1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "amdgpu_sdma.h"
51 #include "bif/bif_4_1_d.h"
52 
53 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
54 
55 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
56 			     struct ttm_mem_reg *mem, unsigned num_pages,
57 			     uint64_t offset, unsigned window,
58 			     struct amdgpu_ring *ring,
59 			     uint64_t *addr);
60 
61 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
62 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
63 
64 /*
65  * Global memory.
66  */
67 
68 /**
69  * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
70  * memory object
71  *
72  * @ref: Object for initialization.
73  *
74  * This is called by drm_global_item_ref() when an object is being
75  * initialized.
76  */
77 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
78 {
79 	return ttm_mem_global_init(ref->object);
80 }
81 
82 /**
83  * amdgpu_ttm_mem_global_release - Drop reference to a memory object
84  *
85  * @ref: Object being removed
86  *
87  * This is called by drm_global_item_unref() when an object is being
88  * released.
89  */
90 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
91 {
92 	ttm_mem_global_release(ref->object);
93 }
94 
95 /**
96  * amdgpu_ttm_global_init - Initialize global TTM memory reference structures.
97  *
98  * @adev: AMDGPU device for which the global structures need to be registered.
99  *
100  * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
101  * during bring up.
102  */
103 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
104 {
105 	struct drm_global_reference *global_ref;
106 	int r;
107 
108 	/* ensure reference is false in case init fails */
109 	adev->mman.mem_global_referenced = false;
110 
111 	global_ref = &adev->mman.mem_global_ref;
112 	global_ref->global_type = DRM_GLOBAL_TTM_MEM;
113 	global_ref->size = sizeof(struct ttm_mem_global);
114 	global_ref->init = &amdgpu_ttm_mem_global_init;
115 	global_ref->release = &amdgpu_ttm_mem_global_release;
116 	r = drm_global_item_ref(global_ref);
117 	if (r) {
118 		DRM_ERROR("Failed setting up TTM memory accounting "
119 			  "subsystem.\n");
120 		goto error_mem;
121 	}
122 
123 	adev->mman.bo_global_ref.mem_glob =
124 		adev->mman.mem_global_ref.object;
125 	global_ref = &adev->mman.bo_global_ref.ref;
126 	global_ref->global_type = DRM_GLOBAL_TTM_BO;
127 	global_ref->size = sizeof(struct ttm_bo_global);
128 	global_ref->init = &ttm_bo_global_init;
129 	global_ref->release = &ttm_bo_global_release;
130 	r = drm_global_item_ref(global_ref);
131 	if (r) {
132 		DRM_ERROR("Failed setting up TTM BO subsystem.\n");
133 		goto error_bo;
134 	}
135 
136 	mutex_init(&adev->mman.gtt_window_lock);
137 
138 	adev->mman.mem_global_referenced = true;
139 
140 	return 0;
141 
142 error_bo:
143 	drm_global_item_unref(&adev->mman.mem_global_ref);
144 error_mem:
145 	return r;
146 }
147 
148 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
149 {
150 	if (adev->mman.mem_global_referenced) {
151 		mutex_destroy(&adev->mman.gtt_window_lock);
152 		drm_global_item_unref(&adev->mman.bo_global_ref.ref);
153 		drm_global_item_unref(&adev->mman.mem_global_ref);
154 		adev->mman.mem_global_referenced = false;
155 	}
156 }
157 
158 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
159 {
160 	return 0;
161 }
162 
163 /**
164  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
165  * memory request.
166  *
167  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
168  * @type: The type of memory requested
169  * @man: The memory type manager for each domain
170  *
171  * This is called by ttm_bo_init_mm() when a buffer object is being
172  * initialized.
173  */
174 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
175 				struct ttm_mem_type_manager *man)
176 {
177 	struct amdgpu_device *adev;
178 
179 	adev = amdgpu_ttm_adev(bdev);
180 
181 	switch (type) {
182 	case TTM_PL_SYSTEM:
183 		/* System memory */
184 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
185 		man->available_caching = TTM_PL_MASK_CACHING;
186 		man->default_caching = TTM_PL_FLAG_CACHED;
187 		break;
188 	case TTM_PL_TT:
189 		/* GTT memory  */
190 		man->func = &amdgpu_gtt_mgr_func;
191 		man->gpu_offset = adev->gmc.gart_start;
192 		man->available_caching = TTM_PL_MASK_CACHING;
193 		man->default_caching = TTM_PL_FLAG_CACHED;
194 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
195 		break;
196 	case TTM_PL_VRAM:
197 		/* "On-card" video ram */
198 		man->func = &amdgpu_vram_mgr_func;
199 		man->gpu_offset = adev->gmc.vram_start;
200 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
201 			     TTM_MEMTYPE_FLAG_MAPPABLE;
202 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
203 		man->default_caching = TTM_PL_FLAG_WC;
204 		break;
205 	case AMDGPU_PL_GDS:
206 	case AMDGPU_PL_GWS:
207 	case AMDGPU_PL_OA:
208 		/* On-chip GDS memory*/
209 		man->func = &ttm_bo_manager_func;
210 		man->gpu_offset = 0;
211 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
212 		man->available_caching = TTM_PL_FLAG_UNCACHED;
213 		man->default_caching = TTM_PL_FLAG_UNCACHED;
214 		break;
215 	default:
216 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
217 		return -EINVAL;
218 	}
219 	return 0;
220 }
221 
222 /**
223  * amdgpu_evict_flags - Compute placement flags
224  *
225  * @bo: The buffer object to evict
226  * @placement: Possible destination(s) for evicted BO
227  *
228  * Fill in placement data when ttm_bo_evict() is called
229  */
230 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
231 				struct ttm_placement *placement)
232 {
233 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
234 	struct amdgpu_bo *abo;
235 	static const struct ttm_place placements = {
236 		.fpfn = 0,
237 		.lpfn = 0,
238 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
239 	};
240 
241 	/* Don't handle scatter gather BOs */
242 	if (bo->type == ttm_bo_type_sg) {
243 		placement->num_placement = 0;
244 		placement->num_busy_placement = 0;
245 		return;
246 	}
247 
248 	/* Object isn't an AMDGPU object so ignore */
249 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
250 		placement->placement = &placements;
251 		placement->busy_placement = &placements;
252 		placement->num_placement = 1;
253 		placement->num_busy_placement = 1;
254 		return;
255 	}
256 
257 	abo = ttm_to_amdgpu_bo(bo);
258 	switch (bo->mem.mem_type) {
259 	case AMDGPU_PL_GDS:
260 	case AMDGPU_PL_GWS:
261 	case AMDGPU_PL_OA:
262 		placement->num_placement = 0;
263 		placement->num_busy_placement = 0;
264 		return;
265 
266 	case TTM_PL_VRAM:
267 		if (!adev->mman.buffer_funcs_enabled) {
268 			/* Move to system memory */
269 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
270 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
271 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
272 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
273 
274 			/* Try evicting to the CPU inaccessible part of VRAM
275 			 * first, but only set GTT as busy placement, so this
276 			 * BO will be evicted to GTT rather than causing other
277 			 * BOs to be evicted from VRAM
278 			 */
279 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
280 							 AMDGPU_GEM_DOMAIN_GTT);
281 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
282 			abo->placements[0].lpfn = 0;
283 			abo->placement.busy_placement = &abo->placements[1];
284 			abo->placement.num_busy_placement = 1;
285 		} else {
286 			/* Move to GTT memory */
287 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
288 		}
289 		break;
290 	case TTM_PL_TT:
291 	default:
292 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
293 		break;
294 	}
295 	*placement = abo->placement;
296 }
297 
298 /**
299  * amdgpu_verify_access - Verify access for a mmap call
300  *
301  * @bo:	The buffer object to map
302  * @filp: The file pointer from the process performing the mmap
303  *
304  * This is called by ttm_bo_mmap() to verify whether a process
305  * has the right to mmap a BO to their process space.
306  */
307 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
308 {
309 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
310 
311 	/*
312 	 * Don't verify access for KFD BOs. They don't have a GEM
313 	 * object associated with them.
314 	 */
315 	if (abo->kfd_bo)
316 		return 0;
317 
318 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
319 		return -EPERM;
320 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
321 					  filp->private_data);
322 }
323 
324 /**
325  * amdgpu_move_null - Register memory for a buffer object
326  *
327  * @bo: The bo to assign the memory to
328  * @new_mem: The memory to be assigned.
329  *
330  * Assign the memory from new_mem to the memory of the buffer object bo.
331  */
332 static void amdgpu_move_null(struct ttm_buffer_object *bo,
333 			     struct ttm_mem_reg *new_mem)
334 {
335 	struct ttm_mem_reg *old_mem = &bo->mem;
336 
337 	BUG_ON(old_mem->mm_node != NULL);
338 	*old_mem = *new_mem;
339 	new_mem->mm_node = NULL;
340 }
341 
342 /**
343  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
344  *
345  * @bo: The bo to assign the memory to.
