1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/debugfs.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/seq_file.h> 38 #include <linux/slab.h> 39 #include <linux/swap.h> 40 #include <linux/swiotlb.h> 41 42 #include <drm/ttm/ttm_bo_api.h> 43 #include <drm/ttm/ttm_bo_driver.h> 44 #include <drm/ttm/ttm_placement.h> 45 #include <drm/ttm/ttm_module.h> 46 #include <drm/ttm/ttm_page_alloc.h> 47 #include <drm/drmP.h> 48 #include <drm/amdgpu_drm.h> 49 #include "amdgpu.h" 50 #include "amdgpu_object.h" 51 #include "amdgpu_trace.h" 52 #include "amdgpu_amdkfd.h" 53 #include "amdgpu_sdma.h" 54 #include "bif/bif_4_1_d.h" 55 56 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 57 struct ttm_mem_reg *mem, unsigned num_pages, 58 uint64_t offset, unsigned window, 59 struct amdgpu_ring *ring, 60 uint64_t *addr); 61 62 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 63 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 64 65 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 66 { 67 return 0; 68 } 69 70 /** 71 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 72 * memory request. 73 * 74 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 75 * @type: The type of memory requested 76 * @man: The memory type manager for each domain 77 * 78 * This is called by ttm_bo_init_mm() when a buffer object is being 79 * initialized. 80 */ 81 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 82 struct ttm_mem_type_manager *man) 83 { 84 struct amdgpu_device *adev; 85 86 adev = amdgpu_ttm_adev(bdev); 87 88 switch (type) { 89 case TTM_PL_SYSTEM: 90 /* System memory */ 91 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 92 man->available_caching = TTM_PL_MASK_CACHING; 93 man->default_caching = TTM_PL_FLAG_CACHED; 94 break; 95 case TTM_PL_TT: 96 /* GTT memory */ 97 man->func = &amdgpu_gtt_mgr_func; 98 man->gpu_offset = adev->gmc.gart_start; 99 man->available_caching = TTM_PL_MASK_CACHING; 100 man->default_caching = TTM_PL_FLAG_CACHED; 101 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 102 break; 103 case TTM_PL_VRAM: 104 /* "On-card" video ram */ 105 man->func = &amdgpu_vram_mgr_func; 106 man->gpu_offset = adev->gmc.vram_start; 107 man->flags = TTM_MEMTYPE_FLAG_FIXED | 108 TTM_MEMTYPE_FLAG_MAPPABLE; 109 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 110 man->default_caching = TTM_PL_FLAG_WC; 111 break; 112 case AMDGPU_PL_GDS: 113 case AMDGPU_PL_GWS: 114 case AMDGPU_PL_OA: 115 /* On-chip GDS memory*/ 116 man->func = &ttm_bo_manager_func; 117 man->gpu_offset = 0; 118 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 119 man->available_caching = TTM_PL_FLAG_UNCACHED; 120 man->default_caching = TTM_PL_FLAG_UNCACHED; 121 break; 122 default: 123 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 124 return -EINVAL; 125 } 126 return 0; 127 } 128 129 /** 130 * amdgpu_evict_flags - Compute placement flags 131 * 132 * @bo: The buffer object to evict 133 * @placement: Possible destination(s) for evicted BO 134 * 135 * Fill in placement data when ttm_bo_evict() is called 136 */ 137 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 138 struct ttm_placement *placement) 139 { 140 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 141 struct amdgpu_bo *abo; 142 static const struct ttm_place placements = { 143 .fpfn = 0, 144 .lpfn = 0, 145 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 146 }; 147 148 /* Don't handle scatter gather BOs */ 149 if (bo->type == ttm_bo_type_sg) { 150 placement->num_placement = 0; 151 placement->num_busy_placement = 0; 152 return; 153 } 154 155 /* Object isn't an AMDGPU object so ignore */ 156 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 157 placement->placement = &placements; 158 placement->busy_placement = &placements; 159 placement->num_placement = 1; 160 placement->num_busy_placement = 1; 161 return; 162 } 163 164 abo = ttm_to_amdgpu_bo(bo); 165 switch (bo->mem.mem_type) { 166 case AMDGPU_PL_GDS: 167 case AMDGPU_PL_GWS: 168 case AMDGPU_PL_OA: 169 placement->num_placement = 0; 170 placement->num_busy_placement = 0; 171 return; 172 173 case TTM_PL_VRAM: 174 if (!adev->mman.buffer_funcs_enabled) { 175 /* Move to system memory */ 176 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 177 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 178 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 179 amdgpu_bo_in_cpu_visible_vram(abo)) { 180 181 /* Try evicting to the CPU inaccessible part of VRAM 182 * first, but only set GTT as busy placement, so this 183 * BO will be evicted to GTT rather than causing other 184 * BOs to be evicted from VRAM 185 */ 186 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 187 AMDGPU_GEM_DOMAIN_GTT); 188 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 189 abo->placements[0].lpfn = 0; 190 abo->placement.busy_placement = &abo->placements[1]; 191 abo->placement.num_busy_placement = 1; 192 } else { 193 /* Move to GTT memory */ 194 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 195 } 196 break; 197 case TTM_PL_TT: 198 default: 199 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 200 break; 201 } 202 *placement = abo->placement; 203 } 204 205 /** 206 * amdgpu_verify_access - Verify access for a mmap call 207 * 208 * @bo: The buffer object to map 209 * @filp: The file pointer from the process performing the mmap 210 * 211 * This is called by ttm_bo_mmap() to verify whether a process 212 * has the right to mmap a BO to their process space. 213 */ 214 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 215 { 216 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 217 218 /* 219 * Don't verify access for KFD BOs. They don't have a GEM 220 * object associated with them. 221 */ 222 if (abo->kfd_bo) 223 return 0; 224 225 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 226 return -EPERM; 227 return drm_vma_node_verify_access(&abo->gem_base.vma_node, 228 filp->private_data); 229 } 230 231 /** 232 * amdgpu_move_null - Register memory for a buffer object 233 * 234 * @bo: The bo to assign the memory to 235 * @new_mem: The memory to be assigned. 236 * 237 * Assign the memory from new_mem to the memory of the buffer object bo. 238 */ 239 static void amdgpu_move_null(struct ttm_buffer_object *bo, 240 struct ttm_mem_reg *new_mem) 241 { 242 struct ttm_mem_reg *old_mem = &bo->mem; 243 244 BUG_ON(old_mem->mm_node != NULL); 245 *old_mem = *new_mem; 246 new_mem->mm_node = NULL; 247 } 248 249 /** 250 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 251 * 252 * @bo: The bo to assign the memory to. 253 * @mm_node: Memory manager node for drm allocator. 254 * @mem: The region where the bo resides. 255 * 256 */ 257 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 258 struct drm_mm_node *mm_node, 259 struct ttm_mem_reg *mem) 260 { 261 uint64_t addr = 0; 262 263 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 264 addr = mm_node->start << PAGE_SHIFT; 265 addr += bo->bdev->man[mem->mem_type].gpu_offset; 266 } 267 return addr; 268 } 269 270 /** 271 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 272 * @offset. It also modifies the offset to be within the drm_mm_node returned 273 * 274 * @mem: The region where the bo resides. 275 * @offset: The offset that drm_mm_node is used for finding. 276 * 277 */ 278 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 279 unsigned long *offset) 280 { 281 struct drm_mm_node *mm_node = mem->mm_node; 282 283 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 284 *offset -= (mm_node->size << PAGE_SHIFT); 285 ++mm_node; 286 } 287 return mm_node; 288 } 289 290 /** 291 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 292 * 293 * The function copies @size bytes from {src->mem + src->offset} to 294 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 295 * move and different for a BO to BO copy. 296 * 297 * @f: Returns the last fence if multiple jobs are submitted. 298 */ 299 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 300 struct amdgpu_copy_mem *src, 301 struct amdgpu_copy_mem *dst, 302 uint64_t size, 303 struct reservation_object *resv, 304 struct dma_fence **f) 305 { 306 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 307 struct drm_mm_node *src_mm, *dst_mm; 308 uint64_t src_node_start, dst_node_start, src_node_size, 309 dst_node_size, src_page_offset, dst_page_offset; 310 struct dma_fence *fence = NULL; 311 int r = 0; 312 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 313 AMDGPU_GPU_PAGE_SIZE); 314 315 if (!adev->mman.buffer_funcs_enabled) { 316 DRM_ERROR("Trying to move memory with ring turned off.