1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 50 #include <drm/amdgpu_drm.h> 51 52 #include "amdgpu.h" 53 #include "amdgpu_object.h" 54 #include "amdgpu_trace.h" 55 #include "amdgpu_amdkfd.h" 56 #include "amdgpu_sdma.h" 57 #include "amdgpu_ras.h" 58 #include "amdgpu_atomfirmware.h" 59 #include "amdgpu_res_cursor.h" 60 #include "bif/bif_4_1_d.h" 61 62 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 63 64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 65 struct ttm_tt *ttm, 66 struct ttm_resource *bo_mem); 67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 68 struct ttm_tt *ttm); 69 70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 71 unsigned int type, 72 uint64_t size_in_page) 73 { 74 return ttm_range_man_init(&adev->mman.bdev, type, 75 false, size_in_page); 76 } 77 78 /** 79 * amdgpu_evict_flags - Compute placement flags 80 * 81 * @bo: The buffer object to evict 82 * @placement: Possible destination(s) for evicted BO 83 * 84 * Fill in placement data when ttm_bo_evict() is called 85 */ 86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 87 struct ttm_placement *placement) 88 { 89 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 90 struct amdgpu_bo *abo; 91 static const struct ttm_place placements = { 92 .fpfn = 0, 93 .lpfn = 0, 94 .mem_type = TTM_PL_SYSTEM, 95 .flags = 0 96 }; 97 98 /* Don't handle scatter gather BOs */ 99 if (bo->type == ttm_bo_type_sg) { 100 placement->num_placement = 0; 101 placement->num_busy_placement = 0; 102 return; 103 } 104 105 /* Object isn't an AMDGPU object so ignore */ 106 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 107 placement->placement = &placements; 108 placement->busy_placement = &placements; 109 placement->num_placement = 1; 110 placement->num_busy_placement = 1; 111 return; 112 } 113 114 abo = ttm_to_amdgpu_bo(bo); 115 switch (bo->mem.mem_type) { 116 case AMDGPU_PL_GDS: 117 case AMDGPU_PL_GWS: 118 case AMDGPU_PL_OA: 119 placement->num_placement = 0; 120 placement->num_busy_placement = 0; 121 return; 122 123 case TTM_PL_VRAM: 124 if (!adev->mman.buffer_funcs_enabled) { 125 /* Move to system memory */ 126 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 127 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 128 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 129 amdgpu_bo_in_cpu_visible_vram(abo)) { 130 131 /* Try evicting to the CPU inaccessible part of VRAM 132 * first, but only set GTT as busy placement, so this 133 * BO will be evicted to GTT rather than causing other 134 * BOs to be evicted from VRAM 135 */ 136 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 137 AMDGPU_GEM_DOMAIN_GTT); 138 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 139 abo->placements[0].lpfn = 0; 140 abo->placement.busy_placement = &abo->placements[1]; 141 abo->placement.num_busy_placement = 1; 142 } else { 143 /* Move to GTT memory */ 144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 145 } 146 break; 147 case TTM_PL_TT: 148 default: 149 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 150 break; 151 } 152 *placement = abo->placement; 153 } 154 155 /** 156 * amdgpu_verify_access - Verify access for a mmap call 157 * 158 * @bo: The buffer object to map 159 * @filp: The file pointer from the process performing the mmap 160 * 161 * This is called by ttm_bo_mmap() to verify whether a process 162 * has the right to mmap a BO to their process space. 163 */ 164 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 165 { 166 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 167 168 /* 169 * Don't verify access for KFD BOs. They don't have a GEM 170 * object associated with them. 171 */ 172 if (abo->kfd_bo) 173 return 0; 174 175 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 176 return -EPERM; 177 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 178 filp->private_data); 179 } 180 181 /** 182 * amdgpu_ttm_map_buffer - Map memory into the GART windows 183 * @bo: buffer object to map 184 * @mem: memory object to map 185 * @mm_cur: range to map 186 * @num_pages: number of pages to map 187 * @window: which GART window to use 188 * @ring: DMA ring to use for the copy 189 * @tmz: if we should setup a TMZ enabled mapping 190 * @addr: resulting address inside the MC address space 191 * 192 * Setup one of the GART windows to access a specific piece of memory or return 193 * the physical address for local memory. 194 */ 195 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 196 struct ttm_resource *mem, 197 struct amdgpu_res_cursor *mm_cur, 198 unsigned num_pages, unsigned window, 199 struct amdgpu_ring *ring, bool tmz, 200 uint64_t *addr) 201 { 202 struct amdgpu_device *adev = ring->adev; 203 struct amdgpu_job *job; 204 unsigned num_dw, num_bytes; 205 struct dma_fence *fence; 206 uint64_t src_addr, dst_addr; 207 void *cpu_addr; 208 uint64_t flags; 209 unsigned int i; 210 int r; 211 212 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 213 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 214 215 /* Map only what can't be accessed directly */ 216 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 217 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 218 mm_cur->start; 219 return 0; 220 } 221 222 *addr = adev->gmc.gart_start; 223 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 224 AMDGPU_GPU_PAGE_SIZE; 225 *addr += mm_cur->start & ~PAGE_MASK; 226 227 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 228 num_bytes = num_pages * 8; 229 230 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 231 AMDGPU_IB_POOL_DELAYED, &job); 232 if (r) 233 return r; 234 235 src_addr = num_dw * 4; 236 src_addr += job->ibs[0].gpu_addr; 237 238 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 239 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 240 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 241 dst_addr, num_bytes, false); 242 243 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 244 WARN_ON(job->ibs[0].length_dw > num_dw); 245 246 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 247 if (tmz) 248 flags |= AMDGPU_PTE_TMZ; 249 250 cpu_addr = &job->ibs[0].ptr[num_dw]; 251 252 if (mem->mem_type == TTM_PL_TT) { 253 dma_addr_t *dma_addr; 254 255 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 256 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, 257 cpu_addr); 258 if (r) 259 goto error_free; 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, 268 &dma_address, flags, cpu_addr); 269 if (r) 270 goto error_free; 271 272 dma_address += PAGE_SIZE; 273 } 274 } 275 276 r = amdgpu_job_submit(job, &adev->mman.entity, 277 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 278 if (r) 279 goto error_free; 280 281 dma_fence_put(fence); 282 283 return r; 284 285 error_free: 286 amdgpu_job_free(job); 287 return r; 288 } 289 290 /** 291 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 292 * @adev: amdgpu device 293 * @src: buffer/address where to read from 294 * @dst: buffer/address where to write to 295 * @size: number of bytes to copy 296 * @tmz: if a secure copy should be used 297 * @resv: resv object to sync to 298 * @f: Returns the last fence if multiple jobs are submitted. 299 * 300 * The function copies @size bytes from {src->mem + src->offset} to 301 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 302 * move and different for a BO to BO copy. 303 * 304 */ 305 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 306 const struct amdgpu_copy_mem *src, 307 const struct amdgpu_copy_mem *dst, 308 uint64_t size, bool tmz, 309 struct dma_resv *resv, 310 struct dma_fence **f) 311 { 312 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 313 AMDGPU_GPU_PAGE_SIZE); 314 315 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 316 struct amdgpu_res_cursor src_mm, dst_mm; 317 struct dma_fence *fence = NULL; 318 int r = 0; 319 320 if (!adev->mman.buffer_funcs_enabled) { 321 DRM_ERROR("Trying to move memory with ring turned off.