1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 43 #include <drm/ttm/ttm_bo_api.h> 44 #include <drm/ttm/ttm_bo_driver.h> 45 #include <drm/ttm/ttm_placement.h> 46 #include <drm/ttm/ttm_module.h> 47 #include <drm/ttm/ttm_page_alloc.h> 48 49 #include <drm/drm_debugfs.h> 50 #include <drm/amdgpu_drm.h> 51 52 #include "amdgpu.h" 53 #include "amdgpu_object.h" 54 #include "amdgpu_trace.h" 55 #include "amdgpu_amdkfd.h" 56 #include "amdgpu_sdma.h" 57 #include "bif/bif_4_1_d.h" 58 59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 60 struct ttm_mem_reg *mem, unsigned num_pages, 61 uint64_t offset, unsigned window, 62 struct amdgpu_ring *ring, 63 uint64_t *addr); 64 65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 67 68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 69 { 70 return 0; 71 } 72 73 /** 74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 75 * memory request. 76 * 77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 78 * @type: The type of memory requested 79 * @man: The memory type manager for each domain 80 * 81 * This is called by ttm_bo_init_mm() when a buffer object is being 82 * initialized. 83 */ 84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 85 struct ttm_mem_type_manager *man) 86 { 87 struct amdgpu_device *adev; 88 89 adev = amdgpu_ttm_adev(bdev); 90 91 switch (type) { 92 case TTM_PL_SYSTEM: 93 /* System memory */ 94 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 95 man->available_caching = TTM_PL_MASK_CACHING; 96 man->default_caching = TTM_PL_FLAG_CACHED; 97 break; 98 case TTM_PL_TT: 99 /* GTT memory */ 100 man->func = &amdgpu_gtt_mgr_func; 101 man->gpu_offset = adev->gmc.gart_start; 102 man->available_caching = TTM_PL_MASK_CACHING; 103 man->default_caching = TTM_PL_FLAG_CACHED; 104 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 105 break; 106 case TTM_PL_VRAM: 107 /* "On-card" video ram */ 108 man->func = &amdgpu_vram_mgr_func; 109 man->gpu_offset = adev->gmc.vram_start; 110 man->flags = TTM_MEMTYPE_FLAG_FIXED | 111 TTM_MEMTYPE_FLAG_MAPPABLE; 112 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 113 man->default_caching = TTM_PL_FLAG_WC; 114 break; 115 case AMDGPU_PL_GDS: 116 case AMDGPU_PL_GWS: 117 case AMDGPU_PL_OA: 118 /* On-chip GDS memory*/ 119 man->func = &ttm_bo_manager_func; 120 man->gpu_offset = 0; 121 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 122 man->available_caching = TTM_PL_FLAG_UNCACHED; 123 man->default_caching = TTM_PL_FLAG_UNCACHED; 124 break; 125 default: 126 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 127 return -EINVAL; 128 } 129 return 0; 130 } 131 132 /** 133 * amdgpu_evict_flags - Compute placement flags 134 * 135 * @bo: The buffer object to evict 136 * @placement: Possible destination(s) for evicted BO 137 * 138 * Fill in placement data when ttm_bo_evict() is called 139 */ 140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 141 struct ttm_placement *placement) 142 { 143 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 144 struct amdgpu_bo *abo; 145 static const struct ttm_place placements = { 146 .fpfn = 0, 147 .lpfn = 0, 148 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 149 }; 150 151 /* Don't handle scatter gather BOs */ 152 if (bo->type == ttm_bo_type_sg) { 153 placement->num_placement = 0; 154 placement->num_busy_placement = 0; 155 return; 156 } 157 158 /* Object isn't an AMDGPU object so ignore */ 159 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 160 placement->placement = &placements; 161 placement->busy_placement = &placements; 162 placement->num_placement = 1; 163 placement->num_busy_placement = 1; 164 return; 165 } 166 167 abo = ttm_to_amdgpu_bo(bo); 168 switch (bo->mem.mem_type) { 169 case AMDGPU_PL_GDS: 170 case AMDGPU_PL_GWS: 171 case AMDGPU_PL_OA: 172 placement->num_placement = 0; 173 placement->num_busy_placement = 0; 174 return; 175 176 case TTM_PL_VRAM: 177 if (!adev->mman.buffer_funcs_enabled) { 178 /* Move to system memory */ 179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 180 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 181 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 182 amdgpu_bo_in_cpu_visible_vram(abo)) { 183 184 /* Try evicting to the CPU inaccessible part of VRAM 185 * first, but only set GTT as busy placement, so this 186 * BO will be evicted to GTT rather than causing other 187 * BOs to be evicted from VRAM 188 */ 189 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 190 AMDGPU_GEM_DOMAIN_GTT); 191 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 192 abo->placements[0].lpfn = 0; 193 abo->placement.busy_placement = &abo->placements[1]; 194 abo->placement.num_busy_placement = 1; 195 } else { 196 /* Move to GTT memory */ 197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 198 } 199 break; 200 case TTM_PL_TT: 201 default: 202 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 203 break; 204 } 205 *placement = abo->placement; 206 } 207 208 /** 209 * amdgpu_verify_access - Verify access for a mmap call 210 * 211 * @bo: The buffer object to map 212 * @filp: The file pointer from the process performing the mmap 213 * 214 * This is called by ttm_bo_mmap() to verify whether a process 215 * has the right to mmap a BO to their process space. 216 */ 217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 218 { 219 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 220 221 /* 222 * Don't verify access for KFD BOs. They don't have a GEM 223 * object associated with them. 224 */ 225 if (abo->kfd_bo) 226 return 0; 227 228 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 229 return -EPERM; 230 return drm_vma_node_verify_access(&abo->gem_base.vma_node, 231 filp->private_data); 232 } 233 234 /** 235 * amdgpu_move_null - Register memory for a buffer object 236 * 237 * @bo: The bo to assign the memory to 238 * @new_mem: The memory to be assigned. 239 * 240 * Assign the memory from new_mem to the memory of the buffer object bo. 241 */ 242 static void amdgpu_move_null(struct ttm_buffer_object *bo, 243 struct ttm_mem_reg *new_mem) 244 { 245 struct ttm_mem_reg *old_mem = &bo->mem; 246 247 BUG_ON(old_mem->mm_node != NULL); 248 *old_mem = *new_mem; 249 new_mem->mm_node = NULL; 250 } 251 252 /** 253 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 254 * 255 * @bo: The bo to assign the memory to. 256 * @mm_node: Memory manager node for drm allocator. 257 * @mem: The region where the bo resides. 258 * 259 */ 260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 261 struct drm_mm_node *mm_node, 262 struct ttm_mem_reg *mem) 263 { 264 uint64_t addr = 0; 265 266 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 267 addr = mm_node->start << PAGE_SHIFT; 268 addr += bo->bdev->man[mem->mem_type].gpu_offset; 269 } 270 return addr; 271 } 272 273 /** 274 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 275 * @offset. It also modifies the offset to be within the drm_mm_node returned 276 * 277 * @mem: The region where the bo resides. 278 * @offset: The offset that drm_mm_node is used for finding. 279 * 280 */ 281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 282 unsigned long *offset) 283 { 284 struct drm_mm_node *mm_node = mem->mm_node; 285 286 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 287 *offset -= (mm_node->size << PAGE_SHIFT); 288 ++mm_node; 289 } 290 return mm_node; 291 } 292 293 /** 294 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 295 * 296 * The function copies @size bytes from {src->mem + src->offset} to 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 298 * move and different for a BO to BO copy. 299 * 300 * @f: Returns the last fence if multiple jobs are submitted. 301 */ 302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 303 struct amdgpu_copy_mem *src, 304 struct amdgpu_copy_mem *dst, 305 uint64_t size, 306 struct reservation_object *resv, 307 struct dma_fence **f) 308 { 309 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 310 struct drm_mm_node *src_mm, *dst_mm; 311 uint64_t src_node_start, dst_node_start, src_node_size, 312 dst_node_size, src_page_offset, dst_page_offset; 313 struct dma_fence *fence = NULL; 314 int r = 0; 315 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 316 AMDGPU_GPU_PAGE_SIZE); 317 318 if (!adev->mman.buffer_funcs_enabled) { 319 DRM_ERROR("Trying to move memory with ring turned off.