 */ 459 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 460 bool evict, 461 struct ttm_resource *new_mem, 462 struct ttm_resource *old_mem) 463 { 464 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 465 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 466 struct amdgpu_copy_mem src, dst; 467 struct dma_fence *fence = NULL; 468 int r; 469 470 src.bo = bo; 471 dst.bo = bo; 472 src.mem = old_mem; 473 dst.mem = new_mem; 474 src.offset = 0; 475 dst.offset = 0; 476 477 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 478 new_mem->num_pages << PAGE_SHIFT, 479 amdgpu_bo_encrypted(abo), 480 bo->base.resv, &fence); 481 if (r) 482 goto error; 483 484 /* clear the space being freed */ 485 if (old_mem->mem_type == TTM_PL_VRAM && 486 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 487 struct dma_fence *wipe_fence = NULL; 488 489 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 490 NULL, &wipe_fence); 491 if (r) { 492 goto error; 493 } else if (wipe_fence) { 494 dma_fence_put(fence); 495 fence = wipe_fence; 496 } 497 } 498 499 /* Always block for VM page tables before committing the new location */ 500 if (bo->type == ttm_bo_type_kernel) 501 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 502 else 503 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 504 dma_fence_put(fence); 505 return r; 506 507 error: 508 if (fence) 509 dma_fence_wait(fence, false); 510 dma_fence_put(fence); 511 return r; 512 } 513 514 /* 515 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 516 * 517 * Called by amdgpu_bo_move() 518 */ 519 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 520 struct ttm_resource *mem) 521 { 522 struct drm_mm_node *nodes = mem->mm_node; 523 524 if (mem->mem_type == TTM_PL_SYSTEM || 525 mem->mem_type == TTM_PL_TT) 526 return true; 527 if (mem->mem_type != TTM_PL_VRAM) 528 return false; 529 530 /* ttm_resource_ioremap only supports contiguous memory */ 531 if (nodes->size != mem->num_pages) 532 return false; 533 534 return ((nodes->start + nodes->size) << PAGE_SHIFT) 535 <= adev->gmc.visible_vram_size; 536 } 537 538 /* 539 * amdgpu_bo_move - Move a buffer object to a new memory location 540 * 541 * Called by ttm_bo_handle_move_mem() 542 */ 543 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 544 struct ttm_operation_ctx *ctx, 545 struct ttm_resource *new_mem, 546 struct ttm_place *hop) 547 { 548 struct amdgpu_device *adev; 549 struct amdgpu_bo *abo; 550 struct ttm_resource *old_mem = &bo->mem; 551 int r; 552 553 if (new_mem->mem_type == TTM_PL_TT) { 554 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 555 if (r) 556 return r; 557 } 558 559 /* Can't move a pinned BO */ 560 abo = ttm_to_amdgpu_bo(bo); 561 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 562 return -EINVAL; 563 564 adev = amdgpu_ttm_adev(bo->bdev); 565 566 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 567 ttm_bo_move_null(bo, new_mem); 568 goto out; 569 } 570 if (old_mem->mem_type == TTM_PL_SYSTEM && 571 new_mem->mem_type == TTM_PL_TT) { 572 ttm_bo_move_null(bo, new_mem); 573 goto out; 574 } 575 if (old_mem->mem_type == TTM_PL_TT && 576 new_mem->mem_type == TTM_PL_SYSTEM) { 577 r = ttm_bo_wait_ctx(bo, ctx); 578 if (r) 579 return r; 580 581 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 582 ttm_resource_free(bo, &bo->mem); 583 ttm_bo_assign_mem(bo, new_mem); 584 goto out; 585 } 586 587 if (old_mem->mem_type == AMDGPU_PL_GDS || 588 old_mem->mem_type == AMDGPU_PL_GWS || 589 old_mem->mem_type == AMDGPU_PL_OA || 590 new_mem->mem_type == AMDGPU_PL_GDS || 591 new_mem->mem_type == AMDGPU_PL_GWS || 592 new_mem->mem_type == AMDGPU_PL_OA) { 593 /* Nothing to save here */ 594 ttm_bo_move_null(bo, new_mem); 595 goto out; 596 } 597 598 if (adev->mman.buffer_funcs_enabled) { 599 if (((old_mem->mem_type == TTM_PL_SYSTEM && 600 new_mem->mem_type == TTM_PL_VRAM) || 601 (old_mem->mem_type == TTM_PL_VRAM && 602 new_mem->mem_type == TTM_PL_SYSTEM))) { 603 hop->fpfn = 0; 604 hop->lpfn = 0; 605 hop->mem_type = TTM_PL_TT; 606 hop->flags = 0; 607 return -EMULTIHOP; 608 } 609 610 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 611 } else { 612 r = -ENODEV; 613 } 614 615 if (r) { 616 /* Check that all memory is CPU accessible */ 617 if (!amdgpu_mem_visible(adev, old_mem) || 618 !amdgpu_mem_visible(adev, new_mem)) { 619 pr_err("Move buffer fallback to memcpy unavailable\n"); 620 return r; 621 } 622 623 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 624 if (r) 625 return r; 626 } 627 628 if (bo->type == ttm_bo_type_device && 629 new_mem->mem_type == TTM_PL_VRAM && 630 old_mem->mem_type != TTM_PL_VRAM) { 631 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 632 * accesses the BO after it's moved. 633 */ 634 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 635 } 636 637 out: 638 /* update statistics */ 639 atomic64_add(bo->base.size, &adev->num_bytes_moved); 640 amdgpu_bo_move_notify(bo, evict, new_mem); 641 return 0; 642 } 643 644 /* 645 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 646 * 647 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 648 */ 649 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem) 650 { 651 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 652 struct drm_mm_node *mm_node = mem->mm_node; 653 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 654 655 switch (mem->mem_type) { 656 case TTM_PL_SYSTEM: 657 /* system memory */ 658 return 0; 659 case TTM_PL_TT: 660 break; 661 case TTM_PL_VRAM: 662 mem->bus.offset = mem->start << PAGE_SHIFT; 663 /* check if it's visible */ 664 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 665 return -EINVAL; 666 /* Only physically contiguous buffers apply. In a contiguous 667 * buffer, size of the first mm_node would match the number of 668 * pages in ttm_resource. 669 */ 670 if (adev->mman.aper_base_kaddr && 671 (mm_node->size == mem->num_pages)) 672 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 673 mem->bus.offset; 674 675 mem->bus.offset += adev->gmc.aper_base; 676 mem->bus.is_iomem = true; 677 mem->bus.caching = ttm_write_combined; 678 break; 679 default: 680 return -EINVAL; 681 } 682 return 0; 683 } 684 685 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 686 unsigned long page_offset) 687 { 688 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 689 uint64_t offset = (page_offset << PAGE_SHIFT); 690 struct drm_mm_node *mm; 691 692 mm = amdgpu_find_mm_node(&bo->mem, &offset); 693 offset += adev->gmc.aper_base; 694 return mm->start + (offset >> PAGE_SHIFT); 695 } 696 697 /** 698 * amdgpu_ttm_domain_start - Returns GPU start address 699 * @adev: amdgpu device object 700 * @type: type of the memory 701 * 702 * Returns: 703 * GPU start address of a memory domain 704 */ 705 706 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 707 { 708 switch (type) { 709 case TTM_PL_TT: 710 return adev->gmc.gart_start; 711 case TTM_PL_VRAM: 712 return adev->gmc.vram_start; 713 } 714 715 return 0; 716 } 717 718 /* 719 * TTM backend functions. 