\n"); 322 return -EINVAL; 323 } 324 325 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 326 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 327 328 mutex_lock(&adev->mman.gtt_window_lock); 329 while (src_mm.remaining) { 330 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK; 331 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK; 332 struct dma_fence *next; 333 uint32_t cur_size; 334 uint64_t from, to; 335 336 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 337 * begins at an offset, then adjust the size accordingly 338 */ 339 cur_size = max(src_page_offset, dst_page_offset); 340 cur_size = min(min3(src_mm.size, dst_mm.size, size), 341 (uint64_t)(GTT_MAX_BYTES - cur_size)); 342 343 /* Map src to window 0 and dst to window 1. */ 344 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 345 PFN_UP(cur_size + src_page_offset), 346 0, ring, tmz, &from); 347 if (r) 348 goto error; 349 350 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 351 PFN_UP(cur_size + dst_page_offset), 352 1, ring, tmz, &to); 353 if (r) 354 goto error; 355 356 r = amdgpu_copy_buffer(ring, from, to, cur_size, 357 resv, &next, false, true, tmz); 358 if (r) 359 goto error; 360 361 dma_fence_put(fence); 362 fence = next; 363 364 amdgpu_res_next(&src_mm, cur_size); 365 amdgpu_res_next(&dst_mm, cur_size); 366 } 367 error: 368 mutex_unlock(&adev->mman.gtt_window_lock); 369 if (f) 370 *f = dma_fence_get(fence); 371 dma_fence_put(fence); 372 return r; 373 } 374 375 /* 376 * amdgpu_move_blit - Copy an entire buffer to another buffer 377 * 378 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 379 * help move buffers to and from VRAM. 380 */ 381 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 382 bool evict, 383 struct ttm_resource *new_mem, 384 struct ttm_resource *old_mem) 385 { 386 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 387 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 388 struct amdgpu_copy_mem src, dst; 389 struct dma_fence *fence = NULL; 390 int r; 391 392 src.bo = bo; 393 dst.bo = bo; 394 src.mem = old_mem; 395 dst.mem = new_mem; 396 src.offset = 0; 397 dst.offset = 0; 398 399 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 400 new_mem->num_pages << PAGE_SHIFT, 401 amdgpu_bo_encrypted(abo), 402 bo->base.resv, &fence); 403 if (r) 404 goto error; 405 406 /* clear the space being freed */ 407 if (old_mem->mem_type == TTM_PL_VRAM && 408 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 409 struct dma_fence *wipe_fence = NULL; 410 411 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 412 NULL, &wipe_fence); 413 if (r) { 414 goto error; 415 } else if (wipe_fence) { 416 dma_fence_put(fence); 417 fence = wipe_fence; 418 } 419 } 420 421 /* Always block for VM page tables before committing the new location */ 422 if (bo->type == ttm_bo_type_kernel) 423 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 424 else 425 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 426 dma_fence_put(fence); 427 return r; 428 429 error: 430 if (fence) 431 dma_fence_wait(fence, false); 432 dma_fence_put(fence); 433 return r; 434 } 435 436 /* 437 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 438 * 439 * Called by amdgpu_bo_move() 440 */ 441 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 442 struct ttm_resource *mem) 443 { 444 uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT; 445 struct amdgpu_res_cursor cursor; 446 447 if (mem->mem_type == TTM_PL_SYSTEM || 448 mem->mem_type == TTM_PL_TT) 449 return true; 450 if (mem->mem_type != TTM_PL_VRAM) 451 return false; 452 453 amdgpu_res_first(mem, 0, mem_size, &cursor); 454 455 /* ttm_resource_ioremap only supports contiguous memory */ 456 if (cursor.size != mem_size) 457 return false; 458 459 return cursor.start + cursor.size <= adev->gmc.visible_vram_size; 460 } 461 462 /* 463 * amdgpu_bo_move - Move a buffer object to a new memory location 464 * 465 * Called by ttm_bo_handle_move_mem() 466 */ 467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 468 struct ttm_operation_ctx *ctx, 469 struct ttm_resource *new_mem, 470 struct ttm_place *hop) 471 { 472 struct amdgpu_device *adev; 473 struct amdgpu_bo *abo; 474 struct ttm_resource *old_mem = &bo->mem; 475 int r; 476 477 if (new_mem->mem_type == TTM_PL_TT) { 478 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 479 if (r) 480 return r; 481 } 482 483 /* Can't move a pinned BO */ 484 abo = ttm_to_amdgpu_bo(bo); 485 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 486 return -EINVAL; 487 488 adev = amdgpu_ttm_adev(bo->bdev); 489 490 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 491 ttm_bo_move_null(bo, new_mem); 492 goto out; 493 } 494 if (old_mem->mem_type == TTM_PL_SYSTEM && 495 new_mem->mem_type == TTM_PL_TT) { 496 ttm_bo_move_null(bo, new_mem); 497 goto out; 498 } 499 if (old_mem->mem_type == TTM_PL_TT && 500 new_mem->mem_type == TTM_PL_SYSTEM) { 501 r = ttm_bo_wait_ctx(bo, ctx); 502 if (r) 503 return r; 504 505 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 506 ttm_resource_free(bo, &bo->mem); 507 ttm_bo_assign_mem(bo, new_mem); 508 goto out; 509 } 510 511 if (old_mem->mem_type == AMDGPU_PL_GDS || 512 old_mem->mem_type == AMDGPU_PL_GWS || 513 old_mem->mem_type == AMDGPU_PL_OA || 514 new_mem->mem_type == AMDGPU_PL_GDS || 515 new_mem->mem_type == AMDGPU_PL_GWS || 516 new_mem->mem_type == AMDGPU_PL_OA) { 517 /* Nothing to save here */ 518 ttm_bo_move_null(bo, new_mem); 519 goto out; 520 } 521 522 if (adev->mman.buffer_funcs_enabled) { 523 if (((old_mem->mem_type == TTM_PL_SYSTEM && 524 new_mem->mem_type == TTM_PL_VRAM) || 525 (old_mem->mem_type == TTM_PL_VRAM && 526 new_mem->mem_type == TTM_PL_SYSTEM))) { 527 hop->fpfn = 0; 528 hop->lpfn = 0; 529 hop->mem_type = TTM_PL_TT; 530 hop->flags = 0; 531 return -EMULTIHOP; 532 } 533 534 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 535 } else { 536 r = -ENODEV; 537 } 538 539 if (r) { 540 /* Check that all memory is CPU accessible */ 541 if (!amdgpu_mem_visible(adev, old_mem) || 542 !amdgpu_mem_visible(adev, new_mem)) { 543 pr_err("Move buffer fallback to memcpy unavailable\n"); 544 return r; 545 } 546 547 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 548 if (r) 549 return r; 550 } 551 552 if (bo->type == ttm_bo_type_device && 553 new_mem->mem_type == TTM_PL_VRAM && 554 old_mem->mem_type != TTM_PL_VRAM) { 555 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 556 * accesses the BO after it's moved. 557 */ 558 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 559 } 560 561 out: 562 /* update statistics */ 563 atomic64_add(bo->base.size, &adev->num_bytes_moved); 564 amdgpu_bo_move_notify(bo, evict, new_mem); 565 return 0; 566 } 567 568 /* 569 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 570 * 571 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 572 */ 573 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 574 { 575 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 576 struct drm_mm_node *mm_node = mem->mm_node; 577 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 578 579 switch (mem->mem_type) { 580 case TTM_PL_SYSTEM: 581 /* system memory */ 582 return 0; 583 case TTM_PL_TT: 584 break; 585 case TTM_PL_VRAM: 586 mem->bus.offset = mem->start << PAGE_SHIFT; 587 /* check if it's visible */ 588 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 589 return -EINVAL; 590 /* Only physically contiguous buffers apply. In a contiguous 591 * buffer, size of the first mm_node would match the number of 592 * pages in ttm_resource. 593 */ 594 if (adev->mman.aper_base_kaddr && 595 (mm_node->size == mem->num_pages)) 596 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 597 mem->bus.offset; 598 599 mem->bus.offset += adev->gmc.aper_base; 600 mem->bus.is_iomem = true; 601 if (adev->gmc.xgmi.connected_to_cpu) 602 mem->bus.caching = ttm_cached; 603 else 604 mem->bus.caching = ttm_write_combined; 605 break; 606 default: 607 return -EINVAL; 608 } 609 return 0; 610 } 611 612 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 613 unsigned long page_offset) 614 { 615 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 616 struct amdgpu_res_cursor cursor; 617 618 amdgpu_res_first(&bo->mem, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 619 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 620 } 621 622 /** 623 * amdgpu_ttm_domain_start - Returns GPU start address 624 * @adev: amdgpu device object 625 * @type: type of the memory 626 * 627 * Returns: 628 * GPU start address of a memory domain 629 */ 630 631 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 632 { 633 switch (type) { 634 case TTM_PL_TT: 635 return adev->gmc.gart_start; 636 case TTM_PL_VRAM: 637 return adev->gmc.vram_start; 638 } 639 640 return 0; 641 } 642 643 /* 644 * TTM backend functions. 