1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/debugfs.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/seq_file.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swiotlb.h>
41 
42 #include <drm/ttm/ttm_bo_api.h>
43 #include <drm/ttm/ttm_bo_driver.h>
44 #include <drm/ttm/ttm_placement.h>
45 #include <drm/ttm/ttm_module.h>
46 #include <drm/ttm/ttm_page_alloc.h>
47 #include <drm/drmP.h>
48 #include <drm/amdgpu_drm.h>
49 #include "amdgpu.h"
50 #include "amdgpu_object.h"
51 #include "amdgpu_trace.h"
52 #include "amdgpu_amdkfd.h"
53 #include "amdgpu_sdma.h"
54 #include "bif/bif_4_1_d.h"
55 
56 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
57 			     struct ttm_mem_reg *mem, unsigned num_pages,
58 			     uint64_t offset, unsigned window,
59 			     struct amdgpu_ring *ring,
60 			     uint64_t *addr);
61 
62 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
63 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
64 
65 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
66 {
67 	return 0;
68 }
69 
70 /**
71  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
72  * memory request.
73  *
74  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
75  * @type: The type of memory requested
76  * @man: The memory type manager for each domain
77  *
78  * This is called by ttm_bo_init_mm() when a buffer object is being
79  * initialized.
80  */
81 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
82 				struct ttm_mem_type_manager *man)
83 {
84 	struct amdgpu_device *adev;
85 
86 	adev = amdgpu_ttm_adev(bdev);
87 
88 	switch (type) {
89 	case TTM_PL_SYSTEM:
90 		/* System memory */
91 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
92 		man->available_caching = TTM_PL_MASK_CACHING;
93 		man->default_caching = TTM_PL_FLAG_CACHED;
94 		break;
95 	case TTM_PL_TT:
96 		/* GTT memory  */
97 		man->func = &amdgpu_gtt_mgr_func;
98 		man->gpu_offset = adev->gmc.gart_start;
99 		man->available_caching = TTM_PL_MASK_CACHING;
100 		man->default_caching = TTM_PL_FLAG_CACHED;
101 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
102 		break;
103 	case TTM_PL_VRAM:
104 		/* "On-card" video ram */
105 		man->func = &amdgpu_vram_mgr_func;
106 		man->gpu_offset = adev->gmc.vram_start;
107 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
108 			     TTM_MEMTYPE_FLAG_MAPPABLE;
109 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
110 		man->default_caching = TTM_PL_FLAG_WC;
111 		break;
112 	case AMDGPU_PL_GDS:
113 	case AMDGPU_PL_GWS:
114 	case AMDGPU_PL_OA:
115 		/* On-chip GDS memory*/
116 		man->func = &ttm_bo_manager_func;
117 		man->gpu_offset = 0;
118 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
119 		man->available_caching = TTM_PL_FLAG_UNCACHED;
120 		man->default_caching = TTM_PL_FLAG_UNCACHED;
121 		break;
122 	default:
123 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
124 		return -EINVAL;
125 	}
126 	return 0;
127 }
128 
129 /**
130  * amdgpu_evict_flags - Compute placement flags
131  *
132  * @bo: The buffer object to evict
133  * @placement: Possible destination(s) for evicted BO
134  *
135  * Fill in placement data when ttm_bo_evict() is called
136  */
137 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
138 				struct ttm_placement *placement)
139 {
140 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
141 	struct amdgpu_bo *abo;
142 	static const struct ttm_place placements = {
143 		.fpfn = 0,
144 		.lpfn = 0,
145 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
146 	};
147 
148 	/* Don't handle scatter gather BOs */
149 	if (bo->type == ttm_bo_type_sg) {
150 		placement->num_placement = 0;
151 		placement->num_busy_placement = 0;
152 		return;
153 	}
154 
155 	/* Object isn't an AMDGPU object so ignore */
156 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
157 		placement->placement = &placements;
158 		placement->busy_placement = &placements;
159 		placement->num_placement = 1;
160 		placement->num_busy_placement = 1;
161 		return;
162 	}
163 
164 	abo = ttm_to_amdgpu_bo(bo);
165 	switch (bo->mem.mem_type) {
166 	case AMDGPU_PL_GDS:
167 	case AMDGPU_PL_GWS:
168 	case AMDGPU_PL_OA:
169 		placement->num_placement = 0;
170 		placement->num_busy_placement = 0;
171 		return;
172 
173 	case TTM_PL_VRAM:
174 		if (!adev->mman.buffer_funcs_enabled) {
175 			/* Move to system memory */
176 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
177 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
178 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
179 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
180 
181 			/* Try evicting to the CPU inaccessible part of VRAM
182 			 * first, but only set GTT as busy placement, so this
183 			 * BO will be evicted to GTT rather than causing other
184 			 * BOs to be evicted from VRAM
185 			 */
186 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
187 							 AMDGPU_GEM_DOMAIN_GTT);
188 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
189 			abo->placements[0].lpfn = 0;
190 			abo->placement.busy_placement = &abo->placements[1];
191 			abo->placement.num_busy_placement = 1;
192 		} else {
193 			/* Move to GTT memory */
194 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
195 		}
196 		break;
197 	case TTM_PL_TT:
198 	default:
199 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
200 		break;
201 	}
202 	*placement = abo->placement;
203 }
204 
205 /**
206  * amdgpu_verify_access - Verify access for a mmap call
207  *
208  * @bo:	The buffer object to map
209  * @filp: The file pointer from the process performing the mmap
210  *
211  * This is called by ttm_bo_mmap() to verify whether a process
212  * has the right to mmap a BO to their process space.
213  */
214 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
215 {
216 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
217 
218 	/*
219 	 * Don't verify access for KFD BOs. They don't have a GEM
220 	 * object associated with them.
221 	 */
222 	if (abo->kfd_bo)
223 		return 0;
224 
225 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
226 		return -EPERM;
227 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
228 					  filp->private_data);
229 }
230 
231 /**
232  * amdgpu_move_null - Register memory for a buffer object
233  *
234  * @bo: The bo to assign the memory to
235  * @new_mem: The memory to be assigned.
236  *
237  * Assign the memory from new_mem to the memory of the buffer object bo.
238  */
239 static void amdgpu_move_null(struct ttm_buffer_object *bo,
240 			     struct ttm_mem_reg *new_mem)
241 {
242 	struct ttm_mem_reg *old_mem = &bo->mem;
243 
244 	BUG_ON(old_mem->mm_node != NULL);
245 	*old_mem = *new_mem;
246 	new_mem->mm_node = NULL;
247 }
248 
249 /**
250  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
251  *
252  * @bo: The bo to assign the memory to.
253  * @mm_node: Memory manager node for drm allocator.
254  * @mem: The region where the bo resides.
255  *
256  */
257 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
258 				    struct drm_mm_node *mm_node,
259 				    struct ttm_mem_reg *mem)
260 {
261 	uint64_t addr = 0;
262 
263 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
264 		addr = mm_node->start << PAGE_SHIFT;
265 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
266 	}
267 	return addr;
268 }
269 
270 /**
271  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
272  * @offset. It also modifies the offset to be within the drm_mm_node returned
273  *
274  * @mem: The region where the bo resides.
275  * @offset: The offset that drm_mm_node is used for finding.
276  *
277  */
278 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
279 					       unsigned long *offset)
280 {
281 	struct drm_mm_node *mm_node = mem->mm_node;
282 
283 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
284 		*offset -= (mm_node->size << PAGE_SHIFT);
285 		++mm_node;
286 	}
287 	return mm_node;
288 }
289 
290 /**
291  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
292  *
293  * The function copies @size bytes from {src->mem + src->offset} to
294  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
295  * move and different for a BO to BO copy.
296  *
297  * @f: Returns the last fence if multiple jobs are submitted.
