1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 
43 #include <drm/ttm/ttm_bo_api.h>
44 #include <drm/ttm/ttm_bo_driver.h>
45 #include <drm/ttm/ttm_placement.h>
46 #include <drm/ttm/ttm_module.h>
47 #include <drm/ttm/ttm_page_alloc.h>
48 
49 #include <drm/drm_debugfs.h>
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "bif/bif_4_1_d.h"
58 
59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
60 			     struct ttm_mem_reg *mem, unsigned num_pages,
61 			     uint64_t offset, unsigned window,
62 			     struct amdgpu_ring *ring,
63 			     uint64_t *addr);
64 
65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
67 
68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
69 {
70 	return 0;
71 }
72 
73 /**
74  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
75  * memory request.
76  *
77  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
78  * @type: The type of memory requested
79  * @man: The memory type manager for each domain
80  *
81  * This is called by ttm_bo_init_mm() when a buffer object is being
82  * initialized.
83  */
84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
85 				struct ttm_mem_type_manager *man)
86 {
87 	struct amdgpu_device *adev;
88 
89 	adev = amdgpu_ttm_adev(bdev);
90 
91 	switch (type) {
92 	case TTM_PL_SYSTEM:
93 		/* System memory */
94 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
95 		man->available_caching = TTM_PL_MASK_CACHING;
96 		man->default_caching = TTM_PL_FLAG_CACHED;
97 		break;
98 	case TTM_PL_TT:
99 		/* GTT memory  */
100 		man->func = &amdgpu_gtt_mgr_func;
101 		man->gpu_offset = adev->gmc.gart_start;
102 		man->available_caching = TTM_PL_MASK_CACHING;
103 		man->default_caching = TTM_PL_FLAG_CACHED;
104 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
105 		break;
106 	case TTM_PL_VRAM:
107 		/* "On-card" video ram */
108 		man->func = &amdgpu_vram_mgr_func;
109 		man->gpu_offset = adev->gmc.vram_start;
110 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
111 			     TTM_MEMTYPE_FLAG_MAPPABLE;
112 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
113 		man->default_caching = TTM_PL_FLAG_WC;
114 		break;
115 	case AMDGPU_PL_GDS:
116 	case AMDGPU_PL_GWS:
117 	case AMDGPU_PL_OA:
118 		/* On-chip GDS memory*/
119 		man->func = &ttm_bo_manager_func;
120 		man->gpu_offset = 0;
121 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
122 		man->available_caching = TTM_PL_FLAG_UNCACHED;
123 		man->default_caching = TTM_PL_FLAG_UNCACHED;
124 		break;
125 	default:
126 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
127 		return -EINVAL;
128 	}
129 	return 0;
130 }
131 
132 /**
133  * amdgpu_evict_flags - Compute placement flags
134  *
135  * @bo: The buffer object to evict
136  * @placement: Possible destination(s) for evicted BO
137  *
138  * Fill in placement data when ttm_bo_evict() is called
139  */
140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
141 				struct ttm_placement *placement)
142 {
143 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
144 	struct amdgpu_bo *abo;
145 	static const struct ttm_place placements = {
146 		.fpfn = 0,
147 		.lpfn = 0,
148 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
149 	};
150 
151 	/* Don't handle scatter gather BOs */
152 	if (bo->type == ttm_bo_type_sg) {
153 		placement->num_placement = 0;
154 		placement->num_busy_placement = 0;
155 		return;
156 	}
157 
158 	/* Object isn't an AMDGPU object so ignore */
159 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
160 		placement->placement = &placements;
161 		placement->busy_placement = &placements;
162 		placement->num_placement = 1;
163 		placement->num_busy_placement = 1;
164 		return;
165 	}
166 
167 	abo = ttm_to_amdgpu_bo(bo);
168 	switch (bo->mem.mem_type) {
169 	case AMDGPU_PL_GDS:
170 	case AMDGPU_PL_GWS:
171 	case AMDGPU_PL_OA:
172 		placement->num_placement = 0;
173 		placement->num_busy_placement = 0;
174 		return;
175 
176 	case TTM_PL_VRAM:
177 		if (!adev->mman.buffer_funcs_enabled) {
178 			/* Move to system memory */
179 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
180 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
181 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
182 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
183 
184 			/* Try evicting to the CPU inaccessible part of VRAM
185 			 * first, but only set GTT as busy placement, so this
186 			 * BO will be evicted to GTT rather than causing other
187 			 * BOs to be evicted from VRAM
188 			 */
189 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
190 							 AMDGPU_GEM_DOMAIN_GTT);
191 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
192 			abo->placements[0].lpfn = 0;
193 			abo->placement.busy_placement = &abo->placements[1];
194 			abo->placement.num_busy_placement = 1;
195 		} else {
196 			/* Move to GTT memory */
197 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
198 		}
199 		break;
200 	case TTM_PL_TT:
201 	default:
202 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
203 		break;
204 	}
205 	*placement = abo->placement;
206 }
207 
208 /**
209  * amdgpu_verify_access - Verify access for a mmap call
210  *
211  * @bo:	The buffer object to map
212  * @filp: The file pointer from the process performing the mmap
213  *
214  * This is called by ttm_bo_mmap() to verify whether a process
215  * has the right to mmap a BO to their process space.
216  */
217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
218 {
219 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
220 
221 	/*
222 	 * Don't verify access for KFD BOs. They don't have a GEM
223 	 * object associated with them.
224 	 */
225 	if (abo->kfd_bo)
226 		return 0;
227 
228 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
229 		return -EPERM;
230 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
231 					  filp->private_data);
232 }
233 
234 /**
235  * amdgpu_move_null - Register memory for a buffer object
236  *
237  * @bo: The bo to assign the memory to
238  * @new_mem: The memory to be assigned.
239  *
240  * Assign the memory from new_mem to the memory of the buffer object bo.
241  */
242 static void amdgpu_move_null(struct ttm_buffer_object *bo,
243 			     struct ttm_mem_reg *new_mem)
244 {
245 	struct ttm_mem_reg *old_mem = &bo->mem;
246 
247 	BUG_ON(old_mem->mm_node != NULL);
248 	*old_mem = *new_mem;
249 	new_mem->mm_node = NULL;
250 }
251 
252 /**
253  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
254  *
255  * @bo: The bo to assign the memory to.
256  * @mm_node: Memory manager node for drm allocator.
257  * @mem: The region where the bo resides.
258  *
259  */
260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
261 				    struct drm_mm_node *mm_node,
262 				    struct ttm_mem_reg *mem)
263 {
264 	uint64_t addr = 0;
265 
266 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
267 		addr = mm_node->start << PAGE_SHIFT;
268 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
269 	}
270 	return addr;
271 }
272 
273 /**
274  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
275  * @offset. It also modifies the offset to be within the drm_mm_node returned
276  *
277  * @mem: The region where the bo resides.
278  * @offset: The offset that drm_mm_node is used for finding.
279  *
280  */
281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
282 					       unsigned long *offset)
283 {
284 	struct drm_mm_node *mm_node = mem->mm_node;
285 
286 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
287 		*offset -= (mm_node->size << PAGE_SHIFT);
288 		++mm_node;
289 	}
290 	return mm_node;
291 }
292 
293 /**
294  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  * @f: Returns the last fence if multiple jobs are submitted.
