1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51 
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64 
65 MODULE_IMPORT_NS(DMA_BUF);
66 
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
68 
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 				   struct ttm_tt *ttm,
71 				   struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73 				      struct ttm_tt *ttm);
74 
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 				    unsigned int type,
77 				    uint64_t size_in_page)
78 {
79 	return ttm_range_man_init(&adev->mman.bdev, type,
80 				  false, size_in_page);
81 }
82 
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 				struct ttm_placement *placement)
93 {
94 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 	struct amdgpu_bo *abo;
96 	static const struct ttm_place placements = {
97 		.fpfn = 0,
98 		.lpfn = 0,
99 		.mem_type = TTM_PL_SYSTEM,
100 		.flags = 0
101 	};
102 
103 	/* Don't handle scatter gather BOs */
104 	if (bo->type == ttm_bo_type_sg) {
105 		placement->num_placement = 0;
106 		placement->num_busy_placement = 0;
107 		return;
108 	}
109 
110 	/* Object isn't an AMDGPU object so ignore */
111 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 		placement->placement = &placements;
113 		placement->busy_placement = &placements;
114 		placement->num_placement = 1;
115 		placement->num_busy_placement = 1;
116 		return;
117 	}
118 
119 	abo = ttm_to_amdgpu_bo(bo);
120 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
121 		placement->num_placement = 0;
122 		placement->num_busy_placement = 0;
123 		return;
124 	}
125 
126 	switch (bo->resource->mem_type) {
127 	case AMDGPU_PL_GDS:
128 	case AMDGPU_PL_GWS:
129 	case AMDGPU_PL_OA:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @num_pages: number of pages to map
175  * @window: which GART window to use
176  * @ring: DMA ring to use for the copy
177  * @tmz: if we should setup a TMZ enabled mapping
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned num_pages, unsigned window,
187 				 struct amdgpu_ring *ring, bool tmz,
188 				 uint64_t *addr)
189 {
190 	struct amdgpu_device *adev = ring->adev;
191 	struct amdgpu_job *job;
192 	unsigned num_dw, num_bytes;
193 	struct dma_fence *fence;
194 	uint64_t src_addr, dst_addr;
195 	void *cpu_addr;
196 	uint64_t flags;
197 	unsigned int i;
198 	int r;
199 
200 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
201 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
202 	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
203 
204 	/* Map only what can't be accessed directly */
205 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 			mm_cur->start;
208 		return 0;
209 	}
210 
211 	*addr = adev->gmc.gart_start;
212 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
213 		AMDGPU_GPU_PAGE_SIZE;
214 	*addr += mm_cur->start & ~PAGE_MASK;
215 
216 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
217 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
218 
219 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
220 				     AMDGPU_IB_POOL_DELAYED, &job);
221 	if (r)
222 		return r;
223 
224 	src_addr = num_dw * 4;
225 	src_addr += job->ibs[0].gpu_addr;
226 
227 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
228 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
229 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
230 				dst_addr, num_bytes, false);
231 
232 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
233 	WARN_ON(job->ibs[0].length_dw > num_dw);
234 
235 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
236 	if (tmz)
237 		flags |= AMDGPU_PTE_TMZ;
238 
239 	cpu_addr = &job->ibs[0].ptr[num_dw];
240 
241 	if (mem->mem_type == TTM_PL_TT) {
242 		dma_addr_t *dma_addr;
243 
244 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
245 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
246 	} else {
247 		dma_addr_t dma_address;
248 
249 		dma_address = mm_cur->start;
250 		dma_address += adev->vm_manager.vram_base_offset;
251 
252 		for (i = 0; i < num_pages; ++i) {
253 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
254 					flags, cpu_addr);
255 			dma_address += PAGE_SIZE;
256 		}
257 	}
258 
259 	r = amdgpu_job_submit(job, &adev->mman.entity,
260 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
261 	if (r)
262 		goto error_free;
263 
264 	dma_fence_put(fence);
265 
266 	return r;
267 
268 error_free:
269 	amdgpu_job_free(job);
270 	return r;
271 }
272 
273 /**
274  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
275  * @adev: amdgpu device
276  * @src: buffer/address where to read from
277  * @dst: buffer/address where to write to
278  * @size: number of bytes to copy
279  * @tmz: if a secure copy should be used
280  * @resv: resv object to sync to
281  * @f: Returns the last fence if multiple jobs are submitted.
282  *
283  * The function copies @size bytes from {src->mem + src->offset} to
284  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
285  * move and different for a BO to BO copy.
286  *
287  */
288 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
289 			       const struct amdgpu_copy_mem *src,
290 			       const struct amdgpu_copy_mem *dst,
291 			       uint64_t size, bool tmz,
292 			       struct dma_resv *resv,
293 			       struct dma_fence **f)
294 {
295 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
296 					AMDGPU_GPU_PAGE_SIZE);
297 
298 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
299 	struct amdgpu_res_cursor src_mm, dst_mm;
300 	struct dma_fence *fence = NULL;
301 	int r = 0;
302 
303 	if (!adev->mman.buffer_funcs_enabled) {
304 		DRM_ERROR("Trying to move memory with ring turned off.\n");
305 		return -EINVAL;
306 	}
307 
308 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
309 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
310 
311 	mutex_lock(&adev->mman.gtt_window_lock);
312 	while (src_mm.remaining) {
313 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
314 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
315 		struct dma_fence *next;
316 		uint32_t cur_size;
317 		uint64_t from, to;
318 
319 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
320 		 * begins at an offset, then adjust the size accordingly
321 		 */
322 		cur_size = max(src_page_offset, dst_page_offset);
323 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
324 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
325 
326 		/* Map src to window 0 and dst to window 1. */
327 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
328 					  PFN_UP(cur_size + src_page_offset),
329 					  0, ring, tmz, &from);
330 		if (r)
331 			goto error;
332 
333 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
334 					  PFN_UP(cur_size + dst_page_offset),
335 					  1, ring, tmz, &to);
336 		if (r)
337 			goto error;
338 
339 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
340 				       resv, &next, false, true, tmz);
341 		if (r)
342 			goto error;
343 
344 		dma_fence_put(fence);
345 		fence = next;
346 
347 		amdgpu_res_next(&src_mm, cur_size);
348 		amdgpu_res_next(&dst_mm, cur_size);
349 	}
350 error:
351 	mutex_unlock(&adev->mman.gtt_window_lock);
352 	if (f)
353 		*f = dma_fence_get(fence);
354 	dma_fence_put(fence);
355 	return r;
356 }
357 
358 /*
359  * amdgpu_move_blit - Copy an entire buffer to another buffer
360  *
361  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
362  * help move buffers to and from VRAM.