346  * @mm_node: Memory manager node for drm allocator.
347  * @mem: The region where the bo resides.
348  *
349  */
350 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
351 				    struct drm_mm_node *mm_node,
352 				    struct ttm_mem_reg *mem)
353 {
354 	uint64_t addr = 0;
355 
356 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
357 		addr = mm_node->start << PAGE_SHIFT;
358 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
359 	}
360 	return addr;
361 }
362 
363 /**
364  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
365  * @offset. It also modifies the offset to be within the drm_mm_node returned
366  *
367  * @mem: The region where the bo resides.
368  * @offset: The offset that drm_mm_node is used for finding.
369  *
370  */
371 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
372 					       unsigned long *offset)
373 {
374 	struct drm_mm_node *mm_node = mem->mm_node;
375 
376 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
377 		*offset -= (mm_node->size << PAGE_SHIFT);
378 		++mm_node;
379 	}
380 	return mm_node;
381 }
382 
383 /**
384  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
385  *
386  * The function copies @size bytes from {src->mem + src->offset} to
387  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
388  * move and different for a BO to BO copy.
389  *
390  * @f: Returns the last fence if multiple jobs are submitted.
391  */
392 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
393 			       struct amdgpu_copy_mem *src,
394 			       struct amdgpu_copy_mem *dst,
395 			       uint64_t size,
396 			       struct reservation_object *resv,
397 			       struct dma_fence **f)
398 {
399 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
400 	struct drm_mm_node *src_mm, *dst_mm;
401 	uint64_t src_node_start, dst_node_start, src_node_size,
402 		 dst_node_size, src_page_offset, dst_page_offset;
403 	struct dma_fence *fence = NULL;
404 	int r = 0;
405 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
406 					AMDGPU_GPU_PAGE_SIZE);
407 
408 	if (!adev->mman.buffer_funcs_enabled) {
409 		DRM_ERROR("Trying to move memory with ring turned off.\n");
410 		return -EINVAL;
411 	}
412 
413 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
414 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
415 					     src->offset;
416 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
417 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
418 
419 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
420 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
421 					     dst->offset;
422 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
423 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
424 
425 	mutex_lock(&adev->mman.gtt_window_lock);
426 
427 	while (size) {
428 		unsigned long cur_size;
429 		uint64_t from = src_node_start, to = dst_node_start;
430 		struct dma_fence *next;
431 
432 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
433 		 * begins at an offset, then adjust the size accordingly
434 		 */
435 		cur_size = min3(min(src_node_size, dst_node_size), size,
436 				GTT_MAX_BYTES);
437 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
438 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
439 			cur_size -= max(src_page_offset, dst_page_offset);
440 
441 		/* Map only what needs to be accessed. Map src to window 0 and
442 		 * dst to window 1
443 		 */
444 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
445 			r = amdgpu_map_buffer(src->bo, src->mem,
446 					PFN_UP(cur_size + src_page_offset),
447 					src_node_start, 0, ring,
448 					&from);
449 			if (r)
450 				goto error;
451 			/* Adjust the offset because amdgpu_map_buffer returns
452 			 * start of mapped page
453 			 */
454 			from += src_page_offset;
455 		}
456 
457 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
458 			r = amdgpu_map_buffer(dst->bo, dst->mem,
459 					PFN_UP(cur_size + dst_page_offset),
460 					dst_node_start, 1, ring,
461 					&to);
462 			if (r)
463 				goto error;
464 			to += dst_page_offset;
465 		}
466 
467 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
468 				       resv, &next, false, true);
469 		if (r)
470 			goto error;
471 
472 		dma_fence_put(fence);
473 		fence = next;
474 
475 		size -= cur_size;
476 		if (!size)
477 			break;
478 
479 		src_node_size -= cur_size;
480 		if (!src_node_size) {
481 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
482 							     src->mem);
483 			src_node_size = (src_mm->size << PAGE_SHIFT);
484 		} else {
485 			src_node_start += cur_size;
486 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
487 		}
488 		dst_node_size -= cur_size;
489 		if (!dst_node_size) {
490 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
491 							     dst->mem);
492 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
493 		} else {
494 			dst_node_start += cur_size;
495 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
496 		}
497 	}
498 error:
499 	mutex_unlock(&adev->mman.gtt_window_lock);
500 	if (f)
501 		*f = dma_fence_get(fence);
502 	dma_fence_put(fence);
503 	return r;
504 }
505 
506 /**
507  * amdgpu_move_blit - Copy an entire buffer to another buffer
508  *
509  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
510  * help move buffers to and from VRAM.
511  */
512 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
513 			    bool evict, bool no_wait_gpu,
514 			    struct ttm_mem_reg *new_mem,
515 			    struct ttm_mem_reg *old_mem)
516 {
517 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
518 	struct amdgpu_copy_mem src, dst;
519 	struct dma_fence *fence = NULL;
520 	int r;
521 
522 	src.bo = bo;
523 	dst.bo = bo;
524 	src.mem = old_mem;
525 	dst.mem = new_mem;
526 	src.offset = 0;
527 	dst.offset = 0;
528 
529 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
530 				       new_mem->num_pages << PAGE_SHIFT,
531 				       bo->resv, &fence);
532 	if (r)
533 		goto error;
534 
535 	/* Always block for VM page tables before committing the new location */
536 	if (bo->type == ttm_bo_type_kernel)
537 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
538 	else
539 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
540 	dma_fence_put(fence);
541 	return r;
542 
543 error:
544 	if (fence)
545 		dma_fence_wait(fence, false);
546 	dma_fence_put(fence);
547 	return r;
548 }
549 
550 /**
551  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
552  *
553  * Called by amdgpu_bo_move().
554  */
555 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
556 				struct ttm_operation_ctx *ctx,
557 				struct ttm_mem_reg *new_mem)
558 {
559 	struct amdgpu_device *adev;
560 	struct ttm_mem_reg *old_mem = &bo->mem;
561 	struct ttm_mem_reg tmp_mem;
562 	struct ttm_place placements;
563 	struct ttm_placement placement;
564 	int r;
565 
566 	adev = amdgpu_ttm_adev(bo->bdev);
567 
568 	/* create space/pages for new_mem in GTT space */
569 	tmp_mem = *new_mem;
570 	tmp_mem.mm_node = NULL;
571 	placement.num_placement = 1;
572 	placement.placement = &placements;
573 	placement.num_busy_placement = 1;
574 	placement.busy_placement = &placements;
575 	placements.fpfn = 0;
576 	placements.lpfn = 0;
577 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
578 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
579 	if (unlikely(r)) {
580 		return r;
581 	}
582 
583 	/* set caching flags */
584 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
585 	if (unlikely(r)) {
586 		goto out_cleanup;
587 	}
588 
589 	/* Bind the memory to the GTT space */
590 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
591 	if (unlikely(r)) {
592 		goto out_cleanup;
593 	}
594 
595 	/* blit VRAM to GTT */
596 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
597 	if (unlikely(r)) {
598 		goto out_cleanup;
599 	}
600 
601 	/* move BO (in tmp_mem) to new_mem */
602 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
603 out_cleanup:
604 	ttm_bo_mem_put(bo, &tmp_mem);
605 	return r;
606 }
607 
608 /**
609  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
610  *
611  * Called by amdgpu_bo_move().