301  */
302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
303 			       struct amdgpu_copy_mem *src,
304 			       struct amdgpu_copy_mem *dst,
305 			       uint64_t size,
306 			       struct reservation_object *resv,
307 			       struct dma_fence **f)
308 {
309 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
310 	struct drm_mm_node *src_mm, *dst_mm;
311 	uint64_t src_node_start, dst_node_start, src_node_size,
312 		 dst_node_size, src_page_offset, dst_page_offset;
313 	struct dma_fence *fence = NULL;
314 	int r = 0;
315 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
316 					AMDGPU_GPU_PAGE_SIZE);
317 
318 	if (!adev->mman.buffer_funcs_enabled) {
319 		DRM_ERROR("Trying to move memory with ring turned off.\n");
320 		return -EINVAL;
321 	}
322 
323 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
324 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
325 					     src->offset;
326 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
327 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
328 
329 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
330 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
331 					     dst->offset;
332 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
333 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
334 
335 	mutex_lock(&adev->mman.gtt_window_lock);
336 
337 	while (size) {
338 		unsigned long cur_size;
339 		uint64_t from = src_node_start, to = dst_node_start;
340 		struct dma_fence *next;
341 
342 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343 		 * begins at an offset, then adjust the size accordingly
344 		 */
345 		cur_size = min3(min(src_node_size, dst_node_size), size,
346 				GTT_MAX_BYTES);
347 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
348 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
349 			cur_size -= max(src_page_offset, dst_page_offset);
350 
351 		/* Map only what needs to be accessed. Map src to window 0 and
352 		 * dst to window 1
353 		 */
354 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
355 			r = amdgpu_map_buffer(src->bo, src->mem,
356 					PFN_UP(cur_size + src_page_offset),
357 					src_node_start, 0, ring,
358 					&from);
359 			if (r)
360 				goto error;
361 			/* Adjust the offset because amdgpu_map_buffer returns
362 			 * start of mapped page
363 			 */
364 			from += src_page_offset;
365 		}
366 
367 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
368 			r = amdgpu_map_buffer(dst->bo, dst->mem,
369 					PFN_UP(cur_size + dst_page_offset),
370 					dst_node_start, 1, ring,
371 					&to);
372 			if (r)
373 				goto error;
374 			to += dst_page_offset;
375 		}
376 
377 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
378 				       resv, &next, false, true);
379 		if (r)
380 			goto error;
381 
382 		dma_fence_put(fence);
383 		fence = next;
384 
385 		size -= cur_size;
386 		if (!size)
387 			break;
388 
389 		src_node_size -= cur_size;
390 		if (!src_node_size) {
391 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
392 							     src->mem);
393 			src_node_size = (src_mm->size << PAGE_SHIFT);
394 		} else {
395 			src_node_start += cur_size;
396 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
397 		}
398 		dst_node_size -= cur_size;
399 		if (!dst_node_size) {
400 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
401 							     dst->mem);
402 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
403 		} else {
404 			dst_node_start += cur_size;
405 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
406 		}
407 	}
408 error:
409 	mutex_unlock(&adev->mman.gtt_window_lock);
410 	if (f)
411 		*f = dma_fence_get(fence);
412 	dma_fence_put(fence);
413 	return r;
414 }
415 
416 /**
417  * amdgpu_move_blit - Copy an entire buffer to another buffer
418  *
419  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
420  * help move buffers to and from VRAM.
421  */
422 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
423 			    bool evict, bool no_wait_gpu,
424 			    struct ttm_mem_reg *new_mem,
425 			    struct ttm_mem_reg *old_mem)
426 {
427 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
428 	struct amdgpu_copy_mem src, dst;
429 	struct dma_fence *fence = NULL;
430 	int r;
431 
432 	src.bo = bo;
433 	dst.bo = bo;
434 	src.mem = old_mem;
435 	dst.mem = new_mem;
436 	src.offset = 0;
437 	dst.offset = 0;
438 
439 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
440 				       new_mem->num_pages << PAGE_SHIFT,
441 				       bo->resv, &fence);
442 	if (r)
443 		goto error;
444 
445 	/* Always block for VM page tables before committing the new location */
446 	if (bo->type == ttm_bo_type_kernel)
447 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
448 	else
449 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
450 	dma_fence_put(fence);
451 	return r;
452 
453 error:
454 	if (fence)
455 		dma_fence_wait(fence, false);
456 	dma_fence_put(fence);
457 	return r;
458 }
459 
460 /**
461  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
462  *
463  * Called by amdgpu_bo_move().
464  */
465 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
466 				struct ttm_operation_ctx *ctx,
467 				struct ttm_mem_reg *new_mem)
468 {
469 	struct amdgpu_device *adev;
470 	struct ttm_mem_reg *old_mem = &bo->mem;
471 	struct ttm_mem_reg tmp_mem;
472 	struct ttm_place placements;
473 	struct ttm_placement placement;
474 	int r;
475 
476 	adev = amdgpu_ttm_adev(bo->bdev);
477 
478 	/* create space/pages for new_mem in GTT space */
479 	tmp_mem = *new_mem;
480 	tmp_mem.mm_node = NULL;
481 	placement.num_placement = 1;
482 	placement.placement = &placements;
483 	placement.num_busy_placement = 1;
484 	placement.busy_placement = &placements;
485 	placements.fpfn = 0;
486 	placements.lpfn = 0;
487 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
488 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
489 	if (unlikely(r)) {
490 		return r;
491 	}
492 
493 	/* set caching flags */
494 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
495 	if (unlikely(r)) {
496 		goto out_cleanup;
497 	}
498 
499 	/* Bind the memory to the GTT space */
500 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
501 	if (unlikely(r)) {
502 		goto out_cleanup;
503 	}
504 
505 	/* blit VRAM to GTT */
506 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
507 	if (unlikely(r)) {
508 		goto out_cleanup;
509 	}
510 
511 	/* move BO (in tmp_mem) to new_mem */
512 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
513 out_cleanup:
514 	ttm_bo_mem_put(bo, &tmp_mem);
515 	return r;
516 }
517 
518 /**
519  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
520  *
521  * Called by amdgpu_bo_move().
522  */
523 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
524 				struct ttm_operation_ctx *ctx,
525 				struct ttm_mem_reg *new_mem)
526 {
527 	struct amdgpu_device *adev;
528 	struct ttm_mem_reg *old_mem = &bo->mem;
529 	struct ttm_mem_reg tmp_mem;
530 	struct ttm_placement placement;
531 	struct ttm_place placements;
532 	int r;
533 
534 	adev = amdgpu_ttm_adev(bo->bdev);
535 
536 	/* make space in GTT for old_mem buffer */
537 	tmp_mem = *new_mem;
538 	tmp_mem.mm_node = NULL;
539 	placement.num_placement = 1;
540 	placement.placement = &placements;
541 	placement.num_busy_placement = 1;
542 	placement.busy_placement = &placements;
543 	placements.fpfn = 0;
544 	placements.lpfn = 0;
545 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
546 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
547 	if (unlikely(r)) {
548 		return r;
549 	}
550 
551 	/* move/bind old memory to GTT space */
552 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
553 	if (unlikely(r)) {
554 		goto out_cleanup;
555 	}
556 
557 	/* copy to VRAM */
558 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
559 	if (unlikely(r)) {
560 		goto out_cleanup;
561 	}
562 out_cleanup:
563 	ttm_bo_mem_put(bo, &tmp_mem);
564 	return r;
565 }
566 
567 /**
568  * amdgpu_bo_move - Move a buffer object to a new memory location
569  *
570  * Called by ttm_bo_handle_move_mem()
571  */
572 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
573 			  struct ttm_operation_ctx *ctx,
574 			  struct ttm_mem_reg *new_mem)
575 {
576 	struct amdgpu_device *adev;
577 	struct amdgpu_bo *abo;
578 	struct ttm_mem_reg *old_mem = &bo->mem;
579 	int r;
580 
581 	/* Can't move a pinned BO */
582 	abo = ttm_to_amdgpu_bo(bo);
583 	if (WARN_ON_ONCE(abo->pin_count > 0))
584 		return -EINVAL;
585 
586 	adev = amdgpu_ttm_adev(bo->bdev);
587 
588 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
589 		amdgpu_move_null(bo, new_mem);
590 		return 0;
591 	}
592 	if ((old_mem->mem_type == TTM_PL_TT &&
593 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
594 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
595 	     new_mem->mem_type == TTM_PL_TT)) {
596 		/* bind is enough */
597 		amdgpu_move_null(bo, new_mem);
598 		return 0;
599 	}
600 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
601 	    old_mem->mem_type == AMDGPU_PL_GWS ||
602 	    old_mem->mem_type == AMDGPU_PL_OA ||
603 	    new_mem->mem_type == AMDGPU_PL_GDS ||
604 	    new_mem->mem_type == AMDGPU_PL_GWS ||
605 	    new_mem->mem_type == AMDGPU_PL_OA) {
606 		/* Nothing to save here */
607 		amdgpu_move_null(bo, new_mem);
608 		return 0;
609 	}
610 
611 	if (!adev->mman.buffer_funcs_enabled)
612 		goto memcpy;
613 
614 	if (old_mem->mem_type == TTM_PL_VRAM &&
615 	    new_mem->mem_type == TTM_PL_SYSTEM) {
616 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
617 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
618 		   new_mem->mem_type == TTM_PL_VRAM) {
619 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
620 	} else {
621 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
622 				     new_mem, old_mem);
623 	}
624 
625 	if (r) {
626 memcpy:
627 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
628 		if (r) {
629 			return r;
630 		}
631 	}
632 
633 	if (bo->type == ttm_bo_type_device &&
634 	    new_mem->mem_type == TTM_PL_VRAM &&
635 	    old_mem->mem_type != TTM_PL_VRAM) {
636 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
637 		 * accesses the BO after it's moved.