\n"); 320 return -EINVAL; 321 } 322 323 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 324 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 325 src->offset; 326 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 327 src_page_offset = src_node_start & (PAGE_SIZE - 1); 328 329 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 330 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 331 dst->offset; 332 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 333 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 334 335 mutex_lock(&adev->mman.gtt_window_lock); 336 337 while (size) { 338 unsigned long cur_size; 339 uint64_t from = src_node_start, to = dst_node_start; 340 struct dma_fence *next; 341 342 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 343 * begins at an offset, then adjust the size accordingly 344 */ 345 cur_size = min3(min(src_node_size, dst_node_size), size, 346 GTT_MAX_BYTES); 347 if (cur_size + src_page_offset > GTT_MAX_BYTES || 348 cur_size + dst_page_offset > GTT_MAX_BYTES) 349 cur_size -= max(src_page_offset, dst_page_offset); 350 351 /* Map only what needs to be accessed. Map src to window 0 and 352 * dst to window 1 353 */ 354 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 355 r = amdgpu_map_buffer(src->bo, src->mem, 356 PFN_UP(cur_size + src_page_offset), 357 src_node_start, 0, ring, 358 &from); 359 if (r) 360 goto error; 361 /* Adjust the offset because amdgpu_map_buffer returns 362 * start of mapped page 363 */ 364 from += src_page_offset; 365 } 366 367 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 368 r = amdgpu_map_buffer(dst->bo, dst->mem, 369 PFN_UP(cur_size + dst_page_offset), 370 dst_node_start, 1, ring, 371 &to); 372 if (r) 373 goto error; 374 to += dst_page_offset; 375 } 376 377 r = amdgpu_copy_buffer(ring, from, to, cur_size, 378 resv, &next, false, true); 379 if (r) 380 goto error; 381 382 dma_fence_put(fence); 383 fence = next; 384 385 size -= cur_size; 386 if (!size) 387 break; 388 389 src_node_size -= cur_size; 390 if (!src_node_size) { 391 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 392 src->mem); 393 src_node_size = (src_mm->size << PAGE_SHIFT); 394 src_page_offset = 0; 395 } else { 396 src_node_start += cur_size; 397 src_page_offset = src_node_start & (PAGE_SIZE - 1); 398 } 399 dst_node_size -= cur_size; 400 if (!dst_node_size) { 401 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 402 dst->mem); 403 dst_node_size = (dst_mm->size << PAGE_SHIFT); 404 dst_page_offset = 0; 405 } else { 406 dst_node_start += cur_size; 407 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 408 } 409 } 410 error: 411 mutex_unlock(&adev->mman.gtt_window_lock); 412 if (f) 413 *f = dma_fence_get(fence); 414 dma_fence_put(fence); 415 return r; 416 } 417 418 /** 419 * amdgpu_move_blit - Copy an entire buffer to another buffer 420 * 421 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 422 * help move buffers to and from VRAM. 423 */ 424 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 425 bool evict, bool no_wait_gpu, 426 struct ttm_mem_reg *new_mem, 427 struct ttm_mem_reg *old_mem) 428 { 429 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 430 struct amdgpu_copy_mem src, dst; 431 struct dma_fence *fence = NULL; 432 int r; 433 434 src.bo = bo; 435 dst.bo = bo; 436 src.mem = old_mem; 437 dst.mem = new_mem; 438 src.offset = 0; 439 dst.offset = 0; 440 441 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 442 new_mem->num_pages << PAGE_SHIFT, 443 bo->resv, &fence); 444 if (r) 445 goto error; 446 447 /* Always block for VM page tables before committing the new location */ 448 if (bo->type == ttm_bo_type_kernel) 449 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 450 else 451 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 452 dma_fence_put(fence); 453 return r; 454 455 error: 456 if (fence) 457 dma_fence_wait(fence, false); 458 dma_fence_put(fence); 459 return r; 460 } 461 462 /** 463 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 464 * 465 * Called by amdgpu_bo_move(). 466 */ 467 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 468 struct ttm_operation_ctx *ctx, 469 struct ttm_mem_reg *new_mem) 470 { 471 struct amdgpu_device *adev; 472 struct ttm_mem_reg *old_mem = &bo->mem; 473 struct ttm_mem_reg tmp_mem; 474 struct ttm_place placements; 475 struct ttm_placement placement; 476 int r; 477 478 adev = amdgpu_ttm_adev(bo->bdev); 479 480 /* create space/pages for new_mem in GTT space */ 481 tmp_mem = *new_mem; 482 tmp_mem.mm_node = NULL; 483 placement.num_placement = 1; 484 placement.placement = &placements; 485 placement.num_busy_placement = 1; 486 placement.busy_placement = &placements; 487 placements.fpfn = 0; 488 placements.lpfn = 0; 489 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 490 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 491 if (unlikely(r)) { 492 pr_err("Failed to find GTT space for blit from VRAM\n"); 493 return r; 494 } 495 496 /* set caching flags */ 497 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 498 if (unlikely(r)) { 499 goto out_cleanup; 500 } 501 502 /* Bind the memory to the GTT space */ 503 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 504 if (unlikely(r)) { 505 goto out_cleanup; 506 } 507 508 /* blit VRAM to GTT */ 509 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 510 if (unlikely(r)) { 511 goto out_cleanup; 512 } 513 514 /* move BO (in tmp_mem) to new_mem */ 515 r = ttm_bo_move_ttm(bo, ctx, new_mem); 516 out_cleanup: 517 ttm_bo_mem_put(bo, &tmp_mem); 518 return r; 519 } 520 521 /** 522 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 523 * 524 * Called by amdgpu_bo_move(). 525 */ 526 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 527 struct ttm_operation_ctx *ctx, 528 struct ttm_mem_reg *new_mem) 529 { 530 struct amdgpu_device *adev; 531 struct ttm_mem_reg *old_mem = &bo->mem; 532 struct ttm_mem_reg tmp_mem; 533 struct ttm_placement placement; 534 struct ttm_place placements; 535 int r; 536 537 adev = amdgpu_ttm_adev(bo->bdev); 538 539 /* make space in GTT for old_mem buffer */ 540 tmp_mem = *new_mem; 541 tmp_mem.mm_node = NULL; 542 placement.num_placement = 1; 543 placement.placement = &placements; 544 placement.num_busy_placement = 1; 545 placement.busy_placement = &placements; 546 placements.fpfn = 0; 547 placements.lpfn = 0; 548 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 549 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 550 if (unlikely(r)) { 551 pr_err("Failed to find GTT space for blit to VRAM\n"); 552 return r; 553 } 554 555 /* move/bind old memory to GTT space */ 556 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 557 if (unlikely(r)) { 558 goto out_cleanup; 559 } 560 561 /* copy to VRAM */ 562 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 563 if (unlikely(r)) { 564 goto out_cleanup; 565 } 566 out_cleanup: 567 ttm_bo_mem_put(bo, &tmp_mem); 568 return r; 569 } 570 571 /** 572 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 573 * 574 * Called by amdgpu_bo_move() 575 */ 576 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 577 struct ttm_mem_reg *mem) 578 { 579 struct drm_mm_node *nodes = mem->mm_node; 580 581 if (mem->mem_type == TTM_PL_SYSTEM || 582 mem->mem_type == TTM_PL_TT) 583 return true; 584 if (mem->mem_type != TTM_PL_VRAM) 585 return false; 586 587 /* ttm_mem_reg_ioremap only supports contiguous memory */ 588 if (nodes->size != mem->num_pages) 589 return false; 590 591 return ((nodes->start + nodes->size) << PAGE_SHIFT) 592 <= adev->gmc.visible_vram_size; 593 } 594 595 /** 596 * amdgpu_bo_move - Move a buffer object to a new memory location 597 * 598 * Called by ttm_bo_handle_move_mem() 599 */ 600 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 601 struct ttm_operation_ctx *ctx, 602 struct ttm_mem_reg *new_mem) 603 { 604 struct amdgpu_device *adev; 605 struct amdgpu_bo *abo; 606 struct ttm_mem_reg *old_mem = &bo->mem; 607 int r; 608 609 /* Can't move a pinned BO */ 610 abo = ttm_to_amdgpu_bo(bo); 611 if (WARN_ON_ONCE(abo->pin_count > 0)) 612 return -EINVAL; 613 614 adev = amdgpu_ttm_adev(bo->bdev); 615 616 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 617 amdgpu_move_null(bo, new_mem); 618 return 0; 619 } 620 if ((old_mem->mem_type == TTM_PL_TT && 621 new_mem->mem_type == TTM_PL_SYSTEM) || 622 (old_mem->mem_type == TTM_PL_SYSTEM && 623 new_mem->mem_type == TTM_PL_TT)) { 624 /* bind is enough */ 625 amdgpu_move_null(bo, new_mem); 626 return 0; 627 } 628 if (old_mem->mem_type == AMDGPU_PL_GDS || 629 old_mem->mem_type == AMDGPU_PL_GWS || 630 old_mem->mem_type == AMDGPU_PL_OA || 631 new_mem->mem_type == AMDGPU_PL_GDS || 632 new_mem->mem_type == AMDGPU_PL_GWS || 633 new_mem->mem_type == AMDGPU_PL_OA) { 634 /* Nothing to save here */ 635 amdgpu_move_null(bo, new_mem); 636 return 0; 637 } 638 639 if (!adev->mman.buffer_funcs_enabled) { 640 r = -ENODEV; 641 goto memcpy; 642 } 643 644 if (old_mem->mem_type == TTM_PL_VRAM && 645 new_mem->mem_type == TTM_PL_SYSTEM) { 646 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 647 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 648 new_mem->mem_type == TTM_PL_VRAM) { 649 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 650 } else { 651 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 652 new_mem, old_mem); 653 } 654 655 if (r) { 656 memcpy: 657 /* Check that all memory is CPU accessible */ 658 if (!amdgpu_mem_visible(adev, old_mem) || 659 !amdgpu_mem_visible(adev, new_mem)) { 660 pr_err("Move buffer fallback to memcpy unavailable\n"); 661 return r; 662 } 663 664 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 665 if (r) 666 return r; 667 } 668 669 if (bo->type == ttm_bo_type_device && 670 new_mem->mem_type == TTM_PL_VRAM && 671 old_mem->mem_type != TTM_PL_VRAM) { 672 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 673 * accesses the BO after it's moved. 