645 */ 646 struct amdgpu_ttm_tt { 647 struct ttm_tt ttm; 648 struct drm_gem_object *gobj; 649 u64 offset; 650 uint64_t userptr; 651 struct task_struct *usertask; 652 uint32_t userflags; 653 bool bound; 654 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 655 struct hmm_range *range; 656 #endif 657 }; 658 659 #ifdef CONFIG_DRM_AMDGPU_USERPTR 660 /* 661 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 662 * memory and start HMM tracking CPU page table update 663 * 664 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 665 * once afterwards to stop HMM tracking 666 */ 667 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 668 { 669 struct ttm_tt *ttm = bo->tbo.ttm; 670 struct amdgpu_ttm_tt *gtt = (void *)ttm; 671 unsigned long start = gtt->userptr; 672 struct vm_area_struct *vma; 673 struct hmm_range *range; 674 unsigned long timeout; 675 struct mm_struct *mm; 676 unsigned long i; 677 int r = 0; 678 679 mm = bo->notifier.mm; 680 if (unlikely(!mm)) { 681 DRM_DEBUG_DRIVER("BO is not registered?\n"); 682 return -EFAULT; 683 } 684 685 /* Another get_user_pages is running at the same time?? */ 686 if (WARN_ON(gtt->range)) 687 return -EFAULT; 688 689 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 690 return -ESRCH; 691 692 range = kzalloc(sizeof(*range), GFP_KERNEL); 693 if (unlikely(!range)) { 694 r = -ENOMEM; 695 goto out; 696 } 697 range->notifier = &bo->notifier; 698 range->start = bo->notifier.interval_tree.start; 699 range->end = bo->notifier.interval_tree.last + 1; 700 range->default_flags = HMM_PFN_REQ_FAULT; 701 if (!amdgpu_ttm_tt_is_readonly(ttm)) 702 range->default_flags |= HMM_PFN_REQ_WRITE; 703 704 range->hmm_pfns = kvmalloc_array(ttm->num_pages, 705 sizeof(*range->hmm_pfns), GFP_KERNEL); 706 if (unlikely(!range->hmm_pfns)) { 707 r = -ENOMEM; 708 goto out_free_ranges; 709 } 710 711 mmap_read_lock(mm); 712 vma = find_vma(mm, start); 713 if (unlikely(!vma || start < vma->vm_start)) { 714 r = -EFAULT; 715 goto out_unlock; 716 } 717 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 718 vma->vm_file)) { 719 r = -EPERM; 720 goto out_unlock; 721 } 722 mmap_read_unlock(mm); 723 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 724 725 retry: 726 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 727 728 mmap_read_lock(mm); 729 r = hmm_range_fault(range); 730 mmap_read_unlock(mm); 731 if (unlikely(r)) { 732 /* 733 * FIXME: This timeout should encompass the retry from 734 * mmu_interval_read_retry() as well. 735 */ 736 if (r == -EBUSY && !time_after(jiffies, timeout)) 737 goto retry; 738 goto out_free_pfns; 739 } 740 741 /* 742 * Due to default_flags, all pages are HMM_PFN_VALID or 743 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside 744 * the notifier_lock, and mmu_interval_read_retry() must be done first. 745 */ 746 for (i = 0; i < ttm->num_pages; i++) 747 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]); 748 749 gtt->range = range; 750 mmput(mm); 751 752 return 0; 753 754 out_unlock: 755 mmap_read_unlock(mm); 756 out_free_pfns: 757 kvfree(range->hmm_pfns); 758 out_free_ranges: 759 kfree(range); 760 out: 761 mmput(mm); 762 return r; 763 } 764 765 /* 766 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 767 * Check if the pages backing this ttm range have been invalidated 768 * 769 * Returns: true if pages are still valid 770 */ 771 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 772 { 773 struct amdgpu_ttm_tt *gtt = (void *)ttm; 774 bool r = false; 775 776 if (!gtt || !gtt->userptr) 777 return false; 778 779 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 780 gtt->userptr, ttm->num_pages); 781 782 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 783 "No user pages to check\n"); 784 785 if (gtt->range) { 786 /* 787 * FIXME: Must always hold notifier_lock for this, and must 788 * not ignore the return code. 789 */ 790 r = mmu_interval_read_retry(gtt->range->notifier, 791 gtt->range->notifier_seq); 792 kvfree(gtt->range->hmm_pfns); 793 kfree(gtt->range); 794 gtt->range = NULL; 795 } 796 797 return !r; 798 } 799 #endif 800 801 /* 802 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 803 * 804 * Called by amdgpu_cs_list_validate(). This creates the page list 805 * that backs user memory and will ultimately be mapped into the device 806 * address space. 807 */ 808 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 809 { 810 unsigned long i; 811 812 for (i = 0; i < ttm->num_pages; ++i) 813 ttm->pages[i] = pages ? pages[i] : NULL; 814 } 815 816 /* 817 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 818 * 819 * Called by amdgpu_ttm_backend_bind() 820 **/ 821 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 822 struct ttm_tt *ttm) 823 { 824 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 825 struct amdgpu_ttm_tt *gtt = (void *)ttm; 826 int r; 827 828 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 829 enum dma_data_direction direction = write ? 830 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 831 832 /* Allocate an SG array and squash pages into it */ 833 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 834 ttm->num_pages << PAGE_SHIFT, 835 GFP_KERNEL); 836 if (r) 837 goto release_sg; 838 839 /* Map SG to device */ 840 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 841 if (r) 842 goto release_sg; 843 844 /* convert SG to linear array of pages and dma addresses */ 845 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 846 ttm->num_pages); 847 848 return 0; 849 850 release_sg: 851 kfree(ttm->sg); 852 ttm->sg = NULL; 853 return r; 854 } 855 856 /* 857 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 858 */ 859 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 860 struct ttm_tt *ttm) 861 { 862 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 863 struct amdgpu_ttm_tt *gtt = (void *)ttm; 864 865 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 866 enum dma_data_direction direction = write ? 867 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 868 869 /* double check that we don't free the table twice */ 870 if (!ttm->sg->sgl) 871 return; 872 873 /* unmap the pages mapped to the device */ 874 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 875 sg_free_table(ttm->sg); 876 877 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 878 if (gtt->range) { 879 unsigned long i; 880 881 for (i = 0; i < ttm->num_pages; i++) { 882 if (ttm->pages[i] != 883 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 884 break; 885 } 886 887 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 888 } 889 #endif 890 } 891 892 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 893 struct ttm_buffer_object *tbo, 894 uint64_t flags) 895 { 896 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 897 struct ttm_tt *ttm = tbo->ttm; 898 struct amdgpu_ttm_tt *gtt = (void *)ttm; 899 int r; 900 901 if (amdgpu_bo_encrypted(abo)) 902 flags |= AMDGPU_PTE_TMZ; 903 904 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 905 uint64_t page_idx = 1; 906 907 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 908 ttm->pages, gtt->ttm.dma_address, flags); 909 if (r) 910 goto gart_bind_fail; 911 912 /* The memory type of the first page defaults to UC. Now 913 * modify the memory type to NC from the second page of 914 * the BO onward. 915 */ 916 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 917 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 918 919 r = amdgpu_gart_bind(adev, 920 gtt->offset + (page_idx << PAGE_SHIFT), 921 ttm->num_pages - page_idx, 922 &ttm->pages[page_idx], 923 &(gtt->ttm.dma_address[page_idx]), flags); 924 } else { 925 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 926 ttm->pages, gtt->ttm.dma_address, flags); 927 } 928 929 gart_bind_fail: 930 if (r) 931 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 932 ttm->num_pages, gtt->offset); 933 934 return r; 935 } 936 937 /* 938 * amdgpu_ttm_backend_bind - Bind GTT memory 939 * 940 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 941 * This handles binding GTT memory to the device address space. 