1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 43 #include <drm/ttm/ttm_bo_api.h> 44 #include <drm/ttm/ttm_bo_driver.h> 45 #include <drm/ttm/ttm_placement.h> 46 #include <drm/ttm/ttm_module.h> 47 #include <drm/ttm/ttm_page_alloc.h> 48 49 #include <drm/drm_debugfs.h> 50 #include <drm/amdgpu_drm.h> 51 52 #include "amdgpu.h" 53 #include "amdgpu_object.h" 54 #include "amdgpu_trace.h" 55 #include "amdgpu_amdkfd.h" 56 #include "amdgpu_sdma.h" 57 #include "bif/bif_4_1_d.h" 58 59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 60 struct ttm_mem_reg *mem, unsigned num_pages, 61 uint64_t offset, unsigned window, 62 struct amdgpu_ring *ring, 63 uint64_t *addr); 64 65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 67 68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 69 { 70 return 0; 71 } 72 73 /** 74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 75 * memory request. 76 * 77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 78 * @type: The type of memory requested 79 * @man: The memory type manager for each domain 80 * 81 * This is called by ttm_bo_init_mm() when a buffer object is being 82 * initialized. 83 */ 84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 85 struct ttm_mem_type_manager *man) 86 { 87 struct amdgpu_device *adev; 88 89 adev = amdgpu_ttm_adev(bdev); 90 91 switch (type) { 92 case TTM_PL_SYSTEM: 93 /* System memory */ 94 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 95 man->available_caching = TTM_PL_MASK_CACHING; 96 man->default_caching = TTM_PL_FLAG_CACHED; 97 break; 98 case TTM_PL_TT: 99 /* GTT memory */ 100 man->func = &amdgpu_gtt_mgr_func; 101 man->gpu_offset = adev->gmc.gart_start; 102 man->available_caching = TTM_PL_MASK_CACHING; 103 man->default_caching = TTM_PL_FLAG_CACHED; 104 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 105 break; 106 case TTM_PL_VRAM: 107 /* "On-card" video ram */ 108 man->func = &amdgpu_vram_mgr_func; 109 man->gpu_offset = adev->gmc.vram_start; 110 man->flags = TTM_MEMTYPE_FLAG_FIXED | 111 TTM_MEMTYPE_FLAG_MAPPABLE; 112 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 113 man->default_caching = TTM_PL_FLAG_WC; 114 break; 115 case AMDGPU_PL_GDS: 116 case AMDGPU_PL_GWS: 117 case AMDGPU_PL_OA: 118 /* On-chip GDS memory*/ 119 man->func = &ttm_bo_manager_func; 120 man->gpu_offset = 0; 121 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 122 man->available_caching = TTM_PL_FLAG_UNCACHED; 123 man->default_caching = TTM_PL_FLAG_UNCACHED; 124 break; 125 default: 126 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 127 return -EINVAL; 128 } 129 return 0; 130 } 131 132 /** 133 * amdgpu_evict_flags - Compute placement flags 134 * 135 * @bo: The buffer object to evict 136 * @placement: Possible destination(s) for evicted BO 137 * 138 * Fill in placement data when ttm_bo_evict() is called 139 */ 140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 141 struct ttm_placement *placement) 142 { 143 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 144 struct amdgpu_bo *abo; 145 static const struct ttm_place placements = { 146 .fpfn = 0, 147 .lpfn = 0, 148 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 149 }; 150 151 /* Don't handle scatter gather BOs */ 152 if (bo->type == ttm_bo_type_sg) { 153 placement->num_placement = 0; 154 placement->num_busy_placement = 0; 155 return; 156 } 157 158 /* Object isn't an AMDGPU object so ignore */ 159 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 160 placement->placement = &placements; 161 placement->busy_placement = &placements; 162 placement->num_placement = 1; 163 placement->num_busy_placement = 1; 164 return; 165 } 166 167 abo = ttm_to_amdgpu_bo(bo); 168 switch (bo->mem.mem_type) { 169 case AMDGPU_PL_GDS: 170 case AMDGPU_PL_GWS: 171 case AMDGPU_PL_OA: 172 placement->num_placement = 0; 173 placement->num_busy_placement = 0; 174 return; 175 176 case TTM_PL_VRAM: 177 if (!adev->mman.buffer_funcs_enabled) { 178 /* Move to system memory */ 179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 180 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 181 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 182 amdgpu_bo_in_cpu_visible_vram(abo)) { 183 184 /* Try evicting to the CPU inaccessible part of VRAM 185 * first, but only set GTT as busy placement, so this 186 * BO will be evicted to GTT rather than causing other 187 * BOs to be evicted from VRAM 188 */ 189 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 190 AMDGPU_GEM_DOMAIN_GTT); 191 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 192 abo->placements[0].lpfn = 0; 193 abo->placement.busy_placement = &abo->placements[1]; 194 abo->placement.num_busy_placement = 1; 195 } else { 196 /* Move to GTT memory */ 197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 198 } 199 break; 200 case TTM_PL_TT: 201 default: 202 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 203 break; 204 } 205 *placement = abo->placement; 206 } 207 208 /** 209 * amdgpu_verify_access - Verify access for a mmap call 210 * 211 * @bo: The buffer object to map 212 * @filp: The file pointer from the process performing the mmap 213 * 214 * This is called by ttm_bo_mmap() to verify whether a process 215 * has the right to mmap a BO to their process space. 216 */ 217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 218 { 219 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 220 221 /* 222 * Don't verify access for KFD BOs. They don't have a GEM 223 * object associated with them. 224 */ 225 if (abo->kfd_bo) 226 return 0; 227 228 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 229 return -EPERM; 230 return drm_vma_node_verify_access(&abo->gem_base.vma_node, 231 filp->private_data); 232 } 233 234 /** 235 * amdgpu_move_null - Register memory for a buffer object 236 * 237 * @bo: The bo to assign the memory to 238 * @new_mem: The memory to be assigned. 239 * 240 * Assign the memory from new_mem to the memory of the buffer object bo. 241 */ 242 static void amdgpu_move_null(struct ttm_buffer_object *bo, 243 struct ttm_mem_reg *new_mem) 244 { 245 struct ttm_mem_reg *old_mem = &bo->mem; 246 247 BUG_ON(old_mem->mm_node != NULL); 248 *old_mem = *new_mem; 249 new_mem->mm_node = NULL; 250 } 251 252 /** 253 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 254 * 255 * @bo: The bo to assign the memory to. 256 * @mm_node: Memory manager node for drm allocator. 257 * @mem: The region where the bo resides. 258 * 259 */ 260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 261 struct drm_mm_node *mm_node, 262 struct ttm_mem_reg *mem) 263 { 264 uint64_t addr = 0; 265 266 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 267 addr = mm_node->start << PAGE_SHIFT; 268 addr += bo->bdev->man[mem->mem_type].gpu_offset; 269 } 270 return addr; 271 } 272 273 /** 274 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 275 * @offset. It also modifies the offset to be within the drm_mm_node returned 276 * 277 * @mem: The region where the bo resides. 278 * @offset: The offset that drm_mm_node is used for finding. 279 * 280 */ 281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 282 unsigned long *offset) 283 { 284 struct drm_mm_node *mm_node = mem->mm_node; 285 286 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 287 *offset -= (mm_node->size << PAGE_SHIFT); 288 ++mm_node; 289 } 290 return mm_node; 291 } 292 293 /** 294 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 295 * 296 * The function copies @size bytes from {src->mem + src->offset} to 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 298 * move and different for a BO to BO copy. 299 * 300 * @f: Returns the last fence if multiple jobs are submitted. 301 */ 302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 303 struct amdgpu_copy_mem *src, 304 struct amdgpu_copy_mem *dst, 305 uint64_t size, 306 struct reservation_object *resv, 307 struct dma_fence **f) 308 { 309 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 310 struct drm_mm_node *src_mm, *dst_mm; 311 uint64_t src_node_start, dst_node_start, src_node_size, 312 dst_node_size, src_page_offset, dst_page_offset; 313 struct dma_fence *fence = NULL; 314 int r = 0; 315 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 316 AMDGPU_GPU_PAGE_SIZE); 317 318 if (!adev->mman.buffer_funcs_enabled) { 319 DRM_ERROR("Trying to move memory with ring turned off.