720 */ 721 struct amdgpu_ttm_tt { 722 struct ttm_tt ttm; 723 struct drm_gem_object *gobj; 724 u64 offset; 725 uint64_t userptr; 726 struct task_struct *usertask; 727 uint32_t userflags; 728 bool bound; 729 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 730 struct hmm_range *range; 731 #endif 732 }; 733 734 #ifdef CONFIG_DRM_AMDGPU_USERPTR 735 /* 736 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 737 * memory and start HMM tracking CPU page table update 738 * 739 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 740 * once afterwards to stop HMM tracking 741 */ 742 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 743 { 744 struct ttm_tt *ttm = bo->tbo.ttm; 745 struct amdgpu_ttm_tt *gtt = (void *)ttm; 746 unsigned long start = gtt->userptr; 747 struct vm_area_struct *vma; 748 struct hmm_range *range; 749 unsigned long timeout; 750 struct mm_struct *mm; 751 unsigned long i; 752 int r = 0; 753 754 mm = bo->notifier.mm; 755 if (unlikely(!mm)) { 756 DRM_DEBUG_DRIVER("BO is not registered?\n"); 757 return -EFAULT; 758 } 759 760 /* Another get_user_pages is running at the same time?? */ 761 if (WARN_ON(gtt->range)) 762 return -EFAULT; 763 764 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 765 return -ESRCH; 766 767 range = kzalloc(sizeof(*range), GFP_KERNEL); 768 if (unlikely(!range)) { 769 r = -ENOMEM; 770 goto out; 771 } 772 range->notifier = &bo->notifier; 773 range->start = bo->notifier.interval_tree.start; 774 range->end = bo->notifier.interval_tree.last + 1; 775 range->default_flags = HMM_PFN_REQ_FAULT; 776 if (!amdgpu_ttm_tt_is_readonly(ttm)) 777 range->default_flags |= HMM_PFN_REQ_WRITE; 778 779 range->hmm_pfns = kvmalloc_array(ttm->num_pages, 780 sizeof(*range->hmm_pfns), GFP_KERNEL); 781 if (unlikely(!range->hmm_pfns)) { 782 r = -ENOMEM; 783 goto out_free_ranges; 784 } 785 786 mmap_read_lock(mm); 787 vma = find_vma(mm, start); 788 if (unlikely(!vma || start < vma->vm_start)) { 789 r = -EFAULT; 790 goto out_unlock; 791 } 792 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 793 vma->vm_file)) { 794 r = -EPERM; 795 goto out_unlock; 796 } 797 mmap_read_unlock(mm); 798 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 799 800 retry: 801 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 802 803 mmap_read_lock(mm); 804 r = hmm_range_fault(range); 805 mmap_read_unlock(mm); 806 if (unlikely(r)) { 807 /* 808 * FIXME: This timeout should encompass the retry from 809 * mmu_interval_read_retry() as well. 810 */ 811 if (r == -EBUSY && !time_after(jiffies, timeout)) 812 goto retry; 813 goto out_free_pfns; 814 } 815 816 /* 817 * Due to default_flags, all pages are HMM_PFN_VALID or 818 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside 819 * the notifier_lock, and mmu_interval_read_retry() must be done first. 820 */ 821 for (i = 0; i < ttm->num_pages; i++) 822 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]); 823 824 gtt->range = range; 825 mmput(mm); 826 827 return 0; 828 829 out_unlock: 830 mmap_read_unlock(mm); 831 out_free_pfns: 832 kvfree(range->hmm_pfns); 833 out_free_ranges: 834 kfree(range); 835 out: 836 mmput(mm); 837 return r; 838 } 839 840 /* 841 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 842 * Check if the pages backing this ttm range have been invalidated 843 * 844 * Returns: true if pages are still valid 845 */ 846 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 847 { 848 struct amdgpu_ttm_tt *gtt = (void *)ttm; 849 bool r = false; 850 851 if (!gtt || !gtt->userptr) 852 return false; 853 854 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 855 gtt->userptr, ttm->num_pages); 856 857 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 858 "No user pages to check\n"); 859 860 if (gtt->range) { 861 /* 862 * FIXME: Must always hold notifier_lock for this, and must 863 * not ignore the return code. 864 */ 865 r = mmu_interval_read_retry(gtt->range->notifier, 866 gtt->range->notifier_seq); 867 kvfree(gtt->range->hmm_pfns); 868 kfree(gtt->range); 869 gtt->range = NULL; 870 } 871 872 return !r; 873 } 874 #endif 875 876 /* 877 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 878 * 879 * Called by amdgpu_cs_list_validate(). This creates the page list 880 * that backs user memory and will ultimately be mapped into the device 881 * address space. 882 */ 883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 884 { 885 unsigned long i; 886 887 for (i = 0; i < ttm->num_pages; ++i) 888 ttm->pages[i] = pages ? pages[i] : NULL; 889 } 890 891 /* 892 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 893 * 894 * Called by amdgpu_ttm_backend_bind() 895 **/ 896 static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev, 897 struct ttm_tt *ttm) 898 { 899 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 900 struct amdgpu_ttm_tt *gtt = (void *)ttm; 901 int r; 902 903 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 904 enum dma_data_direction direction = write ? 905 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 906 907 /* Allocate an SG array and squash pages into it */ 908 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 909 ttm->num_pages << PAGE_SHIFT, 910 GFP_KERNEL); 911 if (r) 912 goto release_sg; 913 914 /* Map SG to device */ 915 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 916 if (r) 917 goto release_sg; 918 919 /* convert SG to linear array of pages and dma addresses */ 920 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 921 ttm->num_pages); 922 923 return 0; 924 925 release_sg: 926 kfree(ttm->sg); 927 ttm->sg = NULL; 928 return r; 929 } 930 931 /* 932 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 933 */ 934 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev, 935 struct ttm_tt *ttm) 936 { 937 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 938 struct amdgpu_ttm_tt *gtt = (void *)ttm; 939 940 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 941 enum dma_data_direction direction = write ? 942 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 943 944 /* double check that we don't free the table twice */ 945 if (!ttm->sg->sgl) 946 return; 947 948 /* unmap the pages mapped to the device */ 949 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 950 sg_free_table(ttm->sg); 951 952 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 953 if (gtt->range) { 954 unsigned long i; 955 956 for (i = 0; i < ttm->num_pages; i++) { 957 if (ttm->pages[i] != 958 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 959 break; 960 } 961 962 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 963 } 964 #endif 965 } 966 967 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 968 struct ttm_buffer_object *tbo, 969 uint64_t flags) 970 { 971 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 972 struct ttm_tt *ttm = tbo->ttm; 973 struct amdgpu_ttm_tt *gtt = (void *)ttm; 974 int r; 975 976 if (amdgpu_bo_encrypted(abo)) 977 flags |= AMDGPU_PTE_TMZ; 978 979 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 980 uint64_t page_idx = 1; 981 982 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 983 ttm->pages, gtt->ttm.dma_address, flags); 984 if (r) 985 goto gart_bind_fail; 986 987 /* The memory type of the first page defaults to UC. Now 988 * modify the memory type to NC from the second page of 989 * the BO onward. 