\n"); 317 return -EINVAL; 318 } 319 320 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 321 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 322 src->offset; 323 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 324 src_page_offset = src_node_start & (PAGE_SIZE - 1); 325 326 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 327 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 328 dst->offset; 329 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 330 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 331 332 mutex_lock(&adev->mman.gtt_window_lock); 333 334 while (size) { 335 unsigned long cur_size; 336 uint64_t from = src_node_start, to = dst_node_start; 337 struct dma_fence *next; 338 339 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 340 * begins at an offset, then adjust the size accordingly 341 */ 342 cur_size = min3(min(src_node_size, dst_node_size), size, 343 GTT_MAX_BYTES); 344 if (cur_size + src_page_offset > GTT_MAX_BYTES || 345 cur_size + dst_page_offset > GTT_MAX_BYTES) 346 cur_size -= max(src_page_offset, dst_page_offset); 347 348 /* Map only what needs to be accessed. Map src to window 0 and 349 * dst to window 1 350 */ 351 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 352 r = amdgpu_map_buffer(src->bo, src->mem, 353 PFN_UP(cur_size + src_page_offset), 354 src_node_start, 0, ring, 355 &from); 356 if (r) 357 goto error; 358 /* Adjust the offset because amdgpu_map_buffer returns 359 * start of mapped page 360 */ 361 from += src_page_offset; 362 } 363 364 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 365 r = amdgpu_map_buffer(dst->bo, dst->mem, 366 PFN_UP(cur_size + dst_page_offset), 367 dst_node_start, 1, ring, 368 &to); 369 if (r) 370 goto error; 371 to += dst_page_offset; 372 } 373 374 r = amdgpu_copy_buffer(ring, from, to, cur_size, 375 resv, &next, false, true); 376 if (r) 377 goto error; 378 379 dma_fence_put(fence); 380 fence = next; 381 382 size -= cur_size; 383 if (!size) 384 break; 385 386 src_node_size -= cur_size; 387 if (!src_node_size) { 388 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 389 src->mem); 390 src_node_size = (src_mm->size << PAGE_SHIFT); 391 } else { 392 src_node_start += cur_size; 393 src_page_offset = src_node_start & (PAGE_SIZE - 1); 394 } 395 dst_node_size -= cur_size; 396 if (!dst_node_size) { 397 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 398 dst->mem); 399 dst_node_size = (dst_mm->size << PAGE_SHIFT); 400 } else { 401 dst_node_start += cur_size; 402 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 403 } 404 } 405 error: 406 mutex_unlock(&adev->mman.gtt_window_lock); 407 if (f) 408 *f = dma_fence_get(fence); 409 dma_fence_put(fence); 410 return r; 411 } 412 413 /** 414 * amdgpu_move_blit - Copy an entire buffer to another buffer 415 * 416 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 417 * help move buffers to and from VRAM. 418 */ 419 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 420 bool evict, bool no_wait_gpu, 421 struct ttm_mem_reg *new_mem, 422 struct ttm_mem_reg *old_mem) 423 { 424 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 425 struct amdgpu_copy_mem src, dst; 426 struct dma_fence *fence = NULL; 427 int r; 428 429 src.bo = bo; 430 dst.bo = bo; 431 src.mem = old_mem; 432 dst.mem = new_mem; 433 src.offset = 0; 434 dst.offset = 0; 435 436 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 437 new_mem->num_pages << PAGE_SHIFT, 438 bo->resv, &fence); 439 if (r) 440 goto error; 441 442 /* Always block for VM page tables before committing the new location */ 443 if (bo->type == ttm_bo_type_kernel) 444 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 445 else 446 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 447 dma_fence_put(fence); 448 return r; 449 450 error: 451 if (fence) 452 dma_fence_wait(fence, false); 453 dma_fence_put(fence); 454 return r; 455 } 456 457 /** 458 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 459 * 460 * Called by amdgpu_bo_move(). 461 */ 462 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 463 struct ttm_operation_ctx *ctx, 464 struct ttm_mem_reg *new_mem) 465 { 466 struct amdgpu_device *adev; 467 struct ttm_mem_reg *old_mem = &bo->mem; 468 struct ttm_mem_reg tmp_mem; 469 struct ttm_place placements; 470 struct ttm_placement placement; 471 int r; 472 473 adev = amdgpu_ttm_adev(bo->bdev); 474 475 /* create space/pages for new_mem in GTT space */ 476 tmp_mem = *new_mem; 477 tmp_mem.mm_node = NULL; 478 placement.num_placement = 1; 479 placement.placement = &placements; 480 placement.num_busy_placement = 1; 481 placement.busy_placement = &placements; 482 placements.fpfn = 0; 483 placements.lpfn = 0; 484 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 485 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 486 if (unlikely(r)) { 487 return r; 488 } 489 490 /* set caching flags */ 491 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 492 if (unlikely(r)) { 493 goto out_cleanup; 494 } 495 496 /* Bind the memory to the GTT space */ 497 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 498 if (unlikely(r)) { 499 goto out_cleanup; 500 } 501 502 /* blit VRAM to GTT */ 503 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 504 if (unlikely(r)) { 505 goto out_cleanup; 506 } 507 508 /* move BO (in tmp_mem) to new_mem */ 509 r = ttm_bo_move_ttm(bo, ctx, new_mem); 510 out_cleanup: 511 ttm_bo_mem_put(bo, &tmp_mem); 512 return r; 513 } 514 515 /** 516 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 517 * 518 * Called by amdgpu_bo_move(). 519 */ 520 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 521 struct ttm_operation_ctx *ctx, 522 struct ttm_mem_reg *new_mem) 523 { 524 struct amdgpu_device *adev; 525 struct ttm_mem_reg *old_mem = &bo->mem; 526 struct ttm_mem_reg tmp_mem; 527 struct ttm_placement placement; 528 struct ttm_place placements; 529 int r; 530 531 adev = amdgpu_ttm_adev(bo->bdev); 532 533 /* make space in GTT for old_mem buffer */ 534 tmp_mem = *new_mem; 535 tmp_mem.mm_node = NULL; 536 placement.num_placement = 1; 537 placement.placement = &placements; 538 placement.num_busy_placement = 1; 539 placement.busy_placement = &placements; 540 placements.fpfn = 0; 541 placements.lpfn = 0; 542 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 543 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 544 if (unlikely(r)) { 545 return r; 546 } 547 548 /* move/bind old memory to GTT space */ 549 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 550 if (unlikely(r)) { 551 goto out_cleanup; 552 } 553 554 /* copy to VRAM */ 555 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 556 if (unlikely(r)) { 557 goto out_cleanup; 558 } 559 out_cleanup: 560 ttm_bo_mem_put(bo, &tmp_mem); 561 return r; 562 } 563 564 /** 565 * amdgpu_bo_move - Move a buffer object to a new memory location 566 * 567 * Called by ttm_bo_handle_move_mem() 568 */ 569 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 570 struct ttm_operation_ctx *ctx, 571 struct ttm_mem_reg *new_mem) 572 { 573 struct amdgpu_device *adev; 574 struct amdgpu_bo *abo; 575 struct ttm_mem_reg *old_mem = &bo->mem; 576 int r; 577 578 /* Can't move a pinned BO */ 579 abo = ttm_to_amdgpu_bo(bo); 580 if (WARN_ON_ONCE(abo->pin_count > 0)) 581 return -EINVAL; 582 583 adev = amdgpu_ttm_adev(bo->bdev); 584 585 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 586 amdgpu_move_null(bo, new_mem); 587 return 0; 588 } 589 if ((old_mem->mem_type == TTM_PL_TT && 590 new_mem->mem_type == TTM_PL_SYSTEM) || 591 (old_mem->mem_type == TTM_PL_SYSTEM && 592 new_mem->mem_type == TTM_PL_TT)) { 593 /* bind is enough */ 594 amdgpu_move_null(bo, new_mem); 595 return 0; 596 } 597 if (old_mem->mem_type == AMDGPU_PL_GDS || 598 old_mem->mem_type == AMDGPU_PL_GWS || 599 old_mem->mem_type == AMDGPU_PL_OA || 600 new_mem->mem_type == AMDGPU_PL_GDS || 601 new_mem->mem_type == AMDGPU_PL_GWS || 602 new_mem->mem_type == AMDGPU_PL_OA) { 603 /* Nothing to save here */ 604 amdgpu_move_null(bo, new_mem); 605 return 0; 606 } 607 608 if (!adev->mman.buffer_funcs_enabled) 609 goto memcpy; 610 611 if (old_mem->mem_type == TTM_PL_VRAM && 612 new_mem->mem_type == TTM_PL_SYSTEM) { 613 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 614 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 615 new_mem->mem_type == TTM_PL_VRAM) { 616 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 617 } else { 618 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 619 new_mem, old_mem); 620 } 621 622 if (r) { 623 memcpy: 624 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 625 if (r) { 626 return r; 627 } 628 } 629 630 if (bo->type == ttm_bo_type_device && 631 new_mem->mem_type == TTM_PL_VRAM && 632 old_mem->mem_type != TTM_PL_VRAM) { 633 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 634 * accesses the BO after it's moved. 