612  */
613 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
614 				struct ttm_operation_ctx *ctx,
615 				struct ttm_mem_reg *new_mem)
616 {
617 	struct amdgpu_device *adev;
618 	struct ttm_mem_reg *old_mem = &bo->mem;
619 	struct ttm_mem_reg tmp_mem;
620 	struct ttm_placement placement;
621 	struct ttm_place placements;
622 	int r;
623 
624 	adev = amdgpu_ttm_adev(bo->bdev);
625 
626 	/* make space in GTT for old_mem buffer */
627 	tmp_mem = *new_mem;
628 	tmp_mem.mm_node = NULL;
629 	placement.num_placement = 1;
630 	placement.placement = &placements;
631 	placement.num_busy_placement = 1;
632 	placement.busy_placement = &placements;
633 	placements.fpfn = 0;
634 	placements.lpfn = 0;
635 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
636 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
637 	if (unlikely(r)) {
638 		return r;
639 	}
640 
641 	/* move/bind old memory to GTT space */
642 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
643 	if (unlikely(r)) {
644 		goto out_cleanup;
645 	}
646 
647 	/* copy to VRAM */
648 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
649 	if (unlikely(r)) {
650 		goto out_cleanup;
651 	}
652 out_cleanup:
653 	ttm_bo_mem_put(bo, &tmp_mem);
654 	return r;
655 }
656 
657 /**
658  * amdgpu_bo_move - Move a buffer object to a new memory location
659  *
660  * Called by ttm_bo_handle_move_mem()
661  */
662 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
663 			  struct ttm_operation_ctx *ctx,
664 			  struct ttm_mem_reg *new_mem)
665 {
666 	struct amdgpu_device *adev;
667 	struct amdgpu_bo *abo;
668 	struct ttm_mem_reg *old_mem = &bo->mem;
669 	int r;
670 
671 	/* Can't move a pinned BO */
672 	abo = ttm_to_amdgpu_bo(bo);
673 	if (WARN_ON_ONCE(abo->pin_count > 0))
674 		return -EINVAL;
675 
676 	adev = amdgpu_ttm_adev(bo->bdev);
677 
678 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
679 		amdgpu_move_null(bo, new_mem);
680 		return 0;
681 	}
682 	if ((old_mem->mem_type == TTM_PL_TT &&
683 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
684 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
685 	     new_mem->mem_type == TTM_PL_TT)) {
686 		/* bind is enough */
687 		amdgpu_move_null(bo, new_mem);
688 		return 0;
689 	}
690 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
691 	    old_mem->mem_type == AMDGPU_PL_GWS ||
692 	    old_mem->mem_type == AMDGPU_PL_OA ||
693 	    new_mem->mem_type == AMDGPU_PL_GDS ||
694 	    new_mem->mem_type == AMDGPU_PL_GWS ||
695 	    new_mem->mem_type == AMDGPU_PL_OA) {
696 		/* Nothing to save here */
697 		amdgpu_move_null(bo, new_mem);
698 		return 0;
699 	}
700 
701 	if (!adev->mman.buffer_funcs_enabled)
702 		goto memcpy;
703 
704 	if (old_mem->mem_type == TTM_PL_VRAM &&
705 	    new_mem->mem_type == TTM_PL_SYSTEM) {
706 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
707 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
708 		   new_mem->mem_type == TTM_PL_VRAM) {
709 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
710 	} else {
711 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
712 				     new_mem, old_mem);
713 	}
714 
715 	if (r) {
716 memcpy:
717 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
718 		if (r) {
719 			return r;
720 		}
721 	}
722 
723 	if (bo->type == ttm_bo_type_device &&
724 	    new_mem->mem_type == TTM_PL_VRAM &&
725 	    old_mem->mem_type != TTM_PL_VRAM) {
726 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
727 		 * accesses the BO after it's moved.
728 		 */
729 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
730 	}
731 
732 	/* update statistics */
733 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
734 	return 0;
735 }
736 
737 /**
738  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
739  *
740  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
741  */
742 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
743 {
744 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
745 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
746 	struct drm_mm_node *mm_node = mem->mm_node;
747 
748 	mem->bus.addr = NULL;
749 	mem->bus.offset = 0;
750 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
751 	mem->bus.base = 0;
752 	mem->bus.is_iomem = false;
753 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
754 		return -EINVAL;
755 	switch (mem->mem_type) {
756 	case TTM_PL_SYSTEM:
757 		/* system memory */
758 		return 0;
759 	case TTM_PL_TT:
760 		break;
761 	case TTM_PL_VRAM:
762 		mem->bus.offset = mem->start << PAGE_SHIFT;
763 		/* check if it's visible */
764 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
765 			return -EINVAL;
766 		/* Only physically contiguous buffers apply. In a contiguous
767 		 * buffer, size of the first mm_node would match the number of
768 		 * pages in ttm_mem_reg.
769 		 */
770 		if (adev->mman.aper_base_kaddr &&
771 		    (mm_node->size == mem->num_pages))
772 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
773 					mem->bus.offset;
774 
775 		mem->bus.base = adev->gmc.aper_base;
776 		mem->bus.is_iomem = true;
777 		break;
778 	default:
779 		return -EINVAL;
780 	}
781 	return 0;
782 }
783 
784 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
785 {
786 }
787 
788 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
789 					   unsigned long page_offset)
790 {
791 	struct drm_mm_node *mm;
792 	unsigned long offset = (page_offset << PAGE_SHIFT);
793 
794 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
795 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
796 		(offset >> PAGE_SHIFT);
797 }
798 
799 /*
800  * TTM backend functions.
801  */
802 struct amdgpu_ttm_gup_task_list {
803 	struct list_head	list;
804 	struct task_struct	*task;
805 };
806 
807 struct amdgpu_ttm_tt {
808 	struct ttm_dma_tt	ttm;
809 	u64			offset;
810 	uint64_t		userptr;
811 	struct task_struct	*usertask;
812 	uint32_t		userflags;
813 	spinlock_t              guptasklock;
814 	struct list_head        guptasks;
815 	atomic_t		mmu_invalidations;
816 	uint32_t		last_set_pages;
817 };
818 
819 /**
820  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
821  * pointer to memory
822  *
823  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
824  * This provides a wrapper around the get_user_pages() call to provide
825  * device accessible pages that back user memory.
826  */
827 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
828 {
829 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
830 	struct mm_struct *mm = gtt->usertask->mm;
831 	unsigned int flags = 0;
832 	unsigned pinned = 0;
833 	int r;
834 
835 	if (!mm) /* Happens during process shutdown */
836 		return -ESRCH;
837 
838 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
839 		flags |= FOLL_WRITE;
840 
841 	down_read(&mm->mmap_sem);
842 
843 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
844 		/*
845 		 * check that we only use anonymous memory to prevent problems
846 		 * with writeback
847 		 */
848 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
849 		struct vm_area_struct *vma;
850 
851 		vma = find_vma(mm, gtt->userptr);
852 		if (!vma || vma->vm_file || vma->vm_end < end) {
853 			up_read(&mm->mmap_sem);
854 			return -EPERM;
855 		}
856 	}
857 
858 	/* loop enough times using contiguous pages of memory */
859 	do {
860 		unsigned num_pages = ttm->num_pages - pinned;
861 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
862 		struct page **p = pages + pinned;
863 		struct amdgpu_ttm_gup_task_list guptask;
864 
865 		guptask.task = current;
866 		spin_lock(&gtt->guptasklock);
867 		list_add(&guptask.list, &gtt->guptasks);
868 		spin_unlock(&gtt->guptasklock);
869 
870 		if (mm == current->mm)
871 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
872 		else
873 			r = get_user_pages_remote(gtt->usertask,
874 					mm, userptr, num_pages,
875 					flags, p, NULL, NULL);
876 
877 		spin_lock(&gtt->guptasklock);
878 		list_del(&guptask.list);
879 		spin_unlock(&gtt->guptasklock);
880 
881 		if (r < 0)
882 			goto release_pages;
883 
884 		pinned += r;
885 
886 	} while (pinned < ttm->num_pages);
887 
888 	up_read(&mm->mmap_sem);
889 	return 0;
890 
891 release_pages:
892 	release_pages(pages, pinned);
893 	up_read(&mm->mmap_sem);
894 	return r;
895 }
896 
897 /**
898  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
899  *
900  * Called by amdgpu_cs_list_validate(). This creates the page list
901  * that backs user memory and will ultimately be mapped into the device
902  * address space.
903  */
904 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
905 {
906 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
907 	unsigned i;
908 
909 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
910 	for (i = 0; i < ttm->num_pages; ++i) {
911 		if (ttm->pages[i])
912 			put_page(ttm->pages[i]);
913 
914 		ttm->pages[i] = pages ? pages[i] : NULL;
915 	}
916 }
917 
918 /**
919  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
920  *
921  * Called while unpinning userptr pages
922  */
923 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
924 {
925 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
926 	unsigned i;
927 
928 	for (i = 0; i < ttm->num_pages; ++i) {
929 		struct page *page = ttm->pages[i];
930 
931 		if (!page)
932 			continue;
933 
934 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
935 			set_page_dirty(page);
936 
937 		mark_page_accessed(page);
938 	}
939 }
940 
941 /**
942  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
943  *
944  * Called by amdgpu_ttm_backend_bind()
945  **/
946 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
947 {
948 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
949 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
950 	unsigned nents;
951 	int r;
952 
953 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
954 	enum dma_data_direction direction = write ?
955 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
956 
957 	/* Allocate an SG array and squash pages into it */
958 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
959 				      ttm->num_pages << PAGE_SHIFT,
960 				      GFP_KERNEL);
961 	if (r)
962 		goto release_sg;
963 
964 	/* Map SG to device */
965 	r = -ENOMEM;
966 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
967 	if (nents != ttm->sg->nents)
968 		goto release_sg;
969 
970 	/* convert SG to linear array of pages and dma addresses */
971 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
972 					 gtt->ttm.dma_address, ttm->num_pages);
973 
974 	return 0;
975 
976 release_sg:
977 	kfree(ttm->sg);
978 	return r;
979 }
980 
981 /**
982  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
983  */
984 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
985 {
986 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
987 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
988 
989 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
990 	enum dma_data_direction direction = write ?