638 		 */
639 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
640 	}
641 
642 	/* update statistics */
643 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
644 	return 0;
645 }
646 
647 /**
648  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
649  *
650  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
651  */
652 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
653 {
654 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
655 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
656 	struct drm_mm_node *mm_node = mem->mm_node;
657 
658 	mem->bus.addr = NULL;
659 	mem->bus.offset = 0;
660 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
661 	mem->bus.base = 0;
662 	mem->bus.is_iomem = false;
663 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
664 		return -EINVAL;
665 	switch (mem->mem_type) {
666 	case TTM_PL_SYSTEM:
667 		/* system memory */
668 		return 0;
669 	case TTM_PL_TT:
670 		break;
671 	case TTM_PL_VRAM:
672 		mem->bus.offset = mem->start << PAGE_SHIFT;
673 		/* check if it's visible */
674 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
675 			return -EINVAL;
676 		/* Only physically contiguous buffers apply. In a contiguous
677 		 * buffer, size of the first mm_node would match the number of
678 		 * pages in ttm_mem_reg.
679 		 */
680 		if (adev->mman.aper_base_kaddr &&
681 		    (mm_node->size == mem->num_pages))
682 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
683 					mem->bus.offset;
684 
685 		mem->bus.base = adev->gmc.aper_base;
686 		mem->bus.is_iomem = true;
687 		break;
688 	default:
689 		return -EINVAL;
690 	}
691 	return 0;
692 }
693 
694 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
695 {
696 }
697 
698 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
699 					   unsigned long page_offset)
700 {
701 	struct drm_mm_node *mm;
702 	unsigned long offset = (page_offset << PAGE_SHIFT);
703 
704 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
705 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
706 		(offset >> PAGE_SHIFT);
707 }
708 
709 /*
710  * TTM backend functions.
711  */
712 struct amdgpu_ttm_tt {
713 	struct ttm_dma_tt	ttm;
714 	u64			offset;
715 	uint64_t		userptr;
716 	struct task_struct	*usertask;
717 	uint32_t		userflags;
718 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
719 	struct hmm_range	*range;
720 #endif
721 };
722 
723 /**
724  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
725  * memory and start HMM tracking CPU page table update
726  *
727  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
728  * once afterwards to stop HMM tracking
729  */
730 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
731 
732 #define MAX_RETRY_HMM_RANGE_FAULT	16
733 
734 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
735 {
736 	struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
737 	struct ttm_tt *ttm = bo->tbo.ttm;
738 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
739 	struct mm_struct *mm = gtt->usertask->mm;
740 	unsigned long start = gtt->userptr;
741 	struct vm_area_struct *vma;
742 	struct hmm_range *range;
743 	unsigned long i;
744 	uint64_t *pfns;
745 	int retry = 0;
746 	int r = 0;
747 
748 	if (!mm) /* Happens during process shutdown */
749 		return -ESRCH;
750 
751 	if (unlikely(!mirror)) {
752 		DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
753 		r = -EFAULT;
754 		goto out;
755 	}
756 
757 	vma = find_vma(mm, start);
758 	if (unlikely(!vma || start < vma->vm_start)) {
759 		r = -EFAULT;
760 		goto out;
761 	}
762 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
763 		vma->vm_file)) {
764 		r = -EPERM;
765 		goto out;
766 	}
767 
768 	range = kzalloc(sizeof(*range), GFP_KERNEL);
769 	if (unlikely(!range)) {
770 		r = -ENOMEM;
771 		goto out;
772 	}
773 
774 	pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
775 	if (unlikely(!pfns)) {
776 		r = -ENOMEM;
777 		goto out_free_ranges;
778 	}
779 
780 	amdgpu_hmm_init_range(range);
781 	range->default_flags = range->flags[HMM_PFN_VALID];
782 	range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
783 				0 : range->flags[HMM_PFN_WRITE];
784 	range->pfn_flags_mask = 0;
785 	range->pfns = pfns;
786 	hmm_range_register(range, mirror, start,
787 			   start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT);
788 
789 retry:
790 	/*
791 	 * Just wait for range to be valid, safe to ignore return value as we
792 	 * will use the return value of hmm_range_fault() below under the
793 	 * mmap_sem to ascertain the validity of the range.
794 	 */
795 	hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
796 
797 	down_read(&mm->mmap_sem);
798 
799 	r = hmm_range_fault(range, true);
800 	if (unlikely(r < 0)) {
801 		if (likely(r == -EAGAIN)) {
802 			/*
803 			 * return -EAGAIN, mmap_sem is dropped
804 			 */
805 			if (retry++ < MAX_RETRY_HMM_RANGE_FAULT)
806 				goto retry;
807 			else
808 				pr_err("Retry hmm fault too many times\n");
809 		}
810 
811 		goto out_up_read;
812 	}
813 
814 	up_read(&mm->mmap_sem);
815 
816 	for (i = 0; i < ttm->num_pages; i++) {
817 		pages[i] = hmm_device_entry_to_page(range, pfns[i]);
818 		if (unlikely(!pages[i])) {
819 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
820 			       i, pfns[i]);
821 			r = -ENOMEM;
822 
823 			goto out_free_pfns;
824 		}
825 	}
826 
827 	gtt->range = range;
828 
829 	return 0;
830 
831 out_up_read:
832 	if (likely(r != -EAGAIN))
833 		up_read(&mm->mmap_sem);
834 out_free_pfns:
835 	hmm_range_unregister(range);
836 	kvfree(pfns);
837 out_free_ranges:
838 	kfree(range);
839 out:
840 	return r;
841 }
842 
843 /**
844  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
845  * Check if the pages backing this ttm range have been invalidated
846  *
847  * Returns: true if pages are still valid
848  */
849 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
850 {
851 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
852 	bool r = false;
853 
854 	if (!gtt || !gtt->userptr)
855 		return false;
856 
857 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
858 		gtt->userptr, ttm->num_pages);
859 
860 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
861 		"No user pages to check\n");
862 
863 	if (gtt->range) {
864 		r = hmm_range_valid(gtt->range);
865 		hmm_range_unregister(gtt->range);
866 
867 		kvfree(gtt->range->pfns);
868 		kfree(gtt->range);
869 		gtt->range = NULL;
870 	}
871 
872 	return r;
873 }
874 #endif
875 
876 /**
877  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
878  *
879  * Called by amdgpu_cs_list_validate(). This creates the page list
880  * that backs user memory and will ultimately be mapped into the device
881  * address space.
882  */
883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
884 {
885 	unsigned long i;
886 
887 	for (i = 0; i < ttm->num_pages; ++i)
888 		ttm->pages[i] = pages ? pages[i] : NULL;
889 }
890 
891 /**
892  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
893  *
894  * Called by amdgpu_ttm_backend_bind()
895  **/
896 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
897 {
898 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
899 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
900 	unsigned nents;
901 	int r;
902 
903 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
904 	enum dma_data_direction direction = write ?
905 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
906 
907 	/* Allocate an SG array and squash pages into it */
908 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
909 				      ttm->num_pages << PAGE_SHIFT,
910 				      GFP_KERNEL);
911 	if (r)
912 		goto release_sg;
913 
914 	/* Map SG to device */
915 	r = -ENOMEM;
916 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
917 	if (nents != ttm->sg->nents)
918 		goto release_sg;
919 
920 	/* convert SG to linear array of pages and dma addresses */
921 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
922 					 gtt->ttm.dma_address, ttm->num_pages);
923 
924 	return 0;
925 
926 release_sg:
927 	kfree(ttm->sg);
928 	return r;
929 }
930 
931 /**
932  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
933  */
934 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
935 {
936 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
937 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
938 
939 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
940 	enum dma_data_direction direction = write ?