942 */ 943 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 944 struct ttm_tt *ttm, 945 struct ttm_resource *bo_mem) 946 { 947 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 948 struct amdgpu_ttm_tt *gtt = (void*)ttm; 949 uint64_t flags; 950 int r = 0; 951 952 if (!bo_mem) 953 return -EINVAL; 954 955 if (gtt->bound) 956 return 0; 957 958 if (gtt->userptr) { 959 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 960 if (r) { 961 DRM_ERROR("failed to pin userptr\n"); 962 return r; 963 } 964 } 965 if (!ttm->num_pages) { 966 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 967 ttm->num_pages, bo_mem, ttm); 968 } 969 970 if (bo_mem->mem_type == AMDGPU_PL_GDS || 971 bo_mem->mem_type == AMDGPU_PL_GWS || 972 bo_mem->mem_type == AMDGPU_PL_OA) 973 return -EINVAL; 974 975 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 976 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 977 return 0; 978 } 979 980 /* compute PTE flags relevant to this BO memory */ 981 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 982 983 /* bind pages into GART page tables */ 984 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 985 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 986 ttm->pages, gtt->ttm.dma_address, flags); 987 988 if (r) 989 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 990 ttm->num_pages, gtt->offset); 991 gtt->bound = true; 992 return r; 993 } 994 995 /* 996 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 997 * through AGP or GART aperture. 998 * 999 * If bo is accessible through AGP aperture, then use AGP aperture 1000 * to access bo; otherwise allocate logical space in GART aperture 1001 * and map bo to GART aperture. 1002 */ 1003 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1004 { 1005 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1006 struct ttm_operation_ctx ctx = { false, false }; 1007 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1008 struct ttm_resource tmp; 1009 struct ttm_placement placement; 1010 struct ttm_place placements; 1011 uint64_t addr, flags; 1012 int r; 1013 1014 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1015 return 0; 1016 1017 addr = amdgpu_gmc_agp_addr(bo); 1018 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1019 bo->mem.start = addr >> PAGE_SHIFT; 1020 } else { 1021 1022 /* allocate GART space */ 1023 tmp = bo->mem; 1024 tmp.mm_node = NULL; 1025 placement.num_placement = 1; 1026 placement.placement = &placements; 1027 placement.num_busy_placement = 1; 1028 placement.busy_placement = &placements; 1029 placements.fpfn = 0; 1030 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1031 placements.mem_type = TTM_PL_TT; 1032 placements.flags = bo->mem.placement; 1033 1034 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1035 if (unlikely(r)) 1036 return r; 1037 1038 /* compute PTE flags for this buffer object */ 1039 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1040 1041 /* Bind pages */ 1042 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1043 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1044 if (unlikely(r)) { 1045 ttm_resource_free(bo, &tmp); 1046 return r; 1047 } 1048 1049 ttm_resource_free(bo, &bo->mem); 1050 bo->mem = tmp; 1051 } 1052 1053 return 0; 1054 } 1055 1056 /* 1057 * amdgpu_ttm_recover_gart - Rebind GTT pages 1058 * 1059 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1060 * rebind GTT pages during a GPU reset. 1061 */ 1062 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1063 { 1064 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1065 uint64_t flags; 1066 int r; 1067 1068 if (!tbo->ttm) 1069 return 0; 1070 1071 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1072 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1073 1074 return r; 1075 } 1076 1077 /* 1078 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1079 * 1080 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1081 * ttm_tt_destroy(). 1082 */ 1083 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1084 struct ttm_tt *ttm) 1085 { 1086 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1087 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1088 int r; 1089 1090 /* if the pages have userptr pinning then clear that first */ 1091 if (gtt->userptr) 1092 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1093 1094 if (!gtt->bound) 1095 return; 1096 1097 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1098 return; 1099 1100 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1101 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1102 if (r) 1103 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n", 1104 gtt->ttm.num_pages, gtt->offset); 1105 gtt->bound = false; 1106 } 1107 1108 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1109 struct ttm_tt *ttm) 1110 { 1111 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1112 1113 amdgpu_ttm_backend_unbind(bdev, ttm); 1114 ttm_tt_destroy_common(bdev, ttm); 1115 if (gtt->usertask) 1116 put_task_struct(gtt->usertask); 1117 1118 ttm_tt_fini(>t->ttm); 1119 kfree(gtt); 1120 } 1121 1122 /** 1123 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1124 * 1125 * @bo: The buffer object to create a GTT ttm_tt object around 1126 * @page_flags: Page flags to be added to the ttm_tt object 1127 * 1128 * Called by ttm_tt_create(). 1129 */ 1130 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1131 uint32_t page_flags) 1132 { 1133 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1134 struct amdgpu_ttm_tt *gtt; 1135 enum ttm_caching caching; 1136 1137 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1138 if (gtt == NULL) { 1139 return NULL; 1140 } 1141 gtt->gobj = &bo->base; 1142 1143 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1144 caching = ttm_write_combined; 1145 else 1146 caching = ttm_cached; 1147 1148 /* allocate space for the uninitialized page entries */ 1149 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1150 kfree(gtt); 1151 return NULL; 1152 } 1153 return >t->ttm; 1154 } 1155 1156 /* 1157 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1158 * 1159 * Map the pages of a ttm_tt object to an address space visible 1160 * to the underlying device. 1161 */ 1162 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1163 struct ttm_tt *ttm, 1164 struct ttm_operation_ctx *ctx) 1165 { 1166 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1167 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1168 1169 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1170 if (gtt && gtt->userptr) { 1171 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1172 if (!ttm->sg) 1173 return -ENOMEM; 1174 1175 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1176 return 0; 1177 } 1178 1179 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1180 if (!ttm->sg) { 1181 struct dma_buf_attachment *attach; 1182 struct sg_table *sgt; 1183 1184 attach = gtt->gobj->import_attach; 1185 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1186 if (IS_ERR(sgt)) 1187 return PTR_ERR(sgt); 1188 1189 ttm->sg = sgt; 1190 } 1191 1192 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 1193 ttm->num_pages); 1194 return 0; 1195 } 1196 1197 return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1198 } 1199 1200 /* 1201 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1202 * 1203 * Unmaps pages of a ttm_tt object from the device address space and 1204 * unpopulates the page array backing it. 1205 */ 1206 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1207 struct ttm_tt *ttm) 1208 { 1209 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1210 struct amdgpu_device *adev; 1211 1212 if (gtt && gtt->userptr) { 1213 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1214 kfree(ttm->sg); 1215 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1216 return; 1217 } 1218 1219 if (ttm->sg && gtt->gobj->import_attach) { 1220 struct dma_buf_attachment *attach; 1221 1222 attach = gtt->gobj->import_attach; 1223 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1224 ttm->sg = NULL; 1225 return; 1226 } 1227 1228 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1229 return; 1230 1231 adev = amdgpu_ttm_adev(bdev); 1232 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1233 } 1234 1235 /** 1236 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1237 * task 1238 * 1239 * @bo: The ttm_buffer_object to bind this userptr to 1240 * @addr: The address in the current tasks VM space to use 1241 * @flags: Requirements of userptr object. 