\n"); 320 return -EINVAL; 321 } 322 323 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 324 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 325 src->offset; 326 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 327 src_page_offset = src_node_start & (PAGE_SIZE - 1); 328 329 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 330 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 331 dst->offset; 332 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 333 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 334 335 mutex_lock(&adev->mman.gtt_window_lock); 336 337 while (size) { 338 unsigned long cur_size; 339 uint64_t from = src_node_start, to = dst_node_start; 340 struct dma_fence *next; 341 342 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 343 * begins at an offset, then adjust the size accordingly 344 */ 345 cur_size = min3(min(src_node_size, dst_node_size), size, 346 GTT_MAX_BYTES); 347 if (cur_size + src_page_offset > GTT_MAX_BYTES || 348 cur_size + dst_page_offset > GTT_MAX_BYTES) 349 cur_size -= max(src_page_offset, dst_page_offset); 350 351 /* Map only what needs to be accessed. Map src to window 0 and 352 * dst to window 1 353 */ 354 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 355 r = amdgpu_map_buffer(src->bo, src->mem, 356 PFN_UP(cur_size + src_page_offset), 357 src_node_start, 0, ring, 358 &from); 359 if (r) 360 goto error; 361 /* Adjust the offset because amdgpu_map_buffer returns 362 * start of mapped page 363 */ 364 from += src_page_offset; 365 } 366 367 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 368 r = amdgpu_map_buffer(dst->bo, dst->mem, 369 PFN_UP(cur_size + dst_page_offset), 370 dst_node_start, 1, ring, 371 &to); 372 if (r) 373 goto error; 374 to += dst_page_offset; 375 } 376 377 r = amdgpu_copy_buffer(ring, from, to, cur_size, 378 resv, &next, false, true); 379 if (r) 380 goto error; 381 382 dma_fence_put(fence); 383 fence = next; 384 385 size -= cur_size; 386 if (!size) 387 break; 388 389 src_node_size -= cur_size; 390 if (!src_node_size) { 391 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 392 src->mem); 393 src_node_size = (src_mm->size << PAGE_SHIFT); 394 } else { 395 src_node_start += cur_size; 396 src_page_offset = src_node_start & (PAGE_SIZE - 1); 397 } 398 dst_node_size -= cur_size; 399 if (!dst_node_size) { 400 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 401 dst->mem); 402 dst_node_size = (dst_mm->size << PAGE_SHIFT); 403 } else { 404 dst_node_start += cur_size; 405 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 406 } 407 } 408 error: 409 mutex_unlock(&adev->mman.gtt_window_lock); 410 if (f) 411 *f = dma_fence_get(fence); 412 dma_fence_put(fence); 413 return r; 414 } 415 416 /** 417 * amdgpu_move_blit - Copy an entire buffer to another buffer 418 * 419 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 420 * help move buffers to and from VRAM. 421 */ 422 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 423 bool evict, bool no_wait_gpu, 424 struct ttm_mem_reg *new_mem, 425 struct ttm_mem_reg *old_mem) 426 { 427 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 428 struct amdgpu_copy_mem src, dst; 429 struct dma_fence *fence = NULL; 430 int r; 431 432 src.bo = bo; 433 dst.bo = bo; 434 src.mem = old_mem; 435 dst.mem = new_mem; 436 src.offset = 0; 437 dst.offset = 0; 438 439 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 440 new_mem->num_pages << PAGE_SHIFT, 441 bo->resv, &fence); 442 if (r) 443 goto error; 444 445 /* Always block for VM page tables before committing the new location */ 446 if (bo->type == ttm_bo_type_kernel) 447 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 448 else 449 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 450 dma_fence_put(fence); 451 return r; 452 453 error: 454 if (fence) 455 dma_fence_wait(fence, false); 456 dma_fence_put(fence); 457 return r; 458 } 459 460 /** 461 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 462 * 463 * Called by amdgpu_bo_move(). 464 */ 465 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 466 struct ttm_operation_ctx *ctx, 467 struct ttm_mem_reg *new_mem) 468 { 469 struct amdgpu_device *adev; 470 struct ttm_mem_reg *old_mem = &bo->mem; 471 struct ttm_mem_reg tmp_mem; 472 struct ttm_place placements; 473 struct ttm_placement placement; 474 int r; 475 476 adev = amdgpu_ttm_adev(bo->bdev); 477 478 /* create space/pages for new_mem in GTT space */ 479 tmp_mem = *new_mem; 480 tmp_mem.mm_node = NULL; 481 placement.num_placement = 1; 482 placement.placement = &placements; 483 placement.num_busy_placement = 1; 484 placement.busy_placement = &placements; 485 placements.fpfn = 0; 486 placements.lpfn = 0; 487 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 488 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 489 if (unlikely(r)) { 490 return r; 491 } 492 493 /* set caching flags */ 494 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 495 if (unlikely(r)) { 496 goto out_cleanup; 497 } 498 499 /* Bind the memory to the GTT space */ 500 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 501 if (unlikely(r)) { 502 goto out_cleanup; 503 } 504 505 /* blit VRAM to GTT */ 506 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 507 if (unlikely(r)) { 508 goto out_cleanup; 509 } 510 511 /* move BO (in tmp_mem) to new_mem */ 512 r = ttm_bo_move_ttm(bo, ctx, new_mem); 513 out_cleanup: 514 ttm_bo_mem_put(bo, &tmp_mem); 515 return r; 516 } 517 518 /** 519 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 520 * 521 * Called by amdgpu_bo_move(). 522 */ 523 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 524 struct ttm_operation_ctx *ctx, 525 struct ttm_mem_reg *new_mem) 526 { 527 struct amdgpu_device *adev; 528 struct ttm_mem_reg *old_mem = &bo->mem; 529 struct ttm_mem_reg tmp_mem; 530 struct ttm_placement placement; 531 struct ttm_place placements; 532 int r; 533 534 adev = amdgpu_ttm_adev(bo->bdev); 535 536 /* make space in GTT for old_mem buffer */ 537 tmp_mem = *new_mem; 538 tmp_mem.mm_node = NULL; 539 placement.num_placement = 1; 540 placement.placement = &placements; 541 placement.num_busy_placement = 1; 542 placement.busy_placement = &placements; 543 placements.fpfn = 0; 544 placements.lpfn = 0; 545 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 546 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 547 if (unlikely(r)) { 548 return r; 549 } 550 551 /* move/bind old memory to GTT space */ 552 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 553 if (unlikely(r)) { 554 goto out_cleanup; 555 } 556 557 /* copy to VRAM */ 558 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 559 if (unlikely(r)) { 560 goto out_cleanup; 561 } 562 out_cleanup: 563 ttm_bo_mem_put(bo, &tmp_mem); 564 return r; 565 } 566 567 /** 568 * amdgpu_bo_move - Move a buffer object to a new memory location 569 * 570 * Called by ttm_bo_handle_move_mem() 571 */ 572 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 573 struct ttm_operation_ctx *ctx, 574 struct ttm_mem_reg *new_mem) 575 { 576 struct amdgpu_device *adev; 577 struct amdgpu_bo *abo; 578 struct ttm_mem_reg *old_mem = &bo->mem; 579 int r; 580 581 /* Can't move a pinned BO */ 582 abo = ttm_to_amdgpu_bo(bo); 583 if (WARN_ON_ONCE(abo->pin_count > 0)) 584 return -EINVAL; 585 586 adev = amdgpu_ttm_adev(bo->bdev); 587 588 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 589 amdgpu_move_null(bo, new_mem); 590 return 0; 591 } 592 if ((old_mem->mem_type == TTM_PL_TT && 593 new_mem->mem_type == TTM_PL_SYSTEM) || 594 (old_mem->mem_type == TTM_PL_SYSTEM && 595 new_mem->mem_type == TTM_PL_TT)) { 596 /* bind is enough */ 597 amdgpu_move_null(bo, new_mem); 598 return 0; 599 } 600 if (old_mem->mem_type == AMDGPU_PL_GDS || 601 old_mem->mem_type == AMDGPU_PL_GWS || 602 old_mem->mem_type == AMDGPU_PL_OA || 603 new_mem->mem_type == AMDGPU_PL_GDS || 604 new_mem->mem_type == AMDGPU_PL_GWS || 605 new_mem->mem_type == AMDGPU_PL_OA) { 606 /* Nothing to save here */ 607 amdgpu_move_null(bo, new_mem); 608 return 0; 609 } 610 611 if (!adev->mman.buffer_funcs_enabled) 612 goto memcpy; 613 614 if (old_mem->mem_type == TTM_PL_VRAM && 615 new_mem->mem_type == TTM_PL_SYSTEM) { 616 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 617 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 618 new_mem->mem_type == TTM_PL_VRAM) { 619 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 620 } else { 621 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 622 new_mem, old_mem); 623 } 624 625 if (r) { 626 memcpy: 627 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 628 if (r) { 629 return r; 630 } 631 } 632 633 if (bo->type == ttm_bo_type_device && 634 new_mem->mem_type == TTM_PL_VRAM && 635 old_mem->mem_type != TTM_PL_VRAM) { 636 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 637 * accesses the BO after it's moved. 