941 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
942 
943 	/* double check that we don't free the table twice */
944 	if (!ttm->sg->sgl)
945 		return;
946 
947 	/* unmap the pages mapped to the device */
948 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
949 
950 	sg_free_table(ttm->sg);
951 
952 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
953 	if (gtt->range &&
954 	    ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
955 						      gtt->range->pfns[0]))
956 		WARN_ONCE(1, "Missing get_user_page_done\n");
957 #endif
958 }
959 
960 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
961 				struct ttm_buffer_object *tbo,
962 				uint64_t flags)
963 {
964 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
965 	struct ttm_tt *ttm = tbo->ttm;
966 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
967 	int r;
968 
969 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
970 		uint64_t page_idx = 1;
971 
972 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
973 				ttm->pages, gtt->ttm.dma_address, flags);
974 		if (r)
975 			goto gart_bind_fail;
976 
977 		/* Patch mtype of the second part BO */
978 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
979 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
980 
981 		r = amdgpu_gart_bind(adev,
982 				gtt->offset + (page_idx << PAGE_SHIFT),
983 				ttm->num_pages - page_idx,
984 				&ttm->pages[page_idx],
985 				&(gtt->ttm.dma_address[page_idx]), flags);
986 	} else {
987 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
988 				     ttm->pages, gtt->ttm.dma_address, flags);
989 	}
990 
991 gart_bind_fail:
992 	if (r)
993 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
994 			  ttm->num_pages, gtt->offset);
995 
996 	return r;
997 }
998 
999 /**
1000  * amdgpu_ttm_backend_bind - Bind GTT memory
1001  *
1002  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1003  * This handles binding GTT memory to the device address space.
1004  */
1005 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1006 				   struct ttm_mem_reg *bo_mem)
1007 {
1008 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1009 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1010 	uint64_t flags;
1011 	int r = 0;
1012 
1013 	if (gtt->userptr) {
1014 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1015 		if (r) {
1016 			DRM_ERROR("failed to pin userptr\n");
1017 			return r;
1018 		}
1019 	}
1020 	if (!ttm->num_pages) {
1021 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1022 		     ttm->num_pages, bo_mem, ttm);
1023 	}
1024 
1025 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1026 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1027 	    bo_mem->mem_type == AMDGPU_PL_OA)
1028 		return -EINVAL;
1029 
1030 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1031 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1032 		return 0;
1033 	}
1034 
1035 	/* compute PTE flags relevant to this BO memory */
1036 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1037 
1038 	/* bind pages into GART page tables */
1039 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1040 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1041 		ttm->pages, gtt->ttm.dma_address, flags);
1042 
1043 	if (r)
1044 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1045 			  ttm->num_pages, gtt->offset);
1046 	return r;
1047 }
1048 
1049 /**
1050  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1051  */
1052 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1053 {
1054 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1055 	struct ttm_operation_ctx ctx = { false, false };
1056 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1057 	struct ttm_mem_reg tmp;
1058 	struct ttm_placement placement;
1059 	struct ttm_place placements;
1060 	uint64_t addr, flags;
1061 	int r;
1062 
1063 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1064 		return 0;
1065 
1066 	addr = amdgpu_gmc_agp_addr(bo);
1067 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1068 		bo->mem.start = addr >> PAGE_SHIFT;
1069 	} else {
1070 
1071 		/* allocate GART space */
1072 		tmp = bo->mem;
1073 		tmp.mm_node = NULL;
1074 		placement.num_placement = 1;
1075 		placement.placement = &placements;
1076 		placement.num_busy_placement = 1;
1077 		placement.busy_placement = &placements;
1078 		placements.fpfn = 0;
1079 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1080 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1081 			TTM_PL_FLAG_TT;
1082 
1083 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1084 		if (unlikely(r))
1085 			return r;
1086 
1087 		/* compute PTE flags for this buffer object */
1088 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1089 
1090 		/* Bind pages */
1091 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1092 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1093 		if (unlikely(r)) {
1094 			ttm_bo_mem_put(bo, &tmp);
1095 			return r;
1096 		}
1097 
1098 		ttm_bo_mem_put(bo, &bo->mem);
1099 		bo->mem = tmp;
1100 	}
1101 
1102 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1103 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  * amdgpu_ttm_recover_gart - Rebind GTT pages
1110  *
1111  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1112  * rebind GTT pages during a GPU reset.
1113  */
1114 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1115 {
1116 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1117 	uint64_t flags;
1118 	int r;
1119 
1120 	if (!tbo->ttm)
1121 		return 0;
1122 
1123 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1124 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1125 
1126 	return r;
1127 }
1128 
1129 /**
1130  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1131  *
1132  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1133  * ttm_tt_destroy().
1134  */
1135 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1136 {
1137 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1138 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1139 	int r;
1140 
1141 	/* if the pages have userptr pinning then clear that first */
1142 	if (gtt->userptr)
1143 		amdgpu_ttm_tt_unpin_userptr(ttm);
1144 
1145 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1146 		return 0;
1147 
1148 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1149 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1150 	if (r)
1151 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1152 			  gtt->ttm.ttm.num_pages, gtt->offset);
1153 	return r;
1154 }
1155 
1156 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1157 {
1158 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1159 
1160 	if (gtt->usertask)
1161 		put_task_struct(gtt->usertask);
1162 
1163 	ttm_dma_tt_fini(&gtt->ttm);
1164 	kfree(gtt);
1165 }
1166 
1167 static struct ttm_backend_func amdgpu_backend_func = {
1168 	.bind = &amdgpu_ttm_backend_bind,
1169 	.unbind = &amdgpu_ttm_backend_unbind,
1170 	.destroy = &amdgpu_ttm_backend_destroy,
1171 };
1172 
1173 /**
1174  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1175  *
1176  * @bo: The buffer object to create a GTT ttm_tt object around
1177  *
1178  * Called by ttm_tt_create().
1179  */
1180 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1181 					   uint32_t page_flags)
1182 {
1183 	struct amdgpu_device *adev;
1184 	struct amdgpu_ttm_tt *gtt;
1185 
1186 	adev = amdgpu_ttm_adev(bo->bdev);
1187 
1188 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1189 	if (gtt == NULL) {
1190 		return NULL;
1191 	}
1192 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1193 
1194 	/* allocate space for the uninitialized page entries */
1195 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1196 		kfree(gtt);
1197 		return NULL;
1198 	}
1199 	return &gtt->ttm.ttm;
1200 }
1201 
1202 /**
1203  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1204  *
1205  * Map the pages of a ttm_tt object to an address space visible
1206  * to the underlying device.
1207  */
1208 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1209 			struct ttm_operation_ctx *ctx)
1210 {
1211 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1212 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1213 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1214 
1215 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1216 	if (gtt && gtt->userptr) {
1217 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1218 		if (!ttm->sg)
1219 			return -ENOMEM;
1220 
1221 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1222 		ttm->state = tt_unbound;
1223 		return 0;
1224 	}
1225 
1226 	if (slave && ttm->sg) {
1227 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1228 						 gtt->ttm.dma_address,
1229 						 ttm->num_pages);
1230 		ttm->state = tt_unbound;
1231 		return 0;
1232 	}
1233 
1234 #ifdef CONFIG_SWIOTLB
1235 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1236 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1237 	}
1238 #endif
1239 
1240 	/* fall back to generic helper to populate the page array
1241 	 * and map them to the device */
1242 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1243 }
1244 
1245 /**
1246  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1247  *
1248  * Unmaps pages of a ttm_tt object from the device address space and
1249  * unpopulates the page array backing it.
1250  */
1251 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1252 {
1253 	struct amdgpu_device *adev;
1254 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1255 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1256 
1257 	if (gtt && gtt->userptr) {
1258 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1259 		kfree(ttm->sg);
1260 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1261 		return;
1262 	}
1263 
1264 	if (slave)
1265 		return;
1266 
1267 	adev = amdgpu_ttm_adev(ttm->bdev);
1268 
1269 #ifdef CONFIG_SWIOTLB
1270 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1271 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1272 		return;
1273 	}
1274 #endif
1275 
1276 	/* fall back to generic helper to unmap and unpopulate array */
1277 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1278 }
1279 
1280 /**
1281  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1282  * task
1283  *
1284  * @ttm: The ttm_tt object to bind this userptr object to
1285  * @addr:  The address in the current tasks VM space to use
1286  * @flags: Requirements of userptr object.