635 */ 636 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 637 } 638 639 /* update statistics */ 640 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 641 return 0; 642 } 643 644 /** 645 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 646 * 647 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 648 */ 649 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 650 { 651 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 652 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 653 struct drm_mm_node *mm_node = mem->mm_node; 654 655 mem->bus.addr = NULL; 656 mem->bus.offset = 0; 657 mem->bus.size = mem->num_pages << PAGE_SHIFT; 658 mem->bus.base = 0; 659 mem->bus.is_iomem = false; 660 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 661 return -EINVAL; 662 switch (mem->mem_type) { 663 case TTM_PL_SYSTEM: 664 /* system memory */ 665 return 0; 666 case TTM_PL_TT: 667 break; 668 case TTM_PL_VRAM: 669 mem->bus.offset = mem->start << PAGE_SHIFT; 670 /* check if it's visible */ 671 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 672 return -EINVAL; 673 /* Only physically contiguous buffers apply. In a contiguous 674 * buffer, size of the first mm_node would match the number of 675 * pages in ttm_mem_reg. 676 */ 677 if (adev->mman.aper_base_kaddr && 678 (mm_node->size == mem->num_pages)) 679 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 680 mem->bus.offset; 681 682 mem->bus.base = adev->gmc.aper_base; 683 mem->bus.is_iomem = true; 684 break; 685 default: 686 return -EINVAL; 687 } 688 return 0; 689 } 690 691 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 692 { 693 } 694 695 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 696 unsigned long page_offset) 697 { 698 struct drm_mm_node *mm; 699 unsigned long offset = (page_offset << PAGE_SHIFT); 700 701 mm = amdgpu_find_mm_node(&bo->mem, &offset); 702 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 703 (offset >> PAGE_SHIFT); 704 } 705 706 /* 707 * TTM backend functions. 708 */ 709 struct amdgpu_ttm_gup_task_list { 710 struct list_head list; 711 struct task_struct *task; 712 }; 713 714 struct amdgpu_ttm_tt { 715 struct ttm_dma_tt ttm; 716 u64 offset; 717 uint64_t userptr; 718 struct task_struct *usertask; 719 uint32_t userflags; 720 spinlock_t guptasklock; 721 struct list_head guptasks; 722 atomic_t mmu_invalidations; 723 uint32_t last_set_pages; 724 }; 725 726 /** 727 * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR 728 * pointer to memory 729 * 730 * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos(). 731 * This provides a wrapper around the get_user_pages() call to provide 732 * device accessible pages that back user memory. 733 */ 734 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages) 735 { 736 struct amdgpu_ttm_tt *gtt = (void *)ttm; 737 struct mm_struct *mm = gtt->usertask->mm; 738 unsigned int flags = 0; 739 unsigned pinned = 0; 740 int r; 741 742 if (!mm) /* Happens during process shutdown */ 743 return -ESRCH; 744 745 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 746 flags |= FOLL_WRITE; 747 748 down_read(&mm->mmap_sem); 749 750 if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) { 751 /* 752 * check that we only use anonymous memory to prevent problems 753 * with writeback 754 */ 755 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE; 756 struct vm_area_struct *vma; 757 758 vma = find_vma(mm, gtt->userptr); 759 if (!vma || vma->vm_file || vma->vm_end < end) { 760 up_read(&mm->mmap_sem); 761 return -EPERM; 762 } 763 } 764 765 /* loop enough times using contiguous pages of memory */ 766 do { 767 unsigned num_pages = ttm->num_pages - pinned; 768 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE; 769 struct page **p = pages + pinned; 770 struct amdgpu_ttm_gup_task_list guptask; 771 772 guptask.task = current; 773 spin_lock(>t->guptasklock); 774 list_add(&guptask.list, >t->guptasks); 775 spin_unlock(>t->guptasklock); 776 777 if (mm == current->mm) 778 r = get_user_pages(userptr, num_pages, flags, p, NULL); 779 else 780 r = get_user_pages_remote(gtt->usertask, 781 mm, userptr, num_pages, 782 flags, p, NULL, NULL); 783 784 spin_lock(>t->guptasklock); 785 list_del(&guptask.list); 786 spin_unlock(>t->guptasklock); 787 788 if (r < 0) 789 goto release_pages; 790 791 pinned += r; 792 793 } while (pinned < ttm->num_pages); 794 795 up_read(&mm->mmap_sem); 796 return 0; 797 798 release_pages: 799 release_pages(pages, pinned); 800 up_read(&mm->mmap_sem); 801 return r; 802 } 803 804 /** 805 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 806 * 807 * Called by amdgpu_cs_list_validate(). This creates the page list 808 * that backs user memory and will ultimately be mapped into the device 809 * address space. 810 */ 811 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 812 { 813 struct amdgpu_ttm_tt *gtt = (void *)ttm; 814 unsigned i; 815 816 gtt->last_set_pages = atomic_read(>t->mmu_invalidations); 817 for (i = 0; i < ttm->num_pages; ++i) { 818 if (ttm->pages[i]) 819 put_page(ttm->pages[i]); 820 821 ttm->pages[i] = pages ? pages[i] : NULL; 822 } 823 } 824 825 /** 826 * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty 827 * 828 * Called while unpinning userptr pages 829 */ 830 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm) 831 { 832 struct amdgpu_ttm_tt *gtt = (void *)ttm; 833 unsigned i; 834 835 for (i = 0; i < ttm->num_pages; ++i) { 836 struct page *page = ttm->pages[i]; 837 838 if (!page) 839 continue; 840 841 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 842 set_page_dirty(page); 843 844 mark_page_accessed(page); 845 } 846 } 847 848 /** 849 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 850 * 851 * Called by amdgpu_ttm_backend_bind() 852 **/ 853 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 854 { 855 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 856 struct amdgpu_ttm_tt *gtt = (void *)ttm; 857 unsigned nents; 858 int r; 859 860 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 861 enum dma_data_direction direction = write ? 862 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 863 864 /* Allocate an SG array and squash pages into it */ 865 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 866 ttm->num_pages << PAGE_SHIFT, 867 GFP_KERNEL); 868 if (r) 869 goto release_sg; 870 871 /* Map SG to device */ 872 r = -ENOMEM; 873 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 874 if (nents != ttm->sg->nents) 875 goto release_sg; 876 877 /* convert SG to linear array of pages and dma addresses */ 878 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 879 gtt->ttm.dma_address, ttm->num_pages); 880 881 return 0; 882 883 release_sg: 884 kfree(ttm->sg); 885 return r; 886 } 887 888 /** 889 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 890 */ 891 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 892 { 893 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 894 struct amdgpu_ttm_tt *gtt = (void *)ttm; 895 896 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 897 enum dma_data_direction direction = write ? 898 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 899 900 /* double check that we don't free the table twice */ 901 if (!ttm->sg->sgl) 902 return; 903 904 /* unmap the pages mapped to the device */ 905 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 906 907 /* mark the pages as dirty */ 908 amdgpu_ttm_tt_mark_user_pages(ttm); 909 910 sg_free_table(ttm->sg); 911 } 912 913 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 914 struct ttm_buffer_object *tbo, 915 uint64_t flags) 916 { 917 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 918 struct ttm_tt *ttm = tbo->ttm; 919 struct amdgpu_ttm_tt *gtt = (void *)ttm; 920 int r; 921 922 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 923 uint64_t page_idx = 1; 924 925 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 926 ttm->pages, gtt->ttm.dma_address, flags); 927 if (r) 928 goto gart_bind_fail; 929 930 /* Patch mtype of the second part BO */ 931 flags &= ~AMDGPU_PTE_MTYPE_MASK; 932 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC); 933 934 r = amdgpu_gart_bind(adev, 935 gtt->offset + (page_idx << PAGE_SHIFT), 936 ttm->num_pages - page_idx, 937 &ttm->pages[page_idx], 938 &(gtt->ttm.dma_address[page_idx]), flags); 939 } else { 940 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 941 ttm->pages, gtt->ttm.dma_address, flags); 942 } 943 944 gart_bind_fail: 945 if (r) 946 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 947 ttm->num_pages, gtt->offset); 948 949 return r; 950 } 951 952 /** 953 * amdgpu_ttm_backend_bind - Bind GTT memory 954 * 955 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 956 * This handles binding GTT memory to the device address space. 