1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_module.h> 50 #include <drm/ttm/ttm_page_alloc.h> 51 52 #include <drm/drm_debugfs.h> 53 #include <drm/amdgpu_drm.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "bif/bif_4_1_d.h" 62 63 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 64 65 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 66 struct ttm_mem_reg *mem, unsigned num_pages, 67 uint64_t offset, unsigned window, 68 struct amdgpu_ring *ring, 69 uint64_t *addr); 70 71 /** 72 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 73 * memory request. 74 * 75 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 76 * @type: The type of memory requested 77 * @man: The memory type manager for each domain 78 * 79 * This is called by ttm_bo_init_mm() when a buffer object is being 80 * initialized. 81 */ 82 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 83 struct ttm_mem_type_manager *man) 84 { 85 struct amdgpu_device *adev; 86 87 adev = amdgpu_ttm_adev(bdev); 88 89 switch (type) { 90 case TTM_PL_SYSTEM: 91 /* System memory */ 92 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 93 man->available_caching = TTM_PL_MASK_CACHING; 94 man->default_caching = TTM_PL_FLAG_CACHED; 95 break; 96 case TTM_PL_TT: 97 /* GTT memory */ 98 man->func = &amdgpu_gtt_mgr_func; 99 man->gpu_offset = adev->gmc.gart_start; 100 man->available_caching = TTM_PL_MASK_CACHING; 101 man->default_caching = TTM_PL_FLAG_CACHED; 102 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 103 break; 104 case TTM_PL_VRAM: 105 /* "On-card" video ram */ 106 man->func = &amdgpu_vram_mgr_func; 107 man->gpu_offset = adev->gmc.vram_start; 108 man->flags = TTM_MEMTYPE_FLAG_FIXED | 109 TTM_MEMTYPE_FLAG_MAPPABLE; 110 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 111 man->default_caching = TTM_PL_FLAG_WC; 112 break; 113 case AMDGPU_PL_GDS: 114 case AMDGPU_PL_GWS: 115 case AMDGPU_PL_OA: 116 /* On-chip GDS memory*/ 117 man->func = &ttm_bo_manager_func; 118 man->gpu_offset = 0; 119 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 120 man->available_caching = TTM_PL_FLAG_UNCACHED; 121 man->default_caching = TTM_PL_FLAG_UNCACHED; 122 break; 123 default: 124 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 125 return -EINVAL; 126 } 127 return 0; 128 } 129 130 /** 131 * amdgpu_evict_flags - Compute placement flags 132 * 133 * @bo: The buffer object to evict 134 * @placement: Possible destination(s) for evicted BO 135 * 136 * Fill in placement data when ttm_bo_evict() is called 137 */ 138 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 139 struct ttm_placement *placement) 140 { 141 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 142 struct amdgpu_bo *abo; 143 static const struct ttm_place placements = { 144 .fpfn = 0, 145 .lpfn = 0, 146 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 147 }; 148 149 /* Don't handle scatter gather BOs */ 150 if (bo->type == ttm_bo_type_sg) { 151 placement->num_placement = 0; 152 placement->num_busy_placement = 0; 153 return; 154 } 155 156 /* Object isn't an AMDGPU object so ignore */ 157 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 158 placement->placement = &placements; 159 placement->busy_placement = &placements; 160 placement->num_placement = 1; 161 placement->num_busy_placement = 1; 162 return; 163 } 164 165 abo = ttm_to_amdgpu_bo(bo); 166 switch (bo->mem.mem_type) { 167 case AMDGPU_PL_GDS: 168 case AMDGPU_PL_GWS: 169 case AMDGPU_PL_OA: 170 placement->num_placement = 0; 171 placement->num_busy_placement = 0; 172 return; 173 174 case TTM_PL_VRAM: 175 if (!adev->mman.buffer_funcs_enabled) { 176 /* Move to system memory */ 177 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 178 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 179 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 180 amdgpu_bo_in_cpu_visible_vram(abo)) { 181 182 /* Try evicting to the CPU inaccessible part of VRAM 183 * first, but only set GTT as busy placement, so this 184 * BO will be evicted to GTT rather than causing other 185 * BOs to be evicted from VRAM 186 */ 187 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 188 AMDGPU_GEM_DOMAIN_GTT); 189 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 190 abo->placements[0].lpfn = 0; 191 abo->placement.busy_placement = &abo->placements[1]; 192 abo->placement.num_busy_placement = 1; 193 } else { 194 /* Move to GTT memory */ 195 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 196 } 197 break; 198 case TTM_PL_TT: 199 default: 200 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 201 break; 202 } 203 *placement = abo->placement; 204 } 205 206 /** 207 * amdgpu_verify_access - Verify access for a mmap call 208 * 209 * @bo: The buffer object to map 210 * @filp: The file pointer from the process performing the mmap 211 * 212 * This is called by ttm_bo_mmap() to verify whether a process 213 * has the right to mmap a BO to their process space. 214 */ 215 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 216 { 217 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 218 219 /* 220 * Don't verify access for KFD BOs. They don't have a GEM 221 * object associated with them. 222 */ 223 if (abo->kfd_bo) 224 return 0; 225 226 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 227 return -EPERM; 228 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 229 filp->private_data); 230 } 231 232 /** 233 * amdgpu_move_null - Register memory for a buffer object 234 * 235 * @bo: The bo to assign the memory to 236 * @new_mem: The memory to be assigned. 237 * 238 * Assign the memory from new_mem to the memory of the buffer object bo. 239 */ 240 static void amdgpu_move_null(struct ttm_buffer_object *bo, 241 struct ttm_mem_reg *new_mem) 242 { 243 struct ttm_mem_reg *old_mem = &bo->mem; 244 245 BUG_ON(old_mem->mm_node != NULL); 246 *old_mem = *new_mem; 247 new_mem->mm_node = NULL; 248 } 249 250 /** 251 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 252 * 253 * @bo: The bo to assign the memory to. 254 * @mm_node: Memory manager node for drm allocator. 255 * @mem: The region where the bo resides. 256 * 257 */ 258 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 259 struct drm_mm_node *mm_node, 260 struct ttm_mem_reg *mem) 261 { 262 uint64_t addr = 0; 263 264 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 265 addr = mm_node->start << PAGE_SHIFT; 266 addr += bo->bdev->man[mem->mem_type].gpu_offset; 267 } 268 return addr; 269 } 270 271 /** 272 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 273 * @offset. It also modifies the offset to be within the drm_mm_node returned 274 * 275 * @mem: The region where the bo resides. 276 * @offset: The offset that drm_mm_node is used for finding. 277 * 278 */ 279 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 280 unsigned long *offset) 281 { 282 struct drm_mm_node *mm_node = mem->mm_node; 283 284 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 285 *offset -= (mm_node->size << PAGE_SHIFT); 286 ++mm_node; 287 } 288 return mm_node; 289 } 290 291 /** 292 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 293 * 294 * The function copies @size bytes from {src->mem + src->offset} to 295 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 296 * move and different for a BO to BO copy. 297 * 298 * @f: Returns the last fence if multiple jobs are submitted. 299 */ 300 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 301 struct amdgpu_copy_mem *src, 302 struct amdgpu_copy_mem *dst, 303 uint64_t size, 304 struct dma_resv *resv, 305 struct dma_fence **f) 306 { 307 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 308 struct drm_mm_node *src_mm, *dst_mm; 309 uint64_t src_node_start, dst_node_start, src_node_size, 310 dst_node_size, src_page_offset, dst_page_offset; 311 struct dma_fence *fence = NULL; 312 int r = 0; 313 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 314 AMDGPU_GPU_PAGE_SIZE); 315 316 if (!adev->mman.buffer_funcs_enabled) { 317 DRM_ERROR("Trying to move memory with ring turned off.