991 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
992 
993 	/* double check that we don't free the table twice */
994 	if (!ttm->sg->sgl)
995 		return;
996 
997 	/* unmap the pages mapped to the device */
998 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
999 
1000 	/* mark the pages as dirty */
1001 	amdgpu_ttm_tt_mark_user_pages(ttm);
1002 
1003 	sg_free_table(ttm->sg);
1004 }
1005 
1006 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1007 				struct ttm_buffer_object *tbo,
1008 				uint64_t flags)
1009 {
1010 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1011 	struct ttm_tt *ttm = tbo->ttm;
1012 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1013 	int r;
1014 
1015 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1016 		uint64_t page_idx = 1;
1017 
1018 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1019 				ttm->pages, gtt->ttm.dma_address, flags);
1020 		if (r)
1021 			goto gart_bind_fail;
1022 
1023 		/* Patch mtype of the second part BO */
1024 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
1025 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1026 
1027 		r = amdgpu_gart_bind(adev,
1028 				gtt->offset + (page_idx << PAGE_SHIFT),
1029 				ttm->num_pages - page_idx,
1030 				&ttm->pages[page_idx],
1031 				&(gtt->ttm.dma_address[page_idx]), flags);
1032 	} else {
1033 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1034 				     ttm->pages, gtt->ttm.dma_address, flags);
1035 	}
1036 
1037 gart_bind_fail:
1038 	if (r)
1039 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1040 			  ttm->num_pages, gtt->offset);
1041 
1042 	return r;
1043 }
1044 
1045 /**
1046  * amdgpu_ttm_backend_bind - Bind GTT memory
1047  *
1048  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1049  * This handles binding GTT memory to the device address space.
1050  */
1051 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1052 				   struct ttm_mem_reg *bo_mem)
1053 {
1054 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1055 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1056 	uint64_t flags;
1057 	int r = 0;
1058 
1059 	if (gtt->userptr) {
1060 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1061 		if (r) {
1062 			DRM_ERROR("failed to pin userptr\n");
1063 			return r;
1064 		}
1065 	}
1066 	if (!ttm->num_pages) {
1067 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1068 		     ttm->num_pages, bo_mem, ttm);
1069 	}
1070 
1071 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1072 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1073 	    bo_mem->mem_type == AMDGPU_PL_OA)
1074 		return -EINVAL;
1075 
1076 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1077 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1078 		return 0;
1079 	}
1080 
1081 	/* compute PTE flags relevant to this BO memory */
1082 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1083 
1084 	/* bind pages into GART page tables */
1085 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1086 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1087 		ttm->pages, gtt->ttm.dma_address, flags);
1088 
1089 	if (r)
1090 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1091 			  ttm->num_pages, gtt->offset);
1092 	return r;
1093 }
1094 
1095 /**
1096  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1097  */
1098 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1099 {
1100 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1101 	struct ttm_operation_ctx ctx = { false, false };
1102 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1103 	struct ttm_mem_reg tmp;
1104 	struct ttm_placement placement;
1105 	struct ttm_place placements;
1106 	uint64_t addr, flags;
1107 	int r;
1108 
1109 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1110 		return 0;
1111 
1112 	addr = amdgpu_gmc_agp_addr(bo);
1113 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1114 		bo->mem.start = addr >> PAGE_SHIFT;
1115 	} else {
1116 
1117 		/* allocate GART space */
1118 		tmp = bo->mem;
1119 		tmp.mm_node = NULL;
1120 		placement.num_placement = 1;
1121 		placement.placement = &placements;
1122 		placement.num_busy_placement = 1;
1123 		placement.busy_placement = &placements;
1124 		placements.fpfn = 0;
1125 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1126 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1127 			TTM_PL_FLAG_TT;
1128 
1129 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1130 		if (unlikely(r))
1131 			return r;
1132 
1133 		/* compute PTE flags for this buffer object */
1134 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1135 
1136 		/* Bind pages */
1137 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1138 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1139 		if (unlikely(r)) {
1140 			ttm_bo_mem_put(bo, &tmp);
1141 			return r;
1142 		}
1143 
1144 		ttm_bo_mem_put(bo, &bo->mem);
1145 		bo->mem = tmp;
1146 	}
1147 
1148 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1149 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1150 
1151 	return 0;
1152 }
1153 
1154 /**
1155  * amdgpu_ttm_recover_gart - Rebind GTT pages
1156  *
1157  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1158  * rebind GTT pages during a GPU reset.
1159  */
1160 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1161 {
1162 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1163 	uint64_t flags;
1164 	int r;
1165 
1166 	if (!tbo->ttm)
1167 		return 0;
1168 
1169 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1170 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1171 
1172 	return r;
1173 }
1174 
1175 /**
1176  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1177  *
1178  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1179  * ttm_tt_destroy().
1180  */
1181 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1182 {
1183 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1184 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1185 	int r;
1186 
1187 	/* if the pages have userptr pinning then clear that first */
1188 	if (gtt->userptr)
1189 		amdgpu_ttm_tt_unpin_userptr(ttm);
1190 
1191 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1192 		return 0;
1193 
1194 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1195 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1196 	if (r)
1197 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1198 			  gtt->ttm.ttm.num_pages, gtt->offset);
1199 	return r;
1200 }
1201 
1202 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1203 {
1204 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1205 
1206 	if (gtt->usertask)
1207 		put_task_struct(gtt->usertask);
1208 
1209 	ttm_dma_tt_fini(&gtt->ttm);
1210 	kfree(gtt);
1211 }
1212 
1213 static struct ttm_backend_func amdgpu_backend_func = {
1214 	.bind = &amdgpu_ttm_backend_bind,
1215 	.unbind = &amdgpu_ttm_backend_unbind,
1216 	.destroy = &amdgpu_ttm_backend_destroy,
1217 };
1218 
1219 /**
1220  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1221  *
1222  * @bo: The buffer object to create a GTT ttm_tt object around
1223  *
1224  * Called by ttm_tt_create().
1225  */
1226 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1227 					   uint32_t page_flags)
1228 {
1229 	struct amdgpu_device *adev;
1230 	struct amdgpu_ttm_tt *gtt;
1231 
1232 	adev = amdgpu_ttm_adev(bo->bdev);
1233 
1234 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1235 	if (gtt == NULL) {
1236 		return NULL;
1237 	}
1238 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1239 
1240 	/* allocate space for the uninitialized page entries */
1241 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1242 		kfree(gtt);
1243 		return NULL;
1244 	}
1245 	return &gtt->ttm.ttm;
1246 }
1247 
1248 /**
1249  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1250  *
1251  * Map the pages of a ttm_tt object to an address space visible
1252  * to the underlying device.
1253  */
1254 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1255 			struct ttm_operation_ctx *ctx)
1256 {
1257 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1258 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1259 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1260 
1261 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1262 	if (gtt && gtt->userptr) {
1263 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1264 		if (!ttm->sg)
1265 			return -ENOMEM;
1266 
1267 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1268 		ttm->state = tt_unbound;
1269 		return 0;
1270 	}
1271 
1272 	if (slave && ttm->sg) {
1273 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1274 						 gtt->ttm.dma_address,
1275 						 ttm->num_pages);
1276 		ttm->state = tt_unbound;
1277 		return 0;
1278 	}
1279 
1280 #ifdef CONFIG_SWIOTLB
1281 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1282 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1283 	}
1284 #endif
1285 
1286 	/* fall back to generic helper to populate the page array
1287 	 * and map them to the device */
1288 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1289 }
1290 
1291 /**
1292  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1293  *
1294  * Unmaps pages of a ttm_tt object from the device address space and
1295  * unpopulates the page array backing it.
1296  */
1297 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1298 {
1299 	struct amdgpu_device *adev;
1300 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1301 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1302 
1303 	if (gtt && gtt->userptr) {
1304 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1305 		kfree(ttm->sg);
1306 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1307 		return;
1308 	}
1309 
1310 	if (slave)
1311 		return;
1312 
1313 	adev = amdgpu_ttm_adev(ttm->bdev);
1314 
1315 #ifdef CONFIG_SWIOTLB
1316 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1317 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1318 		return;
1319 	}
1320 #endif
1321 
1322 	/* fall back to generic helper to unmap and unpopulate array */
1323 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1324 }
1325 
1326 /**
1327  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1328  * task
1329  *
1330  * @ttm: The ttm_tt object to bind this userptr object to
1331  * @addr:  The address in the current tasks VM space to use
1332  * @flags: Requirements of userptr object.