990 */ 991 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 992 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 993 994 r = amdgpu_gart_bind(adev, 995 gtt->offset + (page_idx << PAGE_SHIFT), 996 ttm->num_pages - page_idx, 997 &ttm->pages[page_idx], 998 &(gtt->ttm.dma_address[page_idx]), flags); 999 } else { 1000 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1001 ttm->pages, gtt->ttm.dma_address, flags); 1002 } 1003 1004 gart_bind_fail: 1005 if (r) 1006 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 1007 ttm->num_pages, gtt->offset); 1008 1009 return r; 1010 } 1011 1012 /* 1013 * amdgpu_ttm_backend_bind - Bind GTT memory 1014 * 1015 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1016 * This handles binding GTT memory to the device address space. 1017 */ 1018 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev, 1019 struct ttm_tt *ttm, 1020 struct ttm_resource *bo_mem) 1021 { 1022 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1023 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1024 uint64_t flags; 1025 int r = 0; 1026 1027 if (!bo_mem) 1028 return -EINVAL; 1029 1030 if (gtt->bound) 1031 return 0; 1032 1033 if (gtt->userptr) { 1034 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 1035 if (r) { 1036 DRM_ERROR("failed to pin userptr\n"); 1037 return r; 1038 } 1039 } 1040 if (!ttm->num_pages) { 1041 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 1042 ttm->num_pages, bo_mem, ttm); 1043 } 1044 1045 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1046 bo_mem->mem_type == AMDGPU_PL_GWS || 1047 bo_mem->mem_type == AMDGPU_PL_OA) 1048 return -EINVAL; 1049 1050 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1051 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1052 return 0; 1053 } 1054 1055 /* compute PTE flags relevant to this BO memory */ 1056 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1057 1058 /* bind pages into GART page tables */ 1059 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1060 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1061 ttm->pages, gtt->ttm.dma_address, flags); 1062 1063 if (r) 1064 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 1065 ttm->num_pages, gtt->offset); 1066 gtt->bound = true; 1067 return r; 1068 } 1069 1070 /* 1071 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 1072 * through AGP or GART aperture. 1073 * 1074 * If bo is accessible through AGP aperture, then use AGP aperture 1075 * to access bo; otherwise allocate logical space in GART aperture 1076 * and map bo to GART aperture. 1077 */ 1078 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1079 { 1080 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1081 struct ttm_operation_ctx ctx = { false, false }; 1082 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1083 struct ttm_resource tmp; 1084 struct ttm_placement placement; 1085 struct ttm_place placements; 1086 uint64_t addr, flags; 1087 int r; 1088 1089 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1090 return 0; 1091 1092 addr = amdgpu_gmc_agp_addr(bo); 1093 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1094 bo->mem.start = addr >> PAGE_SHIFT; 1095 } else { 1096 1097 /* allocate GART space */ 1098 tmp = bo->mem; 1099 tmp.mm_node = NULL; 1100 placement.num_placement = 1; 1101 placement.placement = &placements; 1102 placement.num_busy_placement = 1; 1103 placement.busy_placement = &placements; 1104 placements.fpfn = 0; 1105 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1106 placements.mem_type = TTM_PL_TT; 1107 placements.flags = bo->mem.placement; 1108 1109 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1110 if (unlikely(r)) 1111 return r; 1112 1113 /* compute PTE flags for this buffer object */ 1114 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1115 1116 /* Bind pages */ 1117 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1118 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1119 if (unlikely(r)) { 1120 ttm_resource_free(bo, &tmp); 1121 return r; 1122 } 1123 1124 ttm_resource_free(bo, &bo->mem); 1125 bo->mem = tmp; 1126 } 1127 1128 return 0; 1129 } 1130 1131 /* 1132 * amdgpu_ttm_recover_gart - Rebind GTT pages 1133 * 1134 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1135 * rebind GTT pages during a GPU reset. 1136 */ 1137 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1138 { 1139 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1140 uint64_t flags; 1141 int r; 1142 1143 if (!tbo->ttm) 1144 return 0; 1145 1146 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1147 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1148 1149 return r; 1150 } 1151 1152 /* 1153 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1154 * 1155 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1156 * ttm_tt_destroy(). 1157 */ 1158 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev, 1159 struct ttm_tt *ttm) 1160 { 1161 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1162 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1163 int r; 1164 1165 if (!gtt->bound) 1166 return; 1167 1168 /* if the pages have userptr pinning then clear that first */ 1169 if (gtt->userptr) 1170 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1171 1172 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1173 return; 1174 1175 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1176 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1177 if (r) 1178 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n", 1179 gtt->ttm.num_pages, gtt->offset); 1180 gtt->bound = false; 1181 } 1182 1183 static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev, 1184 struct ttm_tt *ttm) 1185 { 1186 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1187 1188 amdgpu_ttm_backend_unbind(bdev, ttm); 1189 ttm_tt_destroy_common(bdev, ttm); 1190 if (gtt->usertask) 1191 put_task_struct(gtt->usertask); 1192 1193 ttm_tt_fini(>t->ttm); 1194 kfree(gtt); 1195 } 1196 1197 /** 1198 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1199 * 1200 * @bo: The buffer object to create a GTT ttm_tt object around 1201 * @page_flags: Page flags to be added to the ttm_tt object 1202 * 1203 * Called by ttm_tt_create(). 1204 */ 1205 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1206 uint32_t page_flags) 1207 { 1208 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1209 struct amdgpu_ttm_tt *gtt; 1210 enum ttm_caching caching; 1211 1212 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1213 if (gtt == NULL) { 1214 return NULL; 1215 } 1216 gtt->gobj = &bo->base; 1217 1218 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1219 caching = ttm_write_combined; 1220 else 1221 caching = ttm_cached; 1222 1223 /* allocate space for the uninitialized page entries */ 1224 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1225 kfree(gtt); 1226 return NULL; 1227 } 1228 return >t->ttm; 1229 } 1230 1231 /* 1232 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1233 * 1234 * Map the pages of a ttm_tt object to an address space visible 1235 * to the underlying device. 