298  */
299 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
300 			       struct amdgpu_copy_mem *src,
301 			       struct amdgpu_copy_mem *dst,
302 			       uint64_t size,
303 			       struct reservation_object *resv,
304 			       struct dma_fence **f)
305 {
306 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
307 	struct drm_mm_node *src_mm, *dst_mm;
308 	uint64_t src_node_start, dst_node_start, src_node_size,
309 		 dst_node_size, src_page_offset, dst_page_offset;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
313 					AMDGPU_GPU_PAGE_SIZE);
314 
315 	if (!adev->mman.buffer_funcs_enabled) {
316 		DRM_ERROR("Trying to move memory with ring turned off.\n");
317 		return -EINVAL;
318 	}
319 
320 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
321 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
322 					     src->offset;
323 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
324 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
325 
326 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
327 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
328 					     dst->offset;
329 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
330 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
331 
332 	mutex_lock(&adev->mman.gtt_window_lock);
333 
334 	while (size) {
335 		unsigned long cur_size;
336 		uint64_t from = src_node_start, to = dst_node_start;
337 		struct dma_fence *next;
338 
339 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
340 		 * begins at an offset, then adjust the size accordingly
341 		 */
342 		cur_size = min3(min(src_node_size, dst_node_size), size,
343 				GTT_MAX_BYTES);
344 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
345 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
346 			cur_size -= max(src_page_offset, dst_page_offset);
347 
348 		/* Map only what needs to be accessed. Map src to window 0 and
349 		 * dst to window 1
350 		 */
351 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
352 			r = amdgpu_map_buffer(src->bo, src->mem,
353 					PFN_UP(cur_size + src_page_offset),
354 					src_node_start, 0, ring,
355 					&from);
356 			if (r)
357 				goto error;
358 			/* Adjust the offset because amdgpu_map_buffer returns
359 			 * start of mapped page
360 			 */
361 			from += src_page_offset;
362 		}
363 
364 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
365 			r = amdgpu_map_buffer(dst->bo, dst->mem,
366 					PFN_UP(cur_size + dst_page_offset),
367 					dst_node_start, 1, ring,
368 					&to);
369 			if (r)
370 				goto error;
371 			to += dst_page_offset;
372 		}
373 
374 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
375 				       resv, &next, false, true);
376 		if (r)
377 			goto error;
378 
379 		dma_fence_put(fence);
380 		fence = next;
381 
382 		size -= cur_size;
383 		if (!size)
384 			break;
385 
386 		src_node_size -= cur_size;
387 		if (!src_node_size) {
388 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
389 							     src->mem);
390 			src_node_size = (src_mm->size << PAGE_SHIFT);
391 		} else {
392 			src_node_start += cur_size;
393 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
394 		}
395 		dst_node_size -= cur_size;
396 		if (!dst_node_size) {
397 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
398 							     dst->mem);
399 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
400 		} else {
401 			dst_node_start += cur_size;
402 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
403 		}
404 	}
405 error:
406 	mutex_unlock(&adev->mman.gtt_window_lock);
407 	if (f)
408 		*f = dma_fence_get(fence);
409 	dma_fence_put(fence);
410 	return r;
411 }
412 
413 /**
414  * amdgpu_move_blit - Copy an entire buffer to another buffer
415  *
416  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
417  * help move buffers to and from VRAM.
418  */
419 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
420 			    bool evict, bool no_wait_gpu,
421 			    struct ttm_mem_reg *new_mem,
422 			    struct ttm_mem_reg *old_mem)
423 {
424 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
425 	struct amdgpu_copy_mem src, dst;
426 	struct dma_fence *fence = NULL;
427 	int r;
428 
429 	src.bo = bo;
430 	dst.bo = bo;
431 	src.mem = old_mem;
432 	dst.mem = new_mem;
433 	src.offset = 0;
434 	dst.offset = 0;
435 
436 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
437 				       new_mem->num_pages << PAGE_SHIFT,
438 				       bo->resv, &fence);
439 	if (r)
440 		goto error;
441 
442 	/* Always block for VM page tables before committing the new location */
443 	if (bo->type == ttm_bo_type_kernel)
444 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
445 	else
446 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
447 	dma_fence_put(fence);
448 	return r;
449 
450 error:
451 	if (fence)
452 		dma_fence_wait(fence, false);
453 	dma_fence_put(fence);
454 	return r;
455 }
456 
457 /**
458  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
459  *
460  * Called by amdgpu_bo_move().
461  */
462 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
463 				struct ttm_operation_ctx *ctx,
464 				struct ttm_mem_reg *new_mem)
465 {
466 	struct amdgpu_device *adev;
467 	struct ttm_mem_reg *old_mem = &bo->mem;
468 	struct ttm_mem_reg tmp_mem;
469 	struct ttm_place placements;
470 	struct ttm_placement placement;
471 	int r;
472 
473 	adev = amdgpu_ttm_adev(bo->bdev);
474 
475 	/* create space/pages for new_mem in GTT space */
476 	tmp_mem = *new_mem;
477 	tmp_mem.mm_node = NULL;
478 	placement.num_placement = 1;
479 	placement.placement = &placements;
480 	placement.num_busy_placement = 1;
481 	placement.busy_placement = &placements;
482 	placements.fpfn = 0;
483 	placements.lpfn = 0;
484 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
485 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
486 	if (unlikely(r)) {
487 		return r;
488 	}
489 
490 	/* set caching flags */
491 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
492 	if (unlikely(r)) {
493 		goto out_cleanup;
494 	}
495 
496 	/* Bind the memory to the GTT space */
497 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
498 	if (unlikely(r)) {
499 		goto out_cleanup;
500 	}
501 
502 	/* blit VRAM to GTT */
503 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
504 	if (unlikely(r)) {
505 		goto out_cleanup;
506 	}
507 
508 	/* move BO (in tmp_mem) to new_mem */
509 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
510 out_cleanup:
511 	ttm_bo_mem_put(bo, &tmp_mem);
512 	return r;
513 }
514 
515 /**
516  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
517  *
518  * Called by amdgpu_bo_move().
519  */
520 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
521 				struct ttm_operation_ctx *ctx,
522 				struct ttm_mem_reg *new_mem)
523 {
524 	struct amdgpu_device *adev;
525 	struct ttm_mem_reg *old_mem = &bo->mem;
526 	struct ttm_mem_reg tmp_mem;
527 	struct ttm_placement placement;
528 	struct ttm_place placements;
529 	int r;
530 
531 	adev = amdgpu_ttm_adev(bo->bdev);
532 
533 	/* make space in GTT for old_mem buffer */
534 	tmp_mem = *new_mem;
535 	tmp_mem.mm_node = NULL;
536 	placement.num_placement = 1;
537 	placement.placement = &placements;
538 	placement.num_busy_placement = 1;
539 	placement.busy_placement = &placements;
540 	placements.fpfn = 0;
541 	placements.lpfn = 0;
542 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
543 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
544 	if (unlikely(r)) {
545 		return r;
546 	}
547 
548 	/* move/bind old memory to GTT space */
549 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
550 	if (unlikely(r)) {
551 		goto out_cleanup;
552 	}
553 
554 	/* copy to VRAM */
555 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
556 	if (unlikely(r)) {
557 		goto out_cleanup;
558 	}
559 out_cleanup:
560 	ttm_bo_mem_put(bo, &tmp_mem);
561 	return r;
562 }
563 
564 /**
565  * amdgpu_bo_move - Move a buffer object to a new memory location
566  *
567  * Called by ttm_bo_handle_move_mem()
568  */
569 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
570 			  struct ttm_operation_ctx *ctx,
571 			  struct ttm_mem_reg *new_mem)
572 {
573 	struct amdgpu_device *adev;
574 	struct amdgpu_bo *abo;
575 	struct ttm_mem_reg *old_mem = &bo->mem;
576 	int r;
577 
578 	/* Can't move a pinned BO */
579 	abo = ttm_to_amdgpu_bo(bo);
580 	if (WARN_ON_ONCE(abo->pin_count > 0))
581 		return -EINVAL;
582 
583 	adev = amdgpu_ttm_adev(bo->bdev);
584 
585 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
586 		amdgpu_move_null(bo, new_mem);
587 		return 0;
588 	}
589 	if ((old_mem->mem_type == TTM_PL_TT &&
590 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
591 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
592 	     new_mem->mem_type == TTM_PL_TT)) {
593 		/* bind is enough */
594 		amdgpu_move_null(bo, new_mem);
595 		return 0;
596 	}
597 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
598 	    old_mem->mem_type == AMDGPU_PL_GWS ||
599 	    old_mem->mem_type == AMDGPU_PL_OA ||
600 	    new_mem->mem_type == AMDGPU_PL_GDS ||
601 	    new_mem->mem_type == AMDGPU_PL_GWS ||
602 	    new_mem->mem_type == AMDGPU_PL_OA) {
603 		/* Nothing to save here */
604 		amdgpu_move_null(bo, new_mem);
605 		return 0;
606 	}
607 
608 	if (!adev->mman.buffer_funcs_enabled)
609 		goto memcpy;
610 
611 	if (old_mem->mem_type == TTM_PL_VRAM &&
612 	    new_mem->mem_type == TTM_PL_SYSTEM) {
613 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
614 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
615 		   new_mem->mem_type == TTM_PL_VRAM) {
616 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
617 	} else {
618 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
619 				     new_mem, old_mem);
620 	}
621 
622 	if (r) {
623 memcpy:
624 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
625 		if (r) {
626 			return r;
627 		}
628 	}
629 
630 	if (bo->type == ttm_bo_type_device &&
631 	    new_mem->mem_type == TTM_PL_VRAM &&
632 	    old_mem->mem_type != TTM_PL_VRAM) {
633 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
634 		 * accesses the BO after it's moved.