638 */ 639 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 640 } 641 642 /* update statistics */ 643 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 644 return 0; 645 } 646 647 /** 648 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 649 * 650 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 651 */ 652 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 653 { 654 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 655 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 656 struct drm_mm_node *mm_node = mem->mm_node; 657 658 mem->bus.addr = NULL; 659 mem->bus.offset = 0; 660 mem->bus.size = mem->num_pages << PAGE_SHIFT; 661 mem->bus.base = 0; 662 mem->bus.is_iomem = false; 663 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 664 return -EINVAL; 665 switch (mem->mem_type) { 666 case TTM_PL_SYSTEM: 667 /* system memory */ 668 return 0; 669 case TTM_PL_TT: 670 break; 671 case TTM_PL_VRAM: 672 mem->bus.offset = mem->start << PAGE_SHIFT; 673 /* check if it's visible */ 674 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 675 return -EINVAL; 676 /* Only physically contiguous buffers apply. In a contiguous 677 * buffer, size of the first mm_node would match the number of 678 * pages in ttm_mem_reg. 679 */ 680 if (adev->mman.aper_base_kaddr && 681 (mm_node->size == mem->num_pages)) 682 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 683 mem->bus.offset; 684 685 mem->bus.base = adev->gmc.aper_base; 686 mem->bus.is_iomem = true; 687 break; 688 default: 689 return -EINVAL; 690 } 691 return 0; 692 } 693 694 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 695 { 696 } 697 698 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 699 unsigned long page_offset) 700 { 701 struct drm_mm_node *mm; 702 unsigned long offset = (page_offset << PAGE_SHIFT); 703 704 mm = amdgpu_find_mm_node(&bo->mem, &offset); 705 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 706 (offset >> PAGE_SHIFT); 707 } 708 709 /* 710 * TTM backend functions. 711 */ 712 struct amdgpu_ttm_tt { 713 struct ttm_dma_tt ttm; 714 u64 offset; 715 uint64_t userptr; 716 struct task_struct *usertask; 717 uint32_t userflags; 718 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 719 struct hmm_range *range; 720 #endif 721 }; 722 723 /** 724 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 725 * memory and start HMM tracking CPU page table update 726 * 727 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 728 * once afterwards to stop HMM tracking 729 */ 730 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 731 732 #define MAX_RETRY_HMM_RANGE_FAULT 16 733 734 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 735 { 736 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL; 737 struct ttm_tt *ttm = bo->tbo.ttm; 738 struct amdgpu_ttm_tt *gtt = (void *)ttm; 739 struct mm_struct *mm = gtt->usertask->mm; 740 unsigned long start = gtt->userptr; 741 struct vm_area_struct *vma; 742 struct hmm_range *range; 743 unsigned long i; 744 uint64_t *pfns; 745 int retry = 0; 746 int r = 0; 747 748 if (!mm) /* Happens during process shutdown */ 749 return -ESRCH; 750 751 if (unlikely(!mirror)) { 752 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n"); 753 r = -EFAULT; 754 goto out; 755 } 756 757 vma = find_vma(mm, start); 758 if (unlikely(!vma || start < vma->vm_start)) { 759 r = -EFAULT; 760 goto out; 761 } 762 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 763 vma->vm_file)) { 764 r = -EPERM; 765 goto out; 766 } 767 768 range = kzalloc(sizeof(*range), GFP_KERNEL); 769 if (unlikely(!range)) { 770 r = -ENOMEM; 771 goto out; 772 } 773 774 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL); 775 if (unlikely(!pfns)) { 776 r = -ENOMEM; 777 goto out_free_ranges; 778 } 779 780 amdgpu_hmm_init_range(range); 781 range->default_flags = range->flags[HMM_PFN_VALID]; 782 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ? 783 0 : range->flags[HMM_PFN_WRITE]; 784 range->pfn_flags_mask = 0; 785 range->pfns = pfns; 786 hmm_range_register(range, mirror, start, 787 start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT); 788 789 retry: 790 /* 791 * Just wait for range to be valid, safe to ignore return value as we 792 * will use the return value of hmm_range_fault() below under the 793 * mmap_sem to ascertain the validity of the range. 794 */ 795 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT); 796 797 down_read(&mm->mmap_sem); 798 799 r = hmm_range_fault(range, true); 800 if (unlikely(r < 0)) { 801 if (likely(r == -EAGAIN)) { 802 /* 803 * return -EAGAIN, mmap_sem is dropped 804 */ 805 if (retry++ < MAX_RETRY_HMM_RANGE_FAULT) 806 goto retry; 807 else 808 pr_err("Retry hmm fault too many times\n"); 809 } 810 811 goto out_up_read; 812 } 813 814 up_read(&mm->mmap_sem); 815 816 for (i = 0; i < ttm->num_pages; i++) { 817 pages[i] = hmm_device_entry_to_page(range, pfns[i]); 818 if (unlikely(!pages[i])) { 819 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 820 i, pfns[i]); 821 r = -ENOMEM; 822 823 goto out_free_pfns; 824 } 825 } 826 827 gtt->range = range; 828 829 return 0; 830 831 out_up_read: 832 if (likely(r != -EAGAIN)) 833 up_read(&mm->mmap_sem); 834 out_free_pfns: 835 hmm_range_unregister(range); 836 kvfree(pfns); 837 out_free_ranges: 838 kfree(range); 839 out: 840 return r; 841 } 842 843 /** 844 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 845 * Check if the pages backing this ttm range have been invalidated 846 * 847 * Returns: true if pages are still valid 848 */ 849 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 850 { 851 struct amdgpu_ttm_tt *gtt = (void *)ttm; 852 bool r = false; 853 854 if (!gtt || !gtt->userptr) 855 return false; 856 857 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 858 gtt->userptr, ttm->num_pages); 859 860 WARN_ONCE(!gtt->range || !gtt->range->pfns, 861 "No user pages to check\n"); 862 863 if (gtt->range) { 864 r = hmm_range_valid(gtt->range); 865 hmm_range_unregister(gtt->range); 866 867 kvfree(gtt->range->pfns); 868 kfree(gtt->range); 869 gtt->range = NULL; 870 } 871 872 return r; 873 } 874 #endif 875 876 /** 877 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 878 * 879 * Called by amdgpu_cs_list_validate(). This creates the page list 880 * that backs user memory and will ultimately be mapped into the device 881 * address space. 882 */ 883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 884 { 885 unsigned long i; 886 887 for (i = 0; i < ttm->num_pages; ++i) 888 ttm->pages[i] = pages ? pages[i] : NULL; 889 } 890 891 /** 892 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 893 * 894 * Called by amdgpu_ttm_backend_bind() 895 **/ 896 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 897 { 898 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 899 struct amdgpu_ttm_tt *gtt = (void *)ttm; 900 unsigned nents; 901 int r; 902 903 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 904 enum dma_data_direction direction = write ? 905 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 906 907 /* Allocate an SG array and squash pages into it */ 908 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 909 ttm->num_pages << PAGE_SHIFT, 910 GFP_KERNEL); 911 if (r) 912 goto release_sg; 913 914 /* Map SG to device */ 915 r = -ENOMEM; 916 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 917 if (nents != ttm->sg->nents) 918 goto release_sg; 919 920 /* convert SG to linear array of pages and dma addresses */ 921 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 922 gtt->ttm.dma_address, ttm->num_pages); 923 924 return 0; 925 926 release_sg: 927 kfree(ttm->sg); 928 return r; 929 } 930 931 /** 932 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 933 */ 934 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 935 { 936 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 937 struct amdgpu_ttm_tt *gtt = (void *)ttm; 938 939 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 940 enum dma_data_direction direction = write ? 