\n"); 318 return -EINVAL; 319 } 320 321 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 322 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 323 src->offset; 324 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 325 src_page_offset = src_node_start & (PAGE_SIZE - 1); 326 327 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 328 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 329 dst->offset; 330 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 331 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 332 333 mutex_lock(&adev->mman.gtt_window_lock); 334 335 while (size) { 336 unsigned long cur_size; 337 uint64_t from = src_node_start, to = dst_node_start; 338 struct dma_fence *next; 339 340 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 341 * begins at an offset, then adjust the size accordingly 342 */ 343 cur_size = min3(min(src_node_size, dst_node_size), size, 344 GTT_MAX_BYTES); 345 if (cur_size + src_page_offset > GTT_MAX_BYTES || 346 cur_size + dst_page_offset > GTT_MAX_BYTES) 347 cur_size -= max(src_page_offset, dst_page_offset); 348 349 /* Map only what needs to be accessed. Map src to window 0 and 350 * dst to window 1 351 */ 352 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 353 r = amdgpu_map_buffer(src->bo, src->mem, 354 PFN_UP(cur_size + src_page_offset), 355 src_node_start, 0, ring, 356 &from); 357 if (r) 358 goto error; 359 /* Adjust the offset because amdgpu_map_buffer returns 360 * start of mapped page 361 */ 362 from += src_page_offset; 363 } 364 365 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 366 r = amdgpu_map_buffer(dst->bo, dst->mem, 367 PFN_UP(cur_size + dst_page_offset), 368 dst_node_start, 1, ring, 369 &to); 370 if (r) 371 goto error; 372 to += dst_page_offset; 373 } 374 375 r = amdgpu_copy_buffer(ring, from, to, cur_size, 376 resv, &next, false, true); 377 if (r) 378 goto error; 379 380 dma_fence_put(fence); 381 fence = next; 382 383 size -= cur_size; 384 if (!size) 385 break; 386 387 src_node_size -= cur_size; 388 if (!src_node_size) { 389 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 390 src->mem); 391 src_node_size = (src_mm->size << PAGE_SHIFT); 392 src_page_offset = 0; 393 } else { 394 src_node_start += cur_size; 395 src_page_offset = src_node_start & (PAGE_SIZE - 1); 396 } 397 dst_node_size -= cur_size; 398 if (!dst_node_size) { 399 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 400 dst->mem); 401 dst_node_size = (dst_mm->size << PAGE_SHIFT); 402 dst_page_offset = 0; 403 } else { 404 dst_node_start += cur_size; 405 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 406 } 407 } 408 error: 409 mutex_unlock(&adev->mman.gtt_window_lock); 410 if (f) 411 *f = dma_fence_get(fence); 412 dma_fence_put(fence); 413 return r; 414 } 415 416 /** 417 * amdgpu_move_blit - Copy an entire buffer to another buffer 418 * 419 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 420 * help move buffers to and from VRAM. 421 */ 422 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 423 bool evict, bool no_wait_gpu, 424 struct ttm_mem_reg *new_mem, 425 struct ttm_mem_reg *old_mem) 426 { 427 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 428 struct amdgpu_copy_mem src, dst; 429 struct dma_fence *fence = NULL; 430 int r; 431 432 src.bo = bo; 433 dst.bo = bo; 434 src.mem = old_mem; 435 dst.mem = new_mem; 436 src.offset = 0; 437 dst.offset = 0; 438 439 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 440 new_mem->num_pages << PAGE_SHIFT, 441 bo->base.resv, &fence); 442 if (r) 443 goto error; 444 445 /* clear the space being freed */ 446 if (old_mem->mem_type == TTM_PL_VRAM && 447 (ttm_to_amdgpu_bo(bo)->flags & 448 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 449 struct dma_fence *wipe_fence = NULL; 450 451 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 452 NULL, &wipe_fence); 453 if (r) { 454 goto error; 455 } else if (wipe_fence) { 456 dma_fence_put(fence); 457 fence = wipe_fence; 458 } 459 } 460 461 /* Always block for VM page tables before committing the new location */ 462 if (bo->type == ttm_bo_type_kernel) 463 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 464 else 465 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 466 dma_fence_put(fence); 467 return r; 468 469 error: 470 if (fence) 471 dma_fence_wait(fence, false); 472 dma_fence_put(fence); 473 return r; 474 } 475 476 /** 477 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 478 * 479 * Called by amdgpu_bo_move(). 480 */ 481 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 482 struct ttm_operation_ctx *ctx, 483 struct ttm_mem_reg *new_mem) 484 { 485 struct ttm_mem_reg *old_mem = &bo->mem; 486 struct ttm_mem_reg tmp_mem; 487 struct ttm_place placements; 488 struct ttm_placement placement; 489 int r; 490 491 /* create space/pages for new_mem in GTT space */ 492 tmp_mem = *new_mem; 493 tmp_mem.mm_node = NULL; 494 placement.num_placement = 1; 495 placement.placement = &placements; 496 placement.num_busy_placement = 1; 497 placement.busy_placement = &placements; 498 placements.fpfn = 0; 499 placements.lpfn = 0; 500 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 501 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 502 if (unlikely(r)) { 503 pr_err("Failed to find GTT space for blit from VRAM\n"); 504 return r; 505 } 506 507 /* set caching flags */ 508 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 509 if (unlikely(r)) { 510 goto out_cleanup; 511 } 512 513 /* Bind the memory to the GTT space */ 514 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 515 if (unlikely(r)) { 516 goto out_cleanup; 517 } 518 519 /* blit VRAM to GTT */ 520 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 521 if (unlikely(r)) { 522 goto out_cleanup; 523 } 524 525 /* move BO (in tmp_mem) to new_mem */ 526 r = ttm_bo_move_ttm(bo, ctx, new_mem); 527 out_cleanup: 528 ttm_bo_mem_put(bo, &tmp_mem); 529 return r; 530 } 531 532 /** 533 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 534 * 535 * Called by amdgpu_bo_move(). 536 */ 537 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 538 struct ttm_operation_ctx *ctx, 539 struct ttm_mem_reg *new_mem) 540 { 541 struct ttm_mem_reg *old_mem = &bo->mem; 542 struct ttm_mem_reg tmp_mem; 543 struct ttm_placement placement; 544 struct ttm_place placements; 545 int r; 546 547 /* make space in GTT for old_mem buffer */ 548 tmp_mem = *new_mem; 549 tmp_mem.mm_node = NULL; 550 placement.num_placement = 1; 551 placement.placement = &placements; 552 placement.num_busy_placement = 1; 553 placement.busy_placement = &placements; 554 placements.fpfn = 0; 555 placements.lpfn = 0; 556 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 557 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 558 if (unlikely(r)) { 559 pr_err("Failed to find GTT space for blit to VRAM\n"); 560 return r; 561 } 562 563 /* move/bind old memory to GTT space */ 564 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 565 if (unlikely(r)) { 566 goto out_cleanup; 567 } 568 569 /* copy to VRAM */ 570 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 571 if (unlikely(r)) { 572 goto out_cleanup; 573 } 574 out_cleanup: 575 ttm_bo_mem_put(bo, &tmp_mem); 576 return r; 577 } 578 579 /** 580 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 581 * 582 * Called by amdgpu_bo_move() 583 */ 584 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 585 struct ttm_mem_reg *mem) 586 { 587 struct drm_mm_node *nodes = mem->mm_node; 588 589 if (mem->mem_type == TTM_PL_SYSTEM || 590 mem->mem_type == TTM_PL_TT) 591 return true; 592 if (mem->mem_type != TTM_PL_VRAM) 593 return false; 594 595 /* ttm_mem_reg_ioremap only supports contiguous memory */ 596 if (nodes->size != mem->num_pages) 597 return false; 598 599 return ((nodes->start + nodes->size) << PAGE_SHIFT) 600 <= adev->gmc.visible_vram_size; 601 } 602 603 /** 604 * amdgpu_bo_move - Move a buffer object to a new memory location 605 * 606 * Called by ttm_bo_handle_move_mem() 607 */ 608 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 609 struct ttm_operation_ctx *ctx, 610 struct ttm_mem_reg *new_mem) 611 { 612 struct amdgpu_device *adev; 613 struct amdgpu_bo *abo; 614 struct ttm_mem_reg *old_mem = &bo->mem; 615 int r; 616 617 /* Can't move a pinned BO */ 618 abo = ttm_to_amdgpu_bo(bo); 619 if (WARN_ON_ONCE(abo->pin_count > 0)) 620 return -EINVAL; 621 622 adev = amdgpu_ttm_adev(bo->bdev); 623 624 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 625 amdgpu_move_null(bo, new_mem); 626 return 0; 627 } 628 if ((old_mem->mem_type == TTM_PL_TT && 629 new_mem->mem_type == TTM_PL_SYSTEM) || 630 (old_mem->mem_type == TTM_PL_SYSTEM && 631 new_mem->mem_type == TTM_PL_TT)) { 632 /* bind is enough */ 633 amdgpu_move_null(bo, new_mem); 634 return 0; 635 } 636 if (old_mem->mem_type == AMDGPU_PL_GDS || 637 old_mem->mem_type == AMDGPU_PL_GWS || 638 old_mem->mem_type == AMDGPU_PL_OA || 639 new_mem->mem_type == AMDGPU_PL_GDS || 640 new_mem->mem_type == AMDGPU_PL_GWS || 641 new_mem->mem_type == AMDGPU_PL_OA) { 642 /* Nothing to save here */ 643 amdgpu_move_null(bo, new_mem); 644 return 0; 645 } 646 647 if (!adev->mman.buffer_funcs_enabled) { 648 r = -ENODEV; 649 goto memcpy; 650 } 651 652 if (old_mem->mem_type == TTM_PL_VRAM && 653 new_mem->mem_type == TTM_PL_SYSTEM) { 654 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 655 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 656 new_mem->mem_type == TTM_PL_VRAM) { 657 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 658 } else { 659 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 660 new_mem, old_mem); 661 } 662 663 if (r) { 664 memcpy: 665 /* Check that all memory is CPU accessible */ 666 if (!amdgpu_mem_visible(adev, old_mem) || 667 !amdgpu_mem_visible(adev, new_mem)) { 668 pr_err("Move buffer fallback to memcpy unavailable\n"); 669 return r; 670 } 671 672 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 673 if (r) 674 return r; 675 } 676 677 if (bo->type == ttm_bo_type_device && 678 new_mem->mem_type == TTM_PL_VRAM && 679 old_mem->mem_type != TTM_PL_VRAM) { 680 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 681 * accesses the BO after it's moved. 