635 		 */
636 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
637 	}
638 
639 	/* update statistics */
640 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
641 	return 0;
642 }
643 
644 /**
645  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
646  *
647  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
648  */
649 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
650 {
651 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
652 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
653 	struct drm_mm_node *mm_node = mem->mm_node;
654 
655 	mem->bus.addr = NULL;
656 	mem->bus.offset = 0;
657 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
658 	mem->bus.base = 0;
659 	mem->bus.is_iomem = false;
660 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
661 		return -EINVAL;
662 	switch (mem->mem_type) {
663 	case TTM_PL_SYSTEM:
664 		/* system memory */
665 		return 0;
666 	case TTM_PL_TT:
667 		break;
668 	case TTM_PL_VRAM:
669 		mem->bus.offset = mem->start << PAGE_SHIFT;
670 		/* check if it's visible */
671 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
672 			return -EINVAL;
673 		/* Only physically contiguous buffers apply. In a contiguous
674 		 * buffer, size of the first mm_node would match the number of
675 		 * pages in ttm_mem_reg.
676 		 */
677 		if (adev->mman.aper_base_kaddr &&
678 		    (mm_node->size == mem->num_pages))
679 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
680 					mem->bus.offset;
681 
682 		mem->bus.base = adev->gmc.aper_base;
683 		mem->bus.is_iomem = true;
684 		break;
685 	default:
686 		return -EINVAL;
687 	}
688 	return 0;
689 }
690 
691 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
692 {
693 }
694 
695 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
696 					   unsigned long page_offset)
697 {
698 	struct drm_mm_node *mm;
699 	unsigned long offset = (page_offset << PAGE_SHIFT);
700 
701 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
702 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
703 		(offset >> PAGE_SHIFT);
704 }
705 
706 /*
707  * TTM backend functions.
708  */
709 struct amdgpu_ttm_gup_task_list {
710 	struct list_head	list;
711 	struct task_struct	*task;
712 };
713 
714 struct amdgpu_ttm_tt {
715 	struct ttm_dma_tt	ttm;
716 	u64			offset;
717 	uint64_t		userptr;
718 	struct task_struct	*usertask;
719 	uint32_t		userflags;
720 	spinlock_t              guptasklock;
721 	struct list_head        guptasks;
722 	atomic_t		mmu_invalidations;
723 	uint32_t		last_set_pages;
724 };
725 
726 /**
727  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
728  * pointer to memory
729  *
730  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
731  * This provides a wrapper around the get_user_pages() call to provide
732  * device accessible pages that back user memory.
733  */
734 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
735 {
736 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
737 	struct mm_struct *mm = gtt->usertask->mm;
738 	unsigned int flags = 0;
739 	unsigned pinned = 0;
740 	int r;
741 
742 	if (!mm) /* Happens during process shutdown */
743 		return -ESRCH;
744 
745 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
746 		flags |= FOLL_WRITE;
747 
748 	down_read(&mm->mmap_sem);
749 
750 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
751 		/*
752 		 * check that we only use anonymous memory to prevent problems
753 		 * with writeback
754 		 */
755 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
756 		struct vm_area_struct *vma;
757 
758 		vma = find_vma(mm, gtt->userptr);
759 		if (!vma || vma->vm_file || vma->vm_end < end) {
760 			up_read(&mm->mmap_sem);
761 			return -EPERM;
762 		}
763 	}
764 
765 	/* loop enough times using contiguous pages of memory */
766 	do {
767 		unsigned num_pages = ttm->num_pages - pinned;
768 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
769 		struct page **p = pages + pinned;
770 		struct amdgpu_ttm_gup_task_list guptask;
771 
772 		guptask.task = current;
773 		spin_lock(&gtt->guptasklock);
774 		list_add(&guptask.list, &gtt->guptasks);
775 		spin_unlock(&gtt->guptasklock);
776 
777 		if (mm == current->mm)
778 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
779 		else
780 			r = get_user_pages_remote(gtt->usertask,
781 					mm, userptr, num_pages,
782 					flags, p, NULL, NULL);
783 
784 		spin_lock(&gtt->guptasklock);
785 		list_del(&guptask.list);
786 		spin_unlock(&gtt->guptasklock);
787 
788 		if (r < 0)
789 			goto release_pages;
790 
791 		pinned += r;
792 
793 	} while (pinned < ttm->num_pages);
794 
795 	up_read(&mm->mmap_sem);
796 	return 0;
797 
798 release_pages:
799 	release_pages(pages, pinned);
800 	up_read(&mm->mmap_sem);
801 	return r;
802 }
803 
804 /**
805  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
806  *
807  * Called by amdgpu_cs_list_validate(). This creates the page list
808  * that backs user memory and will ultimately be mapped into the device
809  * address space.
810  */
811 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
812 {
813 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
814 	unsigned i;
815 
816 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
817 	for (i = 0; i < ttm->num_pages; ++i) {
818 		if (ttm->pages[i])
819 			put_page(ttm->pages[i]);
820 
821 		ttm->pages[i] = pages ? pages[i] : NULL;
822 	}
823 }
824 
825 /**
826  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
827  *
828  * Called while unpinning userptr pages
829  */
830 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
831 {
832 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
833 	unsigned i;
834 
835 	for (i = 0; i < ttm->num_pages; ++i) {
836 		struct page *page = ttm->pages[i];
837 
838 		if (!page)
839 			continue;
840 
841 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
842 			set_page_dirty(page);
843 
844 		mark_page_accessed(page);
845 	}
846 }
847 
848 /**
849  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
850  *
851  * Called by amdgpu_ttm_backend_bind()
852  **/
853 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
854 {
855 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
856 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
857 	unsigned nents;
858 	int r;
859 
860 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
861 	enum dma_data_direction direction = write ?
862 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
863 
864 	/* Allocate an SG array and squash pages into it */
865 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
866 				      ttm->num_pages << PAGE_SHIFT,
867 				      GFP_KERNEL);
868 	if (r)
869 		goto release_sg;
870 
871 	/* Map SG to device */
872 	r = -ENOMEM;
873 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
874 	if (nents != ttm->sg->nents)
875 		goto release_sg;
876 
877 	/* convert SG to linear array of pages and dma addresses */
878 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
879 					 gtt->ttm.dma_address, ttm->num_pages);
880 
881 	return 0;
882 
883 release_sg:
884 	kfree(ttm->sg);
885 	return r;
886 }
887 
888 /**
889  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
890  */
891 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
892 {
893 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
894 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
895 
896 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
897 	enum dma_data_direction direction = write ?
898 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
899 
900 	/* double check that we don't free the table twice */
901 	if (!ttm->sg->sgl)
902 		return;
903 
904 	/* unmap the pages mapped to the device */
905 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
906 
907 	/* mark the pages as dirty */
908 	amdgpu_ttm_tt_mark_user_pages(ttm);
909 
910 	sg_free_table(ttm->sg);
911 }
912 
913 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
914 				struct ttm_buffer_object *tbo,
915 				uint64_t flags)
916 {
917 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
918 	struct ttm_tt *ttm = tbo->ttm;
919 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
920 	int r;
921 
922 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
923 		uint64_t page_idx = 1;
924 
925 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
926 				ttm->pages, gtt->ttm.dma_address, flags);
927 		if (r)
928 			goto gart_bind_fail;
929 
930 		/* Patch mtype of the second part BO */
931 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
932 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
933 
934 		r = amdgpu_gart_bind(adev,
935 				gtt->offset + (page_idx << PAGE_SHIFT),
936 				ttm->num_pages - page_idx,
937 				&ttm->pages[page_idx],
938 				&(gtt->ttm.dma_address[page_idx]), flags);
939 	} else {
940 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
941 				     ttm->pages, gtt->ttm.dma_address, flags);
942 	}
943 
944 gart_bind_fail:
945 	if (r)
946 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
947 			  ttm->num_pages, gtt->offset);
948 
949 	return r;
950 }
951 
952 /**
953  * amdgpu_ttm_backend_bind - Bind GTT memory
954  *
955  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
956  * This handles binding GTT memory to the device address space.