363  */
364 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
365 			    bool evict,
366 			    struct ttm_resource *new_mem,
367 			    struct ttm_resource *old_mem)
368 {
369 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
370 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
371 	struct amdgpu_copy_mem src, dst;
372 	struct dma_fence *fence = NULL;
373 	int r;
374 
375 	src.bo = bo;
376 	dst.bo = bo;
377 	src.mem = old_mem;
378 	dst.mem = new_mem;
379 	src.offset = 0;
380 	dst.offset = 0;
381 
382 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
383 				       new_mem->num_pages << PAGE_SHIFT,
384 				       amdgpu_bo_encrypted(abo),
385 				       bo->base.resv, &fence);
386 	if (r)
387 		goto error;
388 
389 	/* clear the space being freed */
390 	if (old_mem->mem_type == TTM_PL_VRAM &&
391 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
392 		struct dma_fence *wipe_fence = NULL;
393 
394 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
395 				       NULL, &wipe_fence);
396 		if (r) {
397 			goto error;
398 		} else if (wipe_fence) {
399 			dma_fence_put(fence);
400 			fence = wipe_fence;
401 		}
402 	}
403 
404 	/* Always block for VM page tables before committing the new location */
405 	if (bo->type == ttm_bo_type_kernel)
406 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407 	else
408 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409 	dma_fence_put(fence);
410 	return r;
411 
412 error:
413 	if (fence)
414 		dma_fence_wait(fence, false);
415 	dma_fence_put(fence);
416 	return r;
417 }
418 
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425 			       struct ttm_resource *mem)
426 {
427 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428 	struct amdgpu_res_cursor cursor;
429 
430 	if (mem->mem_type == TTM_PL_SYSTEM ||
431 	    mem->mem_type == TTM_PL_TT)
432 		return true;
433 	if (mem->mem_type != TTM_PL_VRAM)
434 		return false;
435 
436 	amdgpu_res_first(mem, 0, mem_size, &cursor);
437 
438 	/* ttm_resource_ioremap only supports contiguous memory */
439 	if (cursor.size != mem_size)
440 		return false;
441 
442 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
443 }
444 
445 /*
446  * amdgpu_bo_move - Move a buffer object to a new memory location
447  *
448  * Called by ttm_bo_handle_move_mem()
449  */
450 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
451 			  struct ttm_operation_ctx *ctx,
452 			  struct ttm_resource *new_mem,
453 			  struct ttm_place *hop)
454 {
455 	struct amdgpu_device *adev;
456 	struct amdgpu_bo *abo;
457 	struct ttm_resource *old_mem = bo->resource;
458 	int r;
459 
460 	if (new_mem->mem_type == TTM_PL_TT ||
461 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
462 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
463 		if (r)
464 			return r;
465 	}
466 
467 	/* Can't move a pinned BO */
468 	abo = ttm_to_amdgpu_bo(bo);
469 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
470 		return -EINVAL;
471 
472 	adev = amdgpu_ttm_adev(bo->bdev);
473 
474 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
475 		ttm_bo_move_null(bo, new_mem);
476 		goto out;
477 	}
478 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
479 	    (new_mem->mem_type == TTM_PL_TT ||
480 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
481 		ttm_bo_move_null(bo, new_mem);
482 		goto out;
483 	}
484 	if ((old_mem->mem_type == TTM_PL_TT ||
485 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
486 	    new_mem->mem_type == TTM_PL_SYSTEM) {
487 		r = ttm_bo_wait_ctx(bo, ctx);
488 		if (r)
489 			return r;
490 
491 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
492 		ttm_resource_free(bo, &bo->resource);
493 		ttm_bo_assign_mem(bo, new_mem);
494 		goto out;
495 	}
496 
497 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
498 	    old_mem->mem_type == AMDGPU_PL_GWS ||
499 	    old_mem->mem_type == AMDGPU_PL_OA ||
500 	    new_mem->mem_type == AMDGPU_PL_GDS ||
501 	    new_mem->mem_type == AMDGPU_PL_GWS ||
502 	    new_mem->mem_type == AMDGPU_PL_OA) {
503 		/* Nothing to save here */
504 		ttm_bo_move_null(bo, new_mem);
505 		goto out;
506 	}
507 
508 	if (bo->type == ttm_bo_type_device &&
509 	    new_mem->mem_type == TTM_PL_VRAM &&
510 	    old_mem->mem_type != TTM_PL_VRAM) {
511 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
512 		 * accesses the BO after it's moved.
513 		 */
514 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
515 	}
516 
517 	if (adev->mman.buffer_funcs_enabled) {
518 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
519 		      new_mem->mem_type == TTM_PL_VRAM) ||
520 		     (old_mem->mem_type == TTM_PL_VRAM &&
521 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
522 			hop->fpfn = 0;
523 			hop->lpfn = 0;
524 			hop->mem_type = TTM_PL_TT;
525 			hop->flags = TTM_PL_FLAG_TEMPORARY;
526 			return -EMULTIHOP;
527 		}
528 
529 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
530 	} else {
531 		r = -ENODEV;
532 	}
533 
534 	if (r) {
535 		/* Check that all memory is CPU accessible */
536 		if (!amdgpu_mem_visible(adev, old_mem) ||
537 		    !amdgpu_mem_visible(adev, new_mem)) {
538 			pr_err("Move buffer fallback to memcpy unavailable\n");
539 			return r;
540 		}
541 
542 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
543 		if (r)
544 			return r;
545 	}
546 
547 out:
548 	/* update statistics */
549 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
550 	amdgpu_bo_move_notify(bo, evict, new_mem);
551 	return 0;
552 }
553 
554 /*
555  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
556  *
557  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
558  */
559 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
560 				     struct ttm_resource *mem)
561 {
562 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
563 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
564 
565 	switch (mem->mem_type) {
566 	case TTM_PL_SYSTEM:
567 		/* system memory */
568 		return 0;
569 	case TTM_PL_TT:
570 	case AMDGPU_PL_PREEMPT:
571 		break;
572 	case TTM_PL_VRAM:
573 		mem->bus.offset = mem->start << PAGE_SHIFT;
574 		/* check if it's visible */
575 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
576 			return -EINVAL;
577 
578 		if (adev->mman.aper_base_kaddr &&
579 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
580 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
581 					mem->bus.offset;
582 
583 		mem->bus.offset += adev->gmc.aper_base;
584 		mem->bus.is_iomem = true;
585 		break;
586 	default:
587 		return -EINVAL;
588 	}
589 	return 0;
590 }
591 
592 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
593 					   unsigned long page_offset)
594 {
595 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
596 	struct amdgpu_res_cursor cursor;
597 
598 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
599 			 &cursor);
600 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
601 }
602 
603 /**
604  * amdgpu_ttm_domain_start - Returns GPU start address
605  * @adev: amdgpu device object
606  * @type: type of the memory
607  *
608  * Returns:
609  * GPU start address of a memory domain
610  */
611 
612 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
613 {
614 	switch (type) {
615 	case TTM_PL_TT:
616 		return adev->gmc.gart_start;
617 	case TTM_PL_VRAM:
618 		return adev->gmc.vram_start;
619 	}
620 
621 	return 0;
622 }
623 
624 /*
625  * TTM backend functions.
626  */
627 struct amdgpu_ttm_tt {
628 	struct ttm_tt	ttm;
629 	struct drm_gem_object	*gobj;
630 	u64			offset;
631 	uint64_t		userptr;
632 	struct task_struct	*usertask;
633 	uint32_t		userflags;
634 	bool			bound;
635 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
636 	struct hmm_range	*range;
637 #endif
638 };
639 
640 #ifdef CONFIG_DRM_AMDGPU_USERPTR
641 /*
642  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
643  * memory and start HMM tracking CPU page table update
644  *
645  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
646  * once afterwards to stop HMM tracking
647  */
648 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
649 {
650 	struct ttm_tt *ttm = bo->tbo.ttm;
651 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
652 	unsigned long start = gtt->userptr;
653 	struct vm_area_struct *vma;
654 	struct mm_struct *mm;
655 	bool readonly;
656 	int r = 0;
657 
658 	mm = bo->notifier.mm;
659 	if (unlikely(!mm)) {
660 		DRM_DEBUG_DRIVER("BO is not registered?\n");
661 		return -EFAULT;
662 	}
663 
664 	/* Another get_user_pages is running at the same time?? */
665 	if (WARN_ON(gtt->range))
666 		return -EFAULT;
667 
668 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
669 		return -ESRCH;
670 
671 	mmap_read_lock(mm);
672 	vma = vma_lookup(mm, start);
673 	if (unlikely(!vma)) {
674 		r = -EFAULT;
675 		goto out_unlock;
676 	}
677 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
678 		vma->vm_file)) {
679 		r = -EPERM;
680 		goto out_unlock;
681 	}
682 
683 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
684 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
685 				       ttm->num_pages, &gtt->range, readonly,
686 				       true, NULL);
687 out_unlock:
688 	mmap_read_unlock(mm);
689 	if (r)
690 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
691 
692 	mmput(mm);
693 
694 	return r;
695 }
696 
697 /*
698  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
699  * Check if the pages backing this ttm range have been invalidated
700  *
701  * Returns: true if pages are still valid
702  */
703 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
704 {
705 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
706 	bool r = false;
707 
708 	if (!gtt || !gtt->userptr)
709 		return false;
710 
711 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
712 		gtt->userptr, ttm->num_pages);
713 
714 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
715 		"No user pages to check\n");
716 
717 	if (gtt->range) {
718 		/*
719 		 * FIXME: Must always hold notifier_lock for this, and must
720 		 * not ignore the return code.