682 */ 683 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 684 } 685 686 /* update statistics */ 687 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 688 return 0; 689 } 690 691 /** 692 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 693 * 694 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 695 */ 696 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 697 { 698 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 699 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 700 struct drm_mm_node *mm_node = mem->mm_node; 701 702 mem->bus.addr = NULL; 703 mem->bus.offset = 0; 704 mem->bus.size = mem->num_pages << PAGE_SHIFT; 705 mem->bus.base = 0; 706 mem->bus.is_iomem = false; 707 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 708 return -EINVAL; 709 switch (mem->mem_type) { 710 case TTM_PL_SYSTEM: 711 /* system memory */ 712 return 0; 713 case TTM_PL_TT: 714 break; 715 case TTM_PL_VRAM: 716 mem->bus.offset = mem->start << PAGE_SHIFT; 717 /* check if it's visible */ 718 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 719 return -EINVAL; 720 /* Only physically contiguous buffers apply. In a contiguous 721 * buffer, size of the first mm_node would match the number of 722 * pages in ttm_mem_reg. 723 */ 724 if (adev->mman.aper_base_kaddr && 725 (mm_node->size == mem->num_pages)) 726 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 727 mem->bus.offset; 728 729 mem->bus.base = adev->gmc.aper_base; 730 mem->bus.is_iomem = true; 731 break; 732 default: 733 return -EINVAL; 734 } 735 return 0; 736 } 737 738 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 739 { 740 } 741 742 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 743 unsigned long page_offset) 744 { 745 struct drm_mm_node *mm; 746 unsigned long offset = (page_offset << PAGE_SHIFT); 747 748 mm = amdgpu_find_mm_node(&bo->mem, &offset); 749 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 750 (offset >> PAGE_SHIFT); 751 } 752 753 /* 754 * TTM backend functions. 755 */ 756 struct amdgpu_ttm_tt { 757 struct ttm_dma_tt ttm; 758 struct drm_gem_object *gobj; 759 u64 offset; 760 uint64_t userptr; 761 struct task_struct *usertask; 762 uint32_t userflags; 763 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 764 struct hmm_range *range; 765 #endif 766 }; 767 768 #ifdef CONFIG_DRM_AMDGPU_USERPTR 769 /* flags used by HMM internal, not related to CPU/GPU PTE flags */ 770 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = { 771 (1 << 0), /* HMM_PFN_VALID */ 772 (1 << 1), /* HMM_PFN_WRITE */ 773 0 /* HMM_PFN_DEVICE_PRIVATE */ 774 }; 775 776 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = { 777 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */ 778 0, /* HMM_PFN_NONE */ 779 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */ 780 }; 781 782 /** 783 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 784 * memory and start HMM tracking CPU page table update 785 * 786 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 787 * once afterwards to stop HMM tracking 788 */ 789 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 790 { 791 struct ttm_tt *ttm = bo->tbo.ttm; 792 struct amdgpu_ttm_tt *gtt = (void *)ttm; 793 unsigned long start = gtt->userptr; 794 struct vm_area_struct *vma; 795 struct hmm_range *range; 796 unsigned long timeout; 797 struct mm_struct *mm; 798 unsigned long i; 799 int r = 0; 800 801 mm = bo->notifier.mm; 802 if (unlikely(!mm)) { 803 DRM_DEBUG_DRIVER("BO is not registered?\n"); 804 return -EFAULT; 805 } 806 807 /* Another get_user_pages is running at the same time?? */ 808 if (WARN_ON(gtt->range)) 809 return -EFAULT; 810 811 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 812 return -ESRCH; 813 814 range = kzalloc(sizeof(*range), GFP_KERNEL); 815 if (unlikely(!range)) { 816 r = -ENOMEM; 817 goto out; 818 } 819 range->notifier = &bo->notifier; 820 range->flags = hmm_range_flags; 821 range->values = hmm_range_values; 822 range->pfn_shift = PAGE_SHIFT; 823 range->start = bo->notifier.interval_tree.start; 824 range->end = bo->notifier.interval_tree.last + 1; 825 range->default_flags = hmm_range_flags[HMM_PFN_VALID]; 826 if (!amdgpu_ttm_tt_is_readonly(ttm)) 827 range->default_flags |= range->flags[HMM_PFN_WRITE]; 828 829 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns), 830 GFP_KERNEL); 831 if (unlikely(!range->pfns)) { 832 r = -ENOMEM; 833 goto out_free_ranges; 834 } 835 836 down_read(&mm->mmap_sem); 837 vma = find_vma(mm, start); 838 if (unlikely(!vma || start < vma->vm_start)) { 839 r = -EFAULT; 840 goto out_unlock; 841 } 842 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 843 vma->vm_file)) { 844 r = -EPERM; 845 goto out_unlock; 846 } 847 up_read(&mm->mmap_sem); 848 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 849 850 retry: 851 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 852 853 down_read(&mm->mmap_sem); 854 r = hmm_range_fault(range, 0); 855 up_read(&mm->mmap_sem); 856 if (unlikely(r <= 0)) { 857 /* 858 * FIXME: This timeout should encompass the retry from 859 * mmu_interval_read_retry() as well. 860 */ 861 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout)) 862 goto retry; 863 goto out_free_pfns; 864 } 865 866 for (i = 0; i < ttm->num_pages; i++) { 867 /* FIXME: The pages cannot be touched outside the notifier_lock */ 868 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]); 869 if (unlikely(!pages[i])) { 870 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 871 i, range->pfns[i]); 872 r = -ENOMEM; 873 874 goto out_free_pfns; 875 } 876 } 877 878 gtt->range = range; 879 mmput(mm); 880 881 return 0; 882 883 out_unlock: 884 up_read(&mm->mmap_sem); 885 out_free_pfns: 886 kvfree(range->pfns); 887 out_free_ranges: 888 kfree(range); 889 out: 890 mmput(mm); 891 return r; 892 } 893 894 /** 895 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 896 * Check if the pages backing this ttm range have been invalidated 897 * 898 * Returns: true if pages are still valid 899 */ 900 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 901 { 902 struct amdgpu_ttm_tt *gtt = (void *)ttm; 903 bool r = false; 904 905 if (!gtt || !gtt->userptr) 906 return false; 907 908 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 909 gtt->userptr, ttm->num_pages); 910 911 WARN_ONCE(!gtt->range || !gtt->range->pfns, 912 "No user pages to check\n"); 913 914 if (gtt->range) { 915 /* 916 * FIXME: Must always hold notifier_lock for this, and must 917 * not ignore the return code. 918 */ 919 r = mmu_interval_read_retry(gtt->range->notifier, 920 gtt->range->notifier_seq); 921 kvfree(gtt->range->pfns); 922 kfree(gtt->range); 923 gtt->range = NULL; 924 } 925 926 return !r; 927 } 928 #endif 929 930 /** 931 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 932 * 933 * Called by amdgpu_cs_list_validate(). This creates the page list 934 * that backs user memory and will ultimately be mapped into the device 935 * address space. 936 */ 937 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 938 { 939 unsigned long i; 940 941 for (i = 0; i < ttm->num_pages; ++i) 942 ttm->pages[i] = pages ? pages[i] : NULL; 943 } 944 945 /** 946 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 947 * 948 * Called by amdgpu_ttm_backend_bind() 949 **/ 950 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 951 { 952 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 953 struct amdgpu_ttm_tt *gtt = (void *)ttm; 954 unsigned nents; 955 int r; 956 957 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 958 enum dma_data_direction direction = write ? 959 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 960 961 /* Allocate an SG array and squash pages into it */ 962 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 963 ttm->num_pages << PAGE_SHIFT, 964 GFP_KERNEL); 965 if (r) 966 goto release_sg; 967 968 /* Map SG to device */ 969 r = -ENOMEM; 970 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 971 if (nents == 0) 972 goto release_sg; 973 974 /* convert SG to linear array of pages and dma addresses */ 975 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 976 gtt->ttm.dma_address, ttm->num_pages); 977 978 return 0; 979 980 release_sg: 981 kfree(ttm->sg); 982 return r; 983 } 984 985 /** 986 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 987 */ 988 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 989 { 990 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 991 struct amdgpu_ttm_tt *gtt = (void *)ttm; 992 993 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 994 enum dma_data_direction direction = write ? 