941 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 942 943 /* double check that we don't free the table twice */ 944 if (!ttm->sg->sgl) 945 return; 946 947 /* unmap the pages mapped to the device */ 948 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 949 950 sg_free_table(ttm->sg); 951 952 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 953 if (gtt->range && 954 ttm->pages[0] == hmm_device_entry_to_page(gtt->range, 955 gtt->range->pfns[0])) 956 WARN_ONCE(1, "Missing get_user_page_done\n"); 957 #endif 958 } 959 960 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 961 struct ttm_buffer_object *tbo, 962 uint64_t flags) 963 { 964 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 965 struct ttm_tt *ttm = tbo->ttm; 966 struct amdgpu_ttm_tt *gtt = (void *)ttm; 967 int r; 968 969 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 970 uint64_t page_idx = 1; 971 972 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 973 ttm->pages, gtt->ttm.dma_address, flags); 974 if (r) 975 goto gart_bind_fail; 976 977 /* Patch mtype of the second part BO */ 978 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 979 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 980 981 r = amdgpu_gart_bind(adev, 982 gtt->offset + (page_idx << PAGE_SHIFT), 983 ttm->num_pages - page_idx, 984 &ttm->pages[page_idx], 985 &(gtt->ttm.dma_address[page_idx]), flags); 986 } else { 987 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 988 ttm->pages, gtt->ttm.dma_address, flags); 989 } 990 991 gart_bind_fail: 992 if (r) 993 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 994 ttm->num_pages, gtt->offset); 995 996 return r; 997 } 998 999 /** 1000 * amdgpu_ttm_backend_bind - Bind GTT memory 1001 * 1002 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1003 * This handles binding GTT memory to the device address space. 1004 */ 1005 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1006 struct ttm_mem_reg *bo_mem) 1007 { 1008 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1009 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1010 uint64_t flags; 1011 int r = 0; 1012 1013 if (gtt->userptr) { 1014 r = amdgpu_ttm_tt_pin_userptr(ttm); 1015 if (r) { 1016 DRM_ERROR("failed to pin userptr\n"); 1017 return r; 1018 } 1019 } 1020 if (!ttm->num_pages) { 1021 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1022 ttm->num_pages, bo_mem, ttm); 1023 } 1024 1025 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1026 bo_mem->mem_type == AMDGPU_PL_GWS || 1027 bo_mem->mem_type == AMDGPU_PL_OA) 1028 return -EINVAL; 1029 1030 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1031 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1032 return 0; 1033 } 1034 1035 /* compute PTE flags relevant to this BO memory */ 1036 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1037 1038 /* bind pages into GART page tables */ 1039 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1040 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1041 ttm->pages, gtt->ttm.dma_address, flags); 1042 1043 if (r) 1044 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1045 ttm->num_pages, gtt->offset); 1046 return r; 1047 } 1048 1049 /** 1050 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1051 */ 1052 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1053 { 1054 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1055 struct ttm_operation_ctx ctx = { false, false }; 1056 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1057 struct ttm_mem_reg tmp; 1058 struct ttm_placement placement; 1059 struct ttm_place placements; 1060 uint64_t addr, flags; 1061 int r; 1062 1063 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1064 return 0; 1065 1066 addr = amdgpu_gmc_agp_addr(bo); 1067 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1068 bo->mem.start = addr >> PAGE_SHIFT; 1069 } else { 1070 1071 /* allocate GART space */ 1072 tmp = bo->mem; 1073 tmp.mm_node = NULL; 1074 placement.num_placement = 1; 1075 placement.placement = &placements; 1076 placement.num_busy_placement = 1; 1077 placement.busy_placement = &placements; 1078 placements.fpfn = 0; 1079 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1080 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1081 TTM_PL_FLAG_TT; 1082 1083 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1084 if (unlikely(r)) 1085 return r; 1086 1087 /* compute PTE flags for this buffer object */ 1088 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1089 1090 /* Bind pages */ 1091 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1092 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1093 if (unlikely(r)) { 1094 ttm_bo_mem_put(bo, &tmp); 1095 return r; 1096 } 1097 1098 ttm_bo_mem_put(bo, &bo->mem); 1099 bo->mem = tmp; 1100 } 1101 1102 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1103 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * amdgpu_ttm_recover_gart - Rebind GTT pages 1110 * 1111 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1112 * rebind GTT pages during a GPU reset. 1113 */ 1114 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1115 { 1116 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1117 uint64_t flags; 1118 int r; 1119 1120 if (!tbo->ttm) 1121 return 0; 1122 1123 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1124 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1125 1126 return r; 1127 } 1128 1129 /** 1130 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1131 * 1132 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1133 * ttm_tt_destroy(). 1134 */ 1135 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1136 { 1137 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1138 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1139 int r; 1140 1141 /* if the pages have userptr pinning then clear that first */ 1142 if (gtt->userptr) 1143 amdgpu_ttm_tt_unpin_userptr(ttm); 1144 1145 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1146 return 0; 1147 1148 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1149 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1150 if (r) 1151 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1152 gtt->ttm.ttm.num_pages, gtt->offset); 1153 return r; 1154 } 1155 1156 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1157 { 1158 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1159 1160 if (gtt->usertask) 1161 put_task_struct(gtt->usertask); 1162 1163 ttm_dma_tt_fini(>t->ttm); 1164 kfree(gtt); 1165 } 1166 1167 static struct ttm_backend_func amdgpu_backend_func = { 1168 .bind = &amdgpu_ttm_backend_bind, 1169 .unbind = &amdgpu_ttm_backend_unbind, 1170 .destroy = &amdgpu_ttm_backend_destroy, 1171 }; 1172 1173 /** 1174 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1175 * 1176 * @bo: The buffer object to create a GTT ttm_tt object around 1177 * 1178 * Called by ttm_tt_create(). 1179 */ 1180 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1181 uint32_t page_flags) 1182 { 1183 struct amdgpu_device *adev; 1184 struct amdgpu_ttm_tt *gtt; 1185 1186 adev = amdgpu_ttm_adev(bo->bdev); 1187 1188 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1189 if (gtt == NULL) { 1190 return NULL; 1191 } 1192 gtt->ttm.ttm.func = &amdgpu_backend_func; 1193 1194 /* allocate space for the uninitialized page entries */ 1195 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1196 kfree(gtt); 1197 return NULL; 1198 } 1199 return >t->ttm.ttm; 1200 } 1201 1202 /** 1203 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1204 * 1205 * Map the pages of a ttm_tt object to an address space visible 1206 * to the underlying device. 1207 */ 1208 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1209 struct ttm_operation_ctx *ctx) 1210 { 1211 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1212 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1213 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1214 1215 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1216 if (gtt && gtt->userptr) { 1217 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1218 if (!ttm->sg) 1219 return -ENOMEM; 1220 1221 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1222 ttm->state = tt_unbound; 1223 return 0; 1224 } 1225 1226 if (slave && ttm->sg) { 1227 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1228 gtt->ttm.dma_address, 1229 ttm->num_pages); 1230 ttm->state = tt_unbound; 1231 return 0; 1232 } 1233 1234 #ifdef CONFIG_SWIOTLB 1235 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1236 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1237 } 1238 #endif 1239 1240 /* fall back to generic helper to populate the page array 1241 * and map them to the device */ 1242 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1243 } 1244 1245 /** 1246 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1247 * 1248 * Unmaps pages of a ttm_tt object from the device address space and 1249 * unpopulates the page array backing it. 1250 */ 1251 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1252 { 1253 struct amdgpu_device *adev; 1254 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1255 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1256 1257 if (gtt && gtt->userptr) { 1258 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1259 kfree(ttm->sg); 1260 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1261 return; 1262 } 1263 1264 if (slave) 1265 return; 1266 1267 adev = amdgpu_ttm_adev(ttm->bdev); 1268 1269 #ifdef CONFIG_SWIOTLB 1270 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1271 ttm_dma_unpopulate(>t->ttm, adev->dev); 1272 return; 1273 } 1274 #endif 1275 1276 /* fall back to generic helper to unmap and unpopulate array */ 1277 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1278 } 1279 1280 /** 1281 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1282 * task 1283 * 1284 * @ttm: The ttm_tt object to bind this userptr object to 1285 * @addr: The address in the current tasks VM space to use 1286 * @flags: Requirements of userptr object. 