957 */ 958 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 959 struct ttm_mem_reg *bo_mem) 960 { 961 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 962 struct amdgpu_ttm_tt *gtt = (void*)ttm; 963 uint64_t flags; 964 int r = 0; 965 966 if (gtt->userptr) { 967 r = amdgpu_ttm_tt_pin_userptr(ttm); 968 if (r) { 969 DRM_ERROR("failed to pin userptr\n"); 970 return r; 971 } 972 } 973 if (!ttm->num_pages) { 974 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 975 ttm->num_pages, bo_mem, ttm); 976 } 977 978 if (bo_mem->mem_type == AMDGPU_PL_GDS || 979 bo_mem->mem_type == AMDGPU_PL_GWS || 980 bo_mem->mem_type == AMDGPU_PL_OA) 981 return -EINVAL; 982 983 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 984 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 985 return 0; 986 } 987 988 /* compute PTE flags relevant to this BO memory */ 989 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 990 991 /* bind pages into GART page tables */ 992 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 993 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 994 ttm->pages, gtt->ttm.dma_address, flags); 995 996 if (r) 997 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 998 ttm->num_pages, gtt->offset); 999 return r; 1000 } 1001 1002 /** 1003 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1004 */ 1005 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1006 { 1007 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1008 struct ttm_operation_ctx ctx = { false, false }; 1009 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1010 struct ttm_mem_reg tmp; 1011 struct ttm_placement placement; 1012 struct ttm_place placements; 1013 uint64_t addr, flags; 1014 int r; 1015 1016 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1017 return 0; 1018 1019 addr = amdgpu_gmc_agp_addr(bo); 1020 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1021 bo->mem.start = addr >> PAGE_SHIFT; 1022 } else { 1023 1024 /* allocate GART space */ 1025 tmp = bo->mem; 1026 tmp.mm_node = NULL; 1027 placement.num_placement = 1; 1028 placement.placement = &placements; 1029 placement.num_busy_placement = 1; 1030 placement.busy_placement = &placements; 1031 placements.fpfn = 0; 1032 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1033 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1034 TTM_PL_FLAG_TT; 1035 1036 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1037 if (unlikely(r)) 1038 return r; 1039 1040 /* compute PTE flags for this buffer object */ 1041 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1042 1043 /* Bind pages */ 1044 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1045 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1046 if (unlikely(r)) { 1047 ttm_bo_mem_put(bo, &tmp); 1048 return r; 1049 } 1050 1051 ttm_bo_mem_put(bo, &bo->mem); 1052 bo->mem = tmp; 1053 } 1054 1055 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1056 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1057 1058 return 0; 1059 } 1060 1061 /** 1062 * amdgpu_ttm_recover_gart - Rebind GTT pages 1063 * 1064 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1065 * rebind GTT pages during a GPU reset. 1066 */ 1067 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1068 { 1069 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1070 uint64_t flags; 1071 int r; 1072 1073 if (!tbo->ttm) 1074 return 0; 1075 1076 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1077 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1078 1079 return r; 1080 } 1081 1082 /** 1083 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1084 * 1085 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1086 * ttm_tt_destroy(). 1087 */ 1088 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1089 { 1090 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1091 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1092 int r; 1093 1094 /* if the pages have userptr pinning then clear that first */ 1095 if (gtt->userptr) 1096 amdgpu_ttm_tt_unpin_userptr(ttm); 1097 1098 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1099 return 0; 1100 1101 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1102 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1103 if (r) 1104 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1105 gtt->ttm.ttm.num_pages, gtt->offset); 1106 return r; 1107 } 1108 1109 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1110 { 1111 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1112 1113 if (gtt->usertask) 1114 put_task_struct(gtt->usertask); 1115 1116 ttm_dma_tt_fini(>t->ttm); 1117 kfree(gtt); 1118 } 1119 1120 static struct ttm_backend_func amdgpu_backend_func = { 1121 .bind = &amdgpu_ttm_backend_bind, 1122 .unbind = &amdgpu_ttm_backend_unbind, 1123 .destroy = &amdgpu_ttm_backend_destroy, 1124 }; 1125 1126 /** 1127 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1128 * 1129 * @bo: The buffer object to create a GTT ttm_tt object around 1130 * 1131 * Called by ttm_tt_create(). 1132 */ 1133 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1134 uint32_t page_flags) 1135 { 1136 struct amdgpu_device *adev; 1137 struct amdgpu_ttm_tt *gtt; 1138 1139 adev = amdgpu_ttm_adev(bo->bdev); 1140 1141 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1142 if (gtt == NULL) { 1143 return NULL; 1144 } 1145 gtt->ttm.ttm.func = &amdgpu_backend_func; 1146 1147 /* allocate space for the uninitialized page entries */ 1148 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1149 kfree(gtt); 1150 return NULL; 1151 } 1152 return >t->ttm.ttm; 1153 } 1154 1155 /** 1156 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1157 * 1158 * Map the pages of a ttm_tt object to an address space visible 1159 * to the underlying device. 1160 */ 1161 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1162 struct ttm_operation_ctx *ctx) 1163 { 1164 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1165 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1166 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1167 1168 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1169 if (gtt && gtt->userptr) { 1170 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1171 if (!ttm->sg) 1172 return -ENOMEM; 1173 1174 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1175 ttm->state = tt_unbound; 1176 return 0; 1177 } 1178 1179 if (slave && ttm->sg) { 1180 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1181 gtt->ttm.dma_address, 1182 ttm->num_pages); 1183 ttm->state = tt_unbound; 1184 return 0; 1185 } 1186 1187 #ifdef CONFIG_SWIOTLB 1188 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1189 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1190 } 1191 #endif 1192 1193 /* fall back to generic helper to populate the page array 1194 * and map them to the device */ 1195 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1196 } 1197 1198 /** 1199 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1200 * 1201 * Unmaps pages of a ttm_tt object from the device address space and 1202 * unpopulates the page array backing it. 1203 */ 1204 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1205 { 1206 struct amdgpu_device *adev; 1207 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1208 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1209 1210 if (gtt && gtt->userptr) { 1211 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1212 kfree(ttm->sg); 1213 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1214 return; 1215 } 1216 1217 if (slave) 1218 return; 1219 1220 adev = amdgpu_ttm_adev(ttm->bdev); 1221 1222 #ifdef CONFIG_SWIOTLB 1223 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1224 ttm_dma_unpopulate(>t->ttm, adev->dev); 1225 return; 1226 } 1227 #endif 1228 1229 /* fall back to generic helper to unmap and unpopulate array */ 1230 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1231 } 1232 1233 /** 1234 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1235 * task 1236 * 1237 * @ttm: The ttm_tt object to bind this userptr object to 1238 * @addr: The address in the current tasks VM space to use 1239 * @flags: Requirements of userptr object. 