1287  *
1288  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1289  * to current task
1290  */
1291 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1292 			      uint32_t flags)
1293 {
1294 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1295 
1296 	if (gtt == NULL)
1297 		return -EINVAL;
1298 
1299 	gtt->userptr = addr;
1300 	gtt->userflags = flags;
1301 
1302 	if (gtt->usertask)
1303 		put_task_struct(gtt->usertask);
1304 	gtt->usertask = current->group_leader;
1305 	get_task_struct(gtt->usertask);
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1312  */
1313 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1314 {
1315 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1316 
1317 	if (gtt == NULL)
1318 		return NULL;
1319 
1320 	if (gtt->usertask == NULL)
1321 		return NULL;
1322 
1323 	return gtt->usertask->mm;
1324 }
1325 
1326 /**
1327  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1328  * address range for the current task.
1329  *
1330  */
1331 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1332 				  unsigned long end)
1333 {
1334 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1335 	unsigned long size;
1336 
1337 	if (gtt == NULL || !gtt->userptr)
1338 		return false;
1339 
1340 	/* Return false if no part of the ttm_tt object lies within
1341 	 * the range
1342 	 */
1343 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1344 	if (gtt->userptr > end || gtt->userptr + size <= start)
1345 		return false;
1346 
1347 	return true;
1348 }
1349 
1350 /**
1351  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1352  */
1353 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1354 {
1355 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1356 
1357 	if (gtt == NULL || !gtt->userptr)
1358 		return false;
1359 
1360 	return true;
1361 }
1362 
1363 /**
1364  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1365  */
1366 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1367 {
1368 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1369 
1370 	if (gtt == NULL)
1371 		return false;
1372 
1373 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1374 }
1375 
1376 /**
1377  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1378  *
1379  * @ttm: The ttm_tt object to compute the flags for
1380  * @mem: The memory registry backing this ttm_tt object
1381  *
1382  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1383  */
1384 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1385 {
1386 	uint64_t flags = 0;
1387 
1388 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1389 		flags |= AMDGPU_PTE_VALID;
1390 
1391 	if (mem && mem->mem_type == TTM_PL_TT) {
1392 		flags |= AMDGPU_PTE_SYSTEM;
1393 
1394 		if (ttm->caching_state == tt_cached)
1395 			flags |= AMDGPU_PTE_SNOOPED;
1396 	}
1397 
1398 	return flags;
1399 }
1400 
1401 /**
1402  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1403  *
1404  * @ttm: The ttm_tt object to compute the flags for
1405  * @mem: The memory registry backing this ttm_tt object
1406 
1407  * Figure out the flags to use for a VM PTE (Page Table Entry).
1408  */
1409 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1410 				 struct ttm_mem_reg *mem)
1411 {
1412 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1413 
1414 	flags |= adev->gart.gart_pte_flags;
1415 	flags |= AMDGPU_PTE_READABLE;
1416 
1417 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1418 		flags |= AMDGPU_PTE_WRITEABLE;
1419 
1420 	return flags;
1421 }
1422 
1423 /**
1424  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1425  * object.
1426  *
1427  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1428  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1429  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1430  * used to clean out a memory space.
1431  */
1432 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1433 					    const struct ttm_place *place)
1434 {
1435 	unsigned long num_pages = bo->mem.num_pages;
1436 	struct drm_mm_node *node = bo->mem.mm_node;
1437 	struct reservation_object_list *flist;
1438 	struct dma_fence *f;
1439 	int i;
1440 
1441 	/* Don't evict VM page tables while they are busy, otherwise we can't
1442 	 * cleanly handle page faults.
1443 	 */
1444 	if (bo->type == ttm_bo_type_kernel &&
1445 	    !reservation_object_test_signaled_rcu(bo->resv, true))
1446 		return false;
1447 
1448 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1449 	 * If true, then return false as any KFD process needs all its BOs to
1450 	 * be resident to run successfully
1451 	 */
1452 	flist = reservation_object_get_list(bo->resv);
1453 	if (flist) {
1454 		for (i = 0; i < flist->shared_count; ++i) {
1455 			f = rcu_dereference_protected(flist->shared[i],
1456 				reservation_object_held(bo->resv));
1457 			if (amdkfd_fence_check_mm(f, current->mm))
1458 				return false;
1459 		}
1460 	}
1461 
1462 	switch (bo->mem.mem_type) {
1463 	case TTM_PL_TT:
1464 		return true;
1465 
1466 	case TTM_PL_VRAM:
1467 		/* Check each drm MM node individually */
1468 		while (num_pages) {
1469 			if (place->fpfn < (node->start + node->size) &&
1470 			    !(place->lpfn && place->lpfn <= node->start))
1471 				return true;
1472 
1473 			num_pages -= node->size;
1474 			++node;
1475 		}
1476 		return false;
1477 
1478 	default:
1479 		break;
1480 	}
1481 
1482 	return ttm_bo_eviction_valuable(bo, place);
1483 }
1484 
1485 /**
1486  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1487  *
1488  * @bo:  The buffer object to read/write
1489  * @offset:  Offset into buffer object
1490  * @buf:  Secondary buffer to write/read from
1491  * @len: Length in bytes of access
1492  * @write:  true if writing
1493  *
1494  * This is used to access VRAM that backs a buffer object via MMIO
1495  * access for debugging purposes.
1496  */
1497 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1498 				    unsigned long offset,
1499 				    void *buf, int len, int write)
1500 {
1501 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1502 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1503 	struct drm_mm_node *nodes;
1504 	uint32_t value = 0;
1505 	int ret = 0;
1506 	uint64_t pos;
1507 	unsigned long flags;
1508 
1509 	if (bo->mem.mem_type != TTM_PL_VRAM)
1510 		return -EIO;
1511 
1512 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1513 	pos = (nodes->start << PAGE_SHIFT) + offset;
1514 
1515 	while (len && pos < adev->gmc.mc_vram_size) {
1516 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1517 		uint32_t bytes = 4 - (pos & 3);
1518 		uint32_t shift = (pos & 3) * 8;
1519 		uint32_t mask = 0xffffffff << shift;
1520 
1521 		if (len < bytes) {
1522 			mask &= 0xffffffff >> (bytes - len) * 8;
1523 			bytes = len;
1524 		}
1525 
1526 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1527 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1528 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1529 		if (!write || mask != 0xffffffff)
1530 			value = RREG32_NO_KIQ(mmMM_DATA);
1531 		if (write) {
1532 			value &= ~mask;
1533 			value |= (*(uint32_t *)buf << shift) & mask;
1534 			WREG32_NO_KIQ(mmMM_DATA, value);
1535 		}
1536 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1537 		if (!write) {
1538 			value = (value & mask) >> shift;
1539 			memcpy(buf, &value, bytes);
1540 		}
1541 
1542 		ret += bytes;
1543 		buf = (uint8_t *)buf + bytes;
1544 		pos += bytes;
1545 		len -= bytes;
1546 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1547 			++nodes;
1548 			pos = (nodes->start << PAGE_SHIFT);
1549 		}
1550 	}
1551 
1552 	return ret;
1553 }
1554 
1555 static struct ttm_bo_driver amdgpu_bo_driver = {
1556 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1557 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1558 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1559 	.invalidate_caches = &amdgpu_invalidate_caches,
1560 	.init_mem_type = &amdgpu_init_mem_type,
1561 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1562 	.evict_flags = &amdgpu_evict_flags,
1563 	.move = &amdgpu_bo_move,
1564 	.verify_access = &amdgpu_verify_access,
1565 	.move_notify = &amdgpu_bo_move_notify,
1566 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1567 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1568 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1569 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1570 	.access_memory = &amdgpu_ttm_access_memory,
1571 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1572 };
1573 
1574 /*
1575  * Firmware Reservation functions
1576  */
1577 /**
1578  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1579  *
1580  * @adev: amdgpu_device pointer
1581  *
1582  * free fw reserved vram if it has been reserved.