721 		 */
722 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
723 		gtt->range = NULL;
724 	}
725 
726 	return !r;
727 }
728 #endif
729 
730 /*
731  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
732  *
733  * Called by amdgpu_cs_list_validate(). This creates the page list
734  * that backs user memory and will ultimately be mapped into the device
735  * address space.
736  */
737 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
738 {
739 	unsigned long i;
740 
741 	for (i = 0; i < ttm->num_pages; ++i)
742 		ttm->pages[i] = pages ? pages[i] : NULL;
743 }
744 
745 /*
746  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
747  *
748  * Called by amdgpu_ttm_backend_bind()
749  **/
750 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
751 				     struct ttm_tt *ttm)
752 {
753 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
754 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
755 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
756 	enum dma_data_direction direction = write ?
757 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
758 	int r;
759 
760 	/* Allocate an SG array and squash pages into it */
761 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
762 				      (u64)ttm->num_pages << PAGE_SHIFT,
763 				      GFP_KERNEL);
764 	if (r)
765 		goto release_sg;
766 
767 	/* Map SG to device */
768 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
769 	if (r)
770 		goto release_sg;
771 
772 	/* convert SG to linear array of pages and dma addresses */
773 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
774 				       ttm->num_pages);
775 
776 	return 0;
777 
778 release_sg:
779 	kfree(ttm->sg);
780 	ttm->sg = NULL;
781 	return r;
782 }
783 
784 /*
785  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
786  */
787 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
788 					struct ttm_tt *ttm)
789 {
790 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
791 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
792 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
793 	enum dma_data_direction direction = write ?
794 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
795 
796 	/* double check that we don't free the table twice */
797 	if (!ttm->sg || !ttm->sg->sgl)
798 		return;
799 
800 	/* unmap the pages mapped to the device */
801 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
802 	sg_free_table(ttm->sg);
803 
804 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
805 	if (gtt->range) {
806 		unsigned long i;
807 
808 		for (i = 0; i < ttm->num_pages; i++) {
809 			if (ttm->pages[i] !=
810 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
811 				break;
812 		}
813 
814 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
815 	}
816 #endif
817 }
818 
819 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
820 				 struct ttm_buffer_object *tbo,
821 				 uint64_t flags)
822 {
823 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
824 	struct ttm_tt *ttm = tbo->ttm;
825 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
826 
827 	if (amdgpu_bo_encrypted(abo))
828 		flags |= AMDGPU_PTE_TMZ;
829 
830 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
831 		uint64_t page_idx = 1;
832 
833 		amdgpu_gart_bind(adev, gtt->offset, page_idx,
834 				 gtt->ttm.dma_address, flags);
835 
836 		/* The memory type of the first page defaults to UC. Now
837 		 * modify the memory type to NC from the second page of
838 		 * the BO onward.
839 		 */
840 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
841 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
842 
843 		amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
844 				 ttm->num_pages - page_idx,
845 				 &(gtt->ttm.dma_address[page_idx]), flags);
846 	} else {
847 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
848 				 gtt->ttm.dma_address, flags);
849 	}
850 }
851 
852 /*
853  * amdgpu_ttm_backend_bind - Bind GTT memory
854  *
855  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
856  * This handles binding GTT memory to the device address space.
857  */
858 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
859 				   struct ttm_tt *ttm,
860 				   struct ttm_resource *bo_mem)
861 {
862 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
863 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
864 	uint64_t flags;
865 	int r;
866 
867 	if (!bo_mem)
868 		return -EINVAL;
869 
870 	if (gtt->bound)
871 		return 0;
872 
873 	if (gtt->userptr) {
874 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
875 		if (r) {
876 			DRM_ERROR("failed to pin userptr\n");
877 			return r;
878 		}
879 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
880 		if (!ttm->sg) {
881 			struct dma_buf_attachment *attach;
882 			struct sg_table *sgt;
883 
884 			attach = gtt->gobj->import_attach;
885 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
886 			if (IS_ERR(sgt))
887 				return PTR_ERR(sgt);
888 
889 			ttm->sg = sgt;
890 		}
891 
892 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
893 					       ttm->num_pages);
894 	}
895 
896 	if (!ttm->num_pages) {
897 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
898 		     ttm->num_pages, bo_mem, ttm);
899 	}
900 
901 	if (bo_mem->mem_type != TTM_PL_TT ||
902 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
903 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
904 		return 0;
905 	}
906 
907 	/* compute PTE flags relevant to this BO memory */
908 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
909 
910 	/* bind pages into GART page tables */
911 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
912 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
913 			 gtt->ttm.dma_address, flags);
914 	gtt->bound = true;
915 	return 0;
916 }
917 
918 /*
919  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
920  * through AGP or GART aperture.
921  *
922  * If bo is accessible through AGP aperture, then use AGP aperture
923  * to access bo; otherwise allocate logical space in GART aperture
924  * and map bo to GART aperture.
925  */
926 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
927 {
928 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
929 	struct ttm_operation_ctx ctx = { false, false };
930 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
931 	struct ttm_placement placement;
932 	struct ttm_place placements;
933 	struct ttm_resource *tmp;
934 	uint64_t addr, flags;
935 	int r;
936 
937 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
938 		return 0;
939 
940 	addr = amdgpu_gmc_agp_addr(bo);
941 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
942 		bo->resource->start = addr >> PAGE_SHIFT;
943 		return 0;
944 	}
945 
946 	/* allocate GART space */
947 	placement.num_placement = 1;
948 	placement.placement = &placements;
949 	placement.num_busy_placement = 1;
950 	placement.busy_placement = &placements;
951 	placements.fpfn = 0;
952 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
953 	placements.mem_type = TTM_PL_TT;
954 	placements.flags = bo->resource->placement;
955 
956 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
957 	if (unlikely(r))
958 		return r;
959 
960 	/* compute PTE flags for this buffer object */
961 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
962 
963 	/* Bind pages */
964 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
965 	amdgpu_ttm_gart_bind(adev, bo, flags);
966 	amdgpu_gart_invalidate_tlb(adev);
967 	ttm_resource_free(bo, &bo->resource);
968 	ttm_bo_assign_mem(bo, tmp);
969 
970 	return 0;
971 }
972 
973 /*
974  * amdgpu_ttm_recover_gart - Rebind GTT pages
975  *
976  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
977  * rebind GTT pages during a GPU reset.
978  */
979 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
980 {
981 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
982 	uint64_t flags;
983 
984 	if (!tbo->ttm)
985 		return;
986 
987 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
988 	amdgpu_ttm_gart_bind(adev, tbo, flags);
989 }
990 
991 /*
992  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
993  *
994  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
995  * ttm_tt_destroy().