674 */ 675 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 676 } 677 678 /* update statistics */ 679 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 680 return 0; 681 } 682 683 /** 684 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 685 * 686 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 687 */ 688 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 689 { 690 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 691 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 692 struct drm_mm_node *mm_node = mem->mm_node; 693 694 mem->bus.addr = NULL; 695 mem->bus.offset = 0; 696 mem->bus.size = mem->num_pages << PAGE_SHIFT; 697 mem->bus.base = 0; 698 mem->bus.is_iomem = false; 699 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 700 return -EINVAL; 701 switch (mem->mem_type) { 702 case TTM_PL_SYSTEM: 703 /* system memory */ 704 return 0; 705 case TTM_PL_TT: 706 break; 707 case TTM_PL_VRAM: 708 mem->bus.offset = mem->start << PAGE_SHIFT; 709 /* check if it's visible */ 710 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 711 return -EINVAL; 712 /* Only physically contiguous buffers apply. In a contiguous 713 * buffer, size of the first mm_node would match the number of 714 * pages in ttm_mem_reg. 715 */ 716 if (adev->mman.aper_base_kaddr && 717 (mm_node->size == mem->num_pages)) 718 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 719 mem->bus.offset; 720 721 mem->bus.base = adev->gmc.aper_base; 722 mem->bus.is_iomem = true; 723 break; 724 default: 725 return -EINVAL; 726 } 727 return 0; 728 } 729 730 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 731 { 732 } 733 734 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 735 unsigned long page_offset) 736 { 737 struct drm_mm_node *mm; 738 unsigned long offset = (page_offset << PAGE_SHIFT); 739 740 mm = amdgpu_find_mm_node(&bo->mem, &offset); 741 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 742 (offset >> PAGE_SHIFT); 743 } 744 745 /* 746 * TTM backend functions. 747 */ 748 struct amdgpu_ttm_tt { 749 struct ttm_dma_tt ttm; 750 u64 offset; 751 uint64_t userptr; 752 struct task_struct *usertask; 753 uint32_t userflags; 754 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 755 struct hmm_range *range; 756 #endif 757 }; 758 759 /** 760 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 761 * memory and start HMM tracking CPU page table update 762 * 763 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 764 * once afterwards to stop HMM tracking 765 */ 766 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 767 768 #define MAX_RETRY_HMM_RANGE_FAULT 16 769 770 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 771 { 772 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL; 773 struct ttm_tt *ttm = bo->tbo.ttm; 774 struct amdgpu_ttm_tt *gtt = (void *)ttm; 775 struct mm_struct *mm = gtt->usertask->mm; 776 unsigned long start = gtt->userptr; 777 struct vm_area_struct *vma; 778 struct hmm_range *range; 779 unsigned long i; 780 uint64_t *pfns; 781 int retry = 0; 782 int r = 0; 783 784 if (!mm) /* Happens during process shutdown */ 785 return -ESRCH; 786 787 if (unlikely(!mirror)) { 788 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n"); 789 r = -EFAULT; 790 goto out; 791 } 792 793 vma = find_vma(mm, start); 794 if (unlikely(!vma || start < vma->vm_start)) { 795 r = -EFAULT; 796 goto out; 797 } 798 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 799 vma->vm_file)) { 800 r = -EPERM; 801 goto out; 802 } 803 804 range = kzalloc(sizeof(*range), GFP_KERNEL); 805 if (unlikely(!range)) { 806 r = -ENOMEM; 807 goto out; 808 } 809 810 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL); 811 if (unlikely(!pfns)) { 812 r = -ENOMEM; 813 goto out_free_ranges; 814 } 815 816 amdgpu_hmm_init_range(range); 817 range->default_flags = range->flags[HMM_PFN_VALID]; 818 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ? 819 0 : range->flags[HMM_PFN_WRITE]; 820 range->pfn_flags_mask = 0; 821 range->pfns = pfns; 822 hmm_range_register(range, mm, start, 823 start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT); 824 825 retry: 826 /* 827 * Just wait for range to be valid, safe to ignore return value as we 828 * will use the return value of hmm_range_fault() below under the 829 * mmap_sem to ascertain the validity of the range. 830 */ 831 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT); 832 833 down_read(&mm->mmap_sem); 834 835 r = hmm_range_fault(range, true); 836 if (unlikely(r < 0)) { 837 if (likely(r == -EAGAIN)) { 838 /* 839 * return -EAGAIN, mmap_sem is dropped 840 */ 841 if (retry++ < MAX_RETRY_HMM_RANGE_FAULT) 842 goto retry; 843 else 844 pr_err("Retry hmm fault too many times\n"); 845 } 846 847 goto out_up_read; 848 } 849 850 up_read(&mm->mmap_sem); 851 852 for (i = 0; i < ttm->num_pages; i++) { 853 pages[i] = hmm_device_entry_to_page(range, pfns[i]); 854 if (unlikely(!pages[i])) { 855 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 856 i, pfns[i]); 857 r = -ENOMEM; 858 859 goto out_free_pfns; 860 } 861 } 862 863 gtt->range = range; 864 865 return 0; 866 867 out_up_read: 868 if (likely(r != -EAGAIN)) 869 up_read(&mm->mmap_sem); 870 out_free_pfns: 871 hmm_range_unregister(range); 872 kvfree(pfns); 873 out_free_ranges: 874 kfree(range); 875 out: 876 return r; 877 } 878 879 /** 880 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 881 * Check if the pages backing this ttm range have been invalidated 882 * 883 * Returns: true if pages are still valid 884 */ 885 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 886 { 887 struct amdgpu_ttm_tt *gtt = (void *)ttm; 888 bool r = false; 889 890 if (!gtt || !gtt->userptr) 891 return false; 892 893 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 894 gtt->userptr, ttm->num_pages); 895 896 WARN_ONCE(!gtt->range || !gtt->range->pfns, 897 "No user pages to check\n"); 898 899 if (gtt->range) { 900 r = hmm_range_valid(gtt->range); 901 hmm_range_unregister(gtt->range); 902 903 kvfree(gtt->range->pfns); 904 kfree(gtt->range); 905 gtt->range = NULL; 906 } 907 908 return r; 909 } 910 #endif 911 912 /** 913 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 914 * 915 * Called by amdgpu_cs_list_validate(). This creates the page list 916 * that backs user memory and will ultimately be mapped into the device 917 * address space. 918 */ 919 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 920 { 921 unsigned long i; 922 923 for (i = 0; i < ttm->num_pages; ++i) 924 ttm->pages[i] = pages ? pages[i] : NULL; 925 } 926 927 /** 928 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 929 * 930 * Called by amdgpu_ttm_backend_bind() 931 **/ 932 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 933 { 934 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 935 struct amdgpu_ttm_tt *gtt = (void *)ttm; 936 unsigned nents; 937 int r; 938 939 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 940 enum dma_data_direction direction = write ? 941 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 942 943 /* Allocate an SG array and squash pages into it */ 944 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 945 ttm->num_pages << PAGE_SHIFT, 946 GFP_KERNEL); 947 if (r) 948 goto release_sg; 949 950 /* Map SG to device */ 951 r = -ENOMEM; 952 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 953 if (nents != ttm->sg->nents) 954 goto release_sg; 955 956 /* convert SG to linear array of pages and dma addresses */ 957 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 958 gtt->ttm.dma_address, ttm->num_pages); 959 960 return 0; 961 962 release_sg: 963 kfree(ttm->sg); 964 return r; 965 } 966 967 /** 968 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 969 */ 970 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 971 { 972 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 973 struct amdgpu_ttm_tt *gtt = (void *)ttm; 974 975 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 976 enum dma_data_direction direction = write ? 