1583  */
1584 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1585 {
1586 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1587 		NULL, &adev->fw_vram_usage.va);
1588 }
1589 
1590 /**
1591  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1592  *
1593  * @adev: amdgpu_device pointer
1594  *
1595  * create bo vram reservation from fw.
1596  */
1597 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1598 {
1599 	struct ttm_operation_ctx ctx = { false, false };
1600 	struct amdgpu_bo_param bp;
1601 	int r = 0;
1602 	int i;
1603 	u64 vram_size = adev->gmc.visible_vram_size;
1604 	u64 offset = adev->fw_vram_usage.start_offset;
1605 	u64 size = adev->fw_vram_usage.size;
1606 	struct amdgpu_bo *bo;
1607 
1608 	memset(&bp, 0, sizeof(bp));
1609 	bp.size = adev->fw_vram_usage.size;
1610 	bp.byte_align = PAGE_SIZE;
1611 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1612 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1613 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1614 	bp.type = ttm_bo_type_kernel;
1615 	bp.resv = NULL;
1616 	adev->fw_vram_usage.va = NULL;
1617 	adev->fw_vram_usage.reserved_bo = NULL;
1618 
1619 	if (adev->fw_vram_usage.size > 0 &&
1620 		adev->fw_vram_usage.size <= vram_size) {
1621 
1622 		r = amdgpu_bo_create(adev, &bp,
1623 				     &adev->fw_vram_usage.reserved_bo);
1624 		if (r)
1625 			goto error_create;
1626 
1627 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1628 		if (r)
1629 			goto error_reserve;
1630 
1631 		/* remove the original mem node and create a new one at the
1632 		 * request position
1633 		 */
1634 		bo = adev->fw_vram_usage.reserved_bo;
1635 		offset = ALIGN(offset, PAGE_SIZE);
1636 		for (i = 0; i < bo->placement.num_placement; ++i) {
1637 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1638 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1639 		}
1640 
1641 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1642 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1643 				     &bo->tbo.mem, &ctx);
1644 		if (r)
1645 			goto error_pin;
1646 
1647 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1648 			AMDGPU_GEM_DOMAIN_VRAM,
1649 			adev->fw_vram_usage.start_offset,
1650 			(adev->fw_vram_usage.start_offset +
1651 			adev->fw_vram_usage.size));
1652 		if (r)
1653 			goto error_pin;
1654 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1655 			&adev->fw_vram_usage.va);
1656 		if (r)
1657 			goto error_kmap;
1658 
1659 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1660 	}
1661 	return r;
1662 
1663 error_kmap:
1664 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1665 error_pin:
1666 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1667 error_reserve:
1668 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1669 error_create:
1670 	adev->fw_vram_usage.va = NULL;
1671 	adev->fw_vram_usage.reserved_bo = NULL;
1672 	return r;
1673 }
1674 /**
1675  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1676  * gtt/vram related fields.
1677  *
1678  * This initializes all of the memory space pools that the TTM layer
1679  * will need such as the GTT space (system memory mapped to the device),
1680  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1681  * can be mapped per VMID.
1682  */
1683 int amdgpu_ttm_init(struct amdgpu_device *adev)
1684 {
1685 	uint64_t gtt_size;
1686 	int r;
1687 	u64 vis_vram_limit;
1688 
1689 	mutex_init(&adev->mman.gtt_window_lock);
1690 
1691 	/* No others user of address space so set it to 0 */
1692 	r = ttm_bo_device_init(&adev->mman.bdev,
1693 			       &amdgpu_bo_driver,
1694 			       adev->ddev->anon_inode->i_mapping,
1695 			       adev->need_dma32);
1696 	if (r) {
1697 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1698 		return r;
1699 	}
1700 	adev->mman.initialized = true;
1701 
1702 	/* We opt to avoid OOM on system pages allocations */
1703 	adev->mman.bdev.no_retry = true;
1704 
1705 	/* Initialize VRAM pool with all of VRAM divided into pages */
1706 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1707 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1708 	if (r) {
1709 		DRM_ERROR("Failed initializing VRAM heap.\n");
1710 		return r;
1711 	}
1712 
1713 	/* Reduce size of CPU-visible VRAM if requested */
1714 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1715 	if (amdgpu_vis_vram_limit > 0 &&
1716 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1717 		adev->gmc.visible_vram_size = vis_vram_limit;
1718 
1719 	/* Change the size here instead of the init above so only lpfn is affected */
1720 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1721 #ifdef CONFIG_64BIT
1722 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1723 						adev->gmc.visible_vram_size);
1724 #endif
1725 
1726 	/*
1727 	 *The reserved vram for firmware must be pinned to the specified
1728 	 *place on the VRAM, so reserve it early.
1729 	 */
1730 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1731 	if (r) {
1732 		return r;
1733 	}
1734 
1735 	/* allocate memory as required for VGA
1736 	 * This is used for VGA emulation and pre-OS scanout buffers to
1737 	 * avoid display artifacts while transitioning between pre-OS
1738 	 * and driver.  */
1739 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1740 				    AMDGPU_GEM_DOMAIN_VRAM,
1741 				    &adev->stolen_vga_memory,
1742 				    NULL, NULL);
1743 	if (r)
1744 		return r;
1745 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1746 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1747 
1748 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1749 	 * or whatever the user passed on module init */
1750 	if (amdgpu_gtt_size == -1) {
1751 		struct sysinfo si;
1752 
1753 		si_meminfo(&si);
1754 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1755 			       adev->gmc.mc_vram_size),
1756 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1757 	}
1758 	else
1759 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1760 
1761 	/* Initialize GTT memory pool */
1762 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1763 	if (r) {
1764 		DRM_ERROR("Failed initializing GTT heap.\n");
1765 		return r;
1766 	}
1767 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1768 		 (unsigned)(gtt_size / (1024 * 1024)));
1769 
1770 	/* Initialize various on-chip memory pools */
1771 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1772 			   adev->gds.gds_size);
1773 	if (r) {
1774 		DRM_ERROR("Failed initializing GDS heap.\n");
1775 		return r;
1776 	}
1777 
1778 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1779 			   adev->gds.gws_size);
1780 	if (r) {
1781 		DRM_ERROR("Failed initializing gws heap.\n");
1782 		return r;
1783 	}
1784 
1785 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1786 			   adev->gds.oa_size);
1787 	if (r) {
1788 		DRM_ERROR("Failed initializing oa heap.\n");
1789 		return r;
1790 	}
1791 
1792 	/* Register debugfs entries for amdgpu_ttm */
1793 	r = amdgpu_ttm_debugfs_init(adev);
1794 	if (r) {
1795 		DRM_ERROR("Failed to init debugfs\n");
1796 		return r;
1797 	}
1798 	return 0;
1799 }
1800 
1801 /**
1802  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1803  */
1804 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1805 {
1806 	/* return the VGA stolen memory (if any) back to VRAM */
1807 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1808 }
1809 
1810 /**
1811  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1812  */
1813 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1814 {
1815 	if (!adev->mman.initialized)
1816 		return;
1817 
1818 	amdgpu_ttm_debugfs_fini(adev);
1819 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1820 	if (adev->mman.aper_base_kaddr)
1821 		iounmap(adev->mman.aper_base_kaddr);
1822 	adev->mman.aper_base_kaddr = NULL;
1823 
1824 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1825 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1826 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1827 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1828 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1829 	ttm_bo_device_release(&adev->mman.bdev);
1830 	adev->mman.initialized = false;
1831 	DRM_INFO("amdgpu: ttm finalized\n");
1832 }
1833 
1834 /**
1835  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1836  *
1837  * @adev: amdgpu_device pointer
1838  * @enable: true when we can use buffer functions.
1839  *
1840  * Enable/disable use of buffer functions during suspend/resume. This should
1841  * only be called at bootup or when userspace isn't running.