996  */
997 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
998 				      struct ttm_tt *ttm)
999 {
1000 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1001 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1002 
1003 	/* if the pages have userptr pinning then clear that first */
1004 	if (gtt->userptr) {
1005 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1006 	} else if (ttm->sg && gtt->gobj->import_attach) {
1007 		struct dma_buf_attachment *attach;
1008 
1009 		attach = gtt->gobj->import_attach;
1010 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1011 		ttm->sg = NULL;
1012 	}
1013 
1014 	if (!gtt->bound)
1015 		return;
1016 
1017 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1018 		return;
1019 
1020 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1021 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1022 	gtt->bound = false;
1023 }
1024 
1025 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1026 				       struct ttm_tt *ttm)
1027 {
1028 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1029 
1030 	if (gtt->usertask)
1031 		put_task_struct(gtt->usertask);
1032 
1033 	ttm_tt_fini(&gtt->ttm);
1034 	kfree(gtt);
1035 }
1036 
1037 /**
1038  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1039  *
1040  * @bo: The buffer object to create a GTT ttm_tt object around
1041  * @page_flags: Page flags to be added to the ttm_tt object
1042  *
1043  * Called by ttm_tt_create().
1044  */
1045 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1046 					   uint32_t page_flags)
1047 {
1048 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1049 	struct amdgpu_ttm_tt *gtt;
1050 	enum ttm_caching caching;
1051 
1052 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1053 	if (gtt == NULL) {
1054 		return NULL;
1055 	}
1056 	gtt->gobj = &bo->base;
1057 
1058 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1059 		caching = ttm_write_combined;
1060 	else
1061 		caching = ttm_cached;
1062 
1063 	/* allocate space for the uninitialized page entries */
1064 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1065 		kfree(gtt);
1066 		return NULL;
1067 	}
1068 	return &gtt->ttm;
1069 }
1070 
1071 /*
1072  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1073  *
1074  * Map the pages of a ttm_tt object to an address space visible
1075  * to the underlying device.
1076  */
1077 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1078 				  struct ttm_tt *ttm,
1079 				  struct ttm_operation_ctx *ctx)
1080 {
1081 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1082 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1083 	pgoff_t i;
1084 	int ret;
1085 
1086 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1087 	if (gtt->userptr) {
1088 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1089 		if (!ttm->sg)
1090 			return -ENOMEM;
1091 		return 0;
1092 	}
1093 
1094 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1095 		return 0;
1096 
1097 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1098 	if (ret)
1099 		return ret;
1100 
1101 	for (i = 0; i < ttm->num_pages; ++i)
1102 		ttm->pages[i]->mapping = bdev->dev_mapping;
1103 
1104 	return 0;
1105 }
1106 
1107 /*
1108  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1109  *
1110  * Unmaps pages of a ttm_tt object from the device address space and
1111  * unpopulates the page array backing it.
1112  */
1113 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1114 				     struct ttm_tt *ttm)
1115 {
1116 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1117 	struct amdgpu_device *adev;
1118 	pgoff_t i;
1119 
1120 	amdgpu_ttm_backend_unbind(bdev, ttm);
1121 
1122 	if (gtt->userptr) {
1123 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1124 		kfree(ttm->sg);
1125 		ttm->sg = NULL;
1126 		return;
1127 	}
1128 
1129 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1130 		return;
1131 
1132 	for (i = 0; i < ttm->num_pages; ++i)
1133 		ttm->pages[i]->mapping = NULL;
1134 
1135 	adev = amdgpu_ttm_adev(bdev);
1136 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1137 }
1138 
1139 /**
1140  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1141  * task
1142  *
1143  * @bo: The ttm_buffer_object to bind this userptr to
1144  * @addr:  The address in the current tasks VM space to use
1145  * @flags: Requirements of userptr object.
1146  *
1147  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1148  * to current task
1149  */
1150 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1151 			      uint64_t addr, uint32_t flags)
1152 {
1153 	struct amdgpu_ttm_tt *gtt;
1154 
1155 	if (!bo->ttm) {
1156 		/* TODO: We want a separate TTM object type for userptrs */
1157 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1158 		if (bo->ttm == NULL)
1159 			return -ENOMEM;
1160 	}
1161 
1162 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1163 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1164 
1165 	gtt = (void *)bo->ttm;
1166 	gtt->userptr = addr;
1167 	gtt->userflags = flags;
1168 
1169 	if (gtt->usertask)
1170 		put_task_struct(gtt->usertask);
1171 	gtt->usertask = current->group_leader;
1172 	get_task_struct(gtt->usertask);
1173 
1174 	return 0;
1175 }
1176 
1177 /*
1178  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1179  */
1180 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1181 {
1182 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1183 
1184 	if (gtt == NULL)
1185 		return NULL;
1186 
1187 	if (gtt->usertask == NULL)
1188 		return NULL;
1189 
1190 	return gtt->usertask->mm;
1191 }
1192 
1193 /*
1194  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1195  * address range for the current task.
1196  *
1197  */
1198 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1199 				  unsigned long end, unsigned long *userptr)
1200 {
1201 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1202 	unsigned long size;
1203 
1204 	if (gtt == NULL || !gtt->userptr)
1205 		return false;
1206 
1207 	/* Return false if no part of the ttm_tt object lies within
1208 	 * the range
1209 	 */
1210 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1211 	if (gtt->userptr > end || gtt->userptr + size <= start)
1212 		return false;
1213 
1214 	if (userptr)
1215 		*userptr = gtt->userptr;
1216 	return true;
1217 }
1218 
1219 /*
1220  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1221  */
1222 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1223 {
1224 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1225 
1226 	if (gtt == NULL || !gtt->userptr)
1227 		return false;
1228 
1229 	return true;
1230 }
1231 
1232 /*
1233  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1234  */
1235 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1236 {
1237 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1238 
1239 	if (gtt == NULL)
1240 		return false;
1241 
1242 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1243 }
1244 
1245 /**
1246  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1247  *
1248  * @ttm: The ttm_tt object to compute the flags for
1249  * @mem: The memory registry backing this ttm_tt object
1250  *
1251  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1252  */
1253 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1254 {
1255 	uint64_t flags = 0;
1256 
1257 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1258 		flags |= AMDGPU_PTE_VALID;
1259 
1260 	if (mem && (mem->mem_type == TTM_PL_TT ||
1261 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1262 		flags |= AMDGPU_PTE_SYSTEM;
1263 
1264 		if (ttm->caching == ttm_cached)
1265 			flags |= AMDGPU_PTE_SNOOPED;
1266 	}
1267 
1268 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1269 			mem->bus.caching == ttm_cached)
1270 		flags |= AMDGPU_PTE_SNOOPED;
1271 
1272 	return flags;
1273 }
1274 
1275 /**
1276  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1277  *
1278  * @adev: amdgpu_device pointer
1279  * @ttm: The ttm_tt object to compute the flags for
1280  * @mem: The memory registry backing this ttm_tt object
1281  *
1282  * Figure out the flags to use for a VM PTE (Page Table Entry).
1283  */
1284 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1285 				 struct ttm_resource *mem)
1286 {
1287 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1288 
1289 	flags |= adev->gart.gart_pte_flags;
1290 	flags |= AMDGPU_PTE_READABLE;
1291 
1292 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1293 		flags |= AMDGPU_PTE_WRITEABLE;
1294 
1295 	return flags;
1296 }
1297 
1298 /*
1299  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1300  * object.
1301  *
1302  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1303  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1304  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1305  * used to clean out a memory space.