977 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 978 979 /* double check that we don't free the table twice */ 980 if (!ttm->sg->sgl) 981 return; 982 983 /* unmap the pages mapped to the device */ 984 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 985 986 sg_free_table(ttm->sg); 987 988 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 989 if (gtt->range && 990 ttm->pages[0] == hmm_device_entry_to_page(gtt->range, 991 gtt->range->pfns[0])) 992 WARN_ONCE(1, "Missing get_user_page_done\n"); 993 #endif 994 } 995 996 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 997 struct ttm_buffer_object *tbo, 998 uint64_t flags) 999 { 1000 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1001 struct ttm_tt *ttm = tbo->ttm; 1002 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1003 int r; 1004 1005 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1006 uint64_t page_idx = 1; 1007 1008 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1009 ttm->pages, gtt->ttm.dma_address, flags); 1010 if (r) 1011 goto gart_bind_fail; 1012 1013 /* Patch mtype of the second part BO */ 1014 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1015 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1016 1017 r = amdgpu_gart_bind(adev, 1018 gtt->offset + (page_idx << PAGE_SHIFT), 1019 ttm->num_pages - page_idx, 1020 &ttm->pages[page_idx], 1021 &(gtt->ttm.dma_address[page_idx]), flags); 1022 } else { 1023 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1024 ttm->pages, gtt->ttm.dma_address, flags); 1025 } 1026 1027 gart_bind_fail: 1028 if (r) 1029 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1030 ttm->num_pages, gtt->offset); 1031 1032 return r; 1033 } 1034 1035 /** 1036 * amdgpu_ttm_backend_bind - Bind GTT memory 1037 * 1038 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1039 * This handles binding GTT memory to the device address space. 1040 */ 1041 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1042 struct ttm_mem_reg *bo_mem) 1043 { 1044 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1045 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1046 uint64_t flags; 1047 int r = 0; 1048 1049 if (gtt->userptr) { 1050 r = amdgpu_ttm_tt_pin_userptr(ttm); 1051 if (r) { 1052 DRM_ERROR("failed to pin userptr\n"); 1053 return r; 1054 } 1055 } 1056 if (!ttm->num_pages) { 1057 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1058 ttm->num_pages, bo_mem, ttm); 1059 } 1060 1061 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1062 bo_mem->mem_type == AMDGPU_PL_GWS || 1063 bo_mem->mem_type == AMDGPU_PL_OA) 1064 return -EINVAL; 1065 1066 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1067 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1068 return 0; 1069 } 1070 1071 /* compute PTE flags relevant to this BO memory */ 1072 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1073 1074 /* bind pages into GART page tables */ 1075 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1076 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1077 ttm->pages, gtt->ttm.dma_address, flags); 1078 1079 if (r) 1080 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1081 ttm->num_pages, gtt->offset); 1082 return r; 1083 } 1084 1085 /** 1086 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1087 */ 1088 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1089 { 1090 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1091 struct ttm_operation_ctx ctx = { false, false }; 1092 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1093 struct ttm_mem_reg tmp; 1094 struct ttm_placement placement; 1095 struct ttm_place placements; 1096 uint64_t addr, flags; 1097 int r; 1098 1099 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1100 return 0; 1101 1102 addr = amdgpu_gmc_agp_addr(bo); 1103 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1104 bo->mem.start = addr >> PAGE_SHIFT; 1105 } else { 1106 1107 /* allocate GART space */ 1108 tmp = bo->mem; 1109 tmp.mm_node = NULL; 1110 placement.num_placement = 1; 1111 placement.placement = &placements; 1112 placement.num_busy_placement = 1; 1113 placement.busy_placement = &placements; 1114 placements.fpfn = 0; 1115 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1116 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1117 TTM_PL_FLAG_TT; 1118 1119 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1120 if (unlikely(r)) 1121 return r; 1122 1123 /* compute PTE flags for this buffer object */ 1124 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1125 1126 /* Bind pages */ 1127 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1128 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1129 if (unlikely(r)) { 1130 ttm_bo_mem_put(bo, &tmp); 1131 return r; 1132 } 1133 1134 ttm_bo_mem_put(bo, &bo->mem); 1135 bo->mem = tmp; 1136 } 1137 1138 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1139 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1140 1141 return 0; 1142 } 1143 1144 /** 1145 * amdgpu_ttm_recover_gart - Rebind GTT pages 1146 * 1147 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1148 * rebind GTT pages during a GPU reset. 1149 */ 1150 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1151 { 1152 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1153 uint64_t flags; 1154 int r; 1155 1156 if (!tbo->ttm) 1157 return 0; 1158 1159 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1160 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1161 1162 return r; 1163 } 1164 1165 /** 1166 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1167 * 1168 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1169 * ttm_tt_destroy(). 1170 */ 1171 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1172 { 1173 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1174 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1175 int r; 1176 1177 /* if the pages have userptr pinning then clear that first */ 1178 if (gtt->userptr) 1179 amdgpu_ttm_tt_unpin_userptr(ttm); 1180 1181 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1182 return 0; 1183 1184 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1185 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1186 if (r) 1187 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1188 gtt->ttm.ttm.num_pages, gtt->offset); 1189 return r; 1190 } 1191 1192 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1193 { 1194 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1195 1196 if (gtt->usertask) 1197 put_task_struct(gtt->usertask); 1198 1199 ttm_dma_tt_fini(>t->ttm); 1200 kfree(gtt); 1201 } 1202 1203 static struct ttm_backend_func amdgpu_backend_func = { 1204 .bind = &amdgpu_ttm_backend_bind, 1205 .unbind = &amdgpu_ttm_backend_unbind, 1206 .destroy = &amdgpu_ttm_backend_destroy, 1207 }; 1208 1209 /** 1210 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1211 * 1212 * @bo: The buffer object to create a GTT ttm_tt object around 1213 * 1214 * Called by ttm_tt_create(). 1215 */ 1216 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1217 uint32_t page_flags) 1218 { 1219 struct amdgpu_device *adev; 1220 struct amdgpu_ttm_tt *gtt; 1221 1222 adev = amdgpu_ttm_adev(bo->bdev); 1223 1224 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1225 if (gtt == NULL) { 1226 return NULL; 1227 } 1228 gtt->ttm.ttm.func = &amdgpu_backend_func; 1229 1230 /* allocate space for the uninitialized page entries */ 1231 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1232 kfree(gtt); 1233 return NULL; 1234 } 1235 return >t->ttm.ttm; 1236 } 1237 1238 /** 1239 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1240 * 1241 * Map the pages of a ttm_tt object to an address space visible 1242 * to the underlying device. 