957  */
958 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
959 				   struct ttm_mem_reg *bo_mem)
960 {
961 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
962 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
963 	uint64_t flags;
964 	int r = 0;
965 
966 	if (gtt->userptr) {
967 		r = amdgpu_ttm_tt_pin_userptr(ttm);
968 		if (r) {
969 			DRM_ERROR("failed to pin userptr\n");
970 			return r;
971 		}
972 	}
973 	if (!ttm->num_pages) {
974 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
975 		     ttm->num_pages, bo_mem, ttm);
976 	}
977 
978 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
979 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
980 	    bo_mem->mem_type == AMDGPU_PL_OA)
981 		return -EINVAL;
982 
983 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
984 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
985 		return 0;
986 	}
987 
988 	/* compute PTE flags relevant to this BO memory */
989 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
990 
991 	/* bind pages into GART page tables */
992 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
993 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
994 		ttm->pages, gtt->ttm.dma_address, flags);
995 
996 	if (r)
997 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
998 			  ttm->num_pages, gtt->offset);
999 	return r;
1000 }
1001 
1002 /**
1003  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1004  */
1005 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1006 {
1007 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1008 	struct ttm_operation_ctx ctx = { false, false };
1009 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1010 	struct ttm_mem_reg tmp;
1011 	struct ttm_placement placement;
1012 	struct ttm_place placements;
1013 	uint64_t addr, flags;
1014 	int r;
1015 
1016 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1017 		return 0;
1018 
1019 	addr = amdgpu_gmc_agp_addr(bo);
1020 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1021 		bo->mem.start = addr >> PAGE_SHIFT;
1022 	} else {
1023 
1024 		/* allocate GART space */
1025 		tmp = bo->mem;
1026 		tmp.mm_node = NULL;
1027 		placement.num_placement = 1;
1028 		placement.placement = &placements;
1029 		placement.num_busy_placement = 1;
1030 		placement.busy_placement = &placements;
1031 		placements.fpfn = 0;
1032 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1033 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1034 			TTM_PL_FLAG_TT;
1035 
1036 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1037 		if (unlikely(r))
1038 			return r;
1039 
1040 		/* compute PTE flags for this buffer object */
1041 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1042 
1043 		/* Bind pages */
1044 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1045 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1046 		if (unlikely(r)) {
1047 			ttm_bo_mem_put(bo, &tmp);
1048 			return r;
1049 		}
1050 
1051 		ttm_bo_mem_put(bo, &bo->mem);
1052 		bo->mem = tmp;
1053 	}
1054 
1055 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1056 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1057 
1058 	return 0;
1059 }
1060 
1061 /**
1062  * amdgpu_ttm_recover_gart - Rebind GTT pages
1063  *
1064  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1065  * rebind GTT pages during a GPU reset.
1066  */
1067 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1068 {
1069 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1070 	uint64_t flags;
1071 	int r;
1072 
1073 	if (!tbo->ttm)
1074 		return 0;
1075 
1076 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1077 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1078 
1079 	return r;
1080 }
1081 
1082 /**
1083  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1084  *
1085  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1086  * ttm_tt_destroy().
1087  */
1088 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1089 {
1090 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1091 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1092 	int r;
1093 
1094 	/* if the pages have userptr pinning then clear that first */
1095 	if (gtt->userptr)
1096 		amdgpu_ttm_tt_unpin_userptr(ttm);
1097 
1098 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1099 		return 0;
1100 
1101 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1102 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1103 	if (r)
1104 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1105 			  gtt->ttm.ttm.num_pages, gtt->offset);
1106 	return r;
1107 }
1108 
1109 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1110 {
1111 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1112 
1113 	if (gtt->usertask)
1114 		put_task_struct(gtt->usertask);
1115 
1116 	ttm_dma_tt_fini(&gtt->ttm);
1117 	kfree(gtt);
1118 }
1119 
1120 static struct ttm_backend_func amdgpu_backend_func = {
1121 	.bind = &amdgpu_ttm_backend_bind,
1122 	.unbind = &amdgpu_ttm_backend_unbind,
1123 	.destroy = &amdgpu_ttm_backend_destroy,
1124 };
1125 
1126 /**
1127  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1128  *
1129  * @bo: The buffer object to create a GTT ttm_tt object around
1130  *
1131  * Called by ttm_tt_create().
1132  */
1133 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1134 					   uint32_t page_flags)
1135 {
1136 	struct amdgpu_device *adev;
1137 	struct amdgpu_ttm_tt *gtt;
1138 
1139 	adev = amdgpu_ttm_adev(bo->bdev);
1140 
1141 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1142 	if (gtt == NULL) {
1143 		return NULL;
1144 	}
1145 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1146 
1147 	/* allocate space for the uninitialized page entries */
1148 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1149 		kfree(gtt);
1150 		return NULL;
1151 	}
1152 	return &gtt->ttm.ttm;
1153 }
1154 
1155 /**
1156  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1157  *
1158  * Map the pages of a ttm_tt object to an address space visible
1159  * to the underlying device.
1160  */
1161 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1162 			struct ttm_operation_ctx *ctx)
1163 {
1164 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1165 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1166 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1167 
1168 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1169 	if (gtt && gtt->userptr) {
1170 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1171 		if (!ttm->sg)
1172 			return -ENOMEM;
1173 
1174 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1175 		ttm->state = tt_unbound;
1176 		return 0;
1177 	}
1178 
1179 	if (slave && ttm->sg) {
1180 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1181 						 gtt->ttm.dma_address,
1182 						 ttm->num_pages);
1183 		ttm->state = tt_unbound;
1184 		return 0;
1185 	}
1186 
1187 #ifdef CONFIG_SWIOTLB
1188 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1189 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1190 	}
1191 #endif
1192 
1193 	/* fall back to generic helper to populate the page array
1194 	 * and map them to the device */
1195 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1196 }
1197 
1198 /**
1199  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1200  *
1201  * Unmaps pages of a ttm_tt object from the device address space and
1202  * unpopulates the page array backing it.
1203  */
1204 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1205 {
1206 	struct amdgpu_device *adev;
1207 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1208 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1209 
1210 	if (gtt && gtt->userptr) {
1211 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1212 		kfree(ttm->sg);
1213 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1214 		return;
1215 	}
1216 
1217 	if (slave)
1218 		return;
1219 
1220 	adev = amdgpu_ttm_adev(ttm->bdev);
1221 
1222 #ifdef CONFIG_SWIOTLB
1223 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1224 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1225 		return;
1226 	}
1227 #endif
1228 
1229 	/* fall back to generic helper to unmap and unpopulate array */
1230 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1231 }
1232 
1233 /**
1234  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1235  * task
1236  *
1237  * @ttm: The ttm_tt object to bind this userptr object to
1238  * @addr:  The address in the current tasks VM space to use
1239  * @flags: Requirements of userptr object.
1240  *
1241  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1242  * to current task
1243  */
1244 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1245 			      uint32_t flags)
1246 {
1247 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1248 
1249 	if (gtt == NULL)
1250 		return -EINVAL;
1251 
1252 	gtt->userptr = addr;
1253 	gtt->userflags = flags;
1254 
1255 	if (gtt->usertask)
1256 		put_task_struct(gtt->usertask);
1257 	gtt->usertask = current->group_leader;
1258 	get_task_struct(gtt->usertask);
1259 
1260 	spin_lock_init(&gtt->guptasklock);
1261 	INIT_LIST_HEAD(&gtt->guptasks);
1262 	atomic_set(&gtt->mmu_invalidations, 0);
1263 	gtt->last_set_pages = 0;
1264 
1265 	return 0;
1266 }
1267 
1268 /**
1269  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1270  */
1271 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1272 {
1273 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1274 
1275 	if (gtt == NULL)
1276 		return NULL;
1277 
1278 	if (gtt->usertask == NULL)
1279 		return NULL;
1280 
1281 	return gtt->usertask->mm;
1282 }
1283 
1284 /**
1285  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1286  * address range for the current task.