1236 */ 1237 static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev, 1238 struct ttm_tt *ttm, 1239 struct ttm_operation_ctx *ctx) 1240 { 1241 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1242 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1243 1244 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1245 if (gtt && gtt->userptr) { 1246 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1247 if (!ttm->sg) 1248 return -ENOMEM; 1249 1250 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1251 return 0; 1252 } 1253 1254 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1255 if (!ttm->sg) { 1256 struct dma_buf_attachment *attach; 1257 struct sg_table *sgt; 1258 1259 attach = gtt->gobj->import_attach; 1260 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1261 if (IS_ERR(sgt)) 1262 return PTR_ERR(sgt); 1263 1264 ttm->sg = sgt; 1265 } 1266 1267 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 1268 ttm->num_pages); 1269 return 0; 1270 } 1271 1272 return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1273 } 1274 1275 /* 1276 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1277 * 1278 * Unmaps pages of a ttm_tt object from the device address space and 1279 * unpopulates the page array backing it. 1280 */ 1281 static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev, 1282 struct ttm_tt *ttm) 1283 { 1284 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1285 struct amdgpu_device *adev; 1286 1287 if (gtt && gtt->userptr) { 1288 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1289 kfree(ttm->sg); 1290 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1291 return; 1292 } 1293 1294 if (ttm->sg && gtt->gobj->import_attach) { 1295 struct dma_buf_attachment *attach; 1296 1297 attach = gtt->gobj->import_attach; 1298 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1299 ttm->sg = NULL; 1300 return; 1301 } 1302 1303 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1304 return; 1305 1306 adev = amdgpu_ttm_adev(bdev); 1307 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1308 } 1309 1310 /** 1311 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1312 * task 1313 * 1314 * @bo: The ttm_buffer_object to bind this userptr to 1315 * @addr: The address in the current tasks VM space to use 1316 * @flags: Requirements of userptr object. 1317 * 1318 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1319 * to current task 1320 */ 1321 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1322 uint64_t addr, uint32_t flags) 1323 { 1324 struct amdgpu_ttm_tt *gtt; 1325 1326 if (!bo->ttm) { 1327 /* TODO: We want a separate TTM object type for userptrs */ 1328 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1329 if (bo->ttm == NULL) 1330 return -ENOMEM; 1331 } 1332 1333 gtt = (void *)bo->ttm; 1334 gtt->userptr = addr; 1335 gtt->userflags = flags; 1336 1337 if (gtt->usertask) 1338 put_task_struct(gtt->usertask); 1339 gtt->usertask = current->group_leader; 1340 get_task_struct(gtt->usertask); 1341 1342 return 0; 1343 } 1344 1345 /* 1346 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1347 */ 1348 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1349 { 1350 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1351 1352 if (gtt == NULL) 1353 return NULL; 1354 1355 if (gtt->usertask == NULL) 1356 return NULL; 1357 1358 return gtt->usertask->mm; 1359 } 1360 1361 /* 1362 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1363 * address range for the current task. 1364 * 1365 */ 1366 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1367 unsigned long end) 1368 { 1369 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1370 unsigned long size; 1371 1372 if (gtt == NULL || !gtt->userptr) 1373 return false; 1374 1375 /* Return false if no part of the ttm_tt object lies within 1376 * the range 1377 */ 1378 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1379 if (gtt->userptr > end || gtt->userptr + size <= start) 1380 return false; 1381 1382 return true; 1383 } 1384 1385 /* 1386 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1387 */ 1388 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1389 { 1390 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1391 1392 if (gtt == NULL || !gtt->userptr) 1393 return false; 1394 1395 return true; 1396 } 1397 1398 /* 1399 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1400 */ 1401 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1402 { 1403 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1404 1405 if (gtt == NULL) 1406 return false; 1407 1408 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1409 } 1410 1411 /** 1412 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1413 * 1414 * @ttm: The ttm_tt object to compute the flags for 1415 * @mem: The memory registry backing this ttm_tt object 1416 * 1417 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1418 */ 1419 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1420 { 1421 uint64_t flags = 0; 1422 1423 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1424 flags |= AMDGPU_PTE_VALID; 1425 1426 if (mem && mem->mem_type == TTM_PL_TT) { 1427 flags |= AMDGPU_PTE_SYSTEM; 1428 1429 if (ttm->caching == ttm_cached) 1430 flags |= AMDGPU_PTE_SNOOPED; 1431 } 1432 1433 return flags; 1434 } 1435 1436 /** 1437 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1438 * 1439 * @adev: amdgpu_device pointer 1440 * @ttm: The ttm_tt object to compute the flags for 1441 * @mem: The memory registry backing this ttm_tt object 1442 * 1443 * Figure out the flags to use for a VM PTE (Page Table Entry). 1444 */ 1445 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1446 struct ttm_resource *mem) 1447 { 1448 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1449 1450 flags |= adev->gart.gart_pte_flags; 1451 flags |= AMDGPU_PTE_READABLE; 1452 1453 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1454 flags |= AMDGPU_PTE_WRITEABLE; 1455 1456 return flags; 1457 } 1458 1459 /* 1460 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1461 * object. 1462 * 1463 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1464 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1465 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1466 * used to clean out a memory space. 1467 */ 1468 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1469 const struct ttm_place *place) 1470 { 1471 unsigned long num_pages = bo->mem.num_pages; 1472 struct drm_mm_node *node = bo->mem.mm_node; 1473 struct dma_resv_list *flist; 1474 struct dma_fence *f; 1475 int i; 1476 1477 if (bo->type == ttm_bo_type_kernel && 1478 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1479 return false; 1480 1481 /* If bo is a KFD BO, check if the bo belongs to the current process. 1482 * If true, then return false as any KFD process needs all its BOs to 1483 * be resident to run successfully 1484 */ 1485 flist = dma_resv_get_list(bo->base.resv); 1486 if (flist) { 1487 for (i = 0; i < flist->shared_count; ++i) { 1488 f = rcu_dereference_protected(flist->shared[i], 1489 dma_resv_held(bo->base.resv)); 1490 if (amdkfd_fence_check_mm(f, current->mm)) 1491 return false; 1492 } 1493 } 1494 1495 switch (bo->mem.mem_type) { 1496 case TTM_PL_TT: 1497 if (amdgpu_bo_is_amdgpu_bo(bo) && 1498 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1499 return false; 1500 return true; 1501 1502 case TTM_PL_VRAM: 1503 /* Check each drm MM node individually */ 1504 while (num_pages) { 1505 if (place->fpfn < (node->start + node->size) && 1506 !