1287 * 1288 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1289 * to current task 1290 */ 1291 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1292 uint32_t flags) 1293 { 1294 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1295 1296 if (gtt == NULL) 1297 return -EINVAL; 1298 1299 gtt->userptr = addr; 1300 gtt->userflags = flags; 1301 1302 if (gtt->usertask) 1303 put_task_struct(gtt->usertask); 1304 gtt->usertask = current->group_leader; 1305 get_task_struct(gtt->usertask); 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1312 */ 1313 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1314 { 1315 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1316 1317 if (gtt == NULL) 1318 return NULL; 1319 1320 if (gtt->usertask == NULL) 1321 return NULL; 1322 1323 return gtt->usertask->mm; 1324 } 1325 1326 /** 1327 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1328 * address range for the current task. 1329 * 1330 */ 1331 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1332 unsigned long end) 1333 { 1334 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1335 unsigned long size; 1336 1337 if (gtt == NULL || !gtt->userptr) 1338 return false; 1339 1340 /* Return false if no part of the ttm_tt object lies within 1341 * the range 1342 */ 1343 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1344 if (gtt->userptr > end || gtt->userptr + size <= start) 1345 return false; 1346 1347 return true; 1348 } 1349 1350 /** 1351 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1352 */ 1353 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1354 { 1355 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1356 1357 if (gtt == NULL || !gtt->userptr) 1358 return false; 1359 1360 return true; 1361 } 1362 1363 /** 1364 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1365 */ 1366 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1367 { 1368 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1369 1370 if (gtt == NULL) 1371 return false; 1372 1373 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1374 } 1375 1376 /** 1377 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1378 * 1379 * @ttm: The ttm_tt object to compute the flags for 1380 * @mem: The memory registry backing this ttm_tt object 1381 * 1382 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1383 */ 1384 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1385 { 1386 uint64_t flags = 0; 1387 1388 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1389 flags |= AMDGPU_PTE_VALID; 1390 1391 if (mem && mem->mem_type == TTM_PL_TT) { 1392 flags |= AMDGPU_PTE_SYSTEM; 1393 1394 if (ttm->caching_state == tt_cached) 1395 flags |= AMDGPU_PTE_SNOOPED; 1396 } 1397 1398 return flags; 1399 } 1400 1401 /** 1402 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1403 * 1404 * @ttm: The ttm_tt object to compute the flags for 1405 * @mem: The memory registry backing this ttm_tt object 1406 1407 * Figure out the flags to use for a VM PTE (Page Table Entry). 1408 */ 1409 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1410 struct ttm_mem_reg *mem) 1411 { 1412 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1413 1414 flags |= adev->gart.gart_pte_flags; 1415 flags |= AMDGPU_PTE_READABLE; 1416 1417 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1418 flags |= AMDGPU_PTE_WRITEABLE; 1419 1420 return flags; 1421 } 1422 1423 /** 1424 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1425 * object. 1426 * 1427 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1428 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1429 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1430 * used to clean out a memory space. 1431 */ 1432 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1433 const struct ttm_place *place) 1434 { 1435 unsigned long num_pages = bo->mem.num_pages; 1436 struct drm_mm_node *node = bo->mem.mm_node; 1437 struct reservation_object_list *flist; 1438 struct dma_fence *f; 1439 int i; 1440 1441 /* Don't evict VM page tables while they are busy, otherwise we can't 1442 * cleanly handle page faults. 1443 */ 1444 if (bo->type == ttm_bo_type_kernel && 1445 !reservation_object_test_signaled_rcu(bo->resv, true)) 1446 return false; 1447 1448 /* If bo is a KFD BO, check if the bo belongs to the current process. 1449 * If true, then return false as any KFD process needs all its BOs to 1450 * be resident to run successfully 1451 */ 1452 flist = reservation_object_get_list(bo->resv); 1453 if (flist) { 1454 for (i = 0; i < flist->shared_count; ++i) { 1455 f = rcu_dereference_protected(flist->shared[i], 1456 reservation_object_held(bo->resv)); 1457 if (amdkfd_fence_check_mm(f, current->mm)) 1458 return false; 1459 } 1460 } 1461 1462 switch (bo->mem.mem_type) { 1463 case TTM_PL_TT: 1464 return true; 1465 1466 case TTM_PL_VRAM: 1467 /* Check each drm MM node individually */ 1468 while (num_pages) { 1469 if (place->fpfn < (node->start + node->size) && 1470 !(place->lpfn && place->lpfn <= node->start)) 1471 return true; 1472 1473 num_pages -= node->size; 1474 ++node; 1475 } 1476 return false; 1477 1478 default: 1479 break; 1480 } 1481 1482 return ttm_bo_eviction_valuable(bo, place); 1483 } 1484 1485 /** 1486 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1487 * 1488 * @bo: The buffer object to read/write 1489 * @offset: Offset into buffer object 1490 * @buf: Secondary buffer to write/read from 1491 * @len: Length in bytes of access 1492 * @write: true if writing 1493 * 1494 * This is used to access VRAM that backs a buffer object via MMIO 1495 * access for debugging purposes. 1496 */ 1497 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1498 unsigned long offset, 1499 void *buf, int len, int write) 1500 { 1501 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1502 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1503 struct drm_mm_node *nodes; 1504 uint32_t value = 0; 1505 int ret = 0; 1506 uint64_t pos; 1507 unsigned long flags; 1508 1509 if (bo->mem.mem_type != TTM_PL_VRAM) 1510 return -EIO; 1511 1512 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1513 pos = (nodes->start << PAGE_SHIFT) + offset; 1514 1515 while (len && pos < adev->gmc.mc_vram_size) { 1516 uint64_t aligned_pos = pos & ~(uint64_t)3; 1517 uint32_t bytes = 4 - (pos & 3); 1518 uint32_t shift = (pos & 3) * 8; 1519 uint32_t mask = 0xffffffff << shift; 1520 1521 if (len < bytes) { 1522 mask &= 0xffffffff >> (bytes - len) * 8; 1523 bytes = len; 1524 } 1525 1526 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1527 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1528 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1529 if (!write || mask != 0xffffffff) 1530 value = RREG32_NO_KIQ(mmMM_DATA); 1531 if (write) { 1532 value &= ~mask; 1533 value |= (*(uint32_t *)buf << shift) & mask; 1534 WREG32_NO_KIQ(mmMM_DATA, value); 1535 } 1536 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1537 if (!write) { 1538 value = (value & mask) >> shift; 1539 memcpy(buf, &value, bytes); 1540 } 1541 1542 ret += bytes; 1543 buf = (uint8_t *)buf + bytes; 1544 pos += bytes; 1545 len -= bytes; 1546 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1547 ++nodes; 1548 pos = (nodes->start << PAGE_SHIFT); 1549 } 1550 } 1551 1552 return ret; 1553 } 1554 1555 static struct ttm_bo_driver amdgpu_bo_driver = { 1556 .ttm_tt_create = &amdgpu_ttm_tt_create, 1557 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1558 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1559 .invalidate_caches = &amdgpu_invalidate_caches, 1560 .init_mem_type = &amdgpu_init_mem_type, 1561 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1562 .evict_flags = &amdgpu_evict_flags, 1563 .move = &amdgpu_bo_move, 1564 .verify_access = &amdgpu_verify_access, 1565 .move_notify = &amdgpu_bo_move_notify, 1566 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1567 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1568 .io_mem_free = &amdgpu_ttm_io_mem_free, 1569 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1570 .access_memory = &amdgpu_ttm_access_memory, 1571 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1572 }; 1573 1574 /* 1575 * Firmware Reservation functions 1576 */ 1577 /** 1578 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1579 * 1580 * @adev: amdgpu_device pointer 1581 * 1582 * free fw reserved vram if it has been reserved. 