1243 */ 1244 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1245 struct ttm_operation_ctx *ctx) 1246 { 1247 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1248 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1249 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1250 1251 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1252 if (gtt && gtt->userptr) { 1253 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1254 if (!ttm->sg) 1255 return -ENOMEM; 1256 1257 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1258 ttm->state = tt_unbound; 1259 return 0; 1260 } 1261 1262 if (slave && ttm->sg) { 1263 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1264 gtt->ttm.dma_address, 1265 ttm->num_pages); 1266 ttm->state = tt_unbound; 1267 return 0; 1268 } 1269 1270 #ifdef CONFIG_SWIOTLB 1271 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1272 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1273 } 1274 #endif 1275 1276 /* fall back to generic helper to populate the page array 1277 * and map them to the device */ 1278 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1279 } 1280 1281 /** 1282 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1283 * 1284 * Unmaps pages of a ttm_tt object from the device address space and 1285 * unpopulates the page array backing it. 1286 */ 1287 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1288 { 1289 struct amdgpu_device *adev; 1290 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1291 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1292 1293 if (gtt && gtt->userptr) { 1294 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1295 kfree(ttm->sg); 1296 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1297 return; 1298 } 1299 1300 if (slave) 1301 return; 1302 1303 adev = amdgpu_ttm_adev(ttm->bdev); 1304 1305 #ifdef CONFIG_SWIOTLB 1306 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1307 ttm_dma_unpopulate(>t->ttm, adev->dev); 1308 return; 1309 } 1310 #endif 1311 1312 /* fall back to generic helper to unmap and unpopulate array */ 1313 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1314 } 1315 1316 /** 1317 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1318 * task 1319 * 1320 * @ttm: The ttm_tt object to bind this userptr object to 1321 * @addr: The address in the current tasks VM space to use 1322 * @flags: Requirements of userptr object. 1323 * 1324 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1325 * to current task 1326 */ 1327 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1328 uint32_t flags) 1329 { 1330 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1331 1332 if (gtt == NULL) 1333 return -EINVAL; 1334 1335 gtt->userptr = addr; 1336 gtt->userflags = flags; 1337 1338 if (gtt->usertask) 1339 put_task_struct(gtt->usertask); 1340 gtt->usertask = current->group_leader; 1341 get_task_struct(gtt->usertask); 1342 1343 return 0; 1344 } 1345 1346 /** 1347 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1348 */ 1349 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1350 { 1351 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1352 1353 if (gtt == NULL) 1354 return NULL; 1355 1356 if (gtt->usertask == NULL) 1357 return NULL; 1358 1359 return gtt->usertask->mm; 1360 } 1361 1362 /** 1363 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1364 * address range for the current task. 1365 * 1366 */ 1367 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1368 unsigned long end) 1369 { 1370 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1371 unsigned long size; 1372 1373 if (gtt == NULL || !gtt->userptr) 1374 return false; 1375 1376 /* Return false if no part of the ttm_tt object lies within 1377 * the range 1378 */ 1379 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1380 if (gtt->userptr > end || gtt->userptr + size <= start) 1381 return false; 1382 1383 return true; 1384 } 1385 1386 /** 1387 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1388 */ 1389 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1390 { 1391 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1392 1393 if (gtt == NULL || !gtt->userptr) 1394 return false; 1395 1396 return true; 1397 } 1398 1399 /** 1400 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1401 */ 1402 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1403 { 1404 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1405 1406 if (gtt == NULL) 1407 return false; 1408 1409 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1410 } 1411 1412 /** 1413 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1414 * 1415 * @ttm: The ttm_tt object to compute the flags for 1416 * @mem: The memory registry backing this ttm_tt object 1417 * 1418 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1419 */ 1420 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1421 { 1422 uint64_t flags = 0; 1423 1424 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1425 flags |= AMDGPU_PTE_VALID; 1426 1427 if (mem && mem->mem_type == TTM_PL_TT) { 1428 flags |= AMDGPU_PTE_SYSTEM; 1429 1430 if (ttm->caching_state == tt_cached) 1431 flags |= AMDGPU_PTE_SNOOPED; 1432 } 1433 1434 return flags; 1435 } 1436 1437 /** 1438 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1439 * 1440 * @ttm: The ttm_tt object to compute the flags for 1441 * @mem: The memory registry backing this ttm_tt object 1442 1443 * Figure out the flags to use for a VM PTE (Page Table Entry). 1444 */ 1445 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1446 struct ttm_mem_reg *mem) 1447 { 1448 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1449 1450 flags |= adev->gart.gart_pte_flags; 1451 flags |= AMDGPU_PTE_READABLE; 1452 1453 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1454 flags |= AMDGPU_PTE_WRITEABLE; 1455 1456 return flags; 1457 } 1458 1459 /** 1460 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1461 * object. 1462 * 1463 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1464 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1465 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1466 * used to clean out a memory space. 1467 */ 1468 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1469 const struct ttm_place *place) 1470 { 1471 unsigned long num_pages = bo->mem.num_pages; 1472 struct drm_mm_node *node = bo->mem.mm_node; 1473 struct reservation_object_list *flist; 1474 struct dma_fence *f; 1475 int i; 1476 1477 /* Don't evict VM page tables while they are busy, otherwise we can't 1478 * cleanly handle page faults. 1479 */ 1480 if (bo->type == ttm_bo_type_kernel && 1481 !reservation_object_test_signaled_rcu(bo->resv, true)) 1482 return false; 1483 1484 /* If bo is a KFD BO, check if the bo belongs to the current process. 1485 * If true, then return false as any KFD process needs all its BOs to 1486 * be resident to run successfully 1487 */ 1488 flist = reservation_object_get_list(bo->resv); 1489 if (flist) { 1490 for (i = 0; i < flist->shared_count; ++i) { 1491 f = rcu_dereference_protected(flist->shared[i], 1492 reservation_object_held(bo->resv)); 1493 if (amdkfd_fence_check_mm(f, current->mm)) 1494 return false; 1495 } 1496 } 1497 1498 switch (bo->mem.mem_type) { 1499 case TTM_PL_TT: 1500 return true; 1501 1502 case TTM_PL_VRAM: 1503 /* Check each drm MM node individually */ 1504 while (num_pages) { 1505 if (place->fpfn < (node->start + node->size) && 1506 !(place->lpfn && place->lpfn <= node->start)) 1507 return true; 1508 1509 num_pages -= node->size; 1510 ++node; 1511 } 1512 return false; 1513 1514 default: 1515 break; 1516 } 1517 1518 return ttm_bo_eviction_valuable(bo, place); 1519 } 1520 1521 /** 1522 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1523 * 1524 * @bo: The buffer object to read/write 1525 * @offset: Offset into buffer object 1526 * @buf: Secondary buffer to write/read from 1527 * @len: Length in bytes of access 1528 * @write: true if writing 1529 * 1530 * This is used to access VRAM that backs a buffer object via MMIO 1531 * access for debugging purposes. 1532 */ 1533 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1534 unsigned long offset, 1535 void *buf, int len, int write) 1536 { 1537 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1538 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1539 struct drm_mm_node *nodes; 1540 uint32_t value = 0; 1541 int ret = 0; 1542 uint64_t pos; 1543 unsigned long flags; 1544 1545 if (bo->mem.mem_type != TTM_PL_VRAM) 1546 return -EIO; 1547 1548 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1549 pos = (nodes->start << PAGE_SHIFT) + offset; 1550 1551 while (len && pos < adev->gmc.mc_vram_size) { 1552 uint64_t aligned_pos = pos & ~(uint64_t)3; 1553 uint32_t bytes = 4 - (pos & 3); 1554 uint32_t shift = (pos & 3) * 8; 1555 uint32_t mask = 0xffffffff << shift; 1556 1557 if (len < bytes) { 1558 mask &= 0xffffffff >> (bytes - len) * 8; 1559 bytes = len; 1560 } 1561 1562 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1563 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1564 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1565 if (!write || mask != 0xffffffff) 1566 value = RREG32_NO_KIQ(mmMM_DATA); 1567 if (write) { 1568 value &= ~mask; 1569 value |= (*(uint32_t *)buf << shift) & mask; 1570 WREG32_NO_KIQ(mmMM_DATA, value); 1571 } 1572 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1573 if (!write) { 1574 value = (value & mask) >> shift; 1575 memcpy(buf, &value, bytes); 1576 } 1577 1578 ret += bytes; 1579 buf = (uint8_t *)buf + bytes; 1580 pos += bytes; 1581 len -= bytes; 1582 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1583 ++nodes; 1584 pos = (nodes->start << PAGE_SHIFT); 1585 } 1586 } 1587 1588 return ret; 1589 } 1590 1591 static struct ttm_bo_driver amdgpu_bo_driver = { 1592 .ttm_tt_create = &amdgpu_ttm_tt_create, 1593 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1594 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1595 .invalidate_caches = &amdgpu_invalidate_caches, 1596 .init_mem_type = &amdgpu_init_mem_type, 1597 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1598 .evict_flags = &amdgpu_evict_flags, 1599 .move = &amdgpu_bo_move, 1600 .verify_access = &amdgpu_verify_access, 1601 .move_notify = &amdgpu_bo_move_notify, 1602 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1603 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1604 .io_mem_free = &amdgpu_ttm_io_mem_free, 1605 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1606 .access_memory = &amdgpu_ttm_access_memory, 1607 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1608 }; 1609 1610 /* 1611 * Firmware Reservation functions 1612 */ 1613 /** 1614 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1615 * 1616 * @adev: amdgpu_device pointer 1617 * 1618 * free fw reserved vram if it has been reserved. 