1287  *
1288  */
1289 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1290 				  unsigned long end)
1291 {
1292 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1293 	struct amdgpu_ttm_gup_task_list *entry;
1294 	unsigned long size;
1295 
1296 	if (gtt == NULL || !gtt->userptr)
1297 		return false;
1298 
1299 	/* Return false if no part of the ttm_tt object lies within
1300 	 * the range
1301 	 */
1302 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1303 	if (gtt->userptr > end || gtt->userptr + size <= start)
1304 		return false;
1305 
1306 	/* Search the lists of tasks that hold this mapping and see
1307 	 * if current is one of them.  If it is return false.
1308 	 */
1309 	spin_lock(&gtt->guptasklock);
1310 	list_for_each_entry(entry, &gtt->guptasks, list) {
1311 		if (entry->task == current) {
1312 			spin_unlock(&gtt->guptasklock);
1313 			return false;
1314 		}
1315 	}
1316 	spin_unlock(&gtt->guptasklock);
1317 
1318 	atomic_inc(&gtt->mmu_invalidations);
1319 
1320 	return true;
1321 }
1322 
1323 /**
1324  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1325  */
1326 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1327 				       int *last_invalidated)
1328 {
1329 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1330 	int prev_invalidated = *last_invalidated;
1331 
1332 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1333 	return prev_invalidated != *last_invalidated;
1334 }
1335 
1336 /**
1337  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1338  * been invalidated since the last time they've been set?
1339  */
1340 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1341 {
1342 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1343 
1344 	if (gtt == NULL || !gtt->userptr)
1345 		return false;
1346 
1347 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1348 }
1349 
1350 /**
1351  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1352  */
1353 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1354 {
1355 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1356 
1357 	if (gtt == NULL)
1358 		return false;
1359 
1360 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1361 }
1362 
1363 /**
1364  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1365  *
1366  * @ttm: The ttm_tt object to compute the flags for
1367  * @mem: The memory registry backing this ttm_tt object
1368  *
1369  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1370  */
1371 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1372 {
1373 	uint64_t flags = 0;
1374 
1375 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1376 		flags |= AMDGPU_PTE_VALID;
1377 
1378 	if (mem && mem->mem_type == TTM_PL_TT) {
1379 		flags |= AMDGPU_PTE_SYSTEM;
1380 
1381 		if (ttm->caching_state == tt_cached)
1382 			flags |= AMDGPU_PTE_SNOOPED;
1383 	}
1384 
1385 	return flags;
1386 }
1387 
1388 /**
1389  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1390  *
1391  * @ttm: The ttm_tt object to compute the flags for
1392  * @mem: The memory registry backing this ttm_tt object
1393 
1394  * Figure out the flags to use for a VM PTE (Page Table Entry).
1395  */
1396 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1397 				 struct ttm_mem_reg *mem)
1398 {
1399 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1400 
1401 	flags |= adev->gart.gart_pte_flags;
1402 	flags |= AMDGPU_PTE_READABLE;
1403 
1404 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1405 		flags |= AMDGPU_PTE_WRITEABLE;
1406 
1407 	return flags;
1408 }
1409 
1410 /**
1411  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1412  * object.
1413  *
1414  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1415  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1416  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1417  * used to clean out a memory space.
1418  */
1419 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1420 					    const struct ttm_place *place)
1421 {
1422 	unsigned long num_pages = bo->mem.num_pages;
1423 	struct drm_mm_node *node = bo->mem.mm_node;
1424 	struct reservation_object_list *flist;
1425 	struct dma_fence *f;
1426 	int i;
1427 
1428 	/* Don't evict VM page tables while they are busy, otherwise we can't
1429 	 * cleanly handle page faults.
1430 	 */
1431 	if (bo->type == ttm_bo_type_kernel &&
1432 	    !reservation_object_test_signaled_rcu(bo->resv, true))
1433 		return false;
1434 
1435 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1436 	 * If true, then return false as any KFD process needs all its BOs to
1437 	 * be resident to run successfully
1438 	 */
1439 	flist = reservation_object_get_list(bo->resv);
1440 	if (flist) {
1441 		for (i = 0; i < flist->shared_count; ++i) {
1442 			f = rcu_dereference_protected(flist->shared[i],
1443 				reservation_object_held(bo->resv));
1444 			if (amdkfd_fence_check_mm(f, current->mm))
1445 				return false;
1446 		}
1447 	}
1448 
1449 	switch (bo->mem.mem_type) {
1450 	case TTM_PL_TT:
1451 		return true;
1452 
1453 	case TTM_PL_VRAM:
1454 		/* Check each drm MM node individually */
1455 		while (num_pages) {
1456 			if (place->fpfn < (node->start + node->size) &&
1457 			    !(place->lpfn && place->lpfn <= node->start))
1458 				return true;
1459 
1460 			num_pages -= node->size;
1461 			++node;
1462 		}
1463 		return false;
1464 
1465 	default:
1466 		break;
1467 	}
1468 
1469 	return ttm_bo_eviction_valuable(bo, place);
1470 }
1471 
1472 /**
1473  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1474  *
1475  * @bo:  The buffer object to read/write
1476  * @offset:  Offset into buffer object
1477  * @buf:  Secondary buffer to write/read from
1478  * @len: Length in bytes of access
1479  * @write:  true if writing
1480  *
1481  * This is used to access VRAM that backs a buffer object via MMIO
1482  * access for debugging purposes.
1483  */
1484 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1485 				    unsigned long offset,
1486 				    void *buf, int len, int write)
1487 {
1488 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1489 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1490 	struct drm_mm_node *nodes;
1491 	uint32_t value = 0;
1492 	int ret = 0;
1493 	uint64_t pos;
1494 	unsigned long flags;
1495 
1496 	if (bo->mem.mem_type != TTM_PL_VRAM)
1497 		return -EIO;
1498 
1499 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1500 	pos = (nodes->start << PAGE_SHIFT) + offset;
1501 
1502 	while (len && pos < adev->gmc.mc_vram_size) {
1503 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1504 		uint32_t bytes = 4 - (pos & 3);
1505 		uint32_t shift = (pos & 3) * 8;
1506 		uint32_t mask = 0xffffffff << shift;
1507 
1508 		if (len < bytes) {
1509 			mask &= 0xffffffff >> (bytes - len) * 8;
1510 			bytes = len;
1511 		}
1512 
1513 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1514 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1515 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1516 		if (!write || mask != 0xffffffff)
1517 			value = RREG32_NO_KIQ(mmMM_DATA);
1518 		if (write) {
1519 			value &= ~mask;
1520 			value |= (*(uint32_t *)buf << shift) & mask;
1521 			WREG32_NO_KIQ(mmMM_DATA, value);
1522 		}
1523 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1524 		if (!write) {
1525 			value = (value & mask) >> shift;
1526 			memcpy(buf, &value, bytes);
1527 		}
1528 
1529 		ret += bytes;
1530 		buf = (uint8_t *)buf + bytes;
1531 		pos += bytes;
1532 		len -= bytes;
1533 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1534 			++nodes;
1535 			pos = (nodes->start << PAGE_SHIFT);
1536 		}
1537 	}
1538 
1539 	return ret;
1540 }
1541 
1542 static struct ttm_bo_driver amdgpu_bo_driver = {
1543 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1544 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1545 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1546 	.invalidate_caches = &amdgpu_invalidate_caches,
1547 	.init_mem_type = &amdgpu_init_mem_type,
1548 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1549 	.evict_flags = &amdgpu_evict_flags,
1550 	.move = &amdgpu_bo_move,
1551 	.verify_access = &amdgpu_verify_access,
1552 	.move_notify = &amdgpu_bo_move_notify,
1553 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1554 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1555 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1556 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1557 	.access_memory = &amdgpu_ttm_access_memory,
1558 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1559 };
1560 
1561 /*
1562  * Firmware Reservation functions
1563  */
1564 /**
1565  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1566  *
1567  * @adev: amdgpu_device pointer
1568  *
1569  * free fw reserved vram if it has been reserved.
1570  */
1571 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1572 {
1573 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1574 		NULL, &adev->fw_vram_usage.va);
1575 }
1576 
1577 /**
1578  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1579  *
1580  * @adev: amdgpu_device pointer
1581  *
1582  * create bo vram reservation from fw.