1583 */ 1584 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1585 { 1586 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1587 NULL, &adev->fw_vram_usage.va); 1588 } 1589 1590 /** 1591 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1592 * 1593 * @adev: amdgpu_device pointer 1594 * 1595 * create bo vram reservation from fw. 1596 */ 1597 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1598 { 1599 struct ttm_operation_ctx ctx = { false, false }; 1600 struct amdgpu_bo_param bp; 1601 int r = 0; 1602 int i; 1603 u64 vram_size = adev->gmc.visible_vram_size; 1604 u64 offset = adev->fw_vram_usage.start_offset; 1605 u64 size = adev->fw_vram_usage.size; 1606 struct amdgpu_bo *bo; 1607 1608 memset(&bp, 0, sizeof(bp)); 1609 bp.size = adev->fw_vram_usage.size; 1610 bp.byte_align = PAGE_SIZE; 1611 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1612 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1613 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1614 bp.type = ttm_bo_type_kernel; 1615 bp.resv = NULL; 1616 adev->fw_vram_usage.va = NULL; 1617 adev->fw_vram_usage.reserved_bo = NULL; 1618 1619 if (adev->fw_vram_usage.size > 0 && 1620 adev->fw_vram_usage.size <= vram_size) { 1621 1622 r = amdgpu_bo_create(adev, &bp, 1623 &adev->fw_vram_usage.reserved_bo); 1624 if (r) 1625 goto error_create; 1626 1627 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1628 if (r) 1629 goto error_reserve; 1630 1631 /* remove the original mem node and create a new one at the 1632 * request position 1633 */ 1634 bo = adev->fw_vram_usage.reserved_bo; 1635 offset = ALIGN(offset, PAGE_SIZE); 1636 for (i = 0; i < bo->placement.num_placement; ++i) { 1637 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1638 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1639 } 1640 1641 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1642 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1643 &bo->tbo.mem, &ctx); 1644 if (r) 1645 goto error_pin; 1646 1647 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1648 AMDGPU_GEM_DOMAIN_VRAM, 1649 adev->fw_vram_usage.start_offset, 1650 (adev->fw_vram_usage.start_offset + 1651 adev->fw_vram_usage.size)); 1652 if (r) 1653 goto error_pin; 1654 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1655 &adev->fw_vram_usage.va); 1656 if (r) 1657 goto error_kmap; 1658 1659 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1660 } 1661 return r; 1662 1663 error_kmap: 1664 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1665 error_pin: 1666 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1667 error_reserve: 1668 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1669 error_create: 1670 adev->fw_vram_usage.va = NULL; 1671 adev->fw_vram_usage.reserved_bo = NULL; 1672 return r; 1673 } 1674 /** 1675 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1676 * gtt/vram related fields. 1677 * 1678 * This initializes all of the memory space pools that the TTM layer 1679 * will need such as the GTT space (system memory mapped to the device), 1680 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1681 * can be mapped per VMID. 1682 */ 1683 int amdgpu_ttm_init(struct amdgpu_device *adev) 1684 { 1685 uint64_t gtt_size; 1686 int r; 1687 u64 vis_vram_limit; 1688 1689 mutex_init(&adev->mman.gtt_window_lock); 1690 1691 /* No others user of address space so set it to 0 */ 1692 r = ttm_bo_device_init(&adev->mman.bdev, 1693 &amdgpu_bo_driver, 1694 adev->ddev->anon_inode->i_mapping, 1695 adev->need_dma32); 1696 if (r) { 1697 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1698 return r; 1699 } 1700 adev->mman.initialized = true; 1701 1702 /* We opt to avoid OOM on system pages allocations */ 1703 adev->mman.bdev.no_retry = true; 1704 1705 /* Initialize VRAM pool with all of VRAM divided into pages */ 1706 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1707 adev->gmc.real_vram_size >> PAGE_SHIFT); 1708 if (r) { 1709 DRM_ERROR("Failed initializing VRAM heap.\n"); 1710 return r; 1711 } 1712 1713 /* Reduce size of CPU-visible VRAM if requested */ 1714 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1715 if (amdgpu_vis_vram_limit > 0 && 1716 vis_vram_limit <= adev->gmc.visible_vram_size) 1717 adev->gmc.visible_vram_size = vis_vram_limit; 1718 1719 /* Change the size here instead of the init above so only lpfn is affected */ 1720 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1721 #ifdef CONFIG_64BIT 1722 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1723 adev->gmc.visible_vram_size); 1724 #endif 1725 1726 /* 1727 *The reserved vram for firmware must be pinned to the specified 1728 *place on the VRAM, so reserve it early. 1729 */ 1730 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1731 if (r) { 1732 return r; 1733 } 1734 1735 /* allocate memory as required for VGA 1736 * This is used for VGA emulation and pre-OS scanout buffers to 1737 * avoid display artifacts while transitioning between pre-OS 1738 * and driver. */ 1739 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1740 AMDGPU_GEM_DOMAIN_VRAM, 1741 &adev->stolen_vga_memory, 1742 NULL, NULL); 1743 if (r) 1744 return r; 1745 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1746 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1747 1748 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1749 * or whatever the user passed on module init */ 1750 if (amdgpu_gtt_size == -1) { 1751 struct sysinfo si; 1752 1753 si_meminfo(&si); 1754 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1755 adev->gmc.mc_vram_size), 1756 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1757 } 1758 else 1759 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1760 1761 /* Initialize GTT memory pool */ 1762 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1763 if (r) { 1764 DRM_ERROR("Failed initializing GTT heap.\n"); 1765 return r; 1766 } 1767 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1768 (unsigned)(gtt_size / (1024 * 1024))); 1769 1770 /* Initialize various on-chip memory pools */ 1771 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1772 adev->gds.gds_size); 1773 if (r) { 1774 DRM_ERROR("Failed initializing GDS heap.\n"); 1775 return r; 1776 } 1777 1778 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1779 adev->gds.gws_size); 1780 if (r) { 1781 DRM_ERROR("Failed initializing gws heap.\n"); 1782 return r; 1783 } 1784 1785 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1786 adev->gds.oa_size); 1787 if (r) { 1788 DRM_ERROR("Failed initializing oa heap.\n"); 1789 return r; 1790 } 1791 1792 /* Register debugfs entries for amdgpu_ttm */ 1793 r = amdgpu_ttm_debugfs_init(adev); 1794 if (r) { 1795 DRM_ERROR("Failed to init debugfs\n"); 1796 return r; 1797 } 1798 return 0; 1799 } 1800 1801 /** 1802 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1803 */ 1804 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1805 { 1806 /* return the VGA stolen memory (if any) back to VRAM */ 1807 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1808 } 1809 1810 /** 1811 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1812 */ 1813 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1814 { 1815 if (!adev->mman.initialized) 1816 return; 1817 1818 amdgpu_ttm_debugfs_fini(adev); 1819 amdgpu_ttm_fw_reserve_vram_fini(adev); 1820 if (adev->mman.aper_base_kaddr) 1821 iounmap(adev->mman.aper_base_kaddr); 1822 adev->mman.aper_base_kaddr = NULL; 1823 1824 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1825 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1826 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1827 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1828 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1829 ttm_bo_device_release(&adev->mman.bdev); 1830 adev->mman.initialized = false; 1831 DRM_INFO("amdgpu: ttm finalized\n"); 1832 } 1833 1834 /** 1835 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1836 * 1837 * @adev: amdgpu_device pointer 1838 * @enable: true when we can use buffer functions. 