1619 */ 1620 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1621 { 1622 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1623 NULL, &adev->fw_vram_usage.va); 1624 } 1625 1626 /** 1627 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1628 * 1629 * @adev: amdgpu_device pointer 1630 * 1631 * create bo vram reservation from fw. 1632 */ 1633 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1634 { 1635 struct ttm_operation_ctx ctx = { false, false }; 1636 struct amdgpu_bo_param bp; 1637 int r = 0; 1638 int i; 1639 u64 vram_size = adev->gmc.visible_vram_size; 1640 u64 offset = adev->fw_vram_usage.start_offset; 1641 u64 size = adev->fw_vram_usage.size; 1642 struct amdgpu_bo *bo; 1643 1644 memset(&bp, 0, sizeof(bp)); 1645 bp.size = adev->fw_vram_usage.size; 1646 bp.byte_align = PAGE_SIZE; 1647 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1648 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1649 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1650 bp.type = ttm_bo_type_kernel; 1651 bp.resv = NULL; 1652 adev->fw_vram_usage.va = NULL; 1653 adev->fw_vram_usage.reserved_bo = NULL; 1654 1655 if (adev->fw_vram_usage.size > 0 && 1656 adev->fw_vram_usage.size <= vram_size) { 1657 1658 r = amdgpu_bo_create(adev, &bp, 1659 &adev->fw_vram_usage.reserved_bo); 1660 if (r) 1661 goto error_create; 1662 1663 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1664 if (r) 1665 goto error_reserve; 1666 1667 /* remove the original mem node and create a new one at the 1668 * request position 1669 */ 1670 bo = adev->fw_vram_usage.reserved_bo; 1671 offset = ALIGN(offset, PAGE_SIZE); 1672 for (i = 0; i < bo->placement.num_placement; ++i) { 1673 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1674 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1675 } 1676 1677 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1678 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1679 &bo->tbo.mem, &ctx); 1680 if (r) 1681 goto error_pin; 1682 1683 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1684 AMDGPU_GEM_DOMAIN_VRAM, 1685 adev->fw_vram_usage.start_offset, 1686 (adev->fw_vram_usage.start_offset + 1687 adev->fw_vram_usage.size)); 1688 if (r) 1689 goto error_pin; 1690 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1691 &adev->fw_vram_usage.va); 1692 if (r) 1693 goto error_kmap; 1694 1695 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1696 } 1697 return r; 1698 1699 error_kmap: 1700 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1701 error_pin: 1702 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1703 error_reserve: 1704 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1705 error_create: 1706 adev->fw_vram_usage.va = NULL; 1707 adev->fw_vram_usage.reserved_bo = NULL; 1708 return r; 1709 } 1710 /** 1711 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1712 * gtt/vram related fields. 1713 * 1714 * This initializes all of the memory space pools that the TTM layer 1715 * will need such as the GTT space (system memory mapped to the device), 1716 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1717 * can be mapped per VMID. 1718 */ 1719 int amdgpu_ttm_init(struct amdgpu_device *adev) 1720 { 1721 uint64_t gtt_size; 1722 int r; 1723 u64 vis_vram_limit; 1724 1725 mutex_init(&adev->mman.gtt_window_lock); 1726 1727 /* No others user of address space so set it to 0 */ 1728 r = ttm_bo_device_init(&adev->mman.bdev, 1729 &amdgpu_bo_driver, 1730 adev->ddev->anon_inode->i_mapping, 1731 adev->need_dma32); 1732 if (r) { 1733 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1734 return r; 1735 } 1736 adev->mman.initialized = true; 1737 1738 /* We opt to avoid OOM on system pages allocations */ 1739 adev->mman.bdev.no_retry = true; 1740 1741 /* Initialize VRAM pool with all of VRAM divided into pages */ 1742 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1743 adev->gmc.real_vram_size >> PAGE_SHIFT); 1744 if (r) { 1745 DRM_ERROR("Failed initializing VRAM heap.\n"); 1746 return r; 1747 } 1748 1749 /* Reduce size of CPU-visible VRAM if requested */ 1750 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1751 if (amdgpu_vis_vram_limit > 0 && 1752 vis_vram_limit <= adev->gmc.visible_vram_size) 1753 adev->gmc.visible_vram_size = vis_vram_limit; 1754 1755 /* Change the size here instead of the init above so only lpfn is affected */ 1756 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1757 #ifdef CONFIG_64BIT 1758 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1759 adev->gmc.visible_vram_size); 1760 #endif 1761 1762 /* 1763 *The reserved vram for firmware must be pinned to the specified 1764 *place on the VRAM, so reserve it early. 1765 */ 1766 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1767 if (r) { 1768 return r; 1769 } 1770 1771 /* allocate memory as required for VGA 1772 * This is used for VGA emulation and pre-OS scanout buffers to 1773 * avoid display artifacts while transitioning between pre-OS 1774 * and driver. */ 1775 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1776 AMDGPU_GEM_DOMAIN_VRAM, 1777 &adev->stolen_vga_memory, 1778 NULL, NULL); 1779 if (r) 1780 return r; 1781 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1782 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1783 1784 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1785 * or whatever the user passed on module init */ 1786 if (amdgpu_gtt_size == -1) { 1787 struct sysinfo si; 1788 1789 si_meminfo(&si); 1790 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1791 adev->gmc.mc_vram_size), 1792 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1793 } 1794 else 1795 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1796 1797 /* Initialize GTT memory pool */ 1798 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1799 if (r) { 1800 DRM_ERROR("Failed initializing GTT heap.\n"); 1801 return r; 1802 } 1803 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1804 (unsigned)(gtt_size / (1024 * 1024))); 1805 1806 /* Initialize various on-chip memory pools */ 1807 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1808 adev->gds.gds_size); 1809 if (r) { 1810 DRM_ERROR("Failed initializing GDS heap.\n"); 1811 return r; 1812 } 1813 1814 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1815 adev->gds.gws_size); 1816 if (r) { 1817 DRM_ERROR("Failed initializing gws heap.\n"); 1818 return r; 1819 } 1820 1821 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1822 adev->gds.oa_size); 1823 if (r) { 1824 DRM_ERROR("Failed initializing oa heap.\n"); 1825 return r; 1826 } 1827 1828 /* Register debugfs entries for amdgpu_ttm */ 1829 r = amdgpu_ttm_debugfs_init(adev); 1830 if (r) { 1831 DRM_ERROR("Failed to init debugfs\n"); 1832 return r; 1833 } 1834 return 0; 1835 } 1836 1837 /** 1838 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1839 */ 1840 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1841 { 1842 /* return the VGA stolen memory (if any) back to VRAM */ 1843 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1844 } 1845 1846 /** 1847 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1848 */ 1849 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1850 { 1851 if (!adev->mman.initialized) 1852 return; 1853 1854 amdgpu_ttm_debugfs_fini(adev); 1855 amdgpu_ttm_fw_reserve_vram_fini(adev); 1856 if (adev->mman.aper_base_kaddr) 1857 iounmap(adev->mman.aper_base_kaddr); 1858 adev->mman.aper_base_kaddr = NULL; 1859 1860 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1861 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1862 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1863 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1864 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1865 ttm_bo_device_release(&adev->mman.bdev); 1866 adev->mman.initialized = false; 1867 DRM_INFO("amdgpu: ttm finalized\n"); 1868 } 1869 1870 /** 1871 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1872 * 1873 * @adev: amdgpu_device pointer 1874 * @enable: true when we can use buffer functions. 