1306  */
1307 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1308 					    const struct ttm_place *place)
1309 {
1310 	unsigned long num_pages = bo->resource->num_pages;
1311 	struct dma_resv_iter resv_cursor;
1312 	struct amdgpu_res_cursor cursor;
1313 	struct dma_fence *f;
1314 
1315 	/* Swapout? */
1316 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1317 		return true;
1318 
1319 	if (bo->type == ttm_bo_type_kernel &&
1320 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1321 		return false;
1322 
1323 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1324 	 * If true, then return false as any KFD process needs all its BOs to
1325 	 * be resident to run successfully
1326 	 */
1327 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv, true, f) {
1328 		if (amdkfd_fence_check_mm(f, current->mm))
1329 			return false;
1330 	}
1331 
1332 	switch (bo->resource->mem_type) {
1333 	case AMDGPU_PL_PREEMPT:
1334 		/* Preemptible BOs don't own system resources managed by the
1335 		 * driver (pages, VRAM, GART space). They point to resources
1336 		 * owned by someone else (e.g. pageable memory in user mode
1337 		 * or a DMABuf). They are used in a preemptible context so we
1338 		 * can guarantee no deadlocks and good QoS in case of MMU
1339 		 * notifiers or DMABuf move notifiers from the resource owner.
1340 		 */
1341 		return false;
1342 	case TTM_PL_TT:
1343 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1344 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1345 			return false;
1346 		return true;
1347 
1348 	case TTM_PL_VRAM:
1349 		/* Check each drm MM node individually */
1350 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1351 				 &cursor);
1352 		while (cursor.remaining) {
1353 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1354 			    && !(place->lpfn &&
1355 				 place->lpfn <= PFN_DOWN(cursor.start)))
1356 				return true;
1357 
1358 			amdgpu_res_next(&cursor, cursor.size);
1359 		}
1360 		return false;
1361 
1362 	default:
1363 		break;
1364 	}
1365 
1366 	return ttm_bo_eviction_valuable(bo, place);
1367 }
1368 
1369 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1370 				      void *buf, size_t size, bool write)
1371 {
1372 	while (size) {
1373 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1374 		uint64_t bytes = 4 - (pos & 0x3);
1375 		uint32_t shift = (pos & 0x3) * 8;
1376 		uint32_t mask = 0xffffffff << shift;
1377 		uint32_t value = 0;
1378 
1379 		if (size < bytes) {
1380 			mask &= 0xffffffff >> (bytes - size) * 8;
1381 			bytes = size;
1382 		}
1383 
1384 		if (mask != 0xffffffff) {
1385 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1386 			if (write) {
1387 				value &= ~mask;
1388 				value |= (*(uint32_t *)buf << shift) & mask;
1389 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1390 			} else {
1391 				value = (value & mask) >> shift;
1392 				memcpy(buf, &value, bytes);
1393 			}
1394 		} else {
1395 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1396 		}
1397 
1398 		pos += bytes;
1399 		buf += bytes;
1400 		size -= bytes;
1401 	}
1402 }
1403 
1404 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1405 					unsigned long offset, void *buf, int len, int write)
1406 {
1407 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1408 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1409 	struct amdgpu_res_cursor src_mm;
1410 	struct amdgpu_job *job;
1411 	struct dma_fence *fence;
1412 	uint64_t src_addr, dst_addr;
1413 	unsigned int num_dw;
1414 	int r, idx;
1415 
1416 	if (len != PAGE_SIZE)
1417 		return -EINVAL;
1418 
1419 	if (!adev->mman.sdma_access_ptr)
1420 		return -EACCES;
1421 
1422 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1423 		return -ENODEV;
1424 
1425 	if (write)
1426 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1427 
1428 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1429 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1430 	if (r)
1431 		goto out;
1432 
1433 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1434 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1435 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1436 	if (write)
1437 		swap(src_addr, dst_addr);
1438 
1439 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1440 
1441 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1442 	WARN_ON(job->ibs[0].length_dw > num_dw);
1443 
1444 	r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1445 	if (r) {
1446 		amdgpu_job_free(job);
1447 		goto out;
1448 	}
1449 
1450 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1451 		r = -ETIMEDOUT;
1452 	dma_fence_put(fence);
1453 
1454 	if (!(r || write))
1455 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1456 out:
1457 	drm_dev_exit(idx);
1458 	return r;
1459 }
1460 
1461 /**
1462  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1463  *
1464  * @bo:  The buffer object to read/write
1465  * @offset:  Offset into buffer object
1466  * @buf:  Secondary buffer to write/read from
1467  * @len: Length in bytes of access
1468  * @write:  true if writing
1469  *
1470  * This is used to access VRAM that backs a buffer object via MMIO
1471  * access for debugging purposes.
1472  */
1473 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1474 				    unsigned long offset, void *buf, int len,
1475 				    int write)
1476 {
1477 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1478 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1479 	struct amdgpu_res_cursor cursor;
1480 	int ret = 0;
1481 
1482 	if (bo->resource->mem_type != TTM_PL_VRAM)
1483 		return -EIO;
1484 
1485 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1486 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1487 		return len;
1488 
1489 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1490 	while (cursor.remaining) {
1491 		size_t count, size = cursor.size;
1492 		loff_t pos = cursor.start;
1493 
1494 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1495 		size -= count;
1496 		if (size) {
1497 			/* using MM to access rest vram and handle un-aligned address */
1498 			pos += count;
1499 			buf += count;
1500 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1501 		}
1502 
1503 		ret += cursor.size;
1504 		buf += cursor.size;
1505 		amdgpu_res_next(&cursor, cursor.size);
1506 	}
1507 
1508 	return ret;
1509 }
1510 
1511 static void
1512 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1513 {
1514 	amdgpu_bo_move_notify(bo, false, NULL);
1515 }
1516 
1517 static struct ttm_device_funcs amdgpu_bo_driver = {
1518 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1519 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1520 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1521 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1522 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1523 	.evict_flags = &amdgpu_evict_flags,
1524 	.move = &amdgpu_bo_move,
1525 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1526 	.release_notify = &amdgpu_bo_release_notify,
1527 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1528 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1529 	.access_memory = &amdgpu_ttm_access_memory,
1530 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1531 };
1532 
1533 /*
1534  * Firmware Reservation functions
1535  */
1536 /**
1537  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1538  *
1539  * @adev: amdgpu_device pointer
1540  *
1541  * free fw reserved vram if it has been reserved.
1542  */
1543 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1544 {
1545 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1546 		NULL, &adev->mman.fw_vram_usage_va);
1547 }
1548 
1549 /**
1550  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1551  *
1552  * @adev: amdgpu_device pointer
1553  *
1554  * create bo vram reservation from fw.
1555  */
1556 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1557 {
1558 	uint64_t vram_size = adev->gmc.visible_vram_size;
1559 
1560 	adev->mman.fw_vram_usage_va = NULL;
1561 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1562 
1563 	if (adev->mman.fw_vram_usage_size == 0 ||
1564 	    adev->mman.fw_vram_usage_size > vram_size)
1565 		return 0;
1566 
1567 	return amdgpu_bo_create_kernel_at(adev,
1568 					  adev->mman.fw_vram_usage_start_offset,
1569 					  adev->mman.fw_vram_usage_size,
1570 					  AMDGPU_GEM_DOMAIN_VRAM,
1571 					  &adev->mman.fw_vram_usage_reserved_bo,
1572 					  &adev->mman.fw_vram_usage_va);
1573 }
1574 
1575 /*
1576  * Memoy training reservation functions
1577  */
1578 
1579 /**
1580  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1581  *
1582  * @adev: amdgpu_device pointer
1583  *
1584  * free memory training reserved vram if it has been reserved.