1240 * 1241 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1242 * to current task 1243 */ 1244 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1245 uint32_t flags) 1246 { 1247 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1248 1249 if (gtt == NULL) 1250 return -EINVAL; 1251 1252 gtt->userptr = addr; 1253 gtt->userflags = flags; 1254 1255 if (gtt->usertask) 1256 put_task_struct(gtt->usertask); 1257 gtt->usertask = current->group_leader; 1258 get_task_struct(gtt->usertask); 1259 1260 spin_lock_init(>t->guptasklock); 1261 INIT_LIST_HEAD(>t->guptasks); 1262 atomic_set(>t->mmu_invalidations, 0); 1263 gtt->last_set_pages = 0; 1264 1265 return 0; 1266 } 1267 1268 /** 1269 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1270 */ 1271 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1272 { 1273 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1274 1275 if (gtt == NULL) 1276 return NULL; 1277 1278 if (gtt->usertask == NULL) 1279 return NULL; 1280 1281 return gtt->usertask->mm; 1282 } 1283 1284 /** 1285 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1286 * address range for the current task. 1287 * 1288 */ 1289 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1290 unsigned long end) 1291 { 1292 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1293 struct amdgpu_ttm_gup_task_list *entry; 1294 unsigned long size; 1295 1296 if (gtt == NULL || !gtt->userptr) 1297 return false; 1298 1299 /* Return false if no part of the ttm_tt object lies within 1300 * the range 1301 */ 1302 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1303 if (gtt->userptr > end || gtt->userptr + size <= start) 1304 return false; 1305 1306 /* Search the lists of tasks that hold this mapping and see 1307 * if current is one of them. If it is return false. 1308 */ 1309 spin_lock(>t->guptasklock); 1310 list_for_each_entry(entry, >t->guptasks, list) { 1311 if (entry->task == current) { 1312 spin_unlock(>t->guptasklock); 1313 return false; 1314 } 1315 } 1316 spin_unlock(>t->guptasklock); 1317 1318 atomic_inc(>t->mmu_invalidations); 1319 1320 return true; 1321 } 1322 1323 /** 1324 * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated? 1325 */ 1326 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm, 1327 int *last_invalidated) 1328 { 1329 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1330 int prev_invalidated = *last_invalidated; 1331 1332 *last_invalidated = atomic_read(>t->mmu_invalidations); 1333 return prev_invalidated != *last_invalidated; 1334 } 1335 1336 /** 1337 * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object 1338 * been invalidated since the last time they've been set? 1339 */ 1340 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm) 1341 { 1342 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1343 1344 if (gtt == NULL || !gtt->userptr) 1345 return false; 1346 1347 return atomic_read(>t->mmu_invalidations) != gtt->last_set_pages; 1348 } 1349 1350 /** 1351 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1352 */ 1353 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1354 { 1355 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1356 1357 if (gtt == NULL) 1358 return false; 1359 1360 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1361 } 1362 1363 /** 1364 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1365 * 1366 * @ttm: The ttm_tt object to compute the flags for 1367 * @mem: The memory registry backing this ttm_tt object 1368 * 1369 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1370 */ 1371 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1372 { 1373 uint64_t flags = 0; 1374 1375 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1376 flags |= AMDGPU_PTE_VALID; 1377 1378 if (mem && mem->mem_type == TTM_PL_TT) { 1379 flags |= AMDGPU_PTE_SYSTEM; 1380 1381 if (ttm->caching_state == tt_cached) 1382 flags |= AMDGPU_PTE_SNOOPED; 1383 } 1384 1385 return flags; 1386 } 1387 1388 /** 1389 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1390 * 1391 * @ttm: The ttm_tt object to compute the flags for 1392 * @mem: The memory registry backing this ttm_tt object 1393 1394 * Figure out the flags to use for a VM PTE (Page Table Entry). 1395 */ 1396 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1397 struct ttm_mem_reg *mem) 1398 { 1399 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1400 1401 flags |= adev->gart.gart_pte_flags; 1402 flags |= AMDGPU_PTE_READABLE; 1403 1404 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1405 flags |= AMDGPU_PTE_WRITEABLE; 1406 1407 return flags; 1408 } 1409 1410 /** 1411 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1412 * object. 1413 * 1414 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1415 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1416 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1417 * used to clean out a memory space. 1418 */ 1419 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1420 const struct ttm_place *place) 1421 { 1422 unsigned long num_pages = bo->mem.num_pages; 1423 struct drm_mm_node *node = bo->mem.mm_node; 1424 struct reservation_object_list *flist; 1425 struct dma_fence *f; 1426 int i; 1427 1428 /* Don't evict VM page tables while they are busy, otherwise we can't 1429 * cleanly handle page faults. 1430 */ 1431 if (bo->type == ttm_bo_type_kernel && 1432 !reservation_object_test_signaled_rcu(bo->resv, true)) 1433 return false; 1434 1435 /* If bo is a KFD BO, check if the bo belongs to the current process. 1436 * If true, then return false as any KFD process needs all its BOs to 1437 * be resident to run successfully 1438 */ 1439 flist = reservation_object_get_list(bo->resv); 1440 if (flist) { 1441 for (i = 0; i < flist->shared_count; ++i) { 1442 f = rcu_dereference_protected(flist->shared[i], 1443 reservation_object_held(bo->resv)); 1444 if (amdkfd_fence_check_mm(f, current->mm)) 1445 return false; 1446 } 1447 } 1448 1449 switch (bo->mem.mem_type) { 1450 case TTM_PL_TT: 1451 return true; 1452 1453 case TTM_PL_VRAM: 1454 /* Check each drm MM node individually */ 1455 while (num_pages) { 1456 if (place->fpfn < (node->start + node->size) && 1457 !(place->lpfn && place->lpfn <= node->start)) 1458 return true; 1459 1460 num_pages -= node->size; 1461 ++node; 1462 } 1463 return false; 1464 1465 default: 1466 break; 1467 } 1468 1469 return ttm_bo_eviction_valuable(bo, place); 1470 } 1471 1472 /** 1473 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1474 * 1475 * @bo: The buffer object to read/write 1476 * @offset: Offset into buffer object 1477 * @buf: Secondary buffer to write/read from 1478 * @len: Length in bytes of access 1479 * @write: true if writing 1480 * 1481 * This is used to access VRAM that backs a buffer object via MMIO 1482 * access for debugging purposes. 1483 */ 1484 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1485 unsigned long offset, 1486 void *buf, int len, int write) 1487 { 1488 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1489 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1490 struct drm_mm_node *nodes; 1491 uint32_t value = 0; 1492 int ret = 0; 1493 uint64_t pos; 1494 unsigned long flags; 1495 1496 if (bo->mem.mem_type != TTM_PL_VRAM) 1497 return -EIO; 1498 1499 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1500 pos = (nodes->start << PAGE_SHIFT) + offset; 1501 1502 while (len && pos < adev->gmc.mc_vram_size) { 1503 uint64_t aligned_pos = pos & ~(uint64_t)3; 1504 uint32_t bytes = 4 - (pos & 3); 1505 uint32_t shift = (pos & 3) * 8; 1506 uint32_t mask = 0xffffffff << shift; 1507 1508 if (len < bytes) { 1509 mask &= 0xffffffff >> (bytes - len) * 8; 1510 bytes = len; 1511 } 1512 1513 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1514 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1515 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1516 if (!write || mask != 0xffffffff) 1517 value = RREG32_NO_KIQ(mmMM_DATA); 1518 if (write) { 1519 value &= ~mask; 1520 value |= (*(uint32_t *)buf << shift) & mask; 1521 WREG32_NO_KIQ(mmMM_DATA, value); 1522 } 1523 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1524 if (!write) { 1525 value = (value & mask) >> shift; 1526 memcpy(buf, &value, bytes); 1527 } 1528 1529 ret += bytes; 1530 buf = (uint8_t *)buf + bytes; 1531 pos += bytes; 1532 len -= bytes; 1533 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1534 ++nodes; 1535 pos = (nodes->start << PAGE_SHIFT); 1536 } 1537 } 1538 1539 return ret; 1540 } 1541 1542 static struct ttm_bo_driver amdgpu_bo_driver = { 1543 .ttm_tt_create = &amdgpu_ttm_tt_create, 1544 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1545 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1546 .invalidate_caches = &amdgpu_invalidate_caches, 1547 .init_mem_type = &amdgpu_init_mem_type, 1548 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1549 .evict_flags = &amdgpu_evict_flags, 1550 .move = &amdgpu_bo_move, 1551 .verify_access = &amdgpu_verify_access, 1552 .move_notify = &amdgpu_bo_move_notify, 1553 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1554 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1555 .io_mem_free = &amdgpu_ttm_io_mem_free, 1556 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1557 .access_memory = &amdgpu_ttm_access_memory, 1558 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1559 }; 1560 1561 /* 1562 * Firmware Reservation functions 1563 */ 1564 /** 1565 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1566 * 1567 * @adev: amdgpu_device pointer 1568 * 1569 * free fw reserved vram if it has been reserved. 