1333  *
1334  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1335  * to current task
1336  */
1337 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1338 			      uint32_t flags)
1339 {
1340 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1341 
1342 	if (gtt == NULL)
1343 		return -EINVAL;
1344 
1345 	gtt->userptr = addr;
1346 	gtt->userflags = flags;
1347 
1348 	if (gtt->usertask)
1349 		put_task_struct(gtt->usertask);
1350 	gtt->usertask = current->group_leader;
1351 	get_task_struct(gtt->usertask);
1352 
1353 	spin_lock_init(&gtt->guptasklock);
1354 	INIT_LIST_HEAD(&gtt->guptasks);
1355 	atomic_set(&gtt->mmu_invalidations, 0);
1356 	gtt->last_set_pages = 0;
1357 
1358 	return 0;
1359 }
1360 
1361 /**
1362  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1363  */
1364 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1365 {
1366 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1367 
1368 	if (gtt == NULL)
1369 		return NULL;
1370 
1371 	if (gtt->usertask == NULL)
1372 		return NULL;
1373 
1374 	return gtt->usertask->mm;
1375 }
1376 
1377 /**
1378  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1379  * address range for the current task.
1380  *
1381  */
1382 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1383 				  unsigned long end)
1384 {
1385 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1386 	struct amdgpu_ttm_gup_task_list *entry;
1387 	unsigned long size;
1388 
1389 	if (gtt == NULL || !gtt->userptr)
1390 		return false;
1391 
1392 	/* Return false if no part of the ttm_tt object lies within
1393 	 * the range
1394 	 */
1395 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1396 	if (gtt->userptr > end || gtt->userptr + size <= start)
1397 		return false;
1398 
1399 	/* Search the lists of tasks that hold this mapping and see
1400 	 * if current is one of them.  If it is return false.
1401 	 */
1402 	spin_lock(&gtt->guptasklock);
1403 	list_for_each_entry(entry, &gtt->guptasks, list) {
1404 		if (entry->task == current) {
1405 			spin_unlock(&gtt->guptasklock);
1406 			return false;
1407 		}
1408 	}
1409 	spin_unlock(&gtt->guptasklock);
1410 
1411 	atomic_inc(&gtt->mmu_invalidations);
1412 
1413 	return true;
1414 }
1415 
1416 /**
1417  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1418  */
1419 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1420 				       int *last_invalidated)
1421 {
1422 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1423 	int prev_invalidated = *last_invalidated;
1424 
1425 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1426 	return prev_invalidated != *last_invalidated;
1427 }
1428 
1429 /**
1430  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1431  * been invalidated since the last time they've been set?
1432  */
1433 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1434 {
1435 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1436 
1437 	if (gtt == NULL || !gtt->userptr)
1438 		return false;
1439 
1440 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1441 }
1442 
1443 /**
1444  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1445  */
1446 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1447 {
1448 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1449 
1450 	if (gtt == NULL)
1451 		return false;
1452 
1453 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1454 }
1455 
1456 /**
1457  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1458  *
1459  * @ttm: The ttm_tt object to compute the flags for
1460  * @mem: The memory registry backing this ttm_tt object
1461  *
1462  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1463  */
1464 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1465 {
1466 	uint64_t flags = 0;
1467 
1468 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1469 		flags |= AMDGPU_PTE_VALID;
1470 
1471 	if (mem && mem->mem_type == TTM_PL_TT) {
1472 		flags |= AMDGPU_PTE_SYSTEM;
1473 
1474 		if (ttm->caching_state == tt_cached)
1475 			flags |= AMDGPU_PTE_SNOOPED;
1476 	}
1477 
1478 	return flags;
1479 }
1480 
1481 /**
1482  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1483  *
1484  * @ttm: The ttm_tt object to compute the flags for
1485  * @mem: The memory registry backing this ttm_tt object
1486 
1487  * Figure out the flags to use for a VM PTE (Page Table Entry).
1488  */
1489 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1490 				 struct ttm_mem_reg *mem)
1491 {
1492 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1493 
1494 	flags |= adev->gart.gart_pte_flags;
1495 	flags |= AMDGPU_PTE_READABLE;
1496 
1497 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1498 		flags |= AMDGPU_PTE_WRITEABLE;
1499 
1500 	return flags;
1501 }
1502 
1503 /**
1504  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1505  * object.
1506  *
1507  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1508  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1509  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1510  * used to clean out a memory space.
1511  */
1512 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1513 					    const struct ttm_place *place)
1514 {
1515 	unsigned long num_pages = bo->mem.num_pages;
1516 	struct drm_mm_node *node = bo->mem.mm_node;
1517 	struct reservation_object_list *flist;
1518 	struct dma_fence *f;
1519 	int i;
1520 
1521 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1522 	 * If true, then return false as any KFD process needs all its BOs to
1523 	 * be resident to run successfully
1524 	 */
1525 	flist = reservation_object_get_list(bo->resv);
1526 	if (flist) {
1527 		for (i = 0; i < flist->shared_count; ++i) {
1528 			f = rcu_dereference_protected(flist->shared[i],
1529 				reservation_object_held(bo->resv));
1530 			if (amdkfd_fence_check_mm(f, current->mm))
1531 				return false;
1532 		}
1533 	}
1534 
1535 	switch (bo->mem.mem_type) {
1536 	case TTM_PL_TT:
1537 		return true;
1538 
1539 	case TTM_PL_VRAM:
1540 		/* Check each drm MM node individually */
1541 		while (num_pages) {
1542 			if (place->fpfn < (node->start + node->size) &&
1543 			    !(place->lpfn && place->lpfn <= node->start))
1544 				return true;
1545 
1546 			num_pages -= node->size;
1547 			++node;
1548 		}
1549 		return false;
1550 
1551 	default:
1552 		break;
1553 	}
1554 
1555 	return ttm_bo_eviction_valuable(bo, place);
1556 }
1557 
1558 /**
1559  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1560  *
1561  * @bo:  The buffer object to read/write
1562  * @offset:  Offset into buffer object
1563  * @buf:  Secondary buffer to write/read from
1564  * @len: Length in bytes of access
1565  * @write:  true if writing
1566  *
1567  * This is used to access VRAM that backs a buffer object via MMIO
1568  * access for debugging purposes.
1569  */
1570 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1571 				    unsigned long offset,
1572 				    void *buf, int len, int write)
1573 {
1574 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1575 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1576 	struct drm_mm_node *nodes;
1577 	uint32_t value = 0;
1578 	int ret = 0;
1579 	uint64_t pos;
1580 	unsigned long flags;
1581 
1582 	if (bo->mem.mem_type != TTM_PL_VRAM)
1583 		return -EIO;
1584 
1585 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1586 	pos = (nodes->start << PAGE_SHIFT) + offset;
1587 
1588 	while (len && pos < adev->gmc.mc_vram_size) {
1589 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1590 		uint32_t bytes = 4 - (pos & 3);
1591 		uint32_t shift = (pos & 3) * 8;
1592 		uint32_t mask = 0xffffffff << shift;
1593 
1594 		if (len < bytes) {
1595 			mask &= 0xffffffff >> (bytes - len) * 8;
1596 			bytes = len;
1597 		}
1598 
1599 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1600 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1601 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1602 		if (!write || mask != 0xffffffff)
1603 			value = RREG32_NO_KIQ(mmMM_DATA);
1604 		if (write) {
1605 			value &= ~mask;
1606 			value |= (*(uint32_t *)buf << shift) & mask;
1607 			WREG32_NO_KIQ(mmMM_DATA, value);
1608 		}
1609 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1610 		if (!write) {
1611 			value = (value & mask) >> shift;
1612 			memcpy(buf, &value, bytes);
1613 		}
1614 
1615 		ret += bytes;
1616 		buf = (uint8_t *)buf + bytes;
1617 		pos += bytes;
1618 		len -= bytes;
1619 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1620 			++nodes;
1621 			pos = (nodes->start << PAGE_SHIFT);
1622 		}
1623 	}
1624 
1625 	return ret;
1626 }
1627 
1628 static struct ttm_bo_driver amdgpu_bo_driver = {
1629 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1630 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1631 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1632 	.invalidate_caches = &amdgpu_invalidate_caches,
1633 	.init_mem_type = &amdgpu_init_mem_type,
1634 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1635 	.evict_flags = &amdgpu_evict_flags,
1636 	.move = &amdgpu_bo_move,
1637 	.verify_access = &amdgpu_verify_access,
1638 	.move_notify = &amdgpu_bo_move_notify,
1639 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1640 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1641 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1642 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1643 	.access_memory = &amdgpu_ttm_access_memory
1644 };
1645 
1646 /*
1647  * Firmware Reservation functions
1648  */
1649 /**
1650  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1651  *
1652  * @adev: amdgpu_device pointer
1653  *
1654  * free fw reserved vram if it has been reserved.