1585  */
1586 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1587 {
1588 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1589 
1590 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1591 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1592 	ctx->c2p_bo = NULL;
1593 
1594 	return 0;
1595 }
1596 
1597 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1598 {
1599 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1600 
1601 	memset(ctx, 0, sizeof(*ctx));
1602 
1603 	ctx->c2p_train_data_offset =
1604 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1605 	ctx->p2c_train_data_offset =
1606 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1607 	ctx->train_data_size =
1608 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1609 
1610 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1611 			ctx->train_data_size,
1612 			ctx->p2c_train_data_offset,
1613 			ctx->c2p_train_data_offset);
1614 }
1615 
1616 /*
1617  * reserve TMR memory at the top of VRAM which holds
1618  * IP Discovery data and is protected by PSP.
1619  */
1620 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1621 {
1622 	int ret;
1623 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1624 	bool mem_train_support = false;
1625 
1626 	if (!amdgpu_sriov_vf(adev)) {
1627 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1628 			mem_train_support = true;
1629 		else
1630 			DRM_DEBUG("memory training does not support!\n");
1631 	}
1632 
1633 	/*
1634 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1635 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1636 	 *
1637 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1638 	 * discovery data and G6 memory training data respectively
1639 	 */
1640 	adev->mman.discovery_tmr_size =
1641 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1642 	if (!adev->mman.discovery_tmr_size)
1643 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1644 
1645 	if (mem_train_support) {
1646 		/* reserve vram for mem train according to TMR location */
1647 		amdgpu_ttm_training_data_block_init(adev);
1648 		ret = amdgpu_bo_create_kernel_at(adev,
1649 					 ctx->c2p_train_data_offset,
1650 					 ctx->train_data_size,
1651 					 AMDGPU_GEM_DOMAIN_VRAM,
1652 					 &ctx->c2p_bo,
1653 					 NULL);
1654 		if (ret) {
1655 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1656 			amdgpu_ttm_training_reserve_vram_fini(adev);
1657 			return ret;
1658 		}
1659 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1660 	}
1661 
1662 	ret = amdgpu_bo_create_kernel_at(adev,
1663 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1664 				adev->mman.discovery_tmr_size,
1665 				AMDGPU_GEM_DOMAIN_VRAM,
1666 				&adev->mman.discovery_memory,
1667 				NULL);
1668 	if (ret) {
1669 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1670 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1671 		return ret;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 /*
1678  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1679  * gtt/vram related fields.
1680  *
1681  * This initializes all of the memory space pools that the TTM layer
1682  * will need such as the GTT space (system memory mapped to the device),
1683  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1684  * can be mapped per VMID.
1685  */
1686 int amdgpu_ttm_init(struct amdgpu_device *adev)
1687 {
1688 	uint64_t gtt_size;
1689 	int r;
1690 	u64 vis_vram_limit;
1691 
1692 	mutex_init(&adev->mman.gtt_window_lock);
1693 
1694 	/* No others user of address space so set it to 0 */
1695 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1696 			       adev_to_drm(adev)->anon_inode->i_mapping,
1697 			       adev_to_drm(adev)->vma_offset_manager,
1698 			       adev->need_swiotlb,
1699 			       dma_addressing_limited(adev->dev));
1700 	if (r) {
1701 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1702 		return r;
1703 	}
1704 	adev->mman.initialized = true;
1705 
1706 	/* Initialize VRAM pool with all of VRAM divided into pages */
1707 	r = amdgpu_vram_mgr_init(adev);
1708 	if (r) {
1709 		DRM_ERROR("Failed initializing VRAM heap.\n");
1710 		return r;
1711 	}
1712 
1713 	/* Reduce size of CPU-visible VRAM if requested */
1714 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1715 	if (amdgpu_vis_vram_limit > 0 &&
1716 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1717 		adev->gmc.visible_vram_size = vis_vram_limit;
1718 
1719 	/* Change the size here instead of the init above so only lpfn is affected */
1720 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1721 #ifdef CONFIG_64BIT
1722 #ifdef CONFIG_X86
1723 	if (adev->gmc.xgmi.connected_to_cpu)
1724 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1725 				adev->gmc.visible_vram_size);
1726 
1727 	else
1728 #endif
1729 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1730 				adev->gmc.visible_vram_size);
1731 #endif
1732 
1733 	/*
1734 	 *The reserved vram for firmware must be pinned to the specified
1735 	 *place on the VRAM, so reserve it early.
1736 	 */
1737 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1738 	if (r) {
1739 		return r;
1740 	}
1741 
1742 	/*
1743 	 * only NAVI10 and onwards ASIC support for IP discovery.
1744 	 * If IP discovery enabled, a block of memory should be
1745 	 * reserved for IP discovey.
1746 	 */
1747 	if (adev->mman.discovery_bin) {
1748 		r = amdgpu_ttm_reserve_tmr(adev);
1749 		if (r)
1750 			return r;
1751 	}
1752 
1753 	/* allocate memory as required for VGA
1754 	 * This is used for VGA emulation and pre-OS scanout buffers to
1755 	 * avoid display artifacts while transitioning between pre-OS
1756 	 * and driver.  */
1757 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1758 				       AMDGPU_GEM_DOMAIN_VRAM,
1759 				       &adev->mman.stolen_vga_memory,
1760 				       NULL);
1761 	if (r)
1762 		return r;
1763 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1764 				       adev->mman.stolen_extended_size,
1765 				       AMDGPU_GEM_DOMAIN_VRAM,
1766 				       &adev->mman.stolen_extended_memory,
1767 				       NULL);
1768 	if (r)
1769 		return r;
1770 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1771 				       adev->mman.stolen_reserved_size,
1772 				       AMDGPU_GEM_DOMAIN_VRAM,
1773 				       &adev->mman.stolen_reserved_memory,
1774 				       NULL);
1775 	if (r)
1776 		return r;
1777 
1778 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1779 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1780 
1781 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1782 	 * or whatever the user passed on module init */
1783 	if (amdgpu_gtt_size == -1) {
1784 		struct sysinfo si;
1785 
1786 		si_meminfo(&si);
1787 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1788 			       adev->gmc.mc_vram_size),
1789 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1790 	}
1791 	else
1792 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1793 
1794 	/* Initialize GTT memory pool */
1795 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1796 	if (r) {
1797 		DRM_ERROR("Failed initializing GTT heap.\n");
1798 		return r;
1799 	}
1800 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1801 		 (unsigned)(gtt_size / (1024 * 1024)));
1802 
1803 	/* Initialize preemptible memory pool */
1804 	r = amdgpu_preempt_mgr_init(adev);
1805 	if (r) {
1806 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1807 		return r;
1808 	}
1809 
1810 	/* Initialize various on-chip memory pools */
1811 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1812 	if (r) {
1813 		DRM_ERROR("Failed initializing GDS heap.\n");
1814 		return r;
1815 	}
1816 
1817 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1818 	if (r) {
1819 		DRM_ERROR("Failed initializing gws heap.\n");
1820 		return r;
1821 	}
1822 
1823 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1824 	if (r) {
1825 		DRM_ERROR("Failed initializing oa heap.\n");
1826 		return r;
1827 	}
1828 
1829 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1830 				AMDGPU_GEM_DOMAIN_GTT,
1831 				&adev->mman.sdma_access_bo, NULL,
1832 				&adev->mman.sdma_access_ptr))
1833 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1834 
1835 	return 0;
1836 }
1837 
1838 /*
1839  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1840  */
1841 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1842 {
1843 	int idx;
1844 	if (!adev->mman.initialized)
1845 		return;
1846 
1847 	amdgpu_ttm_training_reserve_vram_fini(adev);
1848 	/* return the stolen vga memory back to VRAM */
1849 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1850 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1851 	/* return the IP Discovery TMR memory back to VRAM */
1852 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1853 	if (adev->mman.stolen_reserved_size)
1854 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1855 				      NULL, NULL);
1856 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1857 					&adev->mman.sdma_access_ptr);
1858 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1859 
1860 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1861 
1862 		if (adev->mman.aper_base_kaddr)
1863 			iounmap(adev->mman.aper_base_kaddr);
1864 		adev->mman.aper_base_kaddr = NULL;
1865 
1866 		drm_dev_exit(idx);
1867 	}
1868 
1869 	amdgpu_vram_mgr_fini(adev);
1870 	amdgpu_gtt_mgr_fini(adev);
1871 	amdgpu_preempt_mgr_fini(adev);
1872 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1873 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1874 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1875 	ttm_device_fini(&adev->mman.bdev);
1876 	adev->mman.initialized = false;
1877 	DRM_INFO("amdgpu: ttm finalized\n");
1878 }
1879 
1880 /**
1881  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1882  *
1883  * @adev: amdgpu_device pointer
1884  * @enable: true when we can use buffer functions.