1570 */ 1571 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1572 { 1573 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1574 NULL, &adev->fw_vram_usage.va); 1575 } 1576 1577 /** 1578 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1579 * 1580 * @adev: amdgpu_device pointer 1581 * 1582 * create bo vram reservation from fw. 1583 */ 1584 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1585 { 1586 struct ttm_operation_ctx ctx = { false, false }; 1587 struct amdgpu_bo_param bp; 1588 int r = 0; 1589 int i; 1590 u64 vram_size = adev->gmc.visible_vram_size; 1591 u64 offset = adev->fw_vram_usage.start_offset; 1592 u64 size = adev->fw_vram_usage.size; 1593 struct amdgpu_bo *bo; 1594 1595 memset(&bp, 0, sizeof(bp)); 1596 bp.size = adev->fw_vram_usage.size; 1597 bp.byte_align = PAGE_SIZE; 1598 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1599 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1600 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1601 bp.type = ttm_bo_type_kernel; 1602 bp.resv = NULL; 1603 adev->fw_vram_usage.va = NULL; 1604 adev->fw_vram_usage.reserved_bo = NULL; 1605 1606 if (adev->fw_vram_usage.size > 0 && 1607 adev->fw_vram_usage.size <= vram_size) { 1608 1609 r = amdgpu_bo_create(adev, &bp, 1610 &adev->fw_vram_usage.reserved_bo); 1611 if (r) 1612 goto error_create; 1613 1614 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1615 if (r) 1616 goto error_reserve; 1617 1618 /* remove the original mem node and create a new one at the 1619 * request position 1620 */ 1621 bo = adev->fw_vram_usage.reserved_bo; 1622 offset = ALIGN(offset, PAGE_SIZE); 1623 for (i = 0; i < bo->placement.num_placement; ++i) { 1624 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1625 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1626 } 1627 1628 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1629 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1630 &bo->tbo.mem, &ctx); 1631 if (r) 1632 goto error_pin; 1633 1634 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1635 AMDGPU_GEM_DOMAIN_VRAM, 1636 adev->fw_vram_usage.start_offset, 1637 (adev->fw_vram_usage.start_offset + 1638 adev->fw_vram_usage.size)); 1639 if (r) 1640 goto error_pin; 1641 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1642 &adev->fw_vram_usage.va); 1643 if (r) 1644 goto error_kmap; 1645 1646 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1647 } 1648 return r; 1649 1650 error_kmap: 1651 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1652 error_pin: 1653 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1654 error_reserve: 1655 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1656 error_create: 1657 adev->fw_vram_usage.va = NULL; 1658 adev->fw_vram_usage.reserved_bo = NULL; 1659 return r; 1660 } 1661 /** 1662 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1663 * gtt/vram related fields. 1664 * 1665 * This initializes all of the memory space pools that the TTM layer 1666 * will need such as the GTT space (system memory mapped to the device), 1667 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1668 * can be mapped per VMID. 1669 */ 1670 int amdgpu_ttm_init(struct amdgpu_device *adev) 1671 { 1672 uint64_t gtt_size; 1673 int r; 1674 u64 vis_vram_limit; 1675 1676 mutex_init(&adev->mman.gtt_window_lock); 1677 1678 /* No others user of address space so set it to 0 */ 1679 r = ttm_bo_device_init(&adev->mman.bdev, 1680 &amdgpu_bo_driver, 1681 adev->ddev->anon_inode->i_mapping, 1682 adev->need_dma32); 1683 if (r) { 1684 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1685 return r; 1686 } 1687 adev->mman.initialized = true; 1688 1689 /* We opt to avoid OOM on system pages allocations */ 1690 adev->mman.bdev.no_retry = true; 1691 1692 /* Initialize VRAM pool with all of VRAM divided into pages */ 1693 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1694 adev->gmc.real_vram_size >> PAGE_SHIFT); 1695 if (r) { 1696 DRM_ERROR("Failed initializing VRAM heap.\n"); 1697 return r; 1698 } 1699 1700 /* Reduce size of CPU-visible VRAM if requested */ 1701 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1702 if (amdgpu_vis_vram_limit > 0 && 1703 vis_vram_limit <= adev->gmc.visible_vram_size) 1704 adev->gmc.visible_vram_size = vis_vram_limit; 1705 1706 /* Change the size here instead of the init above so only lpfn is affected */ 1707 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1708 #ifdef CONFIG_64BIT 1709 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1710 adev->gmc.visible_vram_size); 1711 #endif 1712 1713 /* 1714 *The reserved vram for firmware must be pinned to the specified 1715 *place on the VRAM, so reserve it early. 1716 */ 1717 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1718 if (r) { 1719 return r; 1720 } 1721 1722 /* allocate memory as required for VGA 1723 * This is used for VGA emulation and pre-OS scanout buffers to 1724 * avoid display artifacts while transitioning between pre-OS 1725 * and driver. */ 1726 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1727 AMDGPU_GEM_DOMAIN_VRAM, 1728 &adev->stolen_vga_memory, 1729 NULL, NULL); 1730 if (r) 1731 return r; 1732 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1733 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1734 1735 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1736 * or whatever the user passed on module init */ 1737 if (amdgpu_gtt_size == -1) { 1738 struct sysinfo si; 1739 1740 si_meminfo(&si); 1741 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1742 adev->gmc.mc_vram_size), 1743 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1744 } 1745 else 1746 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1747 1748 /* Initialize GTT memory pool */ 1749 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1750 if (r) { 1751 DRM_ERROR("Failed initializing GTT heap.\n"); 1752 return r; 1753 } 1754 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1755 (unsigned)(gtt_size / (1024 * 1024))); 1756 1757 /* Initialize various on-chip memory pools */ 1758 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1759 adev->gds.mem.total_size); 1760 if (r) { 1761 DRM_ERROR("Failed initializing GDS heap.\n"); 1762 return r; 1763 } 1764 1765 r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size, 1766 4, AMDGPU_GEM_DOMAIN_GDS, 1767 &adev->gds.gds_gfx_bo, NULL, NULL); 1768 if (r) 1769 return r; 1770 1771 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1772 adev->gds.gws.total_size); 1773 if (r) { 1774 DRM_ERROR("Failed initializing gws heap.\n"); 1775 return r; 1776 } 1777 1778 r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size, 1779 1, AMDGPU_GEM_DOMAIN_GWS, 1780 &adev->gds.gws_gfx_bo, NULL, NULL); 1781 if (r) 1782 return r; 1783 1784 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1785 adev->gds.oa.total_size); 1786 if (r) { 1787 DRM_ERROR("Failed initializing oa heap.\n"); 1788 return r; 1789 } 1790 1791 r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size, 1792 1, AMDGPU_GEM_DOMAIN_OA, 1793 &adev->gds.oa_gfx_bo, NULL, NULL); 1794 if (r) 1795 return r; 1796 1797 /* Register debugfs entries for amdgpu_ttm */ 1798 r = amdgpu_ttm_debugfs_init(adev); 1799 if (r) { 1800 DRM_ERROR("Failed to init debugfs\n"); 1801 return r; 1802 } 1803 return 0; 1804 } 1805 1806 /** 1807 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1808 */ 1809 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1810 { 1811 /* return the VGA stolen memory (if any) back to VRAM */ 1812 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1813 } 1814 1815 /** 1816 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1817 */ 1818 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1819 { 1820 if (!adev->mman.initialized) 1821 return; 1822 1823 amdgpu_ttm_debugfs_fini(adev); 1824 amdgpu_ttm_fw_reserve_vram_fini(adev); 1825 if (adev->mman.aper_base_kaddr) 1826 iounmap(adev->mman.aper_base_kaddr); 1827 adev->mman.aper_base_kaddr = NULL; 1828 1829 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1830 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1831 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1832 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1833 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1834 ttm_bo_device_release(&adev->mman.bdev); 1835 adev->mman.initialized = false; 1836 DRM_INFO("amdgpu: ttm finalized\n"); 1837 } 1838 1839 /** 1840 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1841 * 1842 * @adev: amdgpu_device pointer 1843 * @enable: true when we can use buffer functions. 