995 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 996 997 /* double check that we don't free the table twice */ 998 if (!ttm->sg->sgl) 999 return; 1000 1001 /* unmap the pages mapped to the device */ 1002 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 1003 1004 sg_free_table(ttm->sg); 1005 1006 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1007 if (gtt->range) { 1008 unsigned long i; 1009 1010 for (i = 0; i < ttm->num_pages; i++) { 1011 if (ttm->pages[i] != 1012 hmm_device_entry_to_page(gtt->range, 1013 gtt->range->pfns[i])) 1014 break; 1015 } 1016 1017 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 1018 } 1019 #endif 1020 } 1021 1022 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1023 struct ttm_buffer_object *tbo, 1024 uint64_t flags) 1025 { 1026 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1027 struct ttm_tt *ttm = tbo->ttm; 1028 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1029 int r; 1030 1031 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 1032 uint64_t page_idx = 1; 1033 1034 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1035 ttm->pages, gtt->ttm.dma_address, flags); 1036 if (r) 1037 goto gart_bind_fail; 1038 1039 /* The memory type of the first page defaults to UC. Now 1040 * modify the memory type to NC from the second page of 1041 * the BO onward. 1042 */ 1043 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1044 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1045 1046 r = amdgpu_gart_bind(adev, 1047 gtt->offset + (page_idx << PAGE_SHIFT), 1048 ttm->num_pages - page_idx, 1049 &ttm->pages[page_idx], 1050 &(gtt->ttm.dma_address[page_idx]), flags); 1051 } else { 1052 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1053 ttm->pages, gtt->ttm.dma_address, flags); 1054 } 1055 1056 gart_bind_fail: 1057 if (r) 1058 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1059 ttm->num_pages, gtt->offset); 1060 1061 return r; 1062 } 1063 1064 /** 1065 * amdgpu_ttm_backend_bind - Bind GTT memory 1066 * 1067 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1068 * This handles binding GTT memory to the device address space. 1069 */ 1070 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1071 struct ttm_mem_reg *bo_mem) 1072 { 1073 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1074 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1075 uint64_t flags; 1076 int r = 0; 1077 1078 if (gtt->userptr) { 1079 r = amdgpu_ttm_tt_pin_userptr(ttm); 1080 if (r) { 1081 DRM_ERROR("failed to pin userptr\n"); 1082 return r; 1083 } 1084 } 1085 if (!ttm->num_pages) { 1086 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1087 ttm->num_pages, bo_mem, ttm); 1088 } 1089 1090 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1091 bo_mem->mem_type == AMDGPU_PL_GWS || 1092 bo_mem->mem_type == AMDGPU_PL_OA) 1093 return -EINVAL; 1094 1095 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1096 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1097 return 0; 1098 } 1099 1100 /* compute PTE flags relevant to this BO memory */ 1101 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1102 1103 /* bind pages into GART page tables */ 1104 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1105 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1106 ttm->pages, gtt->ttm.dma_address, flags); 1107 1108 if (r) 1109 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1110 ttm->num_pages, gtt->offset); 1111 return r; 1112 } 1113 1114 /** 1115 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1116 */ 1117 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1118 { 1119 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1120 struct ttm_operation_ctx ctx = { false, false }; 1121 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1122 struct ttm_mem_reg tmp; 1123 struct ttm_placement placement; 1124 struct ttm_place placements; 1125 uint64_t addr, flags; 1126 int r; 1127 1128 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1129 return 0; 1130 1131 addr = amdgpu_gmc_agp_addr(bo); 1132 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1133 bo->mem.start = addr >> PAGE_SHIFT; 1134 } else { 1135 1136 /* allocate GART space */ 1137 tmp = bo->mem; 1138 tmp.mm_node = NULL; 1139 placement.num_placement = 1; 1140 placement.placement = &placements; 1141 placement.num_busy_placement = 1; 1142 placement.busy_placement = &placements; 1143 placements.fpfn = 0; 1144 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1145 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1146 TTM_PL_FLAG_TT; 1147 1148 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1149 if (unlikely(r)) 1150 return r; 1151 1152 /* compute PTE flags for this buffer object */ 1153 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1154 1155 /* Bind pages */ 1156 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1157 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1158 if (unlikely(r)) { 1159 ttm_bo_mem_put(bo, &tmp); 1160 return r; 1161 } 1162 1163 ttm_bo_mem_put(bo, &bo->mem); 1164 bo->mem = tmp; 1165 } 1166 1167 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1168 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1169 1170 return 0; 1171 } 1172 1173 /** 1174 * amdgpu_ttm_recover_gart - Rebind GTT pages 1175 * 1176 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1177 * rebind GTT pages during a GPU reset. 1178 */ 1179 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1180 { 1181 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1182 uint64_t flags; 1183 int r; 1184 1185 if (!tbo->ttm) 1186 return 0; 1187 1188 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1189 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1190 1191 return r; 1192 } 1193 1194 /** 1195 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1196 * 1197 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1198 * ttm_tt_destroy(). 1199 */ 1200 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1201 { 1202 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1203 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1204 int r; 1205 1206 /* if the pages have userptr pinning then clear that first */ 1207 if (gtt->userptr) 1208 amdgpu_ttm_tt_unpin_userptr(ttm); 1209 1210 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1211 return 0; 1212 1213 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1214 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1215 if (r) 1216 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1217 gtt->ttm.ttm.num_pages, gtt->offset); 1218 return r; 1219 } 1220 1221 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1222 { 1223 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1224 1225 if (gtt->usertask) 1226 put_task_struct(gtt->usertask); 1227 1228 ttm_dma_tt_fini(>t->ttm); 1229 kfree(gtt); 1230 } 1231 1232 static struct ttm_backend_func amdgpu_backend_func = { 1233 .bind = &amdgpu_ttm_backend_bind, 1234 .unbind = &amdgpu_ttm_backend_unbind, 1235 .destroy = &amdgpu_ttm_backend_destroy, 1236 }; 1237 1238 /** 1239 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1240 * 1241 * @bo: The buffer object to create a GTT ttm_tt object around 1242 * 1243 * Called by ttm_tt_create(). 1244 */ 1245 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1246 uint32_t page_flags) 1247 { 1248 struct amdgpu_ttm_tt *gtt; 1249 1250 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1251 if (gtt == NULL) { 1252 return NULL; 1253 } 1254 gtt->ttm.ttm.func = &amdgpu_backend_func; 1255 gtt->gobj = &bo->base; 1256 1257 /* allocate space for the uninitialized page entries */ 1258 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1259 kfree(gtt); 1260 return NULL; 1261 } 1262 return >t->ttm.ttm; 1263 } 1264 1265 /** 1266 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1267 * 1268 * Map the pages of a ttm_tt object to an address space visible 1269 * to the underlying device. 