1875 * 1876 * Enable/disable use of buffer functions during suspend/resume. This should 1877 * only be called at bootup or when userspace isn't running. 1878 */ 1879 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1880 { 1881 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1882 uint64_t size; 1883 int r; 1884 1885 if (!adev->mman.initialized || adev->in_gpu_reset || 1886 adev->mman.buffer_funcs_enabled == enable) 1887 return; 1888 1889 if (enable) { 1890 struct amdgpu_ring *ring; 1891 struct drm_sched_rq *rq; 1892 1893 ring = adev->mman.buffer_funcs_ring; 1894 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1895 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1896 if (r) { 1897 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1898 r); 1899 return; 1900 } 1901 } else { 1902 drm_sched_entity_destroy(&adev->mman.entity); 1903 dma_fence_put(man->move); 1904 man->move = NULL; 1905 } 1906 1907 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1908 if (enable) 1909 size = adev->gmc.real_vram_size; 1910 else 1911 size = adev->gmc.visible_vram_size; 1912 man->size = size >> PAGE_SHIFT; 1913 adev->mman.buffer_funcs_enabled = enable; 1914 } 1915 1916 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1917 { 1918 struct drm_file *file_priv = filp->private_data; 1919 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 1920 1921 if (adev == NULL) 1922 return -EINVAL; 1923 1924 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1925 } 1926 1927 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1928 struct ttm_mem_reg *mem, unsigned num_pages, 1929 uint64_t offset, unsigned window, 1930 struct amdgpu_ring *ring, 1931 uint64_t *addr) 1932 { 1933 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1934 struct amdgpu_device *adev = ring->adev; 1935 struct ttm_tt *ttm = bo->ttm; 1936 struct amdgpu_job *job; 1937 unsigned num_dw, num_bytes; 1938 dma_addr_t *dma_address; 1939 struct dma_fence *fence; 1940 uint64_t src_addr, dst_addr; 1941 uint64_t flags; 1942 int r; 1943 1944 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1945 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1946 1947 *addr = adev->gmc.gart_start; 1948 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1949 AMDGPU_GPU_PAGE_SIZE; 1950 1951 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1952 while (num_dw & 0x7) 1953 num_dw++; 1954 1955 num_bytes = num_pages * 8; 1956 1957 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1958 if (r) 1959 return r; 1960 1961 src_addr = num_dw * 4; 1962 src_addr += job->ibs[0].gpu_addr; 1963 1964 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 1965 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1966 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1967 dst_addr, num_bytes); 1968 1969 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1970 WARN_ON(job->ibs[0].length_dw > num_dw); 1971 1972 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 1973 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 1974 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 1975 &job->ibs[0].ptr[num_dw]); 1976 if (r) 1977 goto error_free; 1978 1979 r = amdgpu_job_submit(job, &adev->mman.entity, 1980 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1981 if (r) 1982 goto error_free; 1983 1984 dma_fence_put(fence); 1985 1986 return r; 1987 1988 error_free: 1989 amdgpu_job_free(job); 1990 return r; 1991 } 1992 1993 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1994 uint64_t dst_offset, uint32_t byte_count, 1995 struct reservation_object *resv, 1996 struct dma_fence **fence, bool direct_submit, 1997 bool vm_needs_flush) 1998 { 1999 struct amdgpu_device *adev = ring->adev; 2000 struct amdgpu_job *job; 2001 2002 uint32_t max_bytes; 2003 unsigned num_loops, num_dw; 2004 unsigned i; 2005 int r; 2006 2007 if (direct_submit && !ring->sched.ready) { 2008 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2009 return -EINVAL; 2010 } 2011 2012 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2013 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2014 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 2015 2016 /* for IB padding */ 2017 while (num_dw & 0x7) 2018 num_dw++; 2019 2020 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2021 if (r) 2022 return r; 2023 2024 if (vm_needs_flush) { 2025 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2026 job->vm_needs_flush = true; 2027 } 2028 if (resv) { 2029 r = amdgpu_sync_resv(adev, &job->sync, resv, 2030 AMDGPU_FENCE_OWNER_UNDEFINED, 2031 false); 2032 if (r) { 2033 DRM_ERROR("sync failed (%d).\n", r); 2034 goto error_free; 2035 } 2036 } 2037 2038 for (i = 0; i < num_loops; i++) { 2039 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2040 2041 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2042 dst_offset, cur_size_in_bytes); 2043 2044 src_offset += cur_size_in_bytes; 2045 dst_offset += cur_size_in_bytes; 2046 byte_count -= cur_size_in_bytes; 2047 } 2048 2049 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2050 WARN_ON(job->ibs[0].length_dw > num_dw); 2051 if (direct_submit) 2052 r = amdgpu_job_submit_direct(job, ring, fence); 2053 else 2054 r = amdgpu_job_submit(job, &adev->mman.entity, 2055 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2056 if (r) 2057 goto error_free; 2058 2059 return r; 2060 2061 error_free: 2062 amdgpu_job_free(job); 2063 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2064 return r; 2065 } 2066 2067 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2068 uint32_t src_data, 2069 struct reservation_object *resv, 2070 struct dma_fence **fence) 2071 { 2072 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2073 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2074 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2075 2076 struct drm_mm_node *mm_node; 2077 unsigned long num_pages; 2078 unsigned int num_loops, num_dw; 2079 2080 struct amdgpu_job *job; 2081 int r; 2082 2083 if (!adev->mman.buffer_funcs_enabled) { 2084 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2085 return -EINVAL; 2086 } 2087 2088 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2089 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2090 if (r) 2091 return r; 2092 } 2093 2094 num_pages = bo->tbo.num_pages; 2095 mm_node = bo->tbo.mem.mm_node; 2096 num_loops = 0; 2097 while (num_pages) { 2098 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2099 2100 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2101 num_pages -= mm_node->size; 2102 ++mm_node; 2103 } 2104 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2105 2106 /* for IB padding */ 2107 num_dw += 64; 2108 2109 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2110 if (r) 2111 return r; 2112 2113 if (resv) { 2114 r = amdgpu_sync_resv(adev, &job->sync, resv, 2115 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2116 if (r) { 2117 DRM_ERROR("sync failed (%d).\n", r); 2118 goto error_free; 2119 } 2120 } 2121 2122 num_pages = bo->tbo.num_pages; 2123 mm_node = bo->tbo.mem.mm_node; 2124 2125 while (num_pages) { 2126 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2127 uint64_t dst_addr; 2128 2129 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2130 while (byte_count) { 2131 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2132 max_bytes); 2133 2134 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2135 dst_addr, cur_size_in_bytes); 2136 2137 dst_addr += cur_size_in_bytes; 2138 byte_count -= cur_size_in_bytes; 2139 } 2140 2141 num_pages -= mm_node->size; 2142 ++mm_node; 2143 } 2144 2145 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2146 WARN_ON(job->ibs[0].length_dw > num_dw); 2147 r = amdgpu_job_submit(job, &adev->mman.entity, 2148 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2149 if (r) 2150 goto error_free; 2151 2152 return 0; 2153 2154 error_free: 2155 amdgpu_job_free(job); 2156 return r; 2157 } 2158 2159 #if defined(CONFIG_DEBUG_FS) 2160 2161 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2162 { 2163 struct drm_info_node *node = (struct drm_info_node *)m->private; 2164 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2165 struct drm_device *dev = node->minor->dev; 2166 struct amdgpu_device *adev = dev->dev_private; 2167 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2168 struct drm_printer p = drm_seq_file_printer(m); 2169 2170 man->func->debug(man, &p); 2171 return 0; 2172 } 2173 2174 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2175 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2176 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2177 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2178 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2179 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2180 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2181 #ifdef CONFIG_SWIOTLB 2182 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2183 #endif 2184 }; 2185 2186 /** 2187 * amdgpu_ttm_vram_read - Linear read access to VRAM 2188 * 2189 * Accesses VRAM via MMIO for debugging purposes. 