1844 * 1845 * Enable/disable use of buffer functions during suspend/resume. This should 1846 * only be called at bootup or when userspace isn't running. 1847 */ 1848 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1849 { 1850 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1851 uint64_t size; 1852 int r; 1853 1854 if (!adev->mman.initialized || adev->in_gpu_reset || 1855 adev->mman.buffer_funcs_enabled == enable) 1856 return; 1857 1858 if (enable) { 1859 struct amdgpu_ring *ring; 1860 struct drm_sched_rq *rq; 1861 1862 ring = adev->mman.buffer_funcs_ring; 1863 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1864 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1865 if (r) { 1866 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1867 r); 1868 return; 1869 } 1870 } else { 1871 drm_sched_entity_destroy(&adev->mman.entity); 1872 dma_fence_put(man->move); 1873 man->move = NULL; 1874 } 1875 1876 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1877 if (enable) 1878 size = adev->gmc.real_vram_size; 1879 else 1880 size = adev->gmc.visible_vram_size; 1881 man->size = size >> PAGE_SHIFT; 1882 adev->mman.buffer_funcs_enabled = enable; 1883 } 1884 1885 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1886 { 1887 struct drm_file *file_priv = filp->private_data; 1888 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 1889 1890 if (adev == NULL) 1891 return -EINVAL; 1892 1893 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1894 } 1895 1896 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1897 struct ttm_mem_reg *mem, unsigned num_pages, 1898 uint64_t offset, unsigned window, 1899 struct amdgpu_ring *ring, 1900 uint64_t *addr) 1901 { 1902 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1903 struct amdgpu_device *adev = ring->adev; 1904 struct ttm_tt *ttm = bo->ttm; 1905 struct amdgpu_job *job; 1906 unsigned num_dw, num_bytes; 1907 dma_addr_t *dma_address; 1908 struct dma_fence *fence; 1909 uint64_t src_addr, dst_addr; 1910 uint64_t flags; 1911 int r; 1912 1913 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1914 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1915 1916 *addr = adev->gmc.gart_start; 1917 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1918 AMDGPU_GPU_PAGE_SIZE; 1919 1920 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1921 while (num_dw & 0x7) 1922 num_dw++; 1923 1924 num_bytes = num_pages * 8; 1925 1926 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1927 if (r) 1928 return r; 1929 1930 src_addr = num_dw * 4; 1931 src_addr += job->ibs[0].gpu_addr; 1932 1933 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 1934 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1935 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1936 dst_addr, num_bytes); 1937 1938 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1939 WARN_ON(job->ibs[0].length_dw > num_dw); 1940 1941 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 1942 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 1943 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 1944 &job->ibs[0].ptr[num_dw]); 1945 if (r) 1946 goto error_free; 1947 1948 r = amdgpu_job_submit(job, &adev->mman.entity, 1949 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1950 if (r) 1951 goto error_free; 1952 1953 dma_fence_put(fence); 1954 1955 return r; 1956 1957 error_free: 1958 amdgpu_job_free(job); 1959 return r; 1960 } 1961 1962 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1963 uint64_t dst_offset, uint32_t byte_count, 1964 struct reservation_object *resv, 1965 struct dma_fence **fence, bool direct_submit, 1966 bool vm_needs_flush) 1967 { 1968 struct amdgpu_device *adev = ring->adev; 1969 struct amdgpu_job *job; 1970 1971 uint32_t max_bytes; 1972 unsigned num_loops, num_dw; 1973 unsigned i; 1974 int r; 1975 1976 if (direct_submit && !ring->sched.ready) { 1977 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1978 return -EINVAL; 1979 } 1980 1981 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 1982 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 1983 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 1984 1985 /* for IB padding */ 1986 while (num_dw & 0x7) 1987 num_dw++; 1988 1989 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 1990 if (r) 1991 return r; 1992 1993 if (vm_needs_flush) { 1994 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 1995 job->vm_needs_flush = true; 1996 } 1997 if (resv) { 1998 r = amdgpu_sync_resv(adev, &job->sync, resv, 1999 AMDGPU_FENCE_OWNER_UNDEFINED, 2000 false); 2001 if (r) { 2002 DRM_ERROR("sync failed (%d).\n", r); 2003 goto error_free; 2004 } 2005 } 2006 2007 for (i = 0; i < num_loops; i++) { 2008 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2009 2010 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2011 dst_offset, cur_size_in_bytes); 2012 2013 src_offset += cur_size_in_bytes; 2014 dst_offset += cur_size_in_bytes; 2015 byte_count -= cur_size_in_bytes; 2016 } 2017 2018 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2019 WARN_ON(job->ibs[0].length_dw > num_dw); 2020 if (direct_submit) 2021 r = amdgpu_job_submit_direct(job, ring, fence); 2022 else 2023 r = amdgpu_job_submit(job, &adev->mman.entity, 2024 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2025 if (r) 2026 goto error_free; 2027 2028 return r; 2029 2030 error_free: 2031 amdgpu_job_free(job); 2032 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2033 return r; 2034 } 2035 2036 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2037 uint32_t src_data, 2038 struct reservation_object *resv, 2039 struct dma_fence **fence) 2040 { 2041 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2042 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2043 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2044 2045 struct drm_mm_node *mm_node; 2046 unsigned long num_pages; 2047 unsigned int num_loops, num_dw; 2048 2049 struct amdgpu_job *job; 2050 int r; 2051 2052 if (!adev->mman.buffer_funcs_enabled) { 2053 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2054 return -EINVAL; 2055 } 2056 2057 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2058 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2059 if (r) 2060 return r; 2061 } 2062 2063 num_pages = bo->tbo.num_pages; 2064 mm_node = bo->tbo.mem.mm_node; 2065 num_loops = 0; 2066 while (num_pages) { 2067 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2068 2069 num_loops += DIV_ROUND_UP(byte_count, max_bytes); 2070 num_pages -= mm_node->size; 2071 ++mm_node; 2072 } 2073 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2074 2075 /* for IB padding */ 2076 num_dw += 64; 2077 2078 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2079 if (r) 2080 return r; 2081 2082 if (resv) { 2083 r = amdgpu_sync_resv(adev, &job->sync, resv, 2084 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2085 if (r) { 2086 DRM_ERROR("sync failed (%d).\n", r); 2087 goto error_free; 2088 } 2089 } 2090 2091 num_pages = bo->tbo.num_pages; 2092 mm_node = bo->tbo.mem.mm_node; 2093 2094 while (num_pages) { 2095 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2096 uint64_t dst_addr; 2097 2098 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2099 while (byte_count) { 2100 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2101 2102 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2103 dst_addr, cur_size_in_bytes); 2104 2105 dst_addr += cur_size_in_bytes; 2106 byte_count -= cur_size_in_bytes; 2107 } 2108 2109 num_pages -= mm_node->size; 2110 ++mm_node; 2111 } 2112 2113 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2114 WARN_ON(job->ibs[0].length_dw > num_dw); 2115 r = amdgpu_job_submit(job, &adev->mman.entity, 2116 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2117 if (r) 2118 goto error_free; 2119 2120 return 0; 2121 2122 error_free: 2123 amdgpu_job_free(job); 2124 return r; 2125 } 2126 2127 #if defined(CONFIG_DEBUG_FS) 2128 2129 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2130 { 2131 struct drm_info_node *node = (struct drm_info_node *)m->private; 2132 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2133 struct drm_device *dev = node->minor->dev; 2134 struct amdgpu_device *adev = dev->dev_private; 2135 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2136 struct drm_printer p = drm_seq_file_printer(m); 2137 2138 man->func->debug(man, &p); 2139 return 0; 2140 } 2141 2142 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2143 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2144 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2145 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2146 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2147 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2148 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2149 #ifdef CONFIG_SWIOTLB 2150 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2151 #endif 2152 }; 2153 2154 /** 2155 * amdgpu_ttm_vram_read - Linear read access to VRAM 2156 * 2157 * Accesses VRAM via MMIO for debugging purposes. 