1655  */
1656 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1657 {
1658 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1659 		NULL, &adev->fw_vram_usage.va);
1660 }
1661 
1662 /**
1663  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1664  *
1665  * @adev: amdgpu_device pointer
1666  *
1667  * create bo vram reservation from fw.
1668  */
1669 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1670 {
1671 	struct ttm_operation_ctx ctx = { false, false };
1672 	struct amdgpu_bo_param bp;
1673 	int r = 0;
1674 	int i;
1675 	u64 vram_size = adev->gmc.visible_vram_size;
1676 	u64 offset = adev->fw_vram_usage.start_offset;
1677 	u64 size = adev->fw_vram_usage.size;
1678 	struct amdgpu_bo *bo;
1679 
1680 	memset(&bp, 0, sizeof(bp));
1681 	bp.size = adev->fw_vram_usage.size;
1682 	bp.byte_align = PAGE_SIZE;
1683 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1684 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1685 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1686 	bp.type = ttm_bo_type_kernel;
1687 	bp.resv = NULL;
1688 	adev->fw_vram_usage.va = NULL;
1689 	adev->fw_vram_usage.reserved_bo = NULL;
1690 
1691 	if (adev->fw_vram_usage.size > 0 &&
1692 		adev->fw_vram_usage.size <= vram_size) {
1693 
1694 		r = amdgpu_bo_create(adev, &bp,
1695 				     &adev->fw_vram_usage.reserved_bo);
1696 		if (r)
1697 			goto error_create;
1698 
1699 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1700 		if (r)
1701 			goto error_reserve;
1702 
1703 		/* remove the original mem node and create a new one at the
1704 		 * request position
1705 		 */
1706 		bo = adev->fw_vram_usage.reserved_bo;
1707 		offset = ALIGN(offset, PAGE_SIZE);
1708 		for (i = 0; i < bo->placement.num_placement; ++i) {
1709 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1710 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1711 		}
1712 
1713 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1714 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1715 				     &bo->tbo.mem, &ctx);
1716 		if (r)
1717 			goto error_pin;
1718 
1719 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1720 			AMDGPU_GEM_DOMAIN_VRAM,
1721 			adev->fw_vram_usage.start_offset,
1722 			(adev->fw_vram_usage.start_offset +
1723 			adev->fw_vram_usage.size));
1724 		if (r)
1725 			goto error_pin;
1726 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1727 			&adev->fw_vram_usage.va);
1728 		if (r)
1729 			goto error_kmap;
1730 
1731 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1732 	}
1733 	return r;
1734 
1735 error_kmap:
1736 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1737 error_pin:
1738 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1739 error_reserve:
1740 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1741 error_create:
1742 	adev->fw_vram_usage.va = NULL;
1743 	adev->fw_vram_usage.reserved_bo = NULL;
1744 	return r;
1745 }
1746 /**
1747  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1748  * gtt/vram related fields.
1749  *
1750  * This initializes all of the memory space pools that the TTM layer
1751  * will need such as the GTT space (system memory mapped to the device),
1752  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1753  * can be mapped per VMID.
1754  */
1755 int amdgpu_ttm_init(struct amdgpu_device *adev)
1756 {
1757 	uint64_t gtt_size;
1758 	int r;
1759 	u64 vis_vram_limit;
1760 
1761 	/* initialize global references for vram/gtt */
1762 	r = amdgpu_ttm_global_init(adev);
1763 	if (r) {
1764 		return r;
1765 	}
1766 	/* No others user of address space so set it to 0 */
1767 	r = ttm_bo_device_init(&adev->mman.bdev,
1768 			       adev->mman.bo_global_ref.ref.object,
1769 			       &amdgpu_bo_driver,
1770 			       adev->ddev->anon_inode->i_mapping,
1771 			       DRM_FILE_PAGE_OFFSET,
1772 			       adev->need_dma32);
1773 	if (r) {
1774 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1775 		return r;
1776 	}
1777 	adev->mman.initialized = true;
1778 
1779 	/* We opt to avoid OOM on system pages allocations */
1780 	adev->mman.bdev.no_retry = true;
1781 
1782 	/* Initialize VRAM pool with all of VRAM divided into pages */
1783 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1784 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1785 	if (r) {
1786 		DRM_ERROR("Failed initializing VRAM heap.\n");
1787 		return r;
1788 	}
1789 
1790 	/* Reduce size of CPU-visible VRAM if requested */
1791 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1792 	if (amdgpu_vis_vram_limit > 0 &&
1793 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1794 		adev->gmc.visible_vram_size = vis_vram_limit;
1795 
1796 	/* Change the size here instead of the init above so only lpfn is affected */
1797 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1798 #ifdef CONFIG_64BIT
1799 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1800 						adev->gmc.visible_vram_size);
1801 #endif
1802 
1803 	/*
1804 	 *The reserved vram for firmware must be pinned to the specified
1805 	 *place on the VRAM, so reserve it early.
1806 	 */
1807 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1808 	if (r) {
1809 		return r;
1810 	}
1811 
1812 	/* allocate memory as required for VGA
1813 	 * This is used for VGA emulation and pre-OS scanout buffers to
1814 	 * avoid display artifacts while transitioning between pre-OS
1815 	 * and driver.  */
1816 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1817 				    AMDGPU_GEM_DOMAIN_VRAM,
1818 				    &adev->stolen_vga_memory,
1819 				    NULL, NULL);
1820 	if (r)
1821 		return r;
1822 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1823 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1824 
1825 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1826 	 * or whatever the user passed on module init */
1827 	if (amdgpu_gtt_size == -1) {
1828 		struct sysinfo si;
1829 
1830 		si_meminfo(&si);
1831 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1832 			       adev->gmc.mc_vram_size),
1833 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1834 	}
1835 	else
1836 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1837 
1838 	/* Initialize GTT memory pool */
1839 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1840 	if (r) {
1841 		DRM_ERROR("Failed initializing GTT heap.\n");
1842 		return r;
1843 	}
1844 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1845 		 (unsigned)(gtt_size / (1024 * 1024)));
1846 
1847 	/* Initialize various on-chip memory pools */
1848 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1849 			   adev->gds.mem.total_size);
1850 	if (r) {
1851 		DRM_ERROR("Failed initializing GDS heap.\n");
1852 		return r;
1853 	}
1854 
1855 	r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size,
1856 				    PAGE_SIZE, AMDGPU_GEM_DOMAIN_GDS,
1857 				    &adev->gds.gds_gfx_bo, NULL, NULL);
1858 	if (r)
1859 		return r;
1860 
1861 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1862 			   adev->gds.gws.total_size);
1863 	if (r) {
1864 		DRM_ERROR("Failed initializing gws heap.\n");
1865 		return r;
1866 	}
1867 
1868 	r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size,
1869 				    PAGE_SIZE, AMDGPU_GEM_DOMAIN_GWS,
1870 				    &adev->gds.gws_gfx_bo, NULL, NULL);
1871 	if (r)
1872 		return r;
1873 
1874 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1875 			   adev->gds.oa.total_size);
1876 	if (r) {
1877 		DRM_ERROR("Failed initializing oa heap.\n");
1878 		return r;
1879 	}
1880 
1881 	r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size,
1882 				    PAGE_SIZE, AMDGPU_GEM_DOMAIN_OA,
1883 				    &adev->gds.oa_gfx_bo, NULL, NULL);
1884 	if (r)
1885 		return r;
1886 
1887 	/* Register debugfs entries for amdgpu_ttm */
1888 	r = amdgpu_ttm_debugfs_init(adev);
1889 	if (r) {
1890 		DRM_ERROR("Failed to init debugfs\n");
1891 		return r;
1892 	}
1893 	return 0;
1894 }
1895 
1896 /**
1897  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1898  */
1899 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1900 {
1901 	/* return the VGA stolen memory (if any) back to VRAM */
1902 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1903 }
1904 
1905 /**
1906  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1907  */
1908 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1909 {
1910 	if (!adev->mman.initialized)
1911 		return;
1912 
1913 	amdgpu_ttm_debugfs_fini(adev);
1914 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1915 	if (adev->mman.aper_base_kaddr)
1916 		iounmap(adev->mman.aper_base_kaddr);
1917 	adev->mman.aper_base_kaddr = NULL;
1918 
1919 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1920 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1921 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1922 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1923 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1924 	ttm_bo_device_release(&adev->mman.bdev);
1925 	amdgpu_ttm_global_fini(adev);
1926 	adev->mman.initialized = false;
1927 	DRM_INFO("amdgpu: ttm finalized\n");
1928 }
1929 
1930 /**
1931  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1932  *
1933  * @adev: amdgpu_device pointer
1934  * @enable: true when we can use buffer functions.