1842  */
1843 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1844 {
1845 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1846 	uint64_t size;
1847 	int r;
1848 
1849 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1850 	    adev->mman.buffer_funcs_enabled == enable)
1851 		return;
1852 
1853 	if (enable) {
1854 		struct amdgpu_ring *ring;
1855 		struct drm_sched_rq *rq;
1856 
1857 		ring = adev->mman.buffer_funcs_ring;
1858 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1859 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1860 		if (r) {
1861 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1862 				  r);
1863 			return;
1864 		}
1865 	} else {
1866 		drm_sched_entity_destroy(&adev->mman.entity);
1867 		dma_fence_put(man->move);
1868 		man->move = NULL;
1869 	}
1870 
1871 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1872 	if (enable)
1873 		size = adev->gmc.real_vram_size;
1874 	else
1875 		size = adev->gmc.visible_vram_size;
1876 	man->size = size >> PAGE_SHIFT;
1877 	adev->mman.buffer_funcs_enabled = enable;
1878 }
1879 
1880 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1881 {
1882 	struct drm_file *file_priv = filp->private_data;
1883 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1884 
1885 	if (adev == NULL)
1886 		return -EINVAL;
1887 
1888 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1889 }
1890 
1891 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1892 			     struct ttm_mem_reg *mem, unsigned num_pages,
1893 			     uint64_t offset, unsigned window,
1894 			     struct amdgpu_ring *ring,
1895 			     uint64_t *addr)
1896 {
1897 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1898 	struct amdgpu_device *adev = ring->adev;
1899 	struct ttm_tt *ttm = bo->ttm;
1900 	struct amdgpu_job *job;
1901 	unsigned num_dw, num_bytes;
1902 	dma_addr_t *dma_address;
1903 	struct dma_fence *fence;
1904 	uint64_t src_addr, dst_addr;
1905 	uint64_t flags;
1906 	int r;
1907 
1908 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1909 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1910 
1911 	*addr = adev->gmc.gart_start;
1912 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1913 		AMDGPU_GPU_PAGE_SIZE;
1914 
1915 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1916 	while (num_dw & 0x7)
1917 		num_dw++;
1918 
1919 	num_bytes = num_pages * 8;
1920 
1921 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1922 	if (r)
1923 		return r;
1924 
1925 	src_addr = num_dw * 4;
1926 	src_addr += job->ibs[0].gpu_addr;
1927 
1928 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1929 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1930 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1931 				dst_addr, num_bytes);
1932 
1933 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1934 	WARN_ON(job->ibs[0].length_dw > num_dw);
1935 
1936 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1937 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1938 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1939 			    &job->ibs[0].ptr[num_dw]);
1940 	if (r)
1941 		goto error_free;
1942 
1943 	r = amdgpu_job_submit(job, &adev->mman.entity,
1944 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1945 	if (r)
1946 		goto error_free;
1947 
1948 	dma_fence_put(fence);
1949 
1950 	return r;
1951 
1952 error_free:
1953 	amdgpu_job_free(job);
1954 	return r;
1955 }
1956 
1957 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1958 		       uint64_t dst_offset, uint32_t byte_count,
1959 		       struct reservation_object *resv,
1960 		       struct dma_fence **fence, bool direct_submit,
1961 		       bool vm_needs_flush)
1962 {
1963 	struct amdgpu_device *adev = ring->adev;
1964 	struct amdgpu_job *job;
1965 
1966 	uint32_t max_bytes;
1967 	unsigned num_loops, num_dw;
1968 	unsigned i;
1969 	int r;
1970 
1971 	if (direct_submit && !ring->sched.ready) {
1972 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1973 		return -EINVAL;
1974 	}
1975 
1976 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1977 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1978 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1979 
1980 	/* for IB padding */
1981 	while (num_dw & 0x7)
1982 		num_dw++;
1983 
1984 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1985 	if (r)
1986 		return r;
1987 
1988 	if (vm_needs_flush) {
1989 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1990 		job->vm_needs_flush = true;
1991 	}
1992 	if (resv) {
1993 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1994 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1995 				     false);
1996 		if (r) {
1997 			DRM_ERROR("sync failed (%d).\n", r);
1998 			goto error_free;
1999 		}
2000 	}
2001 
2002 	for (i = 0; i < num_loops; i++) {
2003 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2004 
2005 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2006 					dst_offset, cur_size_in_bytes);
2007 
2008 		src_offset += cur_size_in_bytes;
2009 		dst_offset += cur_size_in_bytes;
2010 		byte_count -= cur_size_in_bytes;
2011 	}
2012 
2013 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2014 	WARN_ON(job->ibs[0].length_dw > num_dw);
2015 	if (direct_submit)
2016 		r = amdgpu_job_submit_direct(job, ring, fence);
2017 	else
2018 		r = amdgpu_job_submit(job, &adev->mman.entity,
2019 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2020 	if (r)
2021 		goto error_free;
2022 
2023 	return r;
2024 
2025 error_free:
2026 	amdgpu_job_free(job);
2027 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2028 	return r;
2029 }
2030 
2031 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2032 		       uint32_t src_data,
2033 		       struct reservation_object *resv,
2034 		       struct dma_fence **fence)
2035 {
2036 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2037 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2038 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2039 
2040 	struct drm_mm_node *mm_node;
2041 	unsigned long num_pages;
2042 	unsigned int num_loops, num_dw;
2043 
2044 	struct amdgpu_job *job;
2045 	int r;
2046 
2047 	if (!adev->mman.buffer_funcs_enabled) {
2048 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2049 		return -EINVAL;
2050 	}
2051 
2052 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2053 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2054 		if (r)
2055 			return r;
2056 	}
2057 
2058 	num_pages = bo->tbo.num_pages;
2059 	mm_node = bo->tbo.mem.mm_node;
2060 	num_loops = 0;
2061 	while (num_pages) {
2062 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2063 
2064 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2065 		num_pages -= mm_node->size;
2066 		++mm_node;
2067 	}
2068 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2069 
2070 	/* for IB padding */
2071 	num_dw += 64;
2072 
2073 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2074 	if (r)
2075 		return r;
2076 
2077 	if (resv) {
2078 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2079 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2080 		if (r) {
2081 			DRM_ERROR("sync failed (%d).\n", r);
2082 			goto error_free;
2083 		}
2084 	}
2085 
2086 	num_pages = bo->tbo.num_pages;
2087 	mm_node = bo->tbo.mem.mm_node;
2088 
2089 	while (num_pages) {
2090 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2091 		uint64_t dst_addr;
2092 
2093 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2094 		while (byte_count) {
2095 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2096 
2097 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2098 						dst_addr, cur_size_in_bytes);
2099 
2100 			dst_addr += cur_size_in_bytes;
2101 			byte_count -= cur_size_in_bytes;
2102 		}
2103 
2104 		num_pages -= mm_node->size;
2105 		++mm_node;
2106 	}
2107 
2108 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2109 	WARN_ON(job->ibs[0].length_dw > num_dw);
2110 	r = amdgpu_job_submit(job, &adev->mman.entity,
2111 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2112 	if (r)
2113 		goto error_free;
2114 
2115 	return 0;
2116 
2117 error_free:
2118 	amdgpu_job_free(job);
2119 	return r;
2120 }
2121 
2122 #if defined(CONFIG_DEBUG_FS)
2123 
2124 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2125 {
2126 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2127 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2128 	struct drm_device *dev = node->minor->dev;
2129 	struct amdgpu_device *adev = dev->dev_private;
2130 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2131 	struct drm_printer p = drm_seq_file_printer(m);
2132 
2133 	man->func->debug(man, &p);
2134 	return 0;
2135 }
2136 
2137 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2138 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2139 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2140 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2141 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2142 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2143 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2144 #ifdef CONFIG_SWIOTLB
2145 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2146 #endif
2147 };
2148 
2149 /**
2150  * amdgpu_ttm_vram_read - Linear read access to VRAM
2151  *
2152  * Accesses VRAM via MMIO for debugging purposes.
2153  */
2154 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2155 				    size_t size, loff_t *pos)
2156 {
2157 	struct amdgpu_device *adev = file_inode(f)->i_private;
2158 	ssize_t result = 0;
2159 	int r;
2160 
2161 	if (size & 0x3 || *pos & 0x3)
2162 		return -EINVAL;
2163 
2164 	if (*pos >= adev->gmc.mc_vram_size)
2165 		return -ENXIO;
2166 
2167 	while (size) {
2168 		unsigned long flags;
2169 		uint32_t value;
2170 
2171 		if (*pos >= adev->gmc.mc_vram_size)
2172 			return result;
2173 
2174 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2175 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2176 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2177 		value = RREG32_NO_KIQ(mmMM_DATA);
2178 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2179 
2180 		r = put_user(value, (uint32_t *)buf);
2181 		if (r)
2182 			return r;
2183 
2184 		result += 4;
2185 		buf += 4;
2186 		*pos += 4;
2187 		size -= 4;
2188 	}
2189 
2190 	return result;
2191 }
2192 
2193 /**
2194  * amdgpu_ttm_vram_write - Linear write access to VRAM
2195  *
2196  * Accesses VRAM via MMIO for debugging purposes.