1839 * 1840 * Enable/disable use of buffer functions during suspend/resume. This should 1841 * only be called at bootup or when userspace isn't running. 1842 */ 1843 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1844 { 1845 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1846 uint64_t size; 1847 int r; 1848 1849 if (!adev->mman.initialized || adev->in_gpu_reset || 1850 adev->mman.buffer_funcs_enabled == enable) 1851 return; 1852 1853 if (enable) { 1854 struct amdgpu_ring *ring; 1855 struct drm_sched_rq *rq; 1856 1857 ring = adev->mman.buffer_funcs_ring; 1858 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1859 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1860 if (r) { 1861 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1862 r); 1863 return; 1864 } 1865 } else { 1866 drm_sched_entity_destroy(&adev->mman.entity); 1867 dma_fence_put(man->move); 1868 man->move = NULL; 1869 } 1870 1871 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1872 if (enable) 1873 size = adev->gmc.real_vram_size; 1874 else 1875 size = adev->gmc.visible_vram_size; 1876 man->size = size >> PAGE_SHIFT; 1877 adev->mman.buffer_funcs_enabled = enable; 1878 } 1879 1880 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1881 { 1882 struct drm_file *file_priv = filp->private_data; 1883 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 1884 1885 if (adev == NULL) 1886 return -EINVAL; 1887 1888 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1889 } 1890 1891 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1892 struct ttm_mem_reg *mem, unsigned num_pages, 1893 uint64_t offset, unsigned window, 1894 struct amdgpu_ring *ring, 1895 uint64_t *addr) 1896 { 1897 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1898 struct amdgpu_device *adev = ring->adev; 1899 struct ttm_tt *ttm = bo->ttm; 1900 struct amdgpu_job *job; 1901 unsigned num_dw, num_bytes; 1902 dma_addr_t *dma_address; 1903 struct dma_fence *fence; 1904 uint64_t src_addr, dst_addr; 1905 uint64_t flags; 1906 int r; 1907 1908 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1909 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1910 1911 *addr = adev->gmc.gart_start; 1912 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1913 AMDGPU_GPU_PAGE_SIZE; 1914 1915 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1916 while (num_dw & 0x7) 1917 num_dw++; 1918 1919 num_bytes = num_pages * 8; 1920 1921 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1922 if (r) 1923 return r; 1924 1925 src_addr = num_dw * 4; 1926 src_addr += job->ibs[0].gpu_addr; 1927 1928 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 1929 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1930 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1931 dst_addr, num_bytes); 1932 1933 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1934 WARN_ON(job->ibs[0].length_dw > num_dw); 1935 1936 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 1937 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 1938 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 1939 &job->ibs[0].ptr[num_dw]); 1940 if (r) 1941 goto error_free; 1942 1943 r = amdgpu_job_submit(job, &adev->mman.entity, 1944 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1945 if (r) 1946 goto error_free; 1947 1948 dma_fence_put(fence); 1949 1950 return r; 1951 1952 error_free: 1953 amdgpu_job_free(job); 1954 return r; 1955 } 1956 1957 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1958 uint64_t dst_offset, uint32_t byte_count, 1959 struct reservation_object *resv, 1960 struct dma_fence **fence, bool direct_submit, 1961 bool vm_needs_flush) 1962 { 1963 struct amdgpu_device *adev = ring->adev; 1964 struct amdgpu_job *job; 1965 1966 uint32_t max_bytes; 1967 unsigned num_loops, num_dw; 1968 unsigned i; 1969 int r; 1970 1971 if (direct_submit && !ring->sched.ready) { 1972 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1973 return -EINVAL; 1974 } 1975 1976 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 1977 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 1978 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 1979 1980 /* for IB padding */ 1981 while (num_dw & 0x7) 1982 num_dw++; 1983 1984 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 1985 if (r) 1986 return r; 1987 1988 if (vm_needs_flush) { 1989 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 1990 job->vm_needs_flush = true; 1991 } 1992 if (resv) { 1993 r = amdgpu_sync_resv(adev, &job->sync, resv, 1994 AMDGPU_FENCE_OWNER_UNDEFINED, 1995 false); 1996 if (r) { 1997 DRM_ERROR("sync failed (%d).\n", r); 1998 goto error_free; 1999 } 2000 } 2001 2002 for (i = 0; i < num_loops; i++) { 2003 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2004 2005 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2006 dst_offset, cur_size_in_bytes); 2007 2008 src_offset += cur_size_in_bytes; 2009 dst_offset += cur_size_in_bytes; 2010 byte_count -= cur_size_in_bytes; 2011 } 2012 2013 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2014 WARN_ON(job->ibs[0].length_dw > num_dw); 2015 if (direct_submit) 2016 r = amdgpu_job_submit_direct(job, ring, fence); 2017 else 2018 r = amdgpu_job_submit(job, &adev->mman.entity, 2019 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2020 if (r) 2021 goto error_free; 2022 2023 return r; 2024 2025 error_free: 2026 amdgpu_job_free(job); 2027 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2028 return r; 2029 } 2030 2031 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2032 uint32_t src_data, 2033 struct reservation_object *resv, 2034 struct dma_fence **fence) 2035 { 2036 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2037 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2038 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2039 2040 struct drm_mm_node *mm_node; 2041 unsigned long num_pages; 2042 unsigned int num_loops, num_dw; 2043 2044 struct amdgpu_job *job; 2045 int r; 2046 2047 if (!adev->mman.buffer_funcs_enabled) { 2048 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2049 return -EINVAL; 2050 } 2051 2052 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2053 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2054 if (r) 2055 return r; 2056 } 2057 2058 num_pages = bo->tbo.num_pages; 2059 mm_node = bo->tbo.mem.mm_node; 2060 num_loops = 0; 2061 while (num_pages) { 2062 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2063 2064 num_loops += DIV_ROUND_UP(byte_count, max_bytes); 2065 num_pages -= mm_node->size; 2066 ++mm_node; 2067 } 2068 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2069 2070 /* for IB padding */ 2071 num_dw += 64; 2072 2073 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2074 if (r) 2075 return r; 2076 2077 if (resv) { 2078 r = amdgpu_sync_resv(adev, &job->sync, resv, 2079 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2080 if (r) { 2081 DRM_ERROR("sync failed (%d).\n", r); 2082 goto error_free; 2083 } 2084 } 2085 2086 num_pages = bo->tbo.num_pages; 2087 mm_node = bo->tbo.mem.mm_node; 2088 2089 while (num_pages) { 2090 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2091 uint64_t dst_addr; 2092 2093 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2094 while (byte_count) { 2095 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2096 2097 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2098 dst_addr, cur_size_in_bytes); 2099 2100 dst_addr += cur_size_in_bytes; 2101 byte_count -= cur_size_in_bytes; 2102 } 2103 2104 num_pages -= mm_node->size; 2105 ++mm_node; 2106 } 2107 2108 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2109 WARN_ON(job->ibs[0].length_dw > num_dw); 2110 r = amdgpu_job_submit(job, &adev->mman.entity, 2111 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2112 if (r) 2113 goto error_free; 2114 2115 return 0; 2116 2117 error_free: 2118 amdgpu_job_free(job); 2119 return r; 2120 } 2121 2122 #if defined(CONFIG_DEBUG_FS) 2123 2124 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2125 { 2126 struct drm_info_node *node = (struct drm_info_node *)m->private; 2127 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2128 struct drm_device *dev = node->minor->dev; 2129 struct amdgpu_device *adev = dev->dev_private; 2130 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2131 struct drm_printer p = drm_seq_file_printer(m); 2132 2133 man->func->debug(man, &p); 2134 return 0; 2135 } 2136 2137 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2138 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2139 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2140 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2141 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2142 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2143 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2144 #ifdef CONFIG_SWIOTLB 2145 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2146 #endif 2147 }; 2148 2149 /** 2150 * amdgpu_ttm_vram_read - Linear read access to VRAM 2151 * 2152 * Accesses VRAM via MMIO for debugging purposes. 