1935  *
1936  * Enable/disable use of buffer functions during suspend/resume. This should
1937  * only be called at bootup or when userspace isn't running.
1938  */
1939 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1940 {
1941 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1942 	uint64_t size;
1943 	int r;
1944 
1945 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1946 	    adev->mman.buffer_funcs_enabled == enable)
1947 		return;
1948 
1949 	if (enable) {
1950 		struct amdgpu_ring *ring;
1951 		struct drm_sched_rq *rq;
1952 
1953 		ring = adev->mman.buffer_funcs_ring;
1954 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1955 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1956 		if (r) {
1957 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1958 				  r);
1959 			return;
1960 		}
1961 	} else {
1962 		drm_sched_entity_destroy(&adev->mman.entity);
1963 		dma_fence_put(man->move);
1964 		man->move = NULL;
1965 	}
1966 
1967 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1968 	if (enable)
1969 		size = adev->gmc.real_vram_size;
1970 	else
1971 		size = adev->gmc.visible_vram_size;
1972 	man->size = size >> PAGE_SHIFT;
1973 	adev->mman.buffer_funcs_enabled = enable;
1974 }
1975 
1976 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1977 {
1978 	struct drm_file *file_priv;
1979 	struct amdgpu_device *adev;
1980 
1981 	if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
1982 		return -EINVAL;
1983 
1984 	file_priv = filp->private_data;
1985 	adev = file_priv->minor->dev->dev_private;
1986 	if (adev == NULL)
1987 		return -EINVAL;
1988 
1989 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1990 }
1991 
1992 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1993 			     struct ttm_mem_reg *mem, unsigned num_pages,
1994 			     uint64_t offset, unsigned window,
1995 			     struct amdgpu_ring *ring,
1996 			     uint64_t *addr)
1997 {
1998 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1999 	struct amdgpu_device *adev = ring->adev;
2000 	struct ttm_tt *ttm = bo->ttm;
2001 	struct amdgpu_job *job;
2002 	unsigned num_dw, num_bytes;
2003 	dma_addr_t *dma_address;
2004 	struct dma_fence *fence;
2005 	uint64_t src_addr, dst_addr;
2006 	uint64_t flags;
2007 	int r;
2008 
2009 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2010 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2011 
2012 	*addr = adev->gmc.gart_start;
2013 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2014 		AMDGPU_GPU_PAGE_SIZE;
2015 
2016 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
2017 	while (num_dw & 0x7)
2018 		num_dw++;
2019 
2020 	num_bytes = num_pages * 8;
2021 
2022 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2023 	if (r)
2024 		return r;
2025 
2026 	src_addr = num_dw * 4;
2027 	src_addr += job->ibs[0].gpu_addr;
2028 
2029 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2030 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2031 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2032 				dst_addr, num_bytes);
2033 
2034 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2035 	WARN_ON(job->ibs[0].length_dw > num_dw);
2036 
2037 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2038 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2039 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2040 			    &job->ibs[0].ptr[num_dw]);
2041 	if (r)
2042 		goto error_free;
2043 
2044 	r = amdgpu_job_submit(job, &adev->mman.entity,
2045 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2046 	if (r)
2047 		goto error_free;
2048 
2049 	dma_fence_put(fence);
2050 
2051 	return r;
2052 
2053 error_free:
2054 	amdgpu_job_free(job);
2055 	return r;
2056 }
2057 
2058 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2059 		       uint64_t dst_offset, uint32_t byte_count,
2060 		       struct reservation_object *resv,
2061 		       struct dma_fence **fence, bool direct_submit,
2062 		       bool vm_needs_flush)
2063 {
2064 	struct amdgpu_device *adev = ring->adev;
2065 	struct amdgpu_job *job;
2066 
2067 	uint32_t max_bytes;
2068 	unsigned num_loops, num_dw;
2069 	unsigned i;
2070 	int r;
2071 
2072 	if (direct_submit && !ring->ready) {
2073 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2074 		return -EINVAL;
2075 	}
2076 
2077 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2078 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2079 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2080 
2081 	/* for IB padding */
2082 	while (num_dw & 0x7)
2083 		num_dw++;
2084 
2085 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2086 	if (r)
2087 		return r;
2088 
2089 	if (vm_needs_flush) {
2090 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2091 		job->vm_needs_flush = true;
2092 	}
2093 	if (resv) {
2094 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2095 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2096 				     false);
2097 		if (r) {
2098 			DRM_ERROR("sync failed (%d).\n", r);
2099 			goto error_free;
2100 		}
2101 	}
2102 
2103 	for (i = 0; i < num_loops; i++) {
2104 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2105 
2106 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2107 					dst_offset, cur_size_in_bytes);
2108 
2109 		src_offset += cur_size_in_bytes;
2110 		dst_offset += cur_size_in_bytes;
2111 		byte_count -= cur_size_in_bytes;
2112 	}
2113 
2114 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2115 	WARN_ON(job->ibs[0].length_dw > num_dw);
2116 	if (direct_submit)
2117 		r = amdgpu_job_submit_direct(job, ring, fence);
2118 	else
2119 		r = amdgpu_job_submit(job, &adev->mman.entity,
2120 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2121 	if (r)
2122 		goto error_free;
2123 
2124 	return r;
2125 
2126 error_free:
2127 	amdgpu_job_free(job);
2128 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2129 	return r;
2130 }
2131 
2132 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2133 		       uint32_t src_data,
2134 		       struct reservation_object *resv,
2135 		       struct dma_fence **fence)
2136 {
2137 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2138 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2139 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2140 
2141 	struct drm_mm_node *mm_node;
2142 	unsigned long num_pages;
2143 	unsigned int num_loops, num_dw;
2144 
2145 	struct amdgpu_job *job;
2146 	int r;
2147 
2148 	if (!adev->mman.buffer_funcs_enabled) {
2149 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2150 		return -EINVAL;
2151 	}
2152 
2153 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2154 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2155 		if (r)
2156 			return r;
2157 	}
2158 
2159 	num_pages = bo->tbo.num_pages;
2160 	mm_node = bo->tbo.mem.mm_node;
2161 	num_loops = 0;
2162 	while (num_pages) {
2163 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2164 
2165 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2166 		num_pages -= mm_node->size;
2167 		++mm_node;
2168 	}
2169 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2170 
2171 	/* for IB padding */
2172 	num_dw += 64;
2173 
2174 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2175 	if (r)
2176 		return r;
2177 
2178 	if (resv) {
2179 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2180 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2181 		if (r) {
2182 			DRM_ERROR("sync failed (%d).\n", r);
2183 			goto error_free;
2184 		}
2185 	}
2186 
2187 	num_pages = bo->tbo.num_pages;
2188 	mm_node = bo->tbo.mem.mm_node;
2189 
2190 	while (num_pages) {
2191 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2192 		uint64_t dst_addr;
2193 
2194 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2195 		while (byte_count) {
2196 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2197 
2198 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2199 						dst_addr, cur_size_in_bytes);
2200 
2201 			dst_addr += cur_size_in_bytes;
2202 			byte_count -= cur_size_in_bytes;
2203 		}
2204 
2205 		num_pages -= mm_node->size;
2206 		++mm_node;
2207 	}
2208 
2209 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2210 	WARN_ON(job->ibs[0].length_dw > num_dw);
2211 	r = amdgpu_job_submit(job, &adev->mman.entity,
2212 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2213 	if (r)
2214 		goto error_free;
2215 
2216 	return 0;
2217 
2218 error_free:
2219 	amdgpu_job_free(job);
2220 	return r;
2221 }
2222 
2223 #if defined(CONFIG_DEBUG_FS)
2224 
2225 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2226 {
2227 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2228 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2229 	struct drm_device *dev = node->minor->dev;
2230 	struct amdgpu_device *adev = dev->dev_private;
2231 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2232 	struct drm_printer p = drm_seq_file_printer(m);
2233 
2234 	man->func->debug(man, &p);
2235 	return 0;
2236 }
2237 
2238 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2239 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2240 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2241 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2242 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2243 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2244 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2245 #ifdef CONFIG_SWIOTLB
2246 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2247 #endif
2248 };
2249 
2250 /**
2251  * amdgpu_ttm_vram_read - Linear read access to VRAM
2252  *
2253  * Accesses VRAM via MMIO for debugging purposes.