(place->lpfn && place->lpfn <= node->start)) 1507 return true; 1508 1509 num_pages -= node->size; 1510 ++node; 1511 } 1512 return false; 1513 1514 default: 1515 break; 1516 } 1517 1518 return ttm_bo_eviction_valuable(bo, place); 1519 } 1520 1521 /** 1522 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1523 * 1524 * @bo: The buffer object to read/write 1525 * @offset: Offset into buffer object 1526 * @buf: Secondary buffer to write/read from 1527 * @len: Length in bytes of access 1528 * @write: true if writing 1529 * 1530 * This is used to access VRAM that backs a buffer object via MMIO 1531 * access for debugging purposes. 1532 */ 1533 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1534 unsigned long offset, 1535 void *buf, int len, int write) 1536 { 1537 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1538 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1539 struct drm_mm_node *nodes; 1540 uint32_t value = 0; 1541 int ret = 0; 1542 uint64_t pos; 1543 unsigned long flags; 1544 1545 if (bo->mem.mem_type != TTM_PL_VRAM) 1546 return -EIO; 1547 1548 pos = offset; 1549 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos); 1550 pos += (nodes->start << PAGE_SHIFT); 1551 1552 while (len && pos < adev->gmc.mc_vram_size) { 1553 uint64_t aligned_pos = pos & ~(uint64_t)3; 1554 uint64_t bytes = 4 - (pos & 3); 1555 uint32_t shift = (pos & 3) * 8; 1556 uint32_t mask = 0xffffffff << shift; 1557 1558 if (len < bytes) { 1559 mask &= 0xffffffff >> (bytes - len) * 8; 1560 bytes = len; 1561 } 1562 1563 if (mask != 0xffffffff) { 1564 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1565 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1566 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1567 if (!write || mask != 0xffffffff) 1568 value = RREG32_NO_KIQ(mmMM_DATA); 1569 if (write) { 1570 value &= ~mask; 1571 value |= (*(uint32_t *)buf << shift) & mask; 1572 WREG32_NO_KIQ(mmMM_DATA, value); 1573 } 1574 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1575 if (!write) { 1576 value = (value & mask) >> shift; 1577 memcpy(buf, &value, bytes); 1578 } 1579 } else { 1580 bytes = (nodes->start + nodes->size) << PAGE_SHIFT; 1581 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull); 1582 1583 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf, 1584 bytes, write); 1585 } 1586 1587 ret += bytes; 1588 buf = (uint8_t *)buf + bytes; 1589 pos += bytes; 1590 len -= bytes; 1591 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1592 ++nodes; 1593 pos = (nodes->start << PAGE_SHIFT); 1594 } 1595 } 1596 1597 return ret; 1598 } 1599 1600 static void 1601 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1602 { 1603 amdgpu_bo_move_notify(bo, false, NULL); 1604 } 1605 1606 static struct ttm_bo_driver amdgpu_bo_driver = { 1607 .ttm_tt_create = &amdgpu_ttm_tt_create, 1608 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1609 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1610 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1611 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1612 .evict_flags = &amdgpu_evict_flags, 1613 .move = &amdgpu_bo_move, 1614 .verify_access = &amdgpu_verify_access, 1615 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1616 .release_notify = &amdgpu_bo_release_notify, 1617 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1618 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1619 .access_memory = &amdgpu_ttm_access_memory, 1620 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1621 }; 1622 1623 /* 1624 * Firmware Reservation functions 1625 */ 1626 /** 1627 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1628 * 1629 * @adev: amdgpu_device pointer 1630 * 1631 * free fw reserved vram if it has been reserved. 1632 */ 1633 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1634 { 1635 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1636 NULL, &adev->mman.fw_vram_usage_va); 1637 } 1638 1639 /** 1640 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1641 * 1642 * @adev: amdgpu_device pointer 1643 * 1644 * create bo vram reservation from fw. 1645 */ 1646 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1647 { 1648 uint64_t vram_size = adev->gmc.visible_vram_size; 1649 1650 adev->mman.fw_vram_usage_va = NULL; 1651 adev->mman.fw_vram_usage_reserved_bo = NULL; 1652 1653 if (adev->mman.fw_vram_usage_size == 0 || 1654 adev->mman.fw_vram_usage_size > vram_size) 1655 return 0; 1656 1657 return amdgpu_bo_create_kernel_at(adev, 1658 adev->mman.fw_vram_usage_start_offset, 1659 adev->mman.fw_vram_usage_size, 1660 AMDGPU_GEM_DOMAIN_VRAM, 1661 &adev->mman.fw_vram_usage_reserved_bo, 1662 &adev->mman.fw_vram_usage_va); 1663 } 1664 1665 /* 1666 * Memoy training reservation functions 1667 */ 1668 1669 /** 1670 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1671 * 1672 * @adev: amdgpu_device pointer 1673 * 1674 * free memory training reserved vram if it has been reserved. 1675 */ 1676 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1677 { 1678 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1679 1680 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1681 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1682 ctx->c2p_bo = NULL; 1683 1684 return 0; 1685 } 1686 1687 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1688 { 1689 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1690 1691 memset(ctx, 0, sizeof(*ctx)); 1692 1693 ctx->c2p_train_data_offset = 1694 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1695 ctx->p2c_train_data_offset = 1696 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1697 ctx->train_data_size = 1698 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1699 1700 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1701 ctx->train_data_size, 1702 ctx->p2c_train_data_offset, 1703 ctx->c2p_train_data_offset); 1704 } 1705 1706 /* 1707 * reserve TMR memory at the top of VRAM which holds 1708 * IP Discovery data and is protected by PSP. 1709 */ 1710 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1711 { 1712 int ret; 1713 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1714 bool mem_train_support = false; 1715 1716 if (!amdgpu_sriov_vf(adev)) { 1717 ret = amdgpu_mem_train_support(adev); 1718 if (ret == 1) 1719 mem_train_support = true; 1720 else if (ret == -1) 1721 return -EINVAL; 1722 else 1723 DRM_DEBUG("memory training does not support!\n"); 1724 } 1725 1726 /* 1727 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1728 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1729 * 1730 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1731 * discovery data and G6 memory training data respectively 1732 */ 1733 adev->mman.discovery_tmr_size = 1734 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1735 if (!adev->mman.discovery_tmr_size) 1736 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1737 1738 if (mem_train_support) { 1739 /* reserve vram for mem train according to TMR location */ 1740 amdgpu_ttm_training_data_block_init(adev); 1741 ret = amdgpu_bo_create_kernel_at(adev, 1742 ctx->c2p_train_data_offset, 1743 ctx->train_data_size, 1744 AMDGPU_GEM_DOMAIN_VRAM, 1745 &ctx->c2p_bo, 1746 NULL); 1747 if (ret) { 1748 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1749 amdgpu_ttm_training_reserve_vram_fini(adev); 1750 return ret; 1751 } 1752 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1753 } 1754 1755 ret = amdgpu_bo_create_kernel_at(adev, 1756 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1757 adev->mman.discovery_tmr_size, 1758 AMDGPU_GEM_DOMAIN_VRAM, 1759 &adev->mman.discovery_memory, 1760 NULL); 1761 if (ret) { 1762 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1763 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1764 return ret; 1765 } 1766 1767 return 0; 1768 } 1769 1770 /* 1771 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1772 * gtt/vram related fields. 