1583  */
1584 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1585 {
1586 	struct ttm_operation_ctx ctx = { false, false };
1587 	struct amdgpu_bo_param bp;
1588 	int r = 0;
1589 	int i;
1590 	u64 vram_size = adev->gmc.visible_vram_size;
1591 	u64 offset = adev->fw_vram_usage.start_offset;
1592 	u64 size = adev->fw_vram_usage.size;
1593 	struct amdgpu_bo *bo;
1594 
1595 	memset(&bp, 0, sizeof(bp));
1596 	bp.size = adev->fw_vram_usage.size;
1597 	bp.byte_align = PAGE_SIZE;
1598 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1599 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1600 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1601 	bp.type = ttm_bo_type_kernel;
1602 	bp.resv = NULL;
1603 	adev->fw_vram_usage.va = NULL;
1604 	adev->fw_vram_usage.reserved_bo = NULL;
1605 
1606 	if (adev->fw_vram_usage.size > 0 &&
1607 		adev->fw_vram_usage.size <= vram_size) {
1608 
1609 		r = amdgpu_bo_create(adev, &bp,
1610 				     &adev->fw_vram_usage.reserved_bo);
1611 		if (r)
1612 			goto error_create;
1613 
1614 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1615 		if (r)
1616 			goto error_reserve;
1617 
1618 		/* remove the original mem node and create a new one at the
1619 		 * request position
1620 		 */
1621 		bo = adev->fw_vram_usage.reserved_bo;
1622 		offset = ALIGN(offset, PAGE_SIZE);
1623 		for (i = 0; i < bo->placement.num_placement; ++i) {
1624 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1625 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1626 		}
1627 
1628 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1629 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1630 				     &bo->tbo.mem, &ctx);
1631 		if (r)
1632 			goto error_pin;
1633 
1634 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1635 			AMDGPU_GEM_DOMAIN_VRAM,
1636 			adev->fw_vram_usage.start_offset,
1637 			(adev->fw_vram_usage.start_offset +
1638 			adev->fw_vram_usage.size));
1639 		if (r)
1640 			goto error_pin;
1641 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1642 			&adev->fw_vram_usage.va);
1643 		if (r)
1644 			goto error_kmap;
1645 
1646 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1647 	}
1648 	return r;
1649 
1650 error_kmap:
1651 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1652 error_pin:
1653 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1654 error_reserve:
1655 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1656 error_create:
1657 	adev->fw_vram_usage.va = NULL;
1658 	adev->fw_vram_usage.reserved_bo = NULL;
1659 	return r;
1660 }
1661 /**
1662  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1663  * gtt/vram related fields.
1664  *
1665  * This initializes all of the memory space pools that the TTM layer
1666  * will need such as the GTT space (system memory mapped to the device),
1667  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1668  * can be mapped per VMID.
1669  */
1670 int amdgpu_ttm_init(struct amdgpu_device *adev)
1671 {
1672 	uint64_t gtt_size;
1673 	int r;
1674 	u64 vis_vram_limit;
1675 
1676 	mutex_init(&adev->mman.gtt_window_lock);
1677 
1678 	/* No others user of address space so set it to 0 */
1679 	r = ttm_bo_device_init(&adev->mman.bdev,
1680 			       &amdgpu_bo_driver,
1681 			       adev->ddev->anon_inode->i_mapping,
1682 			       adev->need_dma32);
1683 	if (r) {
1684 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1685 		return r;
1686 	}
1687 	adev->mman.initialized = true;
1688 
1689 	/* We opt to avoid OOM on system pages allocations */
1690 	adev->mman.bdev.no_retry = true;
1691 
1692 	/* Initialize VRAM pool with all of VRAM divided into pages */
1693 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1694 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1695 	if (r) {
1696 		DRM_ERROR("Failed initializing VRAM heap.\n");
1697 		return r;
1698 	}
1699 
1700 	/* Reduce size of CPU-visible VRAM if requested */
1701 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1702 	if (amdgpu_vis_vram_limit > 0 &&
1703 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1704 		adev->gmc.visible_vram_size = vis_vram_limit;
1705 
1706 	/* Change the size here instead of the init above so only lpfn is affected */
1707 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1708 #ifdef CONFIG_64BIT
1709 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1710 						adev->gmc.visible_vram_size);
1711 #endif
1712 
1713 	/*
1714 	 *The reserved vram for firmware must be pinned to the specified
1715 	 *place on the VRAM, so reserve it early.
1716 	 */
1717 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1718 	if (r) {
1719 		return r;
1720 	}
1721 
1722 	/* allocate memory as required for VGA
1723 	 * This is used for VGA emulation and pre-OS scanout buffers to
1724 	 * avoid display artifacts while transitioning between pre-OS
1725 	 * and driver.  */
1726 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1727 				    AMDGPU_GEM_DOMAIN_VRAM,
1728 				    &adev->stolen_vga_memory,
1729 				    NULL, NULL);
1730 	if (r)
1731 		return r;
1732 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1733 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1734 
1735 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1736 	 * or whatever the user passed on module init */
1737 	if (amdgpu_gtt_size == -1) {
1738 		struct sysinfo si;
1739 
1740 		si_meminfo(&si);
1741 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1742 			       adev->gmc.mc_vram_size),
1743 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1744 	}
1745 	else
1746 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1747 
1748 	/* Initialize GTT memory pool */
1749 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1750 	if (r) {
1751 		DRM_ERROR("Failed initializing GTT heap.\n");
1752 		return r;
1753 	}
1754 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1755 		 (unsigned)(gtt_size / (1024 * 1024)));
1756 
1757 	/* Initialize various on-chip memory pools */
1758 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1759 			   adev->gds.mem.total_size);
1760 	if (r) {
1761 		DRM_ERROR("Failed initializing GDS heap.\n");
1762 		return r;
1763 	}
1764 
1765 	r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size,
1766 				    4, AMDGPU_GEM_DOMAIN_GDS,
1767 				    &adev->gds.gds_gfx_bo, NULL, NULL);
1768 	if (r)
1769 		return r;
1770 
1771 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1772 			   adev->gds.gws.total_size);
1773 	if (r) {
1774 		DRM_ERROR("Failed initializing gws heap.\n");
1775 		return r;
1776 	}
1777 
1778 	r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size,
1779 				    1, AMDGPU_GEM_DOMAIN_GWS,
1780 				    &adev->gds.gws_gfx_bo, NULL, NULL);
1781 	if (r)
1782 		return r;
1783 
1784 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1785 			   adev->gds.oa.total_size);
1786 	if (r) {
1787 		DRM_ERROR("Failed initializing oa heap.\n");
1788 		return r;
1789 	}
1790 
1791 	r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size,
1792 				    1, AMDGPU_GEM_DOMAIN_OA,
1793 				    &adev->gds.oa_gfx_bo, NULL, NULL);
1794 	if (r)
1795 		return r;
1796 
1797 	/* Register debugfs entries for amdgpu_ttm */
1798 	r = amdgpu_ttm_debugfs_init(adev);
1799 	if (r) {
1800 		DRM_ERROR("Failed to init debugfs\n");
1801 		return r;
1802 	}
1803 	return 0;
1804 }
1805 
1806 /**
1807  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1808  */
1809 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1810 {
1811 	/* return the VGA stolen memory (if any) back to VRAM */
1812 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1813 }
1814 
1815 /**
1816  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1817  */
1818 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1819 {
1820 	if (!adev->mman.initialized)
1821 		return;
1822 
1823 	amdgpu_ttm_debugfs_fini(adev);
1824 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1825 	if (adev->mman.aper_base_kaddr)
1826 		iounmap(adev->mman.aper_base_kaddr);
1827 	adev->mman.aper_base_kaddr = NULL;
1828 
1829 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1830 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1831 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1832 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1833 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1834 	ttm_bo_device_release(&adev->mman.bdev);
1835 	adev->mman.initialized = false;
1836 	DRM_INFO("amdgpu: ttm finalized\n");
1837 }
1838 
1839 /**
1840  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1841  *
1842  * @adev: amdgpu_device pointer
1843  * @enable: true when we can use buffer functions.
1844  *
1845  * Enable/disable use of buffer functions during suspend/resume. This should
1846  * only be called at bootup or when userspace isn't running.