1885  *
1886  * Enable/disable use of buffer functions during suspend/resume. This should
1887  * only be called at bootup or when userspace isn't running.
1888  */
1889 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1890 {
1891 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1892 	uint64_t size;
1893 	int r;
1894 
1895 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1896 	    adev->mman.buffer_funcs_enabled == enable)
1897 		return;
1898 
1899 	if (enable) {
1900 		struct amdgpu_ring *ring;
1901 		struct drm_gpu_scheduler *sched;
1902 
1903 		ring = adev->mman.buffer_funcs_ring;
1904 		sched = &ring->sched;
1905 		r = drm_sched_entity_init(&adev->mman.entity,
1906 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1907 					  1, NULL);
1908 		if (r) {
1909 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1910 				  r);
1911 			return;
1912 		}
1913 	} else {
1914 		drm_sched_entity_destroy(&adev->mman.entity);
1915 		dma_fence_put(man->move);
1916 		man->move = NULL;
1917 	}
1918 
1919 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1920 	if (enable)
1921 		size = adev->gmc.real_vram_size;
1922 	else
1923 		size = adev->gmc.visible_vram_size;
1924 	man->size = size >> PAGE_SHIFT;
1925 	adev->mman.buffer_funcs_enabled = enable;
1926 }
1927 
1928 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1929 		       uint64_t dst_offset, uint32_t byte_count,
1930 		       struct dma_resv *resv,
1931 		       struct dma_fence **fence, bool direct_submit,
1932 		       bool vm_needs_flush, bool tmz)
1933 {
1934 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1935 		AMDGPU_IB_POOL_DELAYED;
1936 	struct amdgpu_device *adev = ring->adev;
1937 	struct amdgpu_job *job;
1938 
1939 	uint32_t max_bytes;
1940 	unsigned num_loops, num_dw;
1941 	unsigned i;
1942 	int r;
1943 
1944 	if (direct_submit && !ring->sched.ready) {
1945 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1946 		return -EINVAL;
1947 	}
1948 
1949 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1950 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1951 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1952 
1953 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1954 	if (r)
1955 		return r;
1956 
1957 	if (vm_needs_flush) {
1958 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1959 					adev->gmc.pdb0_bo : adev->gart.bo);
1960 		job->vm_needs_flush = true;
1961 	}
1962 	if (resv) {
1963 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1964 				     AMDGPU_SYNC_ALWAYS,
1965 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1966 		if (r) {
1967 			DRM_ERROR("sync failed (%d).\n", r);
1968 			goto error_free;
1969 		}
1970 	}
1971 
1972 	for (i = 0; i < num_loops; i++) {
1973 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1974 
1975 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1976 					dst_offset, cur_size_in_bytes, tmz);
1977 
1978 		src_offset += cur_size_in_bytes;
1979 		dst_offset += cur_size_in_bytes;
1980 		byte_count -= cur_size_in_bytes;
1981 	}
1982 
1983 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1984 	WARN_ON(job->ibs[0].length_dw > num_dw);
1985 	if (direct_submit)
1986 		r = amdgpu_job_submit_direct(job, ring, fence);
1987 	else
1988 		r = amdgpu_job_submit(job, &adev->mman.entity,
1989 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1990 	if (r)
1991 		goto error_free;
1992 
1993 	return r;
1994 
1995 error_free:
1996 	amdgpu_job_free(job);
1997 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1998 	return r;
1999 }
2000 
2001 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2002 		       uint32_t src_data,
2003 		       struct dma_resv *resv,
2004 		       struct dma_fence **fence)
2005 {
2006 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2007 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2008 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2009 
2010 	struct amdgpu_res_cursor cursor;
2011 	unsigned int num_loops, num_dw;
2012 	uint64_t num_bytes;
2013 
2014 	struct amdgpu_job *job;
2015 	int r;
2016 
2017 	if (!adev->mman.buffer_funcs_enabled) {
2018 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2019 		return -EINVAL;
2020 	}
2021 
2022 	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
2023 		DRM_ERROR("Trying to clear preemptible memory.\n");
2024 		return -EINVAL;
2025 	}
2026 
2027 	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
2028 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2029 		if (r)
2030 			return r;
2031 	}
2032 
2033 	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
2034 	num_loops = 0;
2035 
2036 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2037 	while (cursor.remaining) {
2038 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
2039 		amdgpu_res_next(&cursor, cursor.size);
2040 	}
2041 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2042 
2043 	/* for IB padding */
2044 	num_dw += 64;
2045 
2046 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2047 				     &job);
2048 	if (r)
2049 		return r;
2050 
2051 	if (resv) {
2052 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2053 				     AMDGPU_SYNC_ALWAYS,
2054 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2055 		if (r) {
2056 			DRM_ERROR("sync failed (%d).\n", r);
2057 			goto error_free;
2058 		}
2059 	}
2060 
2061 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2062 	while (cursor.remaining) {
2063 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2064 		uint64_t dst_addr = cursor.start;
2065 
2066 		dst_addr += amdgpu_ttm_domain_start(adev,
2067 						    bo->tbo.resource->mem_type);
2068 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2069 					cur_size);
2070 
2071 		amdgpu_res_next(&cursor, cur_size);
2072 	}
2073 
2074 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2075 	WARN_ON(job->ibs[0].length_dw > num_dw);
2076 	r = amdgpu_job_submit(job, &adev->mman.entity,
2077 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2078 	if (r)
2079 		goto error_free;
2080 
2081 	return 0;
2082 
2083 error_free:
2084 	amdgpu_job_free(job);
2085 	return r;
2086 }
2087 
2088 /**
2089  * amdgpu_ttm_evict_resources - evict memory buffers
2090  * @adev: amdgpu device object
2091  * @mem_type: evicted BO's memory type
2092  *
2093  * Evicts all @mem_type buffers on the lru list of the memory type.
2094  *
2095  * Returns:
2096  * 0 for success or a negative error code on failure.