1270 */ 1271 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1272 struct ttm_operation_ctx *ctx) 1273 { 1274 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1275 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1276 1277 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1278 if (gtt && gtt->userptr) { 1279 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1280 if (!ttm->sg) 1281 return -ENOMEM; 1282 1283 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1284 ttm->state = tt_unbound; 1285 return 0; 1286 } 1287 1288 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1289 if (!ttm->sg) { 1290 struct dma_buf_attachment *attach; 1291 struct sg_table *sgt; 1292 1293 attach = gtt->gobj->import_attach; 1294 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1295 if (IS_ERR(sgt)) 1296 return PTR_ERR(sgt); 1297 1298 ttm->sg = sgt; 1299 } 1300 1301 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1302 gtt->ttm.dma_address, 1303 ttm->num_pages); 1304 ttm->state = tt_unbound; 1305 return 0; 1306 } 1307 1308 #ifdef CONFIG_SWIOTLB 1309 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1310 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1311 } 1312 #endif 1313 1314 /* fall back to generic helper to populate the page array 1315 * and map them to the device */ 1316 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1317 } 1318 1319 /** 1320 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1321 * 1322 * Unmaps pages of a ttm_tt object from the device address space and 1323 * unpopulates the page array backing it. 1324 */ 1325 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1326 { 1327 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1328 struct amdgpu_device *adev; 1329 1330 if (gtt && gtt->userptr) { 1331 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1332 kfree(ttm->sg); 1333 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1334 return; 1335 } 1336 1337 if (ttm->sg && gtt->gobj->import_attach) { 1338 struct dma_buf_attachment *attach; 1339 1340 attach = gtt->gobj->import_attach; 1341 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1342 ttm->sg = NULL; 1343 return; 1344 } 1345 1346 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1347 return; 1348 1349 adev = amdgpu_ttm_adev(ttm->bdev); 1350 1351 #ifdef CONFIG_SWIOTLB 1352 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1353 ttm_dma_unpopulate(>t->ttm, adev->dev); 1354 return; 1355 } 1356 #endif 1357 1358 /* fall back to generic helper to unmap and unpopulate array */ 1359 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1360 } 1361 1362 /** 1363 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1364 * task 1365 * 1366 * @ttm: The ttm_tt object to bind this userptr object to 1367 * @addr: The address in the current tasks VM space to use 1368 * @flags: Requirements of userptr object. 1369 * 1370 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1371 * to current task 1372 */ 1373 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1374 uint32_t flags) 1375 { 1376 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1377 1378 if (gtt == NULL) 1379 return -EINVAL; 1380 1381 gtt->userptr = addr; 1382 gtt->userflags = flags; 1383 1384 if (gtt->usertask) 1385 put_task_struct(gtt->usertask); 1386 gtt->usertask = current->group_leader; 1387 get_task_struct(gtt->usertask); 1388 1389 return 0; 1390 } 1391 1392 /** 1393 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1394 */ 1395 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1396 { 1397 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1398 1399 if (gtt == NULL) 1400 return NULL; 1401 1402 if (gtt->usertask == NULL) 1403 return NULL; 1404 1405 return gtt->usertask->mm; 1406 } 1407 1408 /** 1409 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1410 * address range for the current task. 1411 * 1412 */ 1413 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1414 unsigned long end) 1415 { 1416 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1417 unsigned long size; 1418 1419 if (gtt == NULL || !gtt->userptr) 1420 return false; 1421 1422 /* Return false if no part of the ttm_tt object lies within 1423 * the range 1424 */ 1425 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1426 if (gtt->userptr > end || gtt->userptr + size <= start) 1427 return false; 1428 1429 return true; 1430 } 1431 1432 /** 1433 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1434 */ 1435 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1436 { 1437 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1438 1439 if (gtt == NULL || !gtt->userptr) 1440 return false; 1441 1442 return true; 1443 } 1444 1445 /** 1446 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1447 */ 1448 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1449 { 1450 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1451 1452 if (gtt == NULL) 1453 return false; 1454 1455 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1456 } 1457 1458 /** 1459 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1460 * 1461 * @ttm: The ttm_tt object to compute the flags for 1462 * @mem: The memory registry backing this ttm_tt object 1463 * 1464 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1465 */ 1466 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1467 { 1468 uint64_t flags = 0; 1469 1470 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1471 flags |= AMDGPU_PTE_VALID; 1472 1473 if (mem && mem->mem_type == TTM_PL_TT) { 1474 flags |= AMDGPU_PTE_SYSTEM; 1475 1476 if (ttm->caching_state == tt_cached) 1477 flags |= AMDGPU_PTE_SNOOPED; 1478 } 1479 1480 return flags; 1481 } 1482 1483 /** 1484 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1485 * 1486 * @ttm: The ttm_tt object to compute the flags for 1487 * @mem: The memory registry backing this ttm_tt object 1488 1489 * Figure out the flags to use for a VM PTE (Page Table Entry). 1490 */ 1491 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1492 struct ttm_mem_reg *mem) 1493 { 1494 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1495 1496 flags |= adev->gart.gart_pte_flags; 1497 flags |= AMDGPU_PTE_READABLE; 1498 1499 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1500 flags |= AMDGPU_PTE_WRITEABLE; 1501 1502 return flags; 1503 } 1504 1505 /** 1506 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1507 * object. 1508 * 1509 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1510 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1511 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1512 * used to clean out a memory space. 1513 */ 1514 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1515 const struct ttm_place *place) 1516 { 1517 unsigned long num_pages = bo->mem.num_pages; 1518 struct drm_mm_node *node = bo->mem.mm_node; 1519 struct dma_resv_list *flist; 1520 struct dma_fence *f; 1521 int i; 1522 1523 if (bo->type == ttm_bo_type_kernel && 1524 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1525 return false; 1526 1527 /* If bo is a KFD BO, check if the bo belongs to the current process. 1528 * If true, then return false as any KFD process needs all its BOs to 1529 * be resident to run successfully 1530 */ 1531 flist = dma_resv_get_list(bo->base.resv); 1532 if (flist) { 1533 for (i = 0; i < flist->shared_count; ++i) { 1534 f = rcu_dereference_protected(flist->shared[i], 1535 dma_resv_held(bo->base.resv)); 1536 if (amdkfd_fence_check_mm(f, current->mm)) 1537 return false; 1538 } 1539 } 1540 1541 switch (bo->mem.mem_type) { 1542 case TTM_PL_TT: 1543 return true; 1544 1545 case TTM_PL_VRAM: 1546 /* Check each drm MM node individually */ 1547 while (num_pages) { 1548 if (place->fpfn < (node->start + node->size) && 1549 !(place->lpfn && place->lpfn <= node->start)) 1550 return true; 1551 1552 num_pages -= node->size; 1553 ++node; 1554 } 1555 return false; 1556 1557 default: 1558 break; 1559 } 1560 1561 return ttm_bo_eviction_valuable(bo, place); 1562 } 1563 1564 /** 1565 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1566 * 1567 * @bo: The buffer object to read/write 1568 * @offset: Offset into buffer object 1569 * @buf: Secondary buffer to write/read from 1570 * @len: Length in bytes of access 1571 * @write: true if writing 1572 * 1573 * This is used to access VRAM that backs a buffer object via MMIO 1574 * access for debugging purposes. 1575 */ 1576 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1577 unsigned long offset, 1578 void *buf, int len, int write) 1579 { 1580 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1581 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1582 struct drm_mm_node *nodes; 1583 uint32_t value = 0; 1584 int ret = 0; 1585 uint64_t pos; 1586 unsigned long flags; 1587 1588 if (bo->mem.mem_type != TTM_PL_VRAM) 1589 return -EIO; 1590 1591 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1592 pos = (nodes->start << PAGE_SHIFT) + offset; 1593 1594 while (len && pos < adev->gmc.mc_vram_size) { 1595 uint64_t aligned_pos = pos & ~(uint64_t)3; 1596 uint64_t bytes = 4 - (pos & 3); 1597 uint32_t shift = (pos & 3) * 8; 1598 uint32_t mask = 0xffffffff << shift; 1599 1600 if (len < bytes) { 1601 mask &= 0xffffffff >> (bytes - len) * 8; 1602 bytes = len; 1603 } 1604 1605 if (mask != 0xffffffff) { 1606 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1607 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1608 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1609 if (!write || mask != 0xffffffff) 1610 value = RREG32_NO_KIQ(mmMM_DATA); 1611 if (write) { 1612 value &= ~mask; 1613 value |= (*(uint32_t *)buf << shift) & mask; 1614 WREG32_NO_KIQ(mmMM_DATA, value); 1615 } 1616 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1617 if (!write) { 1618 value = (value & mask) >> shift; 1619 memcpy(buf, &value, bytes); 1620 } 1621 } else { 1622 bytes = (nodes->start + nodes->size) << PAGE_SHIFT; 1623 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull); 1624 1625 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf, 1626 bytes, write); 1627 } 1628 1629 ret += bytes; 1630 buf = (uint8_t *)buf + bytes; 1631 pos += bytes; 1632 len -= bytes; 1633 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1634 ++nodes; 1635 pos = (nodes->start << PAGE_SHIFT); 1636 } 1637 } 1638 1639 return ret; 1640 } 1641 1642 static struct ttm_bo_driver amdgpu_bo_driver = { 1643 .ttm_tt_create = &amdgpu_ttm_tt_create, 1644 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1645 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1646 .init_mem_type = &amdgpu_init_mem_type, 1647 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1648 .evict_flags = &amdgpu_evict_flags, 1649 .move = &amdgpu_bo_move, 1650 .verify_access = &amdgpu_verify_access, 1651 .move_notify = &amdgpu_bo_move_notify, 1652 .release_notify = &amdgpu_bo_release_notify, 1653 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1654 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1655 .io_mem_free = &amdgpu_ttm_io_mem_free, 1656 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1657 .access_memory = &amdgpu_ttm_access_memory, 1658 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1659 }; 1660 1661 /* 1662 * Firmware Reservation functions 1663 */ 1664 /** 1665 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1666 * 1667 * @adev: amdgpu_device pointer 1668 * 1669 * free fw reserved vram if it has been reserved. 