1847  */
1848 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1849 {
1850 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1851 	uint64_t size;
1852 	int r;
1853 
1854 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1855 	    adev->mman.buffer_funcs_enabled == enable)
1856 		return;
1857 
1858 	if (enable) {
1859 		struct amdgpu_ring *ring;
1860 		struct drm_sched_rq *rq;
1861 
1862 		ring = adev->mman.buffer_funcs_ring;
1863 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1864 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1865 		if (r) {
1866 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1867 				  r);
1868 			return;
1869 		}
1870 	} else {
1871 		drm_sched_entity_destroy(&adev->mman.entity);
1872 		dma_fence_put(man->move);
1873 		man->move = NULL;
1874 	}
1875 
1876 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1877 	if (enable)
1878 		size = adev->gmc.real_vram_size;
1879 	else
1880 		size = adev->gmc.visible_vram_size;
1881 	man->size = size >> PAGE_SHIFT;
1882 	adev->mman.buffer_funcs_enabled = enable;
1883 }
1884 
1885 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1886 {
1887 	struct drm_file *file_priv = filp->private_data;
1888 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1889 
1890 	if (adev == NULL)
1891 		return -EINVAL;
1892 
1893 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1894 }
1895 
1896 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1897 			     struct ttm_mem_reg *mem, unsigned num_pages,
1898 			     uint64_t offset, unsigned window,
1899 			     struct amdgpu_ring *ring,
1900 			     uint64_t *addr)
1901 {
1902 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1903 	struct amdgpu_device *adev = ring->adev;
1904 	struct ttm_tt *ttm = bo->ttm;
1905 	struct amdgpu_job *job;
1906 	unsigned num_dw, num_bytes;
1907 	dma_addr_t *dma_address;
1908 	struct dma_fence *fence;
1909 	uint64_t src_addr, dst_addr;
1910 	uint64_t flags;
1911 	int r;
1912 
1913 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1914 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1915 
1916 	*addr = adev->gmc.gart_start;
1917 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1918 		AMDGPU_GPU_PAGE_SIZE;
1919 
1920 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1921 	while (num_dw & 0x7)
1922 		num_dw++;
1923 
1924 	num_bytes = num_pages * 8;
1925 
1926 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1927 	if (r)
1928 		return r;
1929 
1930 	src_addr = num_dw * 4;
1931 	src_addr += job->ibs[0].gpu_addr;
1932 
1933 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1934 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1935 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1936 				dst_addr, num_bytes);
1937 
1938 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1939 	WARN_ON(job->ibs[0].length_dw > num_dw);
1940 
1941 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1942 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1943 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1944 			    &job->ibs[0].ptr[num_dw]);
1945 	if (r)
1946 		goto error_free;
1947 
1948 	r = amdgpu_job_submit(job, &adev->mman.entity,
1949 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1950 	if (r)
1951 		goto error_free;
1952 
1953 	dma_fence_put(fence);
1954 
1955 	return r;
1956 
1957 error_free:
1958 	amdgpu_job_free(job);
1959 	return r;
1960 }
1961 
1962 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1963 		       uint64_t dst_offset, uint32_t byte_count,
1964 		       struct reservation_object *resv,
1965 		       struct dma_fence **fence, bool direct_submit,
1966 		       bool vm_needs_flush)
1967 {
1968 	struct amdgpu_device *adev = ring->adev;
1969 	struct amdgpu_job *job;
1970 
1971 	uint32_t max_bytes;
1972 	unsigned num_loops, num_dw;
1973 	unsigned i;
1974 	int r;
1975 
1976 	if (direct_submit && !ring->sched.ready) {
1977 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1978 		return -EINVAL;
1979 	}
1980 
1981 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1982 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1983 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1984 
1985 	/* for IB padding */
1986 	while (num_dw & 0x7)
1987 		num_dw++;
1988 
1989 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1990 	if (r)
1991 		return r;
1992 
1993 	if (vm_needs_flush) {
1994 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1995 		job->vm_needs_flush = true;
1996 	}
1997 	if (resv) {
1998 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1999 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2000 				     false);
2001 		if (r) {
2002 			DRM_ERROR("sync failed (%d).\n", r);
2003 			goto error_free;
2004 		}
2005 	}
2006 
2007 	for (i = 0; i < num_loops; i++) {
2008 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2009 
2010 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2011 					dst_offset, cur_size_in_bytes);
2012 
2013 		src_offset += cur_size_in_bytes;
2014 		dst_offset += cur_size_in_bytes;
2015 		byte_count -= cur_size_in_bytes;
2016 	}
2017 
2018 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2019 	WARN_ON(job->ibs[0].length_dw > num_dw);
2020 	if (direct_submit)
2021 		r = amdgpu_job_submit_direct(job, ring, fence);
2022 	else
2023 		r = amdgpu_job_submit(job, &adev->mman.entity,
2024 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2025 	if (r)
2026 		goto error_free;
2027 
2028 	return r;
2029 
2030 error_free:
2031 	amdgpu_job_free(job);
2032 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2033 	return r;
2034 }
2035 
2036 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2037 		       uint32_t src_data,
2038 		       struct reservation_object *resv,
2039 		       struct dma_fence **fence)
2040 {
2041 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2042 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2043 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2044 
2045 	struct drm_mm_node *mm_node;
2046 	unsigned long num_pages;
2047 	unsigned int num_loops, num_dw;
2048 
2049 	struct amdgpu_job *job;
2050 	int r;
2051 
2052 	if (!adev->mman.buffer_funcs_enabled) {
2053 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2054 		return -EINVAL;
2055 	}
2056 
2057 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2058 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2059 		if (r)
2060 			return r;
2061 	}
2062 
2063 	num_pages = bo->tbo.num_pages;
2064 	mm_node = bo->tbo.mem.mm_node;
2065 	num_loops = 0;
2066 	while (num_pages) {
2067 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2068 
2069 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2070 		num_pages -= mm_node->size;
2071 		++mm_node;
2072 	}
2073 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2074 
2075 	/* for IB padding */
2076 	num_dw += 64;
2077 
2078 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2079 	if (r)
2080 		return r;
2081 
2082 	if (resv) {
2083 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2084 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2085 		if (r) {
2086 			DRM_ERROR("sync failed (%d).\n", r);
2087 			goto error_free;
2088 		}
2089 	}
2090 
2091 	num_pages = bo->tbo.num_pages;
2092 	mm_node = bo->tbo.mem.mm_node;
2093 
2094 	while (num_pages) {
2095 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2096 		uint64_t dst_addr;
2097 
2098 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2099 		while (byte_count) {
2100 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2101 
2102 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2103 						dst_addr, cur_size_in_bytes);
2104 
2105 			dst_addr += cur_size_in_bytes;
2106 			byte_count -= cur_size_in_bytes;
2107 		}
2108 
2109 		num_pages -= mm_node->size;
2110 		++mm_node;
2111 	}
2112 
2113 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2114 	WARN_ON(job->ibs[0].length_dw > num_dw);
2115 	r = amdgpu_job_submit(job, &adev->mman.entity,
2116 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2117 	if (r)
2118 		goto error_free;
2119 
2120 	return 0;
2121 
2122 error_free:
2123 	amdgpu_job_free(job);
2124 	return r;
2125 }
2126 
2127 #if defined(CONFIG_DEBUG_FS)
2128 
2129 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2130 {
2131 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2132 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2133 	struct drm_device *dev = node->minor->dev;
2134 	struct amdgpu_device *adev = dev->dev_private;
2135 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2136 	struct drm_printer p = drm_seq_file_printer(m);
2137 
2138 	man->func->debug(man, &p);
2139 	return 0;
2140 }
2141 
2142 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2143 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2144 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2145 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2146 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2147 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2148 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2149 #ifdef CONFIG_SWIOTLB
2150 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2151 #endif
2152 };
2153 
2154 /**
2155  * amdgpu_ttm_vram_read - Linear read access to VRAM
2156  *
2157  * Accesses VRAM via MMIO for debugging purposes.
2158  */
2159 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2160 				    size_t size, loff_t *pos)
2161 {
2162 	struct amdgpu_device *adev = file_inode(f)->i_private;
2163 	ssize_t result = 0;
2164 	int r;
2165 
2166 	if (size & 0x3 || *pos & 0x3)
2167 		return -EINVAL;
2168 
2169 	if (*pos >= adev->gmc.mc_vram_size)
2170 		return -ENXIO;
2171 
2172 	while (size) {
2173 		unsigned long flags;
2174 		uint32_t value;
2175 
2176 		if (*pos >= adev->gmc.mc_vram_size)
2177 			return result;
2178 
2179 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2180 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2181 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2182 		value = RREG32_NO_KIQ(mmMM_DATA);
2183 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2184 
2185 		r = put_user(value, (uint32_t *)buf);
2186 		if (r)
2187 			return r;
2188 
2189 		result += 4;
2190 		buf += 4;
2191 		*pos += 4;
2192 		size -= 4;
2193 	}
2194 
2195 	return result;
2196 }
2197 
2198 /**
2199  * amdgpu_ttm_vram_write - Linear write access to VRAM
2200  *
2201  * Accesses VRAM via MMIO for debugging purposes.