2097  */
2098 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2099 {
2100 	struct ttm_resource_manager *man;
2101 
2102 	switch (mem_type) {
2103 	case TTM_PL_VRAM:
2104 	case TTM_PL_TT:
2105 	case AMDGPU_PL_GWS:
2106 	case AMDGPU_PL_GDS:
2107 	case AMDGPU_PL_OA:
2108 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2109 		break;
2110 	default:
2111 		DRM_ERROR("Trying to evict invalid memory type\n");
2112 		return -EINVAL;
2113 	}
2114 
2115 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2116 }
2117 
2118 #if defined(CONFIG_DEBUG_FS)
2119 
2120 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2121 {
2122 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2123 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2124 							    TTM_PL_VRAM);
2125 	struct drm_printer p = drm_seq_file_printer(m);
2126 
2127 	man->func->debug(man, &p);
2128 	return 0;
2129 }
2130 
2131 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2132 {
2133 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2134 
2135 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2136 }
2137 
2138 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2139 {
2140 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2141 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2142 							    TTM_PL_TT);
2143 	struct drm_printer p = drm_seq_file_printer(m);
2144 
2145 	man->func->debug(man, &p);
2146 	return 0;
2147 }
2148 
2149 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2150 {
2151 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2152 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2153 							    AMDGPU_PL_GDS);
2154 	struct drm_printer p = drm_seq_file_printer(m);
2155 
2156 	man->func->debug(man, &p);
2157 	return 0;
2158 }
2159 
2160 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2161 {
2162 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2163 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2164 							    AMDGPU_PL_GWS);
2165 	struct drm_printer p = drm_seq_file_printer(m);
2166 
2167 	man->func->debug(man, &p);
2168 	return 0;
2169 }
2170 
2171 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2172 {
2173 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2174 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2175 							    AMDGPU_PL_OA);
2176 	struct drm_printer p = drm_seq_file_printer(m);
2177 
2178 	man->func->debug(man, &p);
2179 	return 0;
2180 }
2181 
2182 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2183 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2184 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2185 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2186 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2187 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2188 
2189 /*
2190  * amdgpu_ttm_vram_read - Linear read access to VRAM
2191  *
2192  * Accesses VRAM via MMIO for debugging purposes.
2193  */
2194 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2195 				    size_t size, loff_t *pos)
2196 {
2197 	struct amdgpu_device *adev = file_inode(f)->i_private;
2198 	ssize_t result = 0;
2199 
2200 	if (size & 0x3 || *pos & 0x3)
2201 		return -EINVAL;
2202 
2203 	if (*pos >= adev->gmc.mc_vram_size)
2204 		return -ENXIO;
2205 
2206 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2207 	while (size) {
2208 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2209 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2210 
2211 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2212 		if (copy_to_user(buf, value, bytes))
2213 			return -EFAULT;
2214 
2215 		result += bytes;
2216 		buf += bytes;
2217 		*pos += bytes;
2218 		size -= bytes;
2219 	}
2220 
2221 	return result;
2222 }
2223 
2224 /*
2225  * amdgpu_ttm_vram_write - Linear write access to VRAM
2226  *
2227  * Accesses VRAM via MMIO for debugging purposes.
2228  */
2229 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2230 				    size_t size, loff_t *pos)
2231 {
2232 	struct amdgpu_device *adev = file_inode(f)->i_private;
2233 	ssize_t result = 0;
2234 	int r;
2235 
2236 	if (size & 0x3 || *pos & 0x3)
2237 		return -EINVAL;
2238 
2239 	if (*pos >= adev->gmc.mc_vram_size)
2240 		return -ENXIO;
2241 
2242 	while (size) {
2243 		uint32_t value;
2244 
2245 		if (*pos >= adev->gmc.mc_vram_size)
2246 			return result;
2247 
2248 		r = get_user(value, (uint32_t *)buf);
2249 		if (r)
2250 			return r;
2251 
2252 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2253 
2254 		result += 4;
2255 		buf += 4;
2256 		*pos += 4;
2257 		size -= 4;
2258 	}
2259 
2260 	return result;
2261 }
2262 
2263 static const struct file_operations amdgpu_ttm_vram_fops = {
2264 	.owner = THIS_MODULE,
2265 	.read = amdgpu_ttm_vram_read,
2266 	.write = amdgpu_ttm_vram_write,
2267 	.llseek = default_llseek,
2268 };
2269 
2270 /*
2271  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2272  *
2273  * This function is used to read memory that has been mapped to the
2274  * GPU and the known addresses are not physical addresses but instead
2275  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2276  */
2277 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2278 				 size_t size, loff_t *pos)
2279 {
2280 	struct amdgpu_device *adev = file_inode(f)->i_private;
2281 	struct iommu_domain *dom;
2282 	ssize_t result = 0;
2283 	int r;
2284 
2285 	/* retrieve the IOMMU domain if any for this device */
2286 	dom = iommu_get_domain_for_dev(adev->dev);
2287 
2288 	while (size) {
2289 		phys_addr_t addr = *pos & PAGE_MASK;
2290 		loff_t off = *pos & ~PAGE_MASK;
2291 		size_t bytes = PAGE_SIZE - off;
2292 		unsigned long pfn;
2293 		struct page *p;
2294 		void *ptr;
2295 
2296 		bytes = bytes < size ? bytes : size;
2297 
2298 		/* Translate the bus address to a physical address.  If
2299 		 * the domain is NULL it means there is no IOMMU active
2300 		 * and the address translation is the identity
2301 		 */
2302 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2303 
2304 		pfn = addr >> PAGE_SHIFT;
2305 		if (!pfn_valid(pfn))
2306 			return -EPERM;
2307 
2308 		p = pfn_to_page(pfn);
2309 		if (p->mapping != adev->mman.bdev.dev_mapping)
2310 			return -EPERM;
2311 
2312 		ptr = kmap(p);
2313 		r = copy_to_user(buf, ptr + off, bytes);
2314 		kunmap(p);
2315 		if (r)
2316 			return -EFAULT;
2317 
2318 		size -= bytes;
2319 		*pos += bytes;
2320 		result += bytes;
2321 	}
2322 
2323 	return result;
2324 }
2325 
2326 /*
2327  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2328  *
2329  * This function is used to write memory that has been mapped to the
2330  * GPU and the known addresses are not physical addresses but instead
2331  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2332  */
2333 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2334 				 size_t size, loff_t *pos)
2335 {
2336 	struct amdgpu_device *adev = file_inode(f)->i_private;
2337 	struct iommu_domain *dom;
2338 	ssize_t result = 0;
2339 	int r;
2340 
2341 	dom = iommu_get_domain_for_dev(adev->dev);
2342 
2343 	while (size) {
2344 		phys_addr_t addr = *pos & PAGE_MASK;
2345 		loff_t off = *pos & ~PAGE_MASK;
2346 		size_t bytes = PAGE_SIZE - off;
2347 		unsigned long pfn;
2348 		struct page *p;
2349 		void *ptr;
2350 
2351 		bytes = bytes < size ? bytes : size;
2352 
2353 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2354 
2355 		pfn = addr >> PAGE_SHIFT;
2356 		if (!pfn_valid(pfn))
2357 			return -EPERM;
2358 
2359 		p = pfn_to_page(pfn);
2360 		if (p->mapping != adev->mman.bdev.dev_mapping)
2361 			return -EPERM;
2362 
2363 		ptr = kmap(p);
2364 		r = copy_from_user(ptr + off, buf, bytes);
2365 		kunmap(p);
2366 		if (r)
2367 			return -EFAULT;
2368 
2369 		size -= bytes;
2370 		*pos += bytes;
2371 		result += bytes;
2372 	}
2373 
2374 	return result;
2375 }
2376 
2377 static const struct file_operations amdgpu_ttm_iomem_fops = {
2378 	.owner = THIS_MODULE,
2379 	.read = amdgpu_iomem_read,
2380 	.write = amdgpu_iomem_write,
2381 	.llseek = default_llseek
2382 };
2383 
2384 #endif
2385 
2386 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2387 {
2388 #if defined(CONFIG_DEBUG_FS)
2389 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2390 	struct dentry *root = minor->debugfs_root;
2391 
2392 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2393 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2394 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2395 			    &amdgpu_ttm_iomem_fops);
2396 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2397 			    &amdgpu_mm_vram_table_fops);
2398 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2399 			    &amdgpu_mm_tt_table_fops);
2400 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2401 			    &amdgpu_mm_gds_table_fops);
2402 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2403 			    &amdgpu_mm_gws_table_fops);
2404 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2405 			    &amdgpu_mm_oa_table_fops);
2406 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2407 			    &amdgpu_ttm_page_pool_fops);
2408 #endif
2409 }
2410