1242 * 1243 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1244 * to current task 1245 */ 1246 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1247 uint64_t addr, uint32_t flags) 1248 { 1249 struct amdgpu_ttm_tt *gtt; 1250 1251 if (!bo->ttm) { 1252 /* TODO: We want a separate TTM object type for userptrs */ 1253 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1254 if (bo->ttm == NULL) 1255 return -ENOMEM; 1256 } 1257 1258 gtt = (void *)bo->ttm; 1259 gtt->userptr = addr; 1260 gtt->userflags = flags; 1261 1262 if (gtt->usertask) 1263 put_task_struct(gtt->usertask); 1264 gtt->usertask = current->group_leader; 1265 get_task_struct(gtt->usertask); 1266 1267 return 0; 1268 } 1269 1270 /* 1271 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1272 */ 1273 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1274 { 1275 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1276 1277 if (gtt == NULL) 1278 return NULL; 1279 1280 if (gtt->usertask == NULL) 1281 return NULL; 1282 1283 return gtt->usertask->mm; 1284 } 1285 1286 /* 1287 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1288 * address range for the current task. 1289 * 1290 */ 1291 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1292 unsigned long end) 1293 { 1294 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1295 unsigned long size; 1296 1297 if (gtt == NULL || !gtt->userptr) 1298 return false; 1299 1300 /* Return false if no part of the ttm_tt object lies within 1301 * the range 1302 */ 1303 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1304 if (gtt->userptr > end || gtt->userptr + size <= start) 1305 return false; 1306 1307 return true; 1308 } 1309 1310 /* 1311 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1312 */ 1313 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1314 { 1315 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1316 1317 if (gtt == NULL || !gtt->userptr) 1318 return false; 1319 1320 return true; 1321 } 1322 1323 /* 1324 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1325 */ 1326 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1327 { 1328 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1329 1330 if (gtt == NULL) 1331 return false; 1332 1333 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1334 } 1335 1336 /** 1337 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1338 * 1339 * @ttm: The ttm_tt object to compute the flags for 1340 * @mem: The memory registry backing this ttm_tt object 1341 * 1342 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1343 */ 1344 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1345 { 1346 uint64_t flags = 0; 1347 1348 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1349 flags |= AMDGPU_PTE_VALID; 1350 1351 if (mem && mem->mem_type == TTM_PL_TT) { 1352 flags |= AMDGPU_PTE_SYSTEM; 1353 1354 if (ttm->caching == ttm_cached) 1355 flags |= AMDGPU_PTE_SNOOPED; 1356 } 1357 1358 if (mem && mem->mem_type == TTM_PL_VRAM && 1359 mem->bus.caching == ttm_cached) 1360 flags |= AMDGPU_PTE_SNOOPED; 1361 1362 return flags; 1363 } 1364 1365 /** 1366 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1367 * 1368 * @adev: amdgpu_device pointer 1369 * @ttm: The ttm_tt object to compute the flags for 1370 * @mem: The memory registry backing this ttm_tt object 1371 * 1372 * Figure out the flags to use for a VM PTE (Page Table Entry). 1373 */ 1374 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1375 struct ttm_resource *mem) 1376 { 1377 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1378 1379 flags |= adev->gart.gart_pte_flags; 1380 flags |= AMDGPU_PTE_READABLE; 1381 1382 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1383 flags |= AMDGPU_PTE_WRITEABLE; 1384 1385 return flags; 1386 } 1387 1388 /* 1389 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1390 * object. 1391 * 1392 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1393 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1394 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1395 * used to clean out a memory space. 1396 */ 1397 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1398 const struct ttm_place *place) 1399 { 1400 unsigned long num_pages = bo->mem.num_pages; 1401 struct amdgpu_res_cursor cursor; 1402 struct dma_resv_list *flist; 1403 struct dma_fence *f; 1404 int i; 1405 1406 if (bo->type == ttm_bo_type_kernel && 1407 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1408 return false; 1409 1410 /* If bo is a KFD BO, check if the bo belongs to the current process. 1411 * If true, then return false as any KFD process needs all its BOs to 1412 * be resident to run successfully 1413 */ 1414 flist = dma_resv_get_list(bo->base.resv); 1415 if (flist) { 1416 for (i = 0; i < flist->shared_count; ++i) { 1417 f = rcu_dereference_protected(flist->shared[i], 1418 dma_resv_held(bo->base.resv)); 1419 if (amdkfd_fence_check_mm(f, current->mm)) 1420 return false; 1421 } 1422 } 1423 1424 switch (bo->mem.mem_type) { 1425 case TTM_PL_TT: 1426 if (amdgpu_bo_is_amdgpu_bo(bo) && 1427 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1428 return false; 1429 return true; 1430 1431 case TTM_PL_VRAM: 1432 /* Check each drm MM node individually */ 1433 amdgpu_res_first(&bo->mem, 0, (u64)num_pages << PAGE_SHIFT, 1434 &cursor); 1435 while (cursor.remaining) { 1436 if (place->fpfn < PFN_DOWN(cursor.start + cursor.size) 1437 && !(place->lpfn && 1438 place->lpfn <= PFN_DOWN(cursor.start))) 1439 return true; 1440 1441 amdgpu_res_next(&cursor, cursor.size); 1442 } 1443 return false; 1444 1445 default: 1446 break; 1447 } 1448 1449 return ttm_bo_eviction_valuable(bo, place); 1450 } 1451 1452 /** 1453 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1454 * 1455 * @bo: The buffer object to read/write 1456 * @offset: Offset into buffer object 1457 * @buf: Secondary buffer to write/read from 1458 * @len: Length in bytes of access 1459 * @write: true if writing 1460 * 1461 * This is used to access VRAM that backs a buffer object via MMIO 1462 * access for debugging purposes. 1463 */ 1464 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1465 unsigned long offset, void *buf, int len, 1466 int write) 1467 { 1468 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1469 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1470 struct amdgpu_res_cursor cursor; 1471 unsigned long flags; 1472 uint32_t value = 0; 1473 int ret = 0; 1474 1475 if (bo->mem.mem_type != TTM_PL_VRAM) 1476 return -EIO; 1477 1478 amdgpu_res_first(&bo->mem, offset, len, &cursor); 1479 while (cursor.remaining) { 1480 uint64_t aligned_pos = cursor.start & ~(uint64_t)3; 1481 uint64_t bytes = 4 - (cursor.start & 3); 1482 uint32_t shift = (cursor.start & 3) * 8; 1483 uint32_t mask = 0xffffffff << shift; 1484 1485 if (cursor.size < bytes) { 1486 mask &= 0xffffffff >> (bytes - cursor.size) * 8; 1487 bytes = cursor.size; 1488 } 1489 1490 if (mask != 0xffffffff) { 1491 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1492 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1493 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1494 value = RREG32_NO_KIQ(mmMM_DATA); 1495 if (write) { 1496 value &= ~mask; 1497 value |= (*(uint32_t *)buf << shift) & mask; 1498 WREG32_NO_KIQ(mmMM_DATA, value); 1499 } 1500 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1501 if (!write) { 1502 value = (value & mask) >> shift; 1503 memcpy(buf, &value, bytes); 1504 } 1505 } else { 1506 bytes = cursor.size & ~0x3ULL; 1507 amdgpu_device_vram_access(adev, cursor.start, 1508 (uint32_t *)buf, bytes, 1509 write); 1510 } 1511 1512 ret += bytes; 1513 buf = (uint8_t *)buf + bytes; 1514 amdgpu_res_next(&cursor, bytes); 1515 } 1516 1517 return ret; 1518 } 1519 1520 static void 1521 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1522 { 1523 amdgpu_bo_move_notify(bo, false, NULL); 1524 } 1525 1526 static struct ttm_device_funcs amdgpu_bo_driver = { 1527 .ttm_tt_create = &amdgpu_ttm_tt_create, 1528 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1529 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1530 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1531 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1532 .evict_flags = &amdgpu_evict_flags, 1533 .move = &amdgpu_bo_move, 1534 .verify_access = &amdgpu_verify_access, 1535 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1536 .release_notify = &amdgpu_bo_release_notify, 1537 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1538 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1539 .access_memory = &amdgpu_ttm_access_memory, 1540 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1541 }; 1542 1543 /* 1544 * Firmware Reservation functions 1545 */ 1546 /** 1547 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1548 * 1549 * @adev: amdgpu_device pointer 1550 * 1551 * free fw reserved vram if it has been reserved. 