2202  */
2203 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2204 				    size_t size, loff_t *pos)
2205 {
2206 	struct amdgpu_device *adev = file_inode(f)->i_private;
2207 	ssize_t result = 0;
2208 	int r;
2209 
2210 	if (size & 0x3 || *pos & 0x3)
2211 		return -EINVAL;
2212 
2213 	if (*pos >= adev->gmc.mc_vram_size)
2214 		return -ENXIO;
2215 
2216 	while (size) {
2217 		unsigned long flags;
2218 		uint32_t value;
2219 
2220 		if (*pos >= adev->gmc.mc_vram_size)
2221 			return result;
2222 
2223 		r = get_user(value, (uint32_t *)buf);
2224 		if (r)
2225 			return r;
2226 
2227 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2228 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2229 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2230 		WREG32_NO_KIQ(mmMM_DATA, value);
2231 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2232 
2233 		result += 4;
2234 		buf += 4;
2235 		*pos += 4;
2236 		size -= 4;
2237 	}
2238 
2239 	return result;
2240 }
2241 
2242 static const struct file_operations amdgpu_ttm_vram_fops = {
2243 	.owner = THIS_MODULE,
2244 	.read = amdgpu_ttm_vram_read,
2245 	.write = amdgpu_ttm_vram_write,
2246 	.llseek = default_llseek,
2247 };
2248 
2249 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2250 
2251 /**
2252  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2253  */
2254 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2255 				   size_t size, loff_t *pos)
2256 {
2257 	struct amdgpu_device *adev = file_inode(f)->i_private;
2258 	ssize_t result = 0;
2259 	int r;
2260 
2261 	while (size) {
2262 		loff_t p = *pos / PAGE_SIZE;
2263 		unsigned off = *pos & ~PAGE_MASK;
2264 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2265 		struct page *page;
2266 		void *ptr;
2267 
2268 		if (p >= adev->gart.num_cpu_pages)
2269 			return result;
2270 
2271 		page = adev->gart.pages[p];
2272 		if (page) {
2273 			ptr = kmap(page);
2274 			ptr += off;
2275 
2276 			r = copy_to_user(buf, ptr, cur_size);
2277 			kunmap(adev->gart.pages[p]);
2278 		} else
2279 			r = clear_user(buf, cur_size);
2280 
2281 		if (r)
2282 			return -EFAULT;
2283 
2284 		result += cur_size;
2285 		buf += cur_size;
2286 		*pos += cur_size;
2287 		size -= cur_size;
2288 	}
2289 
2290 	return result;
2291 }
2292 
2293 static const struct file_operations amdgpu_ttm_gtt_fops = {
2294 	.owner = THIS_MODULE,
2295 	.read = amdgpu_ttm_gtt_read,
2296 	.llseek = default_llseek
2297 };
2298 
2299 #endif
2300 
2301 /**
2302  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2303  *
2304  * This function is used to read memory that has been mapped to the
2305  * GPU and the known addresses are not physical addresses but instead
2306  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2307  */
2308 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2309 				 size_t size, loff_t *pos)
2310 {
2311 	struct amdgpu_device *adev = file_inode(f)->i_private;
2312 	struct iommu_domain *dom;
2313 	ssize_t result = 0;
2314 	int r;
2315 
2316 	/* retrieve the IOMMU domain if any for this device */
2317 	dom = iommu_get_domain_for_dev(adev->dev);
2318 
2319 	while (size) {
2320 		phys_addr_t addr = *pos & PAGE_MASK;
2321 		loff_t off = *pos & ~PAGE_MASK;
2322 		size_t bytes = PAGE_SIZE - off;
2323 		unsigned long pfn;
2324 		struct page *p;
2325 		void *ptr;
2326 
2327 		bytes = bytes < size ? bytes : size;
2328 
2329 		/* Translate the bus address to a physical address.  If
2330 		 * the domain is NULL it means there is no IOMMU active
2331 		 * and the address translation is the identity
2332 		 */
2333 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2334 
2335 		pfn = addr >> PAGE_SHIFT;
2336 		if (!pfn_valid(pfn))
2337 			return -EPERM;
2338 
2339 		p = pfn_to_page(pfn);
2340 		if (p->mapping != adev->mman.bdev.dev_mapping)
2341 			return -EPERM;
2342 
2343 		ptr = kmap(p);
2344 		r = copy_to_user(buf, ptr + off, bytes);
2345 		kunmap(p);
2346 		if (r)
2347 			return -EFAULT;
2348 
2349 		size -= bytes;
2350 		*pos += bytes;
2351 		result += bytes;
2352 	}
2353 
2354 	return result;
2355 }
2356 
2357 /**
2358  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2359  *
2360  * This function is used to write memory that has been mapped to the
2361  * GPU and the known addresses are not physical addresses but instead
2362  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2363  */
2364 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2365 				 size_t size, loff_t *pos)
2366 {
2367 	struct amdgpu_device *adev = file_inode(f)->i_private;
2368 	struct iommu_domain *dom;
2369 	ssize_t result = 0;
2370 	int r;
2371 
2372 	dom = iommu_get_domain_for_dev(adev->dev);
2373 
2374 	while (size) {
2375 		phys_addr_t addr = *pos & PAGE_MASK;
2376 		loff_t off = *pos & ~PAGE_MASK;
2377 		size_t bytes = PAGE_SIZE - off;
2378 		unsigned long pfn;
2379 		struct page *p;
2380 		void *ptr;
2381 
2382 		bytes = bytes < size ? bytes : size;
2383 
2384 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2385 
2386 		pfn = addr >> PAGE_SHIFT;
2387 		if (!pfn_valid(pfn))
2388 			return -EPERM;
2389 
2390 		p = pfn_to_page(pfn);
2391 		if (p->mapping != adev->mman.bdev.dev_mapping)
2392 			return -EPERM;
2393 
2394 		ptr = kmap(p);
2395 		r = copy_from_user(ptr + off, buf, bytes);
2396 		kunmap(p);
2397 		if (r)
2398 			return -EFAULT;
2399 
2400 		size -= bytes;
2401 		*pos += bytes;
2402 		result += bytes;
2403 	}
2404 
2405 	return result;
2406 }
2407 
2408 static const struct file_operations amdgpu_ttm_iomem_fops = {
2409 	.owner = THIS_MODULE,
2410 	.read = amdgpu_iomem_read,
2411 	.write = amdgpu_iomem_write,
2412 	.llseek = default_llseek
2413 };
2414 
2415 static const struct {
2416 	char *name;
2417 	const struct file_operations *fops;
2418 	int domain;
2419 } ttm_debugfs_entries[] = {
2420 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2421 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2422 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2423 #endif
2424 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2425 };
2426 
2427 #endif
2428 
2429 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2430 {
2431 #if defined(CONFIG_DEBUG_FS)
2432 	unsigned count;
2433 
2434 	struct drm_minor *minor = adev->ddev->primary;
2435 	struct dentry *ent, *root = minor->debugfs_root;
2436 
2437 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2438 		ent = debugfs_create_file(
2439 				ttm_debugfs_entries[count].name,
2440 				S_IFREG | S_IRUGO, root,
2441 				adev,
2442 				ttm_debugfs_entries[count].fops);
2443 		if (IS_ERR(ent))
2444 			return PTR_ERR(ent);
2445 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2446 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2447 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2448 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2449 		adev->mman.debugfs_entries[count] = ent;
2450 	}
2451 
2452 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2453 
2454 #ifdef CONFIG_SWIOTLB
2455 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2456 		--count;
2457 #endif
2458 
2459 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2460 #else
2461 	return 0;
2462 #endif
2463 }
2464 
2465 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2466 {
2467 #if defined(CONFIG_DEBUG_FS)
2468 	unsigned i;
2469 
2470 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2471 		debugfs_remove(adev->mman.debugfs_entries[i]);
2472 #endif
2473 }
2474