2153 */ 2154 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2155 size_t size, loff_t *pos) 2156 { 2157 struct amdgpu_device *adev = file_inode(f)->i_private; 2158 ssize_t result = 0; 2159 int r; 2160 2161 if (size & 0x3 || *pos & 0x3) 2162 return -EINVAL; 2163 2164 if (*pos >= adev->gmc.mc_vram_size) 2165 return -ENXIO; 2166 2167 while (size) { 2168 unsigned long flags; 2169 uint32_t value; 2170 2171 if (*pos >= adev->gmc.mc_vram_size) 2172 return result; 2173 2174 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2175 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2176 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2177 value = RREG32_NO_KIQ(mmMM_DATA); 2178 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2179 2180 r = put_user(value, (uint32_t *)buf); 2181 if (r) 2182 return r; 2183 2184 result += 4; 2185 buf += 4; 2186 *pos += 4; 2187 size -= 4; 2188 } 2189 2190 return result; 2191 } 2192 2193 /** 2194 * amdgpu_ttm_vram_write - Linear write access to VRAM 2195 * 2196 * Accesses VRAM via MMIO for debugging purposes. 2197 */ 2198 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2199 size_t size, loff_t *pos) 2200 { 2201 struct amdgpu_device *adev = file_inode(f)->i_private; 2202 ssize_t result = 0; 2203 int r; 2204 2205 if (size & 0x3 || *pos & 0x3) 2206 return -EINVAL; 2207 2208 if (*pos >= adev->gmc.mc_vram_size) 2209 return -ENXIO; 2210 2211 while (size) { 2212 unsigned long flags; 2213 uint32_t value; 2214 2215 if (*pos >= adev->gmc.mc_vram_size) 2216 return result; 2217 2218 r = get_user(value, (uint32_t *)buf); 2219 if (r) 2220 return r; 2221 2222 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2223 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2224 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2225 WREG32_NO_KIQ(mmMM_DATA, value); 2226 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2227 2228 result += 4; 2229 buf += 4; 2230 *pos += 4; 2231 size -= 4; 2232 } 2233 2234 return result; 2235 } 2236 2237 static const struct file_operations amdgpu_ttm_vram_fops = { 2238 .owner = THIS_MODULE, 2239 .read = amdgpu_ttm_vram_read, 2240 .write = amdgpu_ttm_vram_write, 2241 .llseek = default_llseek, 2242 }; 2243 2244 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2245 2246 /** 2247 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2248 */ 2249 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2250 size_t size, loff_t *pos) 2251 { 2252 struct amdgpu_device *adev = file_inode(f)->i_private; 2253 ssize_t result = 0; 2254 int r; 2255 2256 while (size) { 2257 loff_t p = *pos / PAGE_SIZE; 2258 unsigned off = *pos & ~PAGE_MASK; 2259 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2260 struct page *page; 2261 void *ptr; 2262 2263 if (p >= adev->gart.num_cpu_pages) 2264 return result; 2265 2266 page = adev->gart.pages[p]; 2267 if (page) { 2268 ptr = kmap(page); 2269 ptr += off; 2270 2271 r = copy_to_user(buf, ptr, cur_size); 2272 kunmap(adev->gart.pages[p]); 2273 } else 2274 r = clear_user(buf, cur_size); 2275 2276 if (r) 2277 return -EFAULT; 2278 2279 result += cur_size; 2280 buf += cur_size; 2281 *pos += cur_size; 2282 size -= cur_size; 2283 } 2284 2285 return result; 2286 } 2287 2288 static const struct file_operations amdgpu_ttm_gtt_fops = { 2289 .owner = THIS_MODULE, 2290 .read = amdgpu_ttm_gtt_read, 2291 .llseek = default_llseek 2292 }; 2293 2294 #endif 2295 2296 /** 2297 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2298 * 2299 * This function is used to read memory that has been mapped to the 2300 * GPU and the known addresses are not physical addresses but instead 2301 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2302 */ 2303 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2304 size_t size, loff_t *pos) 2305 { 2306 struct amdgpu_device *adev = file_inode(f)->i_private; 2307 struct iommu_domain *dom; 2308 ssize_t result = 0; 2309 int r; 2310 2311 /* retrieve the IOMMU domain if any for this device */ 2312 dom = iommu_get_domain_for_dev(adev->dev); 2313 2314 while (size) { 2315 phys_addr_t addr = *pos & PAGE_MASK; 2316 loff_t off = *pos & ~PAGE_MASK; 2317 size_t bytes = PAGE_SIZE - off; 2318 unsigned long pfn; 2319 struct page *p; 2320 void *ptr; 2321 2322 bytes = bytes < size ? bytes : size; 2323 2324 /* Translate the bus address to a physical address. If 2325 * the domain is NULL it means there is no IOMMU active 2326 * and the address translation is the identity 2327 */ 2328 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2329 2330 pfn = addr >> PAGE_SHIFT; 2331 if (!pfn_valid(pfn)) 2332 return -EPERM; 2333 2334 p = pfn_to_page(pfn); 2335 if (p->mapping != adev->mman.bdev.dev_mapping) 2336 return -EPERM; 2337 2338 ptr = kmap(p); 2339 r = copy_to_user(buf, ptr + off, bytes); 2340 kunmap(p); 2341 if (r) 2342 return -EFAULT; 2343 2344 size -= bytes; 2345 *pos += bytes; 2346 result += bytes; 2347 } 2348 2349 return result; 2350 } 2351 2352 /** 2353 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2354 * 2355 * This function is used to write memory that has been mapped to the 2356 * GPU and the known addresses are not physical addresses but instead 2357 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2358 */ 2359 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2360 size_t size, loff_t *pos) 2361 { 2362 struct amdgpu_device *adev = file_inode(f)->i_private; 2363 struct iommu_domain *dom; 2364 ssize_t result = 0; 2365 int r; 2366 2367 dom = iommu_get_domain_for_dev(adev->dev); 2368 2369 while (size) { 2370 phys_addr_t addr = *pos & PAGE_MASK; 2371 loff_t off = *pos & ~PAGE_MASK; 2372 size_t bytes = PAGE_SIZE - off; 2373 unsigned long pfn; 2374 struct page *p; 2375 void *ptr; 2376 2377 bytes = bytes < size ? bytes : size; 2378 2379 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2380 2381 pfn = addr >> PAGE_SHIFT; 2382 if (!pfn_valid(pfn)) 2383 return -EPERM; 2384 2385 p = pfn_to_page(pfn); 2386 if (p->mapping != adev->mman.bdev.dev_mapping) 2387 return -EPERM; 2388 2389 ptr = kmap(p); 2390 r = copy_from_user(ptr + off, buf, bytes); 2391 kunmap(p); 2392 if (r) 2393 return -EFAULT; 2394 2395 size -= bytes; 2396 *pos += bytes; 2397 result += bytes; 2398 } 2399 2400 return result; 2401 } 2402 2403 static const struct file_operations amdgpu_ttm_iomem_fops = { 2404 .owner = THIS_MODULE, 2405 .read = amdgpu_iomem_read, 2406 .write = amdgpu_iomem_write, 2407 .llseek = default_llseek 2408 }; 2409 2410 static const struct { 2411 char *name; 2412 const struct file_operations *fops; 2413 int domain; 2414 } ttm_debugfs_entries[] = { 2415 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2416 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2417 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2418 #endif 2419 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2420 }; 2421 2422 #endif 2423 2424 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2425 { 2426 #if defined(CONFIG_DEBUG_FS) 2427 unsigned count; 2428 2429 struct drm_minor *minor = adev->ddev->primary; 2430 struct dentry *ent, *root = minor->debugfs_root; 2431 2432 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2433 ent = debugfs_create_file( 2434 ttm_debugfs_entries[count].name, 2435 S_IFREG | S_IRUGO, root, 2436 adev, 2437 ttm_debugfs_entries[count].fops); 2438 if (IS_ERR(ent)) 2439 return PTR_ERR(ent); 2440 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2441 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2442 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2443 i_size_write(ent->d_inode, adev->gmc.gart_size); 2444 adev->mman.debugfs_entries[count] = ent; 2445 } 2446 2447 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2448 2449 #ifdef CONFIG_SWIOTLB 2450 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2451 --count; 2452 #endif 2453 2454 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2455 #else 2456 return 0; 2457 #endif 2458 } 2459 2460 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2461 { 2462 #if defined(CONFIG_DEBUG_FS) 2463 unsigned i; 2464 2465 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2466 debugfs_remove(adev->mman.debugfs_entries[i]); 2467 #endif 2468 } 2469