1552 */ 1553 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1554 { 1555 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1556 NULL, &adev->mman.fw_vram_usage_va); 1557 } 1558 1559 /** 1560 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1561 * 1562 * @adev: amdgpu_device pointer 1563 * 1564 * create bo vram reservation from fw. 1565 */ 1566 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1567 { 1568 uint64_t vram_size = adev->gmc.visible_vram_size; 1569 1570 adev->mman.fw_vram_usage_va = NULL; 1571 adev->mman.fw_vram_usage_reserved_bo = NULL; 1572 1573 if (adev->mman.fw_vram_usage_size == 0 || 1574 adev->mman.fw_vram_usage_size > vram_size) 1575 return 0; 1576 1577 return amdgpu_bo_create_kernel_at(adev, 1578 adev->mman.fw_vram_usage_start_offset, 1579 adev->mman.fw_vram_usage_size, 1580 AMDGPU_GEM_DOMAIN_VRAM, 1581 &adev->mman.fw_vram_usage_reserved_bo, 1582 &adev->mman.fw_vram_usage_va); 1583 } 1584 1585 /* 1586 * Memoy training reservation functions 1587 */ 1588 1589 /** 1590 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1591 * 1592 * @adev: amdgpu_device pointer 1593 * 1594 * free memory training reserved vram if it has been reserved. 1595 */ 1596 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1597 { 1598 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1599 1600 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1601 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1602 ctx->c2p_bo = NULL; 1603 1604 return 0; 1605 } 1606 1607 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1608 { 1609 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1610 1611 memset(ctx, 0, sizeof(*ctx)); 1612 1613 ctx->c2p_train_data_offset = 1614 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1615 ctx->p2c_train_data_offset = 1616 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1617 ctx->train_data_size = 1618 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1619 1620 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1621 ctx->train_data_size, 1622 ctx->p2c_train_data_offset, 1623 ctx->c2p_train_data_offset); 1624 } 1625 1626 /* 1627 * reserve TMR memory at the top of VRAM which holds 1628 * IP Discovery data and is protected by PSP. 1629 */ 1630 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1631 { 1632 int ret; 1633 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1634 bool mem_train_support = false; 1635 1636 if (!amdgpu_sriov_vf(adev)) { 1637 ret = amdgpu_mem_train_support(adev); 1638 if (ret == 1) 1639 mem_train_support = true; 1640 else if (ret == -1) 1641 return -EINVAL; 1642 else 1643 DRM_DEBUG("memory training does not support!\n"); 1644 } 1645 1646 /* 1647 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1648 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1649 * 1650 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1651 * discovery data and G6 memory training data respectively 1652 */ 1653 adev->mman.discovery_tmr_size = 1654 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1655 if (!adev->mman.discovery_tmr_size) 1656 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1657 1658 if (mem_train_support) { 1659 /* reserve vram for mem train according to TMR location */ 1660 amdgpu_ttm_training_data_block_init(adev); 1661 ret = amdgpu_bo_create_kernel_at(adev, 1662 ctx->c2p_train_data_offset, 1663 ctx->train_data_size, 1664 AMDGPU_GEM_DOMAIN_VRAM, 1665 &ctx->c2p_bo, 1666 NULL); 1667 if (ret) { 1668 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1669 amdgpu_ttm_training_reserve_vram_fini(adev); 1670 return ret; 1671 } 1672 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1673 } 1674 1675 ret = amdgpu_bo_create_kernel_at(adev, 1676 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1677 adev->mman.discovery_tmr_size, 1678 AMDGPU_GEM_DOMAIN_VRAM, 1679 &adev->mman.discovery_memory, 1680 NULL); 1681 if (ret) { 1682 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1683 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1684 return ret; 1685 } 1686 1687 return 0; 1688 } 1689 1690 /* 1691 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1692 * gtt/vram related fields. 1693 * 1694 * This initializes all of the memory space pools that the TTM layer 1695 * will need such as the GTT space (system memory mapped to the device), 1696 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1697 * can be mapped per VMID. 1698 */ 1699 int amdgpu_ttm_init(struct amdgpu_device *adev) 1700 { 1701 uint64_t gtt_size; 1702 int r; 1703 u64 vis_vram_limit; 1704 1705 mutex_init(&adev->mman.gtt_window_lock); 1706 1707 /* No others user of address space so set it to 0 */ 1708 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1709 adev_to_drm(adev)->anon_inode->i_mapping, 1710 adev_to_drm(adev)->vma_offset_manager, 1711 adev->need_swiotlb, 1712 dma_addressing_limited(adev->dev)); 1713 if (r) { 1714 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1715 return r; 1716 } 1717 adev->mman.initialized = true; 1718 1719 /* Initialize VRAM pool with all of VRAM divided into pages */ 1720 r = amdgpu_vram_mgr_init(adev); 1721 if (r) { 1722 DRM_ERROR("Failed initializing VRAM heap.\n"); 1723 return r; 1724 } 1725 1726 /* Reduce size of CPU-visible VRAM if requested */ 1727 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1728 if (amdgpu_vis_vram_limit > 0 && 1729 vis_vram_limit <= adev->gmc.visible_vram_size) 1730 adev->gmc.visible_vram_size = vis_vram_limit; 1731 1732 /* Change the size here instead of the init above so only lpfn is affected */ 1733 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1734 #ifdef CONFIG_64BIT 1735 #ifdef CONFIG_X86 1736 if (adev->gmc.xgmi.connected_to_cpu) 1737 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1738 adev->gmc.visible_vram_size); 1739 1740 else 1741 #endif 1742 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1743 adev->gmc.visible_vram_size); 1744 #endif 1745 1746 /* 1747 *The reserved vram for firmware must be pinned to the specified 1748 *place on the VRAM, so reserve it early. 1749 */ 1750 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1751 if (r) { 1752 return r; 1753 } 1754 1755 /* 1756 * only NAVI10 and onwards ASIC support for IP discovery. 1757 * If IP discovery enabled, a block of memory should be 1758 * reserved for IP discovey. 1759 */ 1760 if (adev->mman.discovery_bin) { 1761 r = amdgpu_ttm_reserve_tmr(adev); 1762 if (r) 1763 return r; 1764 } 1765 1766 /* allocate memory as required for VGA 1767 * This is used for VGA emulation and pre-OS scanout buffers to 1768 * avoid display artifacts while transitioning between pre-OS 1769 * and driver. */ 1770 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1771 AMDGPU_GEM_DOMAIN_VRAM, 1772 &adev->mman.stolen_vga_memory, 1773 NULL); 1774 if (r) 1775 return r; 1776 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1777 adev->mman.stolen_extended_size, 1778 AMDGPU_GEM_DOMAIN_VRAM, 1779 &adev->mman.stolen_extended_memory, 1780 NULL); 1781 if (r) 1782 return r; 1783 1784 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1785 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1786 1787 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1788 * or whatever the user passed on module init */ 1789 if (amdgpu_gtt_size == -1) { 1790 struct sysinfo si; 1791 1792 si_meminfo(&si); 1793 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1794 adev->gmc.mc_vram_size), 1795 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1796 } 1797 else 1798 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1799 1800 /* Initialize GTT memory pool */ 1801 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1802 if (r) { 1803 DRM_ERROR("Failed initializing GTT heap.\n"); 1804 return r; 1805 } 1806 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1807 (unsigned)(gtt_size / (1024 * 1024))); 1808 1809 /* Initialize various on-chip memory pools */ 1810 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1811 if (r) { 1812 DRM_ERROR("Failed initializing GDS heap.\n"); 1813 return r; 1814 } 1815 1816 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1817 if (r) { 1818 DRM_ERROR("Failed initializing gws heap.