1670 */ 1671 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1672 { 1673 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1674 NULL, &adev->fw_vram_usage.va); 1675 } 1676 1677 /** 1678 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1679 * 1680 * @adev: amdgpu_device pointer 1681 * 1682 * create bo vram reservation from fw. 1683 */ 1684 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1685 { 1686 uint64_t vram_size = adev->gmc.visible_vram_size; 1687 1688 adev->fw_vram_usage.va = NULL; 1689 adev->fw_vram_usage.reserved_bo = NULL; 1690 1691 if (adev->fw_vram_usage.size == 0 || 1692 adev->fw_vram_usage.size > vram_size) 1693 return 0; 1694 1695 return amdgpu_bo_create_kernel_at(adev, 1696 adev->fw_vram_usage.start_offset, 1697 adev->fw_vram_usage.size, 1698 AMDGPU_GEM_DOMAIN_VRAM, 1699 &adev->fw_vram_usage.reserved_bo, 1700 &adev->fw_vram_usage.va); 1701 } 1702 1703 /* 1704 * Memoy training reservation functions 1705 */ 1706 1707 /** 1708 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1709 * 1710 * @adev: amdgpu_device pointer 1711 * 1712 * free memory training reserved vram if it has been reserved. 1713 */ 1714 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1715 { 1716 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1717 1718 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1719 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1720 ctx->c2p_bo = NULL; 1721 1722 return 0; 1723 } 1724 1725 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size) 1726 { 1727 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) ) 1728 vram_size -= SZ_1M; 1729 1730 return ALIGN(vram_size, SZ_1M); 1731 } 1732 1733 /** 1734 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training 1735 * 1736 * @adev: amdgpu_device pointer 1737 * 1738 * create bo vram reservation from memory training. 1739 */ 1740 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev) 1741 { 1742 int ret; 1743 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1744 1745 memset(ctx, 0, sizeof(*ctx)); 1746 if (!adev->fw_vram_usage.mem_train_support) { 1747 DRM_DEBUG("memory training does not support!\n"); 1748 return 0; 1749 } 1750 1751 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size); 1752 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1753 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1754 1755 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1756 ctx->train_data_size, 1757 ctx->p2c_train_data_offset, 1758 ctx->c2p_train_data_offset); 1759 1760 ret = amdgpu_bo_create_kernel_at(adev, 1761 ctx->c2p_train_data_offset, 1762 ctx->train_data_size, 1763 AMDGPU_GEM_DOMAIN_VRAM, 1764 &ctx->c2p_bo, 1765 NULL); 1766 if (ret) { 1767 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1768 amdgpu_ttm_training_reserve_vram_fini(adev); 1769 return ret; 1770 } 1771 1772 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1773 return 0; 1774 } 1775 1776 /** 1777 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1778 * gtt/vram related fields. 1779 * 1780 * This initializes all of the memory space pools that the TTM layer 1781 * will need such as the GTT space (system memory mapped to the device), 1782 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1783 * can be mapped per VMID. 1784 */ 1785 int amdgpu_ttm_init(struct amdgpu_device *adev) 1786 { 1787 uint64_t gtt_size; 1788 int r; 1789 u64 vis_vram_limit; 1790 void *stolen_vga_buf; 1791 1792 mutex_init(&adev->mman.gtt_window_lock); 1793 1794 /* No others user of address space so set it to 0 */ 1795 r = ttm_bo_device_init(&adev->mman.bdev, 1796 &amdgpu_bo_driver, 1797 adev->ddev->anon_inode->i_mapping, 1798 adev->ddev->vma_offset_manager, 1799 dma_addressing_limited(adev->dev)); 1800 if (r) { 1801 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1802 return r; 1803 } 1804 adev->mman.initialized = true; 1805 1806 /* We opt to avoid OOM on system pages allocations */ 1807 adev->mman.bdev.no_retry = true; 1808 1809 /* Initialize VRAM pool with all of VRAM divided into pages */ 1810 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1811 adev->gmc.real_vram_size >> PAGE_SHIFT); 1812 if (r) { 1813 DRM_ERROR("Failed initializing VRAM heap.\n"); 1814 return r; 1815 } 1816 1817 /* Reduce size of CPU-visible VRAM if requested */ 1818 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1819 if (amdgpu_vis_vram_limit > 0 && 1820 vis_vram_limit <= adev->gmc.visible_vram_size) 1821 adev->gmc.visible_vram_size = vis_vram_limit; 1822 1823 /* Change the size here instead of the init above so only lpfn is affected */ 1824 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1825 #ifdef CONFIG_64BIT 1826 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1827 adev->gmc.visible_vram_size); 1828 #endif 1829 1830 /* 1831 *The reserved vram for firmware must be pinned to the specified 1832 *place on the VRAM, so reserve it early. 1833 */ 1834 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1835 if (r) { 1836 return r; 1837 } 1838 1839 /* 1840 *The reserved vram for memory training must be pinned to the specified 1841 *place on the VRAM, so reserve it early. 1842 */ 1843 if (!amdgpu_sriov_vf(adev)) { 1844 r = amdgpu_ttm_training_reserve_vram_init(adev); 1845 if (r) 1846 return r; 1847 } 1848 1849 /* allocate memory as required for VGA 1850 * This is used for VGA emulation and pre-OS scanout buffers to 1851 * avoid display artifacts while transitioning between pre-OS 1852 * and driver. */ 1853 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1854 AMDGPU_GEM_DOMAIN_VRAM, 1855 &adev->stolen_vga_memory, 1856 NULL, &stolen_vga_buf); 1857 if (r) 1858 return r; 1859 1860 /* 1861 * reserve one TMR (64K) memory at the top of VRAM which holds 1862 * IP Discovery data and is protected by PSP. 1863 */ 1864 r = amdgpu_bo_create_kernel_at(adev, 1865 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE, 1866 DISCOVERY_TMR_SIZE, 1867 AMDGPU_GEM_DOMAIN_VRAM, 1868 &adev->discovery_memory, 1869 NULL); 1870 if (r) 1871 return r; 1872 1873 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1874 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1875 1876 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1877 * or whatever the user passed on module init */ 1878 if (amdgpu_gtt_size == -1) { 1879 struct sysinfo si; 1880 1881 si_meminfo(&si); 1882 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1883 adev->gmc.mc_vram_size), 1884 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1885 } 1886 else 1887 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1888 1889 /* Initialize GTT memory pool */ 1890 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1891 if (r) { 1892 DRM_ERROR("Failed initializing GTT heap.\n"); 1893 return r; 1894 } 1895 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1896 (unsigned)(gtt_size / (1024 * 1024))); 1897 1898 /* Initialize various on-chip memory pools */ 1899 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1900 adev->gds.gds_size); 1901 if (r) { 1902 DRM_ERROR("Failed initializing GDS heap.\n"); 1903 return r; 1904 } 1905 1906 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1907 adev->gds.gws_size); 1908 if (r) { 1909 DRM_ERROR("Failed initializing gws heap.\n"); 1910 return r; 1911 } 1912 1913 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1914 adev->gds.oa_size); 1915 if (r) { 1916 DRM_ERROR("Failed initializing oa heap.