1773 * 1774 * This initializes all of the memory space pools that the TTM layer 1775 * will need such as the GTT space (system memory mapped to the device), 1776 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1777 * can be mapped per VMID. 1778 */ 1779 int amdgpu_ttm_init(struct amdgpu_device *adev) 1780 { 1781 uint64_t gtt_size; 1782 int r; 1783 u64 vis_vram_limit; 1784 1785 mutex_init(&adev->mman.gtt_window_lock); 1786 1787 /* No others user of address space so set it to 0 */ 1788 r = ttm_bo_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1789 adev_to_drm(adev)->anon_inode->i_mapping, 1790 adev_to_drm(adev)->vma_offset_manager, 1791 adev->need_swiotlb, 1792 dma_addressing_limited(adev->dev)); 1793 if (r) { 1794 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1795 return r; 1796 } 1797 adev->mman.initialized = true; 1798 1799 /* Initialize VRAM pool with all of VRAM divided into pages */ 1800 r = amdgpu_vram_mgr_init(adev); 1801 if (r) { 1802 DRM_ERROR("Failed initializing VRAM heap.\n"); 1803 return r; 1804 } 1805 1806 /* Reduce size of CPU-visible VRAM if requested */ 1807 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1808 if (amdgpu_vis_vram_limit > 0 && 1809 vis_vram_limit <= adev->gmc.visible_vram_size) 1810 adev->gmc.visible_vram_size = vis_vram_limit; 1811 1812 /* Change the size here instead of the init above so only lpfn is affected */ 1813 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1814 #ifdef CONFIG_64BIT 1815 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1816 adev->gmc.visible_vram_size); 1817 #endif 1818 1819 /* 1820 *The reserved vram for firmware must be pinned to the specified 1821 *place on the VRAM, so reserve it early. 1822 */ 1823 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1824 if (r) { 1825 return r; 1826 } 1827 1828 /* 1829 * only NAVI10 and onwards ASIC support for IP discovery. 1830 * If IP discovery enabled, a block of memory should be 1831 * reserved for IP discovey. 1832 */ 1833 if (adev->mman.discovery_bin) { 1834 r = amdgpu_ttm_reserve_tmr(adev); 1835 if (r) 1836 return r; 1837 } 1838 1839 /* allocate memory as required for VGA 1840 * This is used for VGA emulation and pre-OS scanout buffers to 1841 * avoid display artifacts while transitioning between pre-OS 1842 * and driver. */ 1843 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1844 AMDGPU_GEM_DOMAIN_VRAM, 1845 &adev->mman.stolen_vga_memory, 1846 NULL); 1847 if (r) 1848 return r; 1849 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1850 adev->mman.stolen_extended_size, 1851 AMDGPU_GEM_DOMAIN_VRAM, 1852 &adev->mman.stolen_extended_memory, 1853 NULL); 1854 if (r) 1855 return r; 1856 1857 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1858 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1859 1860 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1861 * or whatever the user passed on module init */ 1862 if (amdgpu_gtt_size == -1) { 1863 struct sysinfo si; 1864 1865 si_meminfo(&si); 1866 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1867 adev->gmc.mc_vram_size), 1868 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1869 } 1870 else 1871 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1872 1873 /* Initialize GTT memory pool */ 1874 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1875 if (r) { 1876 DRM_ERROR("Failed initializing GTT heap.\n"); 1877 return r; 1878 } 1879 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1880 (unsigned)(gtt_size / (1024 * 1024))); 1881 1882 /* Initialize various on-chip memory pools */ 1883 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1884 if (r) { 1885 DRM_ERROR("Failed initializing GDS heap.\n"); 1886 return r; 1887 } 1888 1889 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1890 if (r) { 1891 DRM_ERROR("Failed initializing gws heap.\n"); 1892 return r; 1893 } 1894 1895 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1896 if (r) { 1897 DRM_ERROR("Failed initializing oa heap.\n"); 1898 return r; 1899 } 1900 1901 return 0; 1902 } 1903 1904 /* 1905 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1906 */ 1907 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1908 { 1909 if (!adev->mman.initialized) 1910 return; 1911 1912 amdgpu_ttm_training_reserve_vram_fini(adev); 1913 /* return the stolen vga memory back to VRAM */ 1914 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1915 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1916 /* return the IP Discovery TMR memory back to VRAM */ 1917 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1918 amdgpu_ttm_fw_reserve_vram_fini(adev); 1919 1920 if (adev->mman.aper_base_kaddr) 1921 iounmap(adev->mman.aper_base_kaddr); 1922 adev->mman.aper_base_kaddr = NULL; 1923 1924 amdgpu_vram_mgr_fini(adev); 1925 amdgpu_gtt_mgr_fini(adev); 1926 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1927 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1928 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1929 ttm_bo_device_release(&adev->mman.bdev); 1930 adev->mman.initialized = false; 1931 DRM_INFO("amdgpu: ttm finalized\n"); 1932 } 1933 1934 /** 1935 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1936 * 1937 * @adev: amdgpu_device pointer 1938 * @enable: true when we can use buffer functions. 1939 * 1940 * Enable/disable use of buffer functions during suspend/resume. This should 1941 * only be called at bootup or when userspace isn't running. 1942 */ 1943 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1944 { 1945 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1946 uint64_t size; 1947 int r; 1948 1949 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1950 adev->mman.buffer_funcs_enabled == enable) 1951 return; 1952 1953 if (enable) { 1954 struct amdgpu_ring *ring; 1955 struct drm_gpu_scheduler *sched; 1956 1957 ring = adev->mman.buffer_funcs_ring; 1958 sched = &ring->sched; 1959 r = drm_sched_entity_init(&adev->mman.entity, 1960 DRM_SCHED_PRIORITY_KERNEL, &sched, 1961 1, NULL); 1962 if (r) { 1963 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1964 r); 1965 return; 1966 } 1967 } else { 1968 drm_sched_entity_destroy(&adev->mman.entity); 1969 dma_fence_put(man->move); 1970 man->move = NULL; 1971 } 1972 1973 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1974 if (enable) 1975 size = adev->gmc.real_vram_size; 1976 else 1977 size = adev->gmc.visible_vram_size; 1978 man->size = size >> PAGE_SHIFT; 1979 adev->mman.buffer_funcs_enabled = enable; 1980 } 1981 1982 static vm_fault_t amdgpu_ttm_fault(struct vm_fault *vmf) 1983 { 1984 struct ttm_buffer_object *bo = vmf->vma->vm_private_data; 1985 vm_fault_t ret; 1986 1987 ret = ttm_bo_vm_reserve(bo, vmf); 1988 if (ret) 1989 return ret; 1990 1991 ret = amdgpu_bo_fault_reserve_notify(bo); 1992 if (ret) 1993 goto unlock; 1994 1995 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1996 TTM_BO_VM_NUM_PREFAULT, 1); 1997 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1998 return ret; 1999 2000 unlock: 2001 dma_resv_unlock(bo->base.resv); 2002 return ret; 2003 } 2004 2005 static struct vm_operations_struct amdgpu_ttm_vm_ops = { 2006 .fault = amdgpu_ttm_fault, 2007 .open = ttm_bo_vm_open, 2008 .close = ttm_bo_vm_close, 2009 .access = ttm_bo_vm_access 2010 }; 2011 2012 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2013 { 2014 struct drm_file *file_priv = filp->private_data; 2015 struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev); 2016 int r; 2017 2018 r = ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2019 if (unlikely(r != 0)) 2020 return r; 2021 2022 vma->vm_ops = &amdgpu_ttm_vm_ops; 2023 return 0; 2024 } 2025 2026 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2027 uint64_t dst_offset, uint32_t byte_count, 2028 struct dma_resv *resv, 2029 struct dma_fence **fence, bool direct_submit, 2030 bool vm_needs_flush, bool tmz) 2031 { 2032 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : 2033 AMDGPU_IB_POOL_DELAYED; 2034 struct amdgpu_device *adev = ring->adev; 2035 struct amdgpu_job *job; 2036 2037 uint32_t max_bytes; 2038 unsigned num_loops, num_dw; 2039 unsigned i; 2040 int r; 2041 2042 if (direct_submit && !ring->sched.ready) { 2043 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2044 return -EINVAL; 2045 } 2046 2047 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2048 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2049 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2050 2051 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); 2052 if (r) 2053 return r; 2054 2055 if (vm_needs_flush) { 2056 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2057 job->vm_needs_flush = true; 2058 } 2059 if (resv) { 2060 r = amdgpu_sync_resv(adev, &job->sync, resv, 2061 AMDGPU_SYNC_ALWAYS, 2062 AMDGPU_FENCE_OWNER_UNDEFINED); 2063 if (r) { 2064 DRM_ERROR("sync failed (%d).\n", r); 2065 goto error_free; 2066 } 2067 } 2068 2069 for (i = 0; i < num_loops; i++) { 2070 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2071 2072 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2073 dst_offset, cur_size_in_bytes, tmz); 2074 2075 src_offset += cur_size_in_bytes; 2076 dst_offset += cur_size_in_bytes; 2077 byte_count -= cur_size_in_bytes; 2078 } 2079 2080 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2081 WARN_ON(job->ibs[0].length_dw > num_dw); 2082 if (direct_submit) 2083 r = amdgpu_job_submit_direct(job, ring, fence); 2084 else 2085 r = amdgpu_job_submit(job, &adev->mman.entity, 2086 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2087 if (r) 2088 goto error_free; 2089 2090 return r; 2091 2092 error_free: 2093 amdgpu_job_free(job); 2094 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2095 return r; 2096 } 2097 2098 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2099 uint32_t src_data, 2100 struct dma_resv *resv, 2101 struct dma_fence **fence) 2102 { 2103 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2104 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2105 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2106 2107 struct drm_mm_node *mm_node; 2108 unsigned long num_pages; 2109 unsigned int num_loops, num_dw; 2110 2111 struct amdgpu_job *job; 2112 int r; 2113 2114 if (!adev->mman.buffer_funcs_enabled) { 2115 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2116 return -EINVAL; 2117 } 2118 2119 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2120 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2121 if (r) 2122 return r; 2123 } 2124 2125 num_pages = bo->tbo.mem.num_pages; 2126 mm_node = bo->tbo.mem.mm_node; 2127 num_loops = 0; 2128 while (num_pages) { 2129 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2130 2131 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2132 num_pages -= mm_node->size; 2133 ++mm_node; 2134 } 2135 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2136 2137 /* for IB padding */ 2138 num_dw += 64; 2139 2140 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, 2141 &job); 2142 if (r) 2143 return r; 2144 2145 if (resv) { 2146 r = amdgpu_sync_resv(adev, &job->sync, resv, 2147 AMDGPU_SYNC_ALWAYS, 2148 AMDGPU_FENCE_OWNER_UNDEFINED); 2149 if (r) { 2150 DRM_ERROR("sync failed (%d).\n", r); 2151 goto error_free; 2152 } 2153 } 2154 2155 num_pages = bo->tbo.mem.num_pages; 2156 mm_node = bo->tbo.mem.mm_node; 2157 2158 while (num_pages) { 2159 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2160 uint64_t dst_addr; 2161 2162 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2163 while (byte_count) { 2164 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2165 max_bytes); 2166 2167 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2168 dst_addr, cur_size_in_bytes); 2169 2170 dst_addr += cur_size_in_bytes; 2171 byte_count -= cur_size_in_bytes; 2172 } 2173 2174 num_pages -= mm_node->size; 2175 ++mm_node; 2176 } 2177 2178 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2179 WARN_ON(job->ibs[0].length_dw > num_dw); 2180 r = amdgpu_job_submit(job, &adev->mman.entity, 2181 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2182 if (r) 2183 goto error_free; 2184 2185 return 0; 2186 2187 error_free: 2188 amdgpu_job_free(job); 2189 return r; 2190 } 2191 2192 #if defined(CONFIG_DEBUG_FS) 2193 2194 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2195 { 2196 struct drm_info_node *node = (struct drm_info_node *)m->private; 2197 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2198 struct drm_device *dev = node->minor->dev; 2199 struct amdgpu_device *adev = drm_to_adev(dev); 2200 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl); 2201 struct drm_printer p = drm_seq_file_printer(m); 2202 2203 man->func->debug(man, &p); 2204 return 0; 2205 } 2206 2207 static int amdgpu_ttm_pool_debugfs(struct seq_file *m, void *data) 2208 { 2209 struct drm_info_node *node = (struct drm_info_node *)m->private; 2210 struct drm_device *dev = node->minor->dev; 2211 struct amdgpu_device *adev = drm_to_adev(dev); 2212 2213 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2214 } 2215 2216 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2217 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2218 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2219 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2220 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2221 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2222 {"ttm_page_pool", amdgpu_ttm_pool_debugfs, 0, NULL}, 2223 }; 2224 2225 /* 2226 * amdgpu_ttm_vram_read - Linear read access to VRAM 2227 * 2228 * Accesses VRAM via MMIO for debugging purposes. 