\n"); 1819 return r; 1820 } 1821 1822 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1823 if (r) { 1824 DRM_ERROR("Failed initializing oa heap.\n"); 1825 return r; 1826 } 1827 1828 return 0; 1829 } 1830 1831 /* 1832 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1833 */ 1834 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1835 { 1836 if (!adev->mman.initialized) 1837 return; 1838 1839 amdgpu_ttm_training_reserve_vram_fini(adev); 1840 /* return the stolen vga memory back to VRAM */ 1841 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1842 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1843 /* return the IP Discovery TMR memory back to VRAM */ 1844 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1845 amdgpu_ttm_fw_reserve_vram_fini(adev); 1846 1847 if (adev->mman.aper_base_kaddr) 1848 iounmap(adev->mman.aper_base_kaddr); 1849 adev->mman.aper_base_kaddr = NULL; 1850 1851 amdgpu_vram_mgr_fini(adev); 1852 amdgpu_gtt_mgr_fini(adev); 1853 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1854 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1855 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1856 ttm_device_fini(&adev->mman.bdev); 1857 adev->mman.initialized = false; 1858 DRM_INFO("amdgpu: ttm finalized\n"); 1859 } 1860 1861 /** 1862 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1863 * 1864 * @adev: amdgpu_device pointer 1865 * @enable: true when we can use buffer functions. 1866 * 1867 * Enable/disable use of buffer functions during suspend/resume. This should 1868 * only be called at bootup or when userspace isn't running. 1869 */ 1870 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1871 { 1872 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1873 uint64_t size; 1874 int r; 1875 1876 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1877 adev->mman.buffer_funcs_enabled == enable) 1878 return; 1879 1880 if (enable) { 1881 struct amdgpu_ring *ring; 1882 struct drm_gpu_scheduler *sched; 1883 1884 ring = adev->mman.buffer_funcs_ring; 1885 sched = &ring->sched; 1886 r = drm_sched_entity_init(&adev->mman.entity, 1887 DRM_SCHED_PRIORITY_KERNEL, &sched, 1888 1, NULL); 1889 if (r) { 1890 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1891 r); 1892 return; 1893 } 1894 } else { 1895 drm_sched_entity_destroy(&adev->mman.entity); 1896 dma_fence_put(man->move); 1897 man->move = NULL; 1898 } 1899 1900 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1901 if (enable) 1902 size = adev->gmc.real_vram_size; 1903 else 1904 size = adev->gmc.visible_vram_size; 1905 man->size = size >> PAGE_SHIFT; 1906 adev->mman.buffer_funcs_enabled = enable; 1907 } 1908 1909 static vm_fault_t amdgpu_ttm_fault(struct vm_fault *vmf) 1910 { 1911 struct ttm_buffer_object *bo = vmf->vma->vm_private_data; 1912 vm_fault_t ret; 1913 1914 ret = ttm_bo_vm_reserve(bo, vmf); 1915 if (ret) 1916 return ret; 1917 1918 ret = amdgpu_bo_fault_reserve_notify(bo); 1919 if (ret) 1920 goto unlock; 1921 1922 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1923 TTM_BO_VM_NUM_PREFAULT, 1); 1924 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1925 return ret; 1926 1927 unlock: 1928 dma_resv_unlock(bo->base.resv); 1929 return ret; 1930 } 1931 1932 static const struct vm_operations_struct amdgpu_ttm_vm_ops = { 1933 .fault = amdgpu_ttm_fault, 1934 .open = ttm_bo_vm_open, 1935 .close = ttm_bo_vm_close, 1936 .access = ttm_bo_vm_access 1937 }; 1938 1939 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1940 { 1941 struct drm_file *file_priv = filp->private_data; 1942 struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev); 1943 int r; 1944 1945 r = ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1946 if (unlikely(r != 0)) 1947 return r; 1948 1949 vma->vm_ops = &amdgpu_ttm_vm_ops; 1950 return 0; 1951 } 1952 1953 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1954 uint64_t dst_offset, uint32_t byte_count, 1955 struct dma_resv *resv, 1956 struct dma_fence **fence, bool direct_submit, 1957 bool vm_needs_flush, bool tmz) 1958 { 1959 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : 1960 AMDGPU_IB_POOL_DELAYED; 1961 struct amdgpu_device *adev = ring->adev; 1962 struct amdgpu_job *job; 1963 1964 uint32_t max_bytes; 1965 unsigned num_loops, num_dw; 1966 unsigned i; 1967 int r; 1968 1969 if (direct_submit && !ring->sched.ready) { 1970 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1971 return -EINVAL; 1972 } 1973 1974 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 1975 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 1976 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 1977 1978 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); 1979 if (r) 1980 return r; 1981 1982 if (vm_needs_flush) { 1983 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1984 adev->gmc.pdb0_bo : adev->gart.bo); 1985 job->vm_needs_flush = true; 1986 } 1987 if (resv) { 1988 r = amdgpu_sync_resv(adev, &job->sync, resv, 1989 AMDGPU_SYNC_ALWAYS, 1990 AMDGPU_FENCE_OWNER_UNDEFINED); 1991 if (r) { 1992 DRM_ERROR("sync failed (%d).\n", r); 1993 goto error_free; 1994 } 1995 } 1996 1997 for (i = 0; i < num_loops; i++) { 1998 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 1999 2000 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2001 dst_offset, cur_size_in_bytes, tmz); 2002 2003 src_offset += cur_size_in_bytes; 2004 dst_offset += cur_size_in_bytes; 2005 byte_count -= cur_size_in_bytes; 2006 } 2007 2008 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2009 WARN_ON(job->ibs[0].length_dw > num_dw); 2010 if (direct_submit) 2011 r = amdgpu_job_submit_direct(job, ring, fence); 2012 else 2013 r = amdgpu_job_submit(job, &adev->mman.entity, 2014 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2015 if (r) 2016 goto error_free; 2017 2018 return r; 2019 2020 error_free: 2021 amdgpu_job_free(job); 2022 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2023 return r; 2024 } 2025 2026 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2027 uint32_t src_data, 2028 struct dma_resv *resv, 2029 struct dma_fence **fence) 2030 { 2031 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2032 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2033 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2034 2035 struct amdgpu_res_cursor cursor; 2036 unsigned int num_loops, num_dw; 2037 uint64_t num_bytes; 2038 2039 struct amdgpu_job *job; 2040 int r; 2041 2042 if (!adev->mman.buffer_funcs_enabled) { 2043 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2044 return -EINVAL; 2045 } 2046 2047 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2048 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2049 if (r) 2050 return r; 2051 } 2052 2053 num_bytes = bo->tbo.mem.num_pages << PAGE_SHIFT; 2054 num_loops = 0; 2055 2056 amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor); 2057 while (cursor.remaining) { 2058 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes); 2059 amdgpu_res_next(&cursor, cursor.size); 2060 } 2061 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2062 2063 /* for IB padding */ 2064 num_dw += 64; 2065 2066 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, 2067 &job); 2068 if (r) 2069 return r; 2070 2071 if (resv) { 2072 r = amdgpu_sync_resv(adev, &job->sync, resv, 2073 AMDGPU_SYNC_ALWAYS, 2074 AMDGPU_FENCE_OWNER_UNDEFINED); 2075 if (r) { 2076 DRM_ERROR("sync failed (%d).