\n"); 1917 return r; 1918 } 1919 1920 return 0; 1921 } 1922 1923 /** 1924 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1925 */ 1926 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1927 { 1928 void *stolen_vga_buf; 1929 /* return the VGA stolen memory (if any) back to VRAM */ 1930 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); 1931 } 1932 1933 /** 1934 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1935 */ 1936 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1937 { 1938 if (!adev->mman.initialized) 1939 return; 1940 1941 amdgpu_ttm_training_reserve_vram_fini(adev); 1942 /* return the IP Discovery TMR memory back to VRAM */ 1943 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); 1944 amdgpu_ttm_fw_reserve_vram_fini(adev); 1945 1946 if (adev->mman.aper_base_kaddr) 1947 iounmap(adev->mman.aper_base_kaddr); 1948 adev->mman.aper_base_kaddr = NULL; 1949 1950 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1951 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1952 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1953 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1954 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1955 ttm_bo_device_release(&adev->mman.bdev); 1956 adev->mman.initialized = false; 1957 DRM_INFO("amdgpu: ttm finalized\n"); 1958 } 1959 1960 /** 1961 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1962 * 1963 * @adev: amdgpu_device pointer 1964 * @enable: true when we can use buffer functions. 1965 * 1966 * Enable/disable use of buffer functions during suspend/resume. This should 1967 * only be called at bootup or when userspace isn't running. 1968 */ 1969 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1970 { 1971 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1972 uint64_t size; 1973 int r; 1974 1975 if (!adev->mman.initialized || adev->in_gpu_reset || 1976 adev->mman.buffer_funcs_enabled == enable) 1977 return; 1978 1979 if (enable) { 1980 struct amdgpu_ring *ring; 1981 struct drm_gpu_scheduler *sched; 1982 1983 ring = adev->mman.buffer_funcs_ring; 1984 sched = &ring->sched; 1985 r = drm_sched_entity_init(&adev->mman.entity, 1986 DRM_SCHED_PRIORITY_KERNEL, &sched, 1987 1, NULL); 1988 if (r) { 1989 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1990 r); 1991 return; 1992 } 1993 } else { 1994 drm_sched_entity_destroy(&adev->mman.entity); 1995 dma_fence_put(man->move); 1996 man->move = NULL; 1997 } 1998 1999 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2000 if (enable) 2001 size = adev->gmc.real_vram_size; 2002 else 2003 size = adev->gmc.visible_vram_size; 2004 man->size = size >> PAGE_SHIFT; 2005 adev->mman.buffer_funcs_enabled = enable; 2006 } 2007 2008 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2009 { 2010 struct drm_file *file_priv = filp->private_data; 2011 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 2012 2013 if (adev == NULL) 2014 return -EINVAL; 2015 2016 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2017 } 2018 2019 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 2020 struct ttm_mem_reg *mem, unsigned num_pages, 2021 uint64_t offset, unsigned window, 2022 struct amdgpu_ring *ring, 2023 uint64_t *addr) 2024 { 2025 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 2026 struct amdgpu_device *adev = ring->adev; 2027 struct ttm_tt *ttm = bo->ttm; 2028 struct amdgpu_job *job; 2029 unsigned num_dw, num_bytes; 2030 dma_addr_t *dma_address; 2031 struct dma_fence *fence; 2032 uint64_t src_addr, dst_addr; 2033 uint64_t flags; 2034 int r; 2035 2036 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 2037 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 2038 2039 *addr = adev->gmc.gart_start; 2040 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 2041 AMDGPU_GPU_PAGE_SIZE; 2042 2043 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 2044 num_bytes = num_pages * 8; 2045 2046 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 2047 if (r) 2048 return r; 2049 2050 src_addr = num_dw * 4; 2051 src_addr += job->ibs[0].gpu_addr; 2052 2053 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 2054 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 2055 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 2056 dst_addr, num_bytes); 2057 2058 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2059 WARN_ON(job->ibs[0].length_dw > num_dw); 2060 2061 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2062 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2063 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2064 &job->ibs[0].ptr[num_dw]); 2065 if (r) 2066 goto error_free; 2067 2068 r = amdgpu_job_submit(job, &adev->mman.entity, 2069 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2070 if (r) 2071 goto error_free; 2072 2073 dma_fence_put(fence); 2074 2075 return r; 2076 2077 error_free: 2078 amdgpu_job_free(job); 2079 return r; 2080 } 2081 2082 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2083 uint64_t dst_offset, uint32_t byte_count, 2084 struct dma_resv *resv, 2085 struct dma_fence **fence, bool direct_submit, 2086 bool vm_needs_flush) 2087 { 2088 struct amdgpu_device *adev = ring->adev; 2089 struct amdgpu_job *job; 2090 2091 uint32_t max_bytes; 2092 unsigned num_loops, num_dw; 2093 unsigned i; 2094 int r; 2095 2096 if (direct_submit && !ring->sched.ready) { 2097 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2098 return -EINVAL; 2099 } 2100 2101 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2102 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2103 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2104 2105 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2106 if (r) 2107 return r; 2108 2109 if (vm_needs_flush) { 2110 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2111 job->vm_needs_flush = true; 2112 } 2113 if (resv) { 2114 r = amdgpu_sync_resv(adev, &job->sync, resv, 2115 AMDGPU_SYNC_ALWAYS, 2116 AMDGPU_FENCE_OWNER_UNDEFINED); 2117 if (r) { 2118 DRM_ERROR("sync failed (%d).\n", r); 2119 goto error_free; 2120 } 2121 } 2122 2123 for (i = 0; i < num_loops; i++) { 2124 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2125 2126 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2127 dst_offset, cur_size_in_bytes); 2128 2129 src_offset += cur_size_in_bytes; 2130 dst_offset += cur_size_in_bytes; 2131 byte_count -= cur_size_in_bytes; 2132 } 2133 2134 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2135 WARN_ON(job->ibs[0].length_dw > num_dw); 2136 if (direct_submit) 2137 r = amdgpu_job_submit_direct(job, ring, fence); 2138 else 2139 r = amdgpu_job_submit(job, &adev->mman.entity, 2140 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2141 if (r) 2142 goto error_free; 2143 2144 return r; 2145 2146 error_free: 2147 amdgpu_job_free(job); 2148 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2149 return r; 2150 } 2151 2152 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2153 uint32_t src_data, 2154 struct dma_resv *resv, 2155 struct dma_fence **fence) 2156 { 2157 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2158 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2159 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2160 2161 struct drm_mm_node *mm_node; 2162 unsigned long num_pages; 2163 unsigned int num_loops, num_dw; 2164 2165 struct amdgpu_job *job; 2166 int r; 2167 2168 if (!adev->mman.buffer_funcs_enabled) { 2169 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2170 return -EINVAL; 2171 } 2172 2173 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2174 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2175 if (r) 2176 return r; 2177 } 2178 2179 num_pages = bo->tbo.num_pages; 2180 mm_node = bo->tbo.mem.mm_node; 2181 num_loops = 0; 2182 while (num_pages) { 2183 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2184 2185 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2186 num_pages -= mm_node->size; 2187 ++mm_node; 2188 } 2189 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2190 2191 /* for IB padding */ 2192 num_dw += 64; 2193 2194 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2195 if (r) 2196 return r; 2197 2198 if (resv) { 2199 r = amdgpu_sync_resv(adev, &job->sync, resv, 2200 AMDGPU_SYNC_ALWAYS, 2201 AMDGPU_FENCE_OWNER_UNDEFINED); 2202 if (r) { 2203 DRM_ERROR("sync failed (%d).