2158 */ 2159 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2160 size_t size, loff_t *pos) 2161 { 2162 struct amdgpu_device *adev = file_inode(f)->i_private; 2163 ssize_t result = 0; 2164 int r; 2165 2166 if (size & 0x3 || *pos & 0x3) 2167 return -EINVAL; 2168 2169 if (*pos >= adev->gmc.mc_vram_size) 2170 return -ENXIO; 2171 2172 while (size) { 2173 unsigned long flags; 2174 uint32_t value; 2175 2176 if (*pos >= adev->gmc.mc_vram_size) 2177 return result; 2178 2179 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2180 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2181 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2182 value = RREG32_NO_KIQ(mmMM_DATA); 2183 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2184 2185 r = put_user(value, (uint32_t *)buf); 2186 if (r) 2187 return r; 2188 2189 result += 4; 2190 buf += 4; 2191 *pos += 4; 2192 size -= 4; 2193 } 2194 2195 return result; 2196 } 2197 2198 /** 2199 * amdgpu_ttm_vram_write - Linear write access to VRAM 2200 * 2201 * Accesses VRAM via MMIO for debugging purposes. 2202 */ 2203 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2204 size_t size, loff_t *pos) 2205 { 2206 struct amdgpu_device *adev = file_inode(f)->i_private; 2207 ssize_t result = 0; 2208 int r; 2209 2210 if (size & 0x3 || *pos & 0x3) 2211 return -EINVAL; 2212 2213 if (*pos >= adev->gmc.mc_vram_size) 2214 return -ENXIO; 2215 2216 while (size) { 2217 unsigned long flags; 2218 uint32_t value; 2219 2220 if (*pos >= adev->gmc.mc_vram_size) 2221 return result; 2222 2223 r = get_user(value, (uint32_t *)buf); 2224 if (r) 2225 return r; 2226 2227 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2228 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2229 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2230 WREG32_NO_KIQ(mmMM_DATA, value); 2231 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2232 2233 result += 4; 2234 buf += 4; 2235 *pos += 4; 2236 size -= 4; 2237 } 2238 2239 return result; 2240 } 2241 2242 static const struct file_operations amdgpu_ttm_vram_fops = { 2243 .owner = THIS_MODULE, 2244 .read = amdgpu_ttm_vram_read, 2245 .write = amdgpu_ttm_vram_write, 2246 .llseek = default_llseek, 2247 }; 2248 2249 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2250 2251 /** 2252 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2253 */ 2254 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2255 size_t size, loff_t *pos) 2256 { 2257 struct amdgpu_device *adev = file_inode(f)->i_private; 2258 ssize_t result = 0; 2259 int r; 2260 2261 while (size) { 2262 loff_t p = *pos / PAGE_SIZE; 2263 unsigned off = *pos & ~PAGE_MASK; 2264 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2265 struct page *page; 2266 void *ptr; 2267 2268 if (p >= adev->gart.num_cpu_pages) 2269 return result; 2270 2271 page = adev->gart.pages[p]; 2272 if (page) { 2273 ptr = kmap(page); 2274 ptr += off; 2275 2276 r = copy_to_user(buf, ptr, cur_size); 2277 kunmap(adev->gart.pages[p]); 2278 } else 2279 r = clear_user(buf, cur_size); 2280 2281 if (r) 2282 return -EFAULT; 2283 2284 result += cur_size; 2285 buf += cur_size; 2286 *pos += cur_size; 2287 size -= cur_size; 2288 } 2289 2290 return result; 2291 } 2292 2293 static const struct file_operations amdgpu_ttm_gtt_fops = { 2294 .owner = THIS_MODULE, 2295 .read = amdgpu_ttm_gtt_read, 2296 .llseek = default_llseek 2297 }; 2298 2299 #endif 2300 2301 /** 2302 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2303 * 2304 * This function is used to read memory that has been mapped to the 2305 * GPU and the known addresses are not physical addresses but instead 2306 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2307 */ 2308 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2309 size_t size, loff_t *pos) 2310 { 2311 struct amdgpu_device *adev = file_inode(f)->i_private; 2312 struct iommu_domain *dom; 2313 ssize_t result = 0; 2314 int r; 2315 2316 /* retrieve the IOMMU domain if any for this device */ 2317 dom = iommu_get_domain_for_dev(adev->dev); 2318 2319 while (size) { 2320 phys_addr_t addr = *pos & PAGE_MASK; 2321 loff_t off = *pos & ~PAGE_MASK; 2322 size_t bytes = PAGE_SIZE - off; 2323 unsigned long pfn; 2324 struct page *p; 2325 void *ptr; 2326 2327 bytes = bytes < size ? bytes : size; 2328 2329 /* Translate the bus address to a physical address. If 2330 * the domain is NULL it means there is no IOMMU active 2331 * and the address translation is the identity 2332 */ 2333 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2334 2335 pfn = addr >> PAGE_SHIFT; 2336 if (!pfn_valid(pfn)) 2337 return -EPERM; 2338 2339 p = pfn_to_page(pfn); 2340 if (p->mapping != adev->mman.bdev.dev_mapping) 2341 return -EPERM; 2342 2343 ptr = kmap(p); 2344 r = copy_to_user(buf, ptr + off, bytes); 2345 kunmap(p); 2346 if (r) 2347 return -EFAULT; 2348 2349 size -= bytes; 2350 *pos += bytes; 2351 result += bytes; 2352 } 2353 2354 return result; 2355 } 2356 2357 /** 2358 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2359 * 2360 * This function is used to write memory that has been mapped to the 2361 * GPU and the known addresses are not physical addresses but instead 2362 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2363 */ 2364 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2365 size_t size, loff_t *pos) 2366 { 2367 struct amdgpu_device *adev = file_inode(f)->i_private; 2368 struct iommu_domain *dom; 2369 ssize_t result = 0; 2370 int r; 2371 2372 dom = iommu_get_domain_for_dev(adev->dev); 2373 2374 while (size) { 2375 phys_addr_t addr = *pos & PAGE_MASK; 2376 loff_t off = *pos & ~PAGE_MASK; 2377 size_t bytes = PAGE_SIZE - off; 2378 unsigned long pfn; 2379 struct page *p; 2380 void *ptr; 2381 2382 bytes = bytes < size ? bytes : size; 2383 2384 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2385 2386 pfn = addr >> PAGE_SHIFT; 2387 if (!pfn_valid(pfn)) 2388 return -EPERM; 2389 2390 p = pfn_to_page(pfn); 2391 if (p->mapping != adev->mman.bdev.dev_mapping) 2392 return -EPERM; 2393 2394 ptr = kmap(p); 2395 r = copy_from_user(ptr + off, buf, bytes); 2396 kunmap(p); 2397 if (r) 2398 return -EFAULT; 2399 2400 size -= bytes; 2401 *pos += bytes; 2402 result += bytes; 2403 } 2404 2405 return result; 2406 } 2407 2408 static const struct file_operations amdgpu_ttm_iomem_fops = { 2409 .owner = THIS_MODULE, 2410 .read = amdgpu_iomem_read, 2411 .write = amdgpu_iomem_write, 2412 .llseek = default_llseek 2413 }; 2414 2415 static const struct { 2416 char *name; 2417 const struct file_operations *fops; 2418 int domain; 2419 } ttm_debugfs_entries[] = { 2420 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2421 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2422 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2423 #endif 2424 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2425 }; 2426 2427 #endif 2428 2429 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2430 { 2431 #if defined(CONFIG_DEBUG_FS) 2432 unsigned count; 2433 2434 struct drm_minor *minor = adev->ddev->primary; 2435 struct dentry *ent, *root = minor->debugfs_root; 2436 2437 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2438 ent = debugfs_create_file( 2439 ttm_debugfs_entries[count].name, 2440 S_IFREG | S_IRUGO, root, 2441 adev, 2442 ttm_debugfs_entries[count].fops); 2443 if (IS_ERR(ent)) 2444 return PTR_ERR(ent); 2445 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2446 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2447 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2448 i_size_write(ent->d_inode, adev->gmc.gart_size); 2449 adev->mman.debugfs_entries[count] = ent; 2450 } 2451 2452 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2453 2454 #ifdef CONFIG_SWIOTLB 2455 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2456 --count; 2457 #endif 2458 2459 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2460 #else 2461 return 0; 2462 #endif 2463 } 2464 2465 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2466 { 2467 #if defined(CONFIG_DEBUG_FS) 2468 unsigned i; 2469 2470 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2471 debugfs_remove(adev->mman.debugfs_entries[i]); 2472 #endif 2473 } 2474