\n", r); 2077 goto error_free; 2078 } 2079 } 2080 2081 amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor); 2082 while (cursor.remaining) { 2083 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes); 2084 uint64_t dst_addr = cursor.start; 2085 2086 dst_addr += amdgpu_ttm_domain_start(adev, bo->tbo.mem.mem_type); 2087 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2088 cur_size); 2089 2090 amdgpu_res_next(&cursor, cur_size); 2091 } 2092 2093 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2094 WARN_ON(job->ibs[0].length_dw > num_dw); 2095 r = amdgpu_job_submit(job, &adev->mman.entity, 2096 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2097 if (r) 2098 goto error_free; 2099 2100 return 0; 2101 2102 error_free: 2103 amdgpu_job_free(job); 2104 return r; 2105 } 2106 2107 #if defined(CONFIG_DEBUG_FS) 2108 2109 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused) 2110 { 2111 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2112 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2113 TTM_PL_VRAM); 2114 struct drm_printer p = drm_seq_file_printer(m); 2115 2116 man->func->debug(man, &p); 2117 return 0; 2118 } 2119 2120 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2121 { 2122 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2123 2124 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2125 } 2126 2127 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused) 2128 { 2129 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2130 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2131 TTM_PL_TT); 2132 struct drm_printer p = drm_seq_file_printer(m); 2133 2134 man->func->debug(man, &p); 2135 return 0; 2136 } 2137 2138 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused) 2139 { 2140 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2141 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2142 AMDGPU_PL_GDS); 2143 struct drm_printer p = drm_seq_file_printer(m); 2144 2145 man->func->debug(man, &p); 2146 return 0; 2147 } 2148 2149 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused) 2150 { 2151 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2152 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2153 AMDGPU_PL_GWS); 2154 struct drm_printer p = drm_seq_file_printer(m); 2155 2156 man->func->debug(man, &p); 2157 return 0; 2158 } 2159 2160 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused) 2161 { 2162 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2163 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2164 AMDGPU_PL_OA); 2165 struct drm_printer p = drm_seq_file_printer(m); 2166 2167 man->func->debug(man, &p); 2168 return 0; 2169 } 2170 2171 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table); 2172 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table); 2173 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table); 2174 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table); 2175 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table); 2176 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2177 2178 /* 2179 * amdgpu_ttm_vram_read - Linear read access to VRAM 2180 * 2181 * Accesses VRAM via MMIO for debugging purposes. 2182 */ 2183 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2184 size_t size, loff_t *pos) 2185 { 2186 struct amdgpu_device *adev = file_inode(f)->i_private; 2187 ssize_t result = 0; 2188 2189 if (size & 0x3 || *pos & 0x3) 2190 return -EINVAL; 2191 2192 if (*pos >= adev->gmc.mc_vram_size) 2193 return -ENXIO; 2194 2195 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2196 while (size) { 2197 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2198 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2199 2200 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2201 if (copy_to_user(buf, value, bytes)) 2202 return -EFAULT; 2203 2204 result += bytes; 2205 buf += bytes; 2206 *pos += bytes; 2207 size -= bytes; 2208 } 2209 2210 return result; 2211 } 2212 2213 /* 2214 * amdgpu_ttm_vram_write - Linear write access to VRAM 2215 * 2216 * Accesses VRAM via MMIO for debugging purposes. 2217 */ 2218 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2219 size_t size, loff_t *pos) 2220 { 2221 struct amdgpu_device *adev = file_inode(f)->i_private; 2222 ssize_t result = 0; 2223 int r; 2224 2225 if (size & 0x3 || *pos & 0x3) 2226 return -EINVAL; 2227 2228 if (*pos >= adev->gmc.mc_vram_size) 2229 return -ENXIO; 2230 2231 while (size) { 2232 unsigned long flags; 2233 uint32_t value; 2234 2235 if (*pos >= adev->gmc.mc_vram_size) 2236 return result; 2237 2238 r = get_user(value, (uint32_t *)buf); 2239 if (r) 2240 return r; 2241 2242 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2243 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2244 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2245 WREG32_NO_KIQ(mmMM_DATA, value); 2246 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2247 2248 result += 4; 2249 buf += 4; 2250 *pos += 4; 2251 size -= 4; 2252 } 2253 2254 return result; 2255 } 2256 2257 static const struct file_operations amdgpu_ttm_vram_fops = { 2258 .owner = THIS_MODULE, 2259 .read = amdgpu_ttm_vram_read, 2260 .write = amdgpu_ttm_vram_write, 2261 .llseek = default_llseek, 2262 }; 2263 2264 /* 2265 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2266 * 2267 * This function is used to read memory that has been mapped to the 2268 * GPU and the known addresses are not physical addresses but instead 2269 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2270 */ 2271 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2272 size_t size, loff_t *pos) 2273 { 2274 struct amdgpu_device *adev = file_inode(f)->i_private; 2275 struct iommu_domain *dom; 2276 ssize_t result = 0; 2277 int r; 2278 2279 /* retrieve the IOMMU domain if any for this device */ 2280 dom = iommu_get_domain_for_dev(adev->dev); 2281 2282 while (size) { 2283 phys_addr_t addr = *pos & PAGE_MASK; 2284 loff_t off = *pos & ~PAGE_MASK; 2285 size_t bytes = PAGE_SIZE - off; 2286 unsigned long pfn; 2287 struct page *p; 2288 void *ptr; 2289 2290 bytes = bytes < size ? bytes : size; 2291 2292 /* Translate the bus address to a physical address. If 2293 * the domain is NULL it means there is no IOMMU active 2294 * and the address translation is the identity 2295 */ 2296 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2297 2298 pfn = addr >> PAGE_SHIFT; 2299 if (!pfn_valid(pfn)) 2300 return -EPERM; 2301 2302 p = pfn_to_page(pfn); 2303 if (p->mapping != adev->mman.bdev.dev_mapping) 2304 return -EPERM; 2305 2306 ptr = kmap(p); 2307 r = copy_to_user(buf, ptr + off, bytes); 2308 kunmap(p); 2309 if (r) 2310 return -EFAULT; 2311 2312 size -= bytes; 2313 *pos += bytes; 2314 result += bytes; 2315 } 2316 2317 return result; 2318 } 2319 2320 /* 2321 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2322 * 2323 * This function is used to write memory that has been mapped to the 2324 * GPU and the known addresses are not physical addresses but instead 2325 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2326 */ 2327 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2328 size_t size, loff_t *pos) 2329 { 2330 struct amdgpu_device *adev = file_inode(f)->i_private; 2331 struct iommu_domain *dom; 2332 ssize_t result = 0; 2333 int r; 2334 2335 dom = iommu_get_domain_for_dev(adev->dev); 2336 2337 while (size) { 2338 phys_addr_t addr = *pos & PAGE_MASK; 2339 loff_t off = *pos & ~PAGE_MASK; 2340 size_t bytes = PAGE_SIZE - off; 2341 unsigned long pfn; 2342 struct page *p; 2343 void *ptr; 2344 2345 bytes = bytes < size ? bytes : size; 2346 2347 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2348 2349 pfn = addr >> PAGE_SHIFT; 2350 if (!pfn_valid(pfn)) 2351 return -EPERM; 2352 2353 p = pfn_to_page(pfn); 2354 if (p->mapping != adev->mman.bdev.dev_mapping) 2355 return -EPERM; 2356 2357 ptr = kmap(p); 2358 r = copy_from_user(ptr + off, buf, bytes); 2359 kunmap(p); 2360 if (r) 2361 return -EFAULT; 2362 2363 size -= bytes; 2364 *pos += bytes; 2365 result += bytes; 2366 } 2367 2368 return result; 2369 } 2370 2371 static const struct file_operations amdgpu_ttm_iomem_fops = { 2372 .owner = THIS_MODULE, 2373 .read = amdgpu_iomem_read, 2374 .write = amdgpu_iomem_write, 2375 .llseek = default_llseek 2376 }; 2377 2378 #endif 2379 2380 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2381 { 2382 #if defined(CONFIG_DEBUG_FS) 2383 struct drm_minor *minor = adev_to_drm(adev)->primary; 2384 struct dentry *root = minor->debugfs_root; 2385 2386 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2387 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2388 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2389 &amdgpu_ttm_iomem_fops); 2390 debugfs_create_file("amdgpu_vram_mm", 0444, root, adev, 2391 &amdgpu_mm_vram_table_fops); 2392 debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev, 2393 &amdgpu_mm_tt_table_fops); 2394 debugfs_create_file("amdgpu_gds_mm", 0444, root, adev, 2395 &amdgpu_mm_gds_table_fops); 2396 debugfs_create_file("amdgpu_gws_mm", 0444, root, adev, 2397 &amdgpu_mm_gws_table_fops); 2398 debugfs_create_file("amdgpu_oa_mm", 0444, root, adev, 2399 &amdgpu_mm_oa_table_fops); 2400 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2401 &amdgpu_ttm_page_pool_fops); 2402 #endif 2403 } 2404