2197  */
2198 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2199 				    size_t size, loff_t *pos)
2200 {
2201 	struct amdgpu_device *adev = file_inode(f)->i_private;
2202 	ssize_t result = 0;
2203 	int r;
2204 
2205 	if (size & 0x3 || *pos & 0x3)
2206 		return -EINVAL;
2207 
2208 	if (*pos >= adev->gmc.mc_vram_size)
2209 		return -ENXIO;
2210 
2211 	while (size) {
2212 		unsigned long flags;
2213 		uint32_t value;
2214 
2215 		if (*pos >= adev->gmc.mc_vram_size)
2216 			return result;
2217 
2218 		r = get_user(value, (uint32_t *)buf);
2219 		if (r)
2220 			return r;
2221 
2222 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2223 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2224 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2225 		WREG32_NO_KIQ(mmMM_DATA, value);
2226 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2227 
2228 		result += 4;
2229 		buf += 4;
2230 		*pos += 4;
2231 		size -= 4;
2232 	}
2233 
2234 	return result;
2235 }
2236 
2237 static const struct file_operations amdgpu_ttm_vram_fops = {
2238 	.owner = THIS_MODULE,
2239 	.read = amdgpu_ttm_vram_read,
2240 	.write = amdgpu_ttm_vram_write,
2241 	.llseek = default_llseek,
2242 };
2243 
2244 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2245 
2246 /**
2247  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2248  */
2249 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2250 				   size_t size, loff_t *pos)
2251 {
2252 	struct amdgpu_device *adev = file_inode(f)->i_private;
2253 	ssize_t result = 0;
2254 	int r;
2255 
2256 	while (size) {
2257 		loff_t p = *pos / PAGE_SIZE;
2258 		unsigned off = *pos & ~PAGE_MASK;
2259 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2260 		struct page *page;
2261 		void *ptr;
2262 
2263 		if (p >= adev->gart.num_cpu_pages)
2264 			return result;
2265 
2266 		page = adev->gart.pages[p];
2267 		if (page) {
2268 			ptr = kmap(page);
2269 			ptr += off;
2270 
2271 			r = copy_to_user(buf, ptr, cur_size);
2272 			kunmap(adev->gart.pages[p]);
2273 		} else
2274 			r = clear_user(buf, cur_size);
2275 
2276 		if (r)
2277 			return -EFAULT;
2278 
2279 		result += cur_size;
2280 		buf += cur_size;
2281 		*pos += cur_size;
2282 		size -= cur_size;
2283 	}
2284 
2285 	return result;
2286 }
2287 
2288 static const struct file_operations amdgpu_ttm_gtt_fops = {
2289 	.owner = THIS_MODULE,
2290 	.read = amdgpu_ttm_gtt_read,
2291 	.llseek = default_llseek
2292 };
2293 
2294 #endif
2295 
2296 /**
2297  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2298  *
2299  * This function is used to read memory that has been mapped to the
2300  * GPU and the known addresses are not physical addresses but instead
2301  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2302  */
2303 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2304 				 size_t size, loff_t *pos)
2305 {
2306 	struct amdgpu_device *adev = file_inode(f)->i_private;
2307 	struct iommu_domain *dom;
2308 	ssize_t result = 0;
2309 	int r;
2310 
2311 	/* retrieve the IOMMU domain if any for this device */
2312 	dom = iommu_get_domain_for_dev(adev->dev);
2313 
2314 	while (size) {
2315 		phys_addr_t addr = *pos & PAGE_MASK;
2316 		loff_t off = *pos & ~PAGE_MASK;
2317 		size_t bytes = PAGE_SIZE - off;
2318 		unsigned long pfn;
2319 		struct page *p;
2320 		void *ptr;
2321 
2322 		bytes = bytes < size ? bytes : size;
2323 
2324 		/* Translate the bus address to a physical address.  If
2325 		 * the domain is NULL it means there is no IOMMU active
2326 		 * and the address translation is the identity
2327 		 */
2328 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2329 
2330 		pfn = addr >> PAGE_SHIFT;
2331 		if (!pfn_valid(pfn))
2332 			return -EPERM;
2333 
2334 		p = pfn_to_page(pfn);
2335 		if (p->mapping != adev->mman.bdev.dev_mapping)
2336 			return -EPERM;
2337 
2338 		ptr = kmap(p);
2339 		r = copy_to_user(buf, ptr + off, bytes);
2340 		kunmap(p);
2341 		if (r)
2342 			return -EFAULT;
2343 
2344 		size -= bytes;
2345 		*pos += bytes;
2346 		result += bytes;
2347 	}
2348 
2349 	return result;
2350 }
2351 
2352 /**
2353  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2354  *
2355  * This function is used to write memory that has been mapped to the
2356  * GPU and the known addresses are not physical addresses but instead
2357  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2358  */
2359 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2360 				 size_t size, loff_t *pos)
2361 {
2362 	struct amdgpu_device *adev = file_inode(f)->i_private;
2363 	struct iommu_domain *dom;
2364 	ssize_t result = 0;
2365 	int r;
2366 
2367 	dom = iommu_get_domain_for_dev(adev->dev);
2368 
2369 	while (size) {
2370 		phys_addr_t addr = *pos & PAGE_MASK;
2371 		loff_t off = *pos & ~PAGE_MASK;
2372 		size_t bytes = PAGE_SIZE - off;
2373 		unsigned long pfn;
2374 		struct page *p;
2375 		void *ptr;
2376 
2377 		bytes = bytes < size ? bytes : size;
2378 
2379 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2380 
2381 		pfn = addr >> PAGE_SHIFT;
2382 		if (!pfn_valid(pfn))
2383 			return -EPERM;
2384 
2385 		p = pfn_to_page(pfn);
2386 		if (p->mapping != adev->mman.bdev.dev_mapping)
2387 			return -EPERM;
2388 
2389 		ptr = kmap(p);
2390 		r = copy_from_user(ptr + off, buf, bytes);
2391 		kunmap(p);
2392 		if (r)
2393 			return -EFAULT;
2394 
2395 		size -= bytes;
2396 		*pos += bytes;
2397 		result += bytes;
2398 	}
2399 
2400 	return result;
2401 }
2402 
2403 static const struct file_operations amdgpu_ttm_iomem_fops = {
2404 	.owner = THIS_MODULE,
2405 	.read = amdgpu_iomem_read,
2406 	.write = amdgpu_iomem_write,
2407 	.llseek = default_llseek
2408 };
2409 
2410 static const struct {
2411 	char *name;
2412 	const struct file_operations *fops;
2413 	int domain;
2414 } ttm_debugfs_entries[] = {
2415 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2416 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2417 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2418 #endif
2419 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2420 };
2421 
2422 #endif
2423 
2424 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2425 {
2426 #if defined(CONFIG_DEBUG_FS)
2427 	unsigned count;
2428 
2429 	struct drm_minor *minor = adev->ddev->primary;
2430 	struct dentry *ent, *root = minor->debugfs_root;
2431 
2432 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2433 		ent = debugfs_create_file(
2434 				ttm_debugfs_entries[count].name,
2435 				S_IFREG | S_IRUGO, root,
2436 				adev,
2437 				ttm_debugfs_entries[count].fops);
2438 		if (IS_ERR(ent))
2439 			return PTR_ERR(ent);
2440 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2441 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2442 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2443 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2444 		adev->mman.debugfs_entries[count] = ent;
2445 	}
2446 
2447 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2448 
2449 #ifdef CONFIG_SWIOTLB
2450 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2451 		--count;
2452 #endif
2453 
2454 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2455 #else
2456 	return 0;
2457 #endif
2458 }
2459 
2460 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2461 {
2462 #if defined(CONFIG_DEBUG_FS)
2463 	unsigned i;
2464 
2465 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2466 		debugfs_remove(adev->mman.debugfs_entries[i]);
2467 #endif
2468 }
2469