2190 */ 2191 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2192 size_t size, loff_t *pos) 2193 { 2194 struct amdgpu_device *adev = file_inode(f)->i_private; 2195 ssize_t result = 0; 2196 int r; 2197 2198 if (size & 0x3 || *pos & 0x3) 2199 return -EINVAL; 2200 2201 if (*pos >= adev->gmc.mc_vram_size) 2202 return -ENXIO; 2203 2204 while (size) { 2205 unsigned long flags; 2206 uint32_t value; 2207 2208 if (*pos >= adev->gmc.mc_vram_size) 2209 return result; 2210 2211 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2212 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2213 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2214 value = RREG32_NO_KIQ(mmMM_DATA); 2215 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2216 2217 r = put_user(value, (uint32_t *)buf); 2218 if (r) 2219 return r; 2220 2221 result += 4; 2222 buf += 4; 2223 *pos += 4; 2224 size -= 4; 2225 } 2226 2227 return result; 2228 } 2229 2230 /** 2231 * amdgpu_ttm_vram_write - Linear write access to VRAM 2232 * 2233 * Accesses VRAM via MMIO for debugging purposes. 2234 */ 2235 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2236 size_t size, loff_t *pos) 2237 { 2238 struct amdgpu_device *adev = file_inode(f)->i_private; 2239 ssize_t result = 0; 2240 int r; 2241 2242 if (size & 0x3 || *pos & 0x3) 2243 return -EINVAL; 2244 2245 if (*pos >= adev->gmc.mc_vram_size) 2246 return -ENXIO; 2247 2248 while (size) { 2249 unsigned long flags; 2250 uint32_t value; 2251 2252 if (*pos >= adev->gmc.mc_vram_size) 2253 return result; 2254 2255 r = get_user(value, (uint32_t *)buf); 2256 if (r) 2257 return r; 2258 2259 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2260 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2261 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2262 WREG32_NO_KIQ(mmMM_DATA, value); 2263 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2264 2265 result += 4; 2266 buf += 4; 2267 *pos += 4; 2268 size -= 4; 2269 } 2270 2271 return result; 2272 } 2273 2274 static const struct file_operations amdgpu_ttm_vram_fops = { 2275 .owner = THIS_MODULE, 2276 .read = amdgpu_ttm_vram_read, 2277 .write = amdgpu_ttm_vram_write, 2278 .llseek = default_llseek, 2279 }; 2280 2281 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2282 2283 /** 2284 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2285 */ 2286 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2287 size_t size, loff_t *pos) 2288 { 2289 struct amdgpu_device *adev = file_inode(f)->i_private; 2290 ssize_t result = 0; 2291 int r; 2292 2293 while (size) { 2294 loff_t p = *pos / PAGE_SIZE; 2295 unsigned off = *pos & ~PAGE_MASK; 2296 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2297 struct page *page; 2298 void *ptr; 2299 2300 if (p >= adev->gart.num_cpu_pages) 2301 return result; 2302 2303 page = adev->gart.pages[p]; 2304 if (page) { 2305 ptr = kmap(page); 2306 ptr += off; 2307 2308 r = copy_to_user(buf, ptr, cur_size); 2309 kunmap(adev->gart.pages[p]); 2310 } else 2311 r = clear_user(buf, cur_size); 2312 2313 if (r) 2314 return -EFAULT; 2315 2316 result += cur_size; 2317 buf += cur_size; 2318 *pos += cur_size; 2319 size -= cur_size; 2320 } 2321 2322 return result; 2323 } 2324 2325 static const struct file_operations amdgpu_ttm_gtt_fops = { 2326 .owner = THIS_MODULE, 2327 .read = amdgpu_ttm_gtt_read, 2328 .llseek = default_llseek 2329 }; 2330 2331 #endif 2332 2333 /** 2334 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2335 * 2336 * This function is used to read memory that has been mapped to the 2337 * GPU and the known addresses are not physical addresses but instead 2338 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2339 */ 2340 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2341 size_t size, loff_t *pos) 2342 { 2343 struct amdgpu_device *adev = file_inode(f)->i_private; 2344 struct iommu_domain *dom; 2345 ssize_t result = 0; 2346 int r; 2347 2348 /* retrieve the IOMMU domain if any for this device */ 2349 dom = iommu_get_domain_for_dev(adev->dev); 2350 2351 while (size) { 2352 phys_addr_t addr = *pos & PAGE_MASK; 2353 loff_t off = *pos & ~PAGE_MASK; 2354 size_t bytes = PAGE_SIZE - off; 2355 unsigned long pfn; 2356 struct page *p; 2357 void *ptr; 2358 2359 bytes = bytes < size ? bytes : size; 2360 2361 /* Translate the bus address to a physical address. If 2362 * the domain is NULL it means there is no IOMMU active 2363 * and the address translation is the identity 2364 */ 2365 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2366 2367 pfn = addr >> PAGE_SHIFT; 2368 if (!pfn_valid(pfn)) 2369 return -EPERM; 2370 2371 p = pfn_to_page(pfn); 2372 if (p->mapping != adev->mman.bdev.dev_mapping) 2373 return -EPERM; 2374 2375 ptr = kmap(p); 2376 r = copy_to_user(buf, ptr + off, bytes); 2377 kunmap(p); 2378 if (r) 2379 return -EFAULT; 2380 2381 size -= bytes; 2382 *pos += bytes; 2383 result += bytes; 2384 } 2385 2386 return result; 2387 } 2388 2389 /** 2390 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2391 * 2392 * This function is used to write memory that has been mapped to the 2393 * GPU and the known addresses are not physical addresses but instead 2394 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2395 */ 2396 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2397 size_t size, loff_t *pos) 2398 { 2399 struct amdgpu_device *adev = file_inode(f)->i_private; 2400 struct iommu_domain *dom; 2401 ssize_t result = 0; 2402 int r; 2403 2404 dom = iommu_get_domain_for_dev(adev->dev); 2405 2406 while (size) { 2407 phys_addr_t addr = *pos & PAGE_MASK; 2408 loff_t off = *pos & ~PAGE_MASK; 2409 size_t bytes = PAGE_SIZE - off; 2410 unsigned long pfn; 2411 struct page *p; 2412 void *ptr; 2413 2414 bytes = bytes < size ? bytes : size; 2415 2416 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2417 2418 pfn = addr >> PAGE_SHIFT; 2419 if (!pfn_valid(pfn)) 2420 return -EPERM; 2421 2422 p = pfn_to_page(pfn); 2423 if (p->mapping != adev->mman.bdev.dev_mapping) 2424 return -EPERM; 2425 2426 ptr = kmap(p); 2427 r = copy_from_user(ptr + off, buf, bytes); 2428 kunmap(p); 2429 if (r) 2430 return -EFAULT; 2431 2432 size -= bytes; 2433 *pos += bytes; 2434 result += bytes; 2435 } 2436 2437 return result; 2438 } 2439 2440 static const struct file_operations amdgpu_ttm_iomem_fops = { 2441 .owner = THIS_MODULE, 2442 .read = amdgpu_iomem_read, 2443 .write = amdgpu_iomem_write, 2444 .llseek = default_llseek 2445 }; 2446 2447 static const struct { 2448 char *name; 2449 const struct file_operations *fops; 2450 int domain; 2451 } ttm_debugfs_entries[] = { 2452 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2453 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2454 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2455 #endif 2456 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2457 }; 2458 2459 #endif 2460 2461 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2462 { 2463 #if defined(CONFIG_DEBUG_FS) 2464 unsigned count; 2465 2466 struct drm_minor *minor = adev->ddev->primary; 2467 struct dentry *ent, *root = minor->debugfs_root; 2468 2469 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2470 ent = debugfs_create_file( 2471 ttm_debugfs_entries[count].name, 2472 S_IFREG | S_IRUGO, root, 2473 adev, 2474 ttm_debugfs_entries[count].fops); 2475 if (IS_ERR(ent)) 2476 return PTR_ERR(ent); 2477 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2478 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2479 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2480 i_size_write(ent->d_inode, adev->gmc.gart_size); 2481 adev->mman.debugfs_entries[count] = ent; 2482 } 2483 2484 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2485 2486 #ifdef CONFIG_SWIOTLB 2487 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2488 --count; 2489 #endif 2490 2491 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2492 #else 2493 return 0; 2494 #endif 2495 } 2496 2497 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2498 { 2499 #if defined(CONFIG_DEBUG_FS) 2500 unsigned i; 2501 2502 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2503 debugfs_remove(adev->mman.debugfs_entries[i]); 2504 #endif 2505 } 2506