2254  */
2255 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2256 				    size_t size, loff_t *pos)
2257 {
2258 	struct amdgpu_device *adev = file_inode(f)->i_private;
2259 	ssize_t result = 0;
2260 	int r;
2261 
2262 	if (size & 0x3 || *pos & 0x3)
2263 		return -EINVAL;
2264 
2265 	if (*pos >= adev->gmc.mc_vram_size)
2266 		return -ENXIO;
2267 
2268 	while (size) {
2269 		unsigned long flags;
2270 		uint32_t value;
2271 
2272 		if (*pos >= adev->gmc.mc_vram_size)
2273 			return result;
2274 
2275 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2276 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2277 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2278 		value = RREG32_NO_KIQ(mmMM_DATA);
2279 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2280 
2281 		r = put_user(value, (uint32_t *)buf);
2282 		if (r)
2283 			return r;
2284 
2285 		result += 4;
2286 		buf += 4;
2287 		*pos += 4;
2288 		size -= 4;
2289 	}
2290 
2291 	return result;
2292 }
2293 
2294 /**
2295  * amdgpu_ttm_vram_write - Linear write access to VRAM
2296  *
2297  * Accesses VRAM via MMIO for debugging purposes.
2298  */
2299 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2300 				    size_t size, loff_t *pos)
2301 {
2302 	struct amdgpu_device *adev = file_inode(f)->i_private;
2303 	ssize_t result = 0;
2304 	int r;
2305 
2306 	if (size & 0x3 || *pos & 0x3)
2307 		return -EINVAL;
2308 
2309 	if (*pos >= adev->gmc.mc_vram_size)
2310 		return -ENXIO;
2311 
2312 	while (size) {
2313 		unsigned long flags;
2314 		uint32_t value;
2315 
2316 		if (*pos >= adev->gmc.mc_vram_size)
2317 			return result;
2318 
2319 		r = get_user(value, (uint32_t *)buf);
2320 		if (r)
2321 			return r;
2322 
2323 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2324 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2325 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2326 		WREG32_NO_KIQ(mmMM_DATA, value);
2327 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2328 
2329 		result += 4;
2330 		buf += 4;
2331 		*pos += 4;
2332 		size -= 4;
2333 	}
2334 
2335 	return result;
2336 }
2337 
2338 static const struct file_operations amdgpu_ttm_vram_fops = {
2339 	.owner = THIS_MODULE,
2340 	.read = amdgpu_ttm_vram_read,
2341 	.write = amdgpu_ttm_vram_write,
2342 	.llseek = default_llseek,
2343 };
2344 
2345 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2346 
2347 /**
2348  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2349  */
2350 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2351 				   size_t size, loff_t *pos)
2352 {
2353 	struct amdgpu_device *adev = file_inode(f)->i_private;
2354 	ssize_t result = 0;
2355 	int r;
2356 
2357 	while (size) {
2358 		loff_t p = *pos / PAGE_SIZE;
2359 		unsigned off = *pos & ~PAGE_MASK;
2360 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2361 		struct page *page;
2362 		void *ptr;
2363 
2364 		if (p >= adev->gart.num_cpu_pages)
2365 			return result;
2366 
2367 		page = adev->gart.pages[p];
2368 		if (page) {
2369 			ptr = kmap(page);
2370 			ptr += off;
2371 
2372 			r = copy_to_user(buf, ptr, cur_size);
2373 			kunmap(adev->gart.pages[p]);
2374 		} else
2375 			r = clear_user(buf, cur_size);
2376 
2377 		if (r)
2378 			return -EFAULT;
2379 
2380 		result += cur_size;
2381 		buf += cur_size;
2382 		*pos += cur_size;
2383 		size -= cur_size;
2384 	}
2385 
2386 	return result;
2387 }
2388 
2389 static const struct file_operations amdgpu_ttm_gtt_fops = {
2390 	.owner = THIS_MODULE,
2391 	.read = amdgpu_ttm_gtt_read,
2392 	.llseek = default_llseek
2393 };
2394 
2395 #endif
2396 
2397 /**
2398  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2399  *
2400  * This function is used to read memory that has been mapped to the
2401  * GPU and the known addresses are not physical addresses but instead
2402  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2403  */
2404 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2405 				 size_t size, loff_t *pos)
2406 {
2407 	struct amdgpu_device *adev = file_inode(f)->i_private;
2408 	struct iommu_domain *dom;
2409 	ssize_t result = 0;
2410 	int r;
2411 
2412 	/* retrieve the IOMMU domain if any for this device */
2413 	dom = iommu_get_domain_for_dev(adev->dev);
2414 
2415 	while (size) {
2416 		phys_addr_t addr = *pos & PAGE_MASK;
2417 		loff_t off = *pos & ~PAGE_MASK;
2418 		size_t bytes = PAGE_SIZE - off;
2419 		unsigned long pfn;
2420 		struct page *p;
2421 		void *ptr;
2422 
2423 		bytes = bytes < size ? bytes : size;
2424 
2425 		/* Translate the bus address to a physical address.  If
2426 		 * the domain is NULL it means there is no IOMMU active
2427 		 * and the address translation is the identity
2428 		 */
2429 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2430 
2431 		pfn = addr >> PAGE_SHIFT;
2432 		if (!pfn_valid(pfn))
2433 			return -EPERM;
2434 
2435 		p = pfn_to_page(pfn);
2436 		if (p->mapping != adev->mman.bdev.dev_mapping)
2437 			return -EPERM;
2438 
2439 		ptr = kmap(p);
2440 		r = copy_to_user(buf, ptr + off, bytes);
2441 		kunmap(p);
2442 		if (r)
2443 			return -EFAULT;
2444 
2445 		size -= bytes;
2446 		*pos += bytes;
2447 		result += bytes;
2448 	}
2449 
2450 	return result;
2451 }
2452 
2453 /**
2454  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2455  *
2456  * This function is used to write memory that has been mapped to the
2457  * GPU and the known addresses are not physical addresses but instead
2458  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2459  */
2460 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2461 				 size_t size, loff_t *pos)
2462 {
2463 	struct amdgpu_device *adev = file_inode(f)->i_private;
2464 	struct iommu_domain *dom;
2465 	ssize_t result = 0;
2466 	int r;
2467 
2468 	dom = iommu_get_domain_for_dev(adev->dev);
2469 
2470 	while (size) {
2471 		phys_addr_t addr = *pos & PAGE_MASK;
2472 		loff_t off = *pos & ~PAGE_MASK;
2473 		size_t bytes = PAGE_SIZE - off;
2474 		unsigned long pfn;
2475 		struct page *p;
2476 		void *ptr;
2477 
2478 		bytes = bytes < size ? bytes : size;
2479 
2480 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2481 
2482 		pfn = addr >> PAGE_SHIFT;
2483 		if (!pfn_valid(pfn))
2484 			return -EPERM;
2485 
2486 		p = pfn_to_page(pfn);
2487 		if (p->mapping != adev->mman.bdev.dev_mapping)
2488 			return -EPERM;
2489 
2490 		ptr = kmap(p);
2491 		r = copy_from_user(ptr + off, buf, bytes);
2492 		kunmap(p);
2493 		if (r)
2494 			return -EFAULT;
2495 
2496 		size -= bytes;
2497 		*pos += bytes;
2498 		result += bytes;
2499 	}
2500 
2501 	return result;
2502 }
2503 
2504 static const struct file_operations amdgpu_ttm_iomem_fops = {
2505 	.owner = THIS_MODULE,
2506 	.read = amdgpu_iomem_read,
2507 	.write = amdgpu_iomem_write,
2508 	.llseek = default_llseek
2509 };
2510 
2511 static const struct {
2512 	char *name;
2513 	const struct file_operations *fops;
2514 	int domain;
2515 } ttm_debugfs_entries[] = {
2516 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2517 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2518 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2519 #endif
2520 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2521 };
2522 
2523 #endif
2524 
2525 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2526 {
2527 #if defined(CONFIG_DEBUG_FS)
2528 	unsigned count;
2529 
2530 	struct drm_minor *minor = adev->ddev->primary;
2531 	struct dentry *ent, *root = minor->debugfs_root;
2532 
2533 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2534 		ent = debugfs_create_file(
2535 				ttm_debugfs_entries[count].name,
2536 				S_IFREG | S_IRUGO, root,
2537 				adev,
2538 				ttm_debugfs_entries[count].fops);
2539 		if (IS_ERR(ent))
2540 			return PTR_ERR(ent);
2541 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2542 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2543 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2544 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2545 		adev->mman.debugfs_entries[count] = ent;
2546 	}
2547 
2548 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2549 
2550 #ifdef CONFIG_SWIOTLB
2551 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2552 		--count;
2553 #endif
2554 
2555 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2556 #else
2557 	return 0;
2558 #endif
2559 }
2560 
2561 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2562 {
2563 #if defined(CONFIG_DEBUG_FS)
2564 	unsigned i;
2565 
2566 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2567 		debugfs_remove(adev->mman.debugfs_entries[i]);
2568 #endif
2569 }
2570