2229 */ 2230 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2231 size_t size, loff_t *pos) 2232 { 2233 struct amdgpu_device *adev = file_inode(f)->i_private; 2234 ssize_t result = 0; 2235 2236 if (size & 0x3 || *pos & 0x3) 2237 return -EINVAL; 2238 2239 if (*pos >= adev->gmc.mc_vram_size) 2240 return -ENXIO; 2241 2242 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2243 while (size) { 2244 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2245 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2246 2247 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2248 if (copy_to_user(buf, value, bytes)) 2249 return -EFAULT; 2250 2251 result += bytes; 2252 buf += bytes; 2253 *pos += bytes; 2254 size -= bytes; 2255 } 2256 2257 return result; 2258 } 2259 2260 /* 2261 * amdgpu_ttm_vram_write - Linear write access to VRAM 2262 * 2263 * Accesses VRAM via MMIO for debugging purposes. 2264 */ 2265 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2266 size_t size, loff_t *pos) 2267 { 2268 struct amdgpu_device *adev = file_inode(f)->i_private; 2269 ssize_t result = 0; 2270 int r; 2271 2272 if (size & 0x3 || *pos & 0x3) 2273 return -EINVAL; 2274 2275 if (*pos >= adev->gmc.mc_vram_size) 2276 return -ENXIO; 2277 2278 while (size) { 2279 unsigned long flags; 2280 uint32_t value; 2281 2282 if (*pos >= adev->gmc.mc_vram_size) 2283 return result; 2284 2285 r = get_user(value, (uint32_t *)buf); 2286 if (r) 2287 return r; 2288 2289 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2290 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2291 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2292 WREG32_NO_KIQ(mmMM_DATA, value); 2293 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2294 2295 result += 4; 2296 buf += 4; 2297 *pos += 4; 2298 size -= 4; 2299 } 2300 2301 return result; 2302 } 2303 2304 static const struct file_operations amdgpu_ttm_vram_fops = { 2305 .owner = THIS_MODULE, 2306 .read = amdgpu_ttm_vram_read, 2307 .write = amdgpu_ttm_vram_write, 2308 .llseek = default_llseek, 2309 }; 2310 2311 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2312 2313 /* 2314 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2315 */ 2316 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2317 size_t size, loff_t *pos) 2318 { 2319 struct amdgpu_device *adev = file_inode(f)->i_private; 2320 ssize_t result = 0; 2321 int r; 2322 2323 while (size) { 2324 loff_t p = *pos / PAGE_SIZE; 2325 unsigned off = *pos & ~PAGE_MASK; 2326 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2327 struct page *page; 2328 void *ptr; 2329 2330 if (p >= adev->gart.num_cpu_pages) 2331 return result; 2332 2333 page = adev->gart.pages[p]; 2334 if (page) { 2335 ptr = kmap(page); 2336 ptr += off; 2337 2338 r = copy_to_user(buf, ptr, cur_size); 2339 kunmap(adev->gart.pages[p]); 2340 } else 2341 r = clear_user(buf, cur_size); 2342 2343 if (r) 2344 return -EFAULT; 2345 2346 result += cur_size; 2347 buf += cur_size; 2348 *pos += cur_size; 2349 size -= cur_size; 2350 } 2351 2352 return result; 2353 } 2354 2355 static const struct file_operations amdgpu_ttm_gtt_fops = { 2356 .owner = THIS_MODULE, 2357 .read = amdgpu_ttm_gtt_read, 2358 .llseek = default_llseek 2359 }; 2360 2361 #endif 2362 2363 /* 2364 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2365 * 2366 * This function is used to read memory that has been mapped to the 2367 * GPU and the known addresses are not physical addresses but instead 2368 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2369 */ 2370 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2371 size_t size, loff_t *pos) 2372 { 2373 struct amdgpu_device *adev = file_inode(f)->i_private; 2374 struct iommu_domain *dom; 2375 ssize_t result = 0; 2376 int r; 2377 2378 /* retrieve the IOMMU domain if any for this device */ 2379 dom = iommu_get_domain_for_dev(adev->dev); 2380 2381 while (size) { 2382 phys_addr_t addr = *pos & PAGE_MASK; 2383 loff_t off = *pos & ~PAGE_MASK; 2384 size_t bytes = PAGE_SIZE - off; 2385 unsigned long pfn; 2386 struct page *p; 2387 void *ptr; 2388 2389 bytes = bytes < size ? bytes : size; 2390 2391 /* Translate the bus address to a physical address. If 2392 * the domain is NULL it means there is no IOMMU active 2393 * and the address translation is the identity 2394 */ 2395 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2396 2397 pfn = addr >> PAGE_SHIFT; 2398 if (!pfn_valid(pfn)) 2399 return -EPERM; 2400 2401 p = pfn_to_page(pfn); 2402 if (p->mapping != adev->mman.bdev.dev_mapping) 2403 return -EPERM; 2404 2405 ptr = kmap(p); 2406 r = copy_to_user(buf, ptr + off, bytes); 2407 kunmap(p); 2408 if (r) 2409 return -EFAULT; 2410 2411 size -= bytes; 2412 *pos += bytes; 2413 result += bytes; 2414 } 2415 2416 return result; 2417 } 2418 2419 /* 2420 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2421 * 2422 * This function is used to write memory that has been mapped to the 2423 * GPU and the known addresses are not physical addresses but instead 2424 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2425 */ 2426 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2427 size_t size, loff_t *pos) 2428 { 2429 struct amdgpu_device *adev = file_inode(f)->i_private; 2430 struct iommu_domain *dom; 2431 ssize_t result = 0; 2432 int r; 2433 2434 dom = iommu_get_domain_for_dev(adev->dev); 2435 2436 while (size) { 2437 phys_addr_t addr = *pos & PAGE_MASK; 2438 loff_t off = *pos & ~PAGE_MASK; 2439 size_t bytes = PAGE_SIZE - off; 2440 unsigned long pfn; 2441 struct page *p; 2442 void *ptr; 2443 2444 bytes = bytes < size ? bytes : size; 2445 2446 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2447 2448 pfn = addr >> PAGE_SHIFT; 2449 if (!pfn_valid(pfn)) 2450 return -EPERM; 2451 2452 p = pfn_to_page(pfn); 2453 if (p->mapping != adev->mman.bdev.dev_mapping) 2454 return -EPERM; 2455 2456 ptr = kmap(p); 2457 r = copy_from_user(ptr + off, buf, bytes); 2458 kunmap(p); 2459 if (r) 2460 return -EFAULT; 2461 2462 size -= bytes; 2463 *pos += bytes; 2464 result += bytes; 2465 } 2466 2467 return result; 2468 } 2469 2470 static const struct file_operations amdgpu_ttm_iomem_fops = { 2471 .owner = THIS_MODULE, 2472 .read = amdgpu_iomem_read, 2473 .write = amdgpu_iomem_write, 2474 .llseek = default_llseek 2475 }; 2476 2477 static const struct { 2478 char *name; 2479 const struct file_operations *fops; 2480 int domain; 2481 } ttm_debugfs_entries[] = { 2482 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2483 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2484 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2485 #endif 2486 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2487 }; 2488 2489 #endif 2490 2491 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2492 { 2493 #if defined(CONFIG_DEBUG_FS) 2494 unsigned count; 2495 2496 struct drm_minor *minor = adev_to_drm(adev)->primary; 2497 struct dentry *ent, *root = minor->debugfs_root; 2498 2499 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2500 ent = debugfs_create_file( 2501 ttm_debugfs_entries[count].name, 2502 S_IFREG | S_IRUGO, root, 2503 adev, 2504 ttm_debugfs_entries[count].fops); 2505 if (IS_ERR(ent)) 2506 return PTR_ERR(ent); 2507 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2508 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2509 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2510 i_size_write(ent->d_inode, adev->gmc.gart_size); 2511 adev->mman.debugfs_entries[count] = ent; 2512 } 2513 2514 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2515 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2516 #else 2517 return 0; 2518 #endif 2519 } 2520