\n", r); 2204 goto error_free; 2205 } 2206 } 2207 2208 num_pages = bo->tbo.num_pages; 2209 mm_node = bo->tbo.mem.mm_node; 2210 2211 while (num_pages) { 2212 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2213 uint64_t dst_addr; 2214 2215 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2216 while (byte_count) { 2217 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2218 max_bytes); 2219 2220 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2221 dst_addr, cur_size_in_bytes); 2222 2223 dst_addr += cur_size_in_bytes; 2224 byte_count -= cur_size_in_bytes; 2225 } 2226 2227 num_pages -= mm_node->size; 2228 ++mm_node; 2229 } 2230 2231 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2232 WARN_ON(job->ibs[0].length_dw > num_dw); 2233 r = amdgpu_job_submit(job, &adev->mman.entity, 2234 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2235 if (r) 2236 goto error_free; 2237 2238 return 0; 2239 2240 error_free: 2241 amdgpu_job_free(job); 2242 return r; 2243 } 2244 2245 #if defined(CONFIG_DEBUG_FS) 2246 2247 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2248 { 2249 struct drm_info_node *node = (struct drm_info_node *)m->private; 2250 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2251 struct drm_device *dev = node->minor->dev; 2252 struct amdgpu_device *adev = dev->dev_private; 2253 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2254 struct drm_printer p = drm_seq_file_printer(m); 2255 2256 man->func->debug(man, &p); 2257 return 0; 2258 } 2259 2260 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2261 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2262 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2263 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2264 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2265 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2266 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2267 #ifdef CONFIG_SWIOTLB 2268 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2269 #endif 2270 }; 2271 2272 /** 2273 * amdgpu_ttm_vram_read - Linear read access to VRAM 2274 * 2275 * Accesses VRAM via MMIO for debugging purposes. 2276 */ 2277 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2278 size_t size, loff_t *pos) 2279 { 2280 struct amdgpu_device *adev = file_inode(f)->i_private; 2281 ssize_t result = 0; 2282 2283 if (size & 0x3 || *pos & 0x3) 2284 return -EINVAL; 2285 2286 if (*pos >= adev->gmc.mc_vram_size) 2287 return -ENXIO; 2288 2289 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2290 while (size) { 2291 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2292 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2293 2294 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2295 if (copy_to_user(buf, value, bytes)) 2296 return -EFAULT; 2297 2298 result += bytes; 2299 buf += bytes; 2300 *pos += bytes; 2301 size -= bytes; 2302 } 2303 2304 return result; 2305 } 2306 2307 /** 2308 * amdgpu_ttm_vram_write - Linear write access to VRAM 2309 * 2310 * Accesses VRAM via MMIO for debugging purposes. 2311 */ 2312 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2313 size_t size, loff_t *pos) 2314 { 2315 struct amdgpu_device *adev = file_inode(f)->i_private; 2316 ssize_t result = 0; 2317 int r; 2318 2319 if (size & 0x3 || *pos & 0x3) 2320 return -EINVAL; 2321 2322 if (*pos >= adev->gmc.mc_vram_size) 2323 return -ENXIO; 2324 2325 while (size) { 2326 unsigned long flags; 2327 uint32_t value; 2328 2329 if (*pos >= adev->gmc.mc_vram_size) 2330 return result; 2331 2332 r = get_user(value, (uint32_t *)buf); 2333 if (r) 2334 return r; 2335 2336 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2337 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2338 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2339 WREG32_NO_KIQ(mmMM_DATA, value); 2340 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2341 2342 result += 4; 2343 buf += 4; 2344 *pos += 4; 2345 size -= 4; 2346 } 2347 2348 return result; 2349 } 2350 2351 static const struct file_operations amdgpu_ttm_vram_fops = { 2352 .owner = THIS_MODULE, 2353 .read = amdgpu_ttm_vram_read, 2354 .write = amdgpu_ttm_vram_write, 2355 .llseek = default_llseek, 2356 }; 2357 2358 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2359 2360 /** 2361 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2362 */ 2363 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2364 size_t size, loff_t *pos) 2365 { 2366 struct amdgpu_device *adev = file_inode(f)->i_private; 2367 ssize_t result = 0; 2368 int r; 2369 2370 while (size) { 2371 loff_t p = *pos / PAGE_SIZE; 2372 unsigned off = *pos & ~PAGE_MASK; 2373 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2374 struct page *page; 2375 void *ptr; 2376 2377 if (p >= adev->gart.num_cpu_pages) 2378 return result; 2379 2380 page = adev->gart.pages[p]; 2381 if (page) { 2382 ptr = kmap(page); 2383 ptr += off; 2384 2385 r = copy_to_user(buf, ptr, cur_size); 2386 kunmap(adev->gart.pages[p]); 2387 } else 2388 r = clear_user(buf, cur_size); 2389 2390 if (r) 2391 return -EFAULT; 2392 2393 result += cur_size; 2394 buf += cur_size; 2395 *pos += cur_size; 2396 size -= cur_size; 2397 } 2398 2399 return result; 2400 } 2401 2402 static const struct file_operations amdgpu_ttm_gtt_fops = { 2403 .owner = THIS_MODULE, 2404 .read = amdgpu_ttm_gtt_read, 2405 .llseek = default_llseek 2406 }; 2407 2408 #endif 2409 2410 /** 2411 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2412 * 2413 * This function is used to read memory that has been mapped to the 2414 * GPU and the known addresses are not physical addresses but instead 2415 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2416 */ 2417 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2418 size_t size, loff_t *pos) 2419 { 2420 struct amdgpu_device *adev = file_inode(f)->i_private; 2421 struct iommu_domain *dom; 2422 ssize_t result = 0; 2423 int r; 2424 2425 /* retrieve the IOMMU domain if any for this device */ 2426 dom = iommu_get_domain_for_dev(adev->dev); 2427 2428 while (size) { 2429 phys_addr_t addr = *pos & PAGE_MASK; 2430 loff_t off = *pos & ~PAGE_MASK; 2431 size_t bytes = PAGE_SIZE - off; 2432 unsigned long pfn; 2433 struct page *p; 2434 void *ptr; 2435 2436 bytes = bytes < size ? bytes : size; 2437 2438 /* Translate the bus address to a physical address. If 2439 * the domain is NULL it means there is no IOMMU active 2440 * and the address translation is the identity 2441 */ 2442 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2443 2444 pfn = addr >> PAGE_SHIFT; 2445 if (!pfn_valid(pfn)) 2446 return -EPERM; 2447 2448 p = pfn_to_page(pfn); 2449 if (p->mapping != adev->mman.bdev.dev_mapping) 2450 return -EPERM; 2451 2452 ptr = kmap(p); 2453 r = copy_to_user(buf, ptr + off, bytes); 2454 kunmap(p); 2455 if (r) 2456 return -EFAULT; 2457 2458 size -= bytes; 2459 *pos += bytes; 2460 result += bytes; 2461 } 2462 2463 return result; 2464 } 2465 2466 /** 2467 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2468 * 2469 * This function is used to write memory that has been mapped to the 2470 * GPU and the known addresses are not physical addresses but instead 2471 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2472 */ 2473 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2474 size_t size, loff_t *pos) 2475 { 2476 struct amdgpu_device *adev = file_inode(f)->i_private; 2477 struct iommu_domain *dom; 2478 ssize_t result = 0; 2479 int r; 2480 2481 dom = iommu_get_domain_for_dev(adev->dev); 2482 2483 while (size) { 2484 phys_addr_t addr = *pos & PAGE_MASK; 2485 loff_t off = *pos & ~PAGE_MASK; 2486 size_t bytes = PAGE_SIZE - off; 2487 unsigned long pfn; 2488 struct page *p; 2489 void *ptr; 2490 2491 bytes = bytes < size ? bytes : size; 2492 2493 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2494 2495 pfn = addr >> PAGE_SHIFT; 2496 if (!pfn_valid(pfn)) 2497 return -EPERM; 2498 2499 p = pfn_to_page(pfn); 2500 if (p->mapping != adev->mman.bdev.dev_mapping) 2501 return -EPERM; 2502 2503 ptr = kmap(p); 2504 r = copy_from_user(ptr + off, buf, bytes); 2505 kunmap(p); 2506 if (r) 2507 return -EFAULT; 2508 2509 size -= bytes; 2510 *pos += bytes; 2511 result += bytes; 2512 } 2513 2514 return result; 2515 } 2516 2517 static const struct file_operations amdgpu_ttm_iomem_fops = { 2518 .owner = THIS_MODULE, 2519 .read = amdgpu_iomem_read, 2520 .write = amdgpu_iomem_write, 2521 .llseek = default_llseek 2522 }; 2523 2524 static const struct { 2525 char *name; 2526 const struct file_operations *fops; 2527 int domain; 2528 } ttm_debugfs_entries[] = { 2529 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2530 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2531 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2532 #endif 2533 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2534 }; 2535 2536 #endif 2537 2538 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2539 { 2540 #if defined(CONFIG_DEBUG_FS) 2541 unsigned count; 2542 2543 struct drm_minor *minor = adev->ddev->primary; 2544 struct dentry *ent, *root = minor->debugfs_root; 2545 2546 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2547 ent = debugfs_create_file( 2548 ttm_debugfs_entries[count].name, 2549 S_IFREG | S_IRUGO, root, 2550 adev, 2551 ttm_debugfs_entries[count].fops); 2552 if (IS_ERR(ent)) 2553 return PTR_ERR(ent); 2554 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2555 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2556 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2557 i_size_write(ent->d_inode, adev->gmc.gart_size); 2558 adev->mman.debugfs_entries[count] = ent; 2559 } 2560 2561 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2562 2563 #ifdef CONFIG_SWIOTLB 2564 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2565 --count; 2566 #endif 2567 2568 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2569 #else 2570 return 0; 2571 #endif 2572 } 2573