1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 #include <drm/ttm/ttm_bo_api.h> 33 #include <drm/ttm/ttm_bo_driver.h> 34 #include <drm/ttm/ttm_placement.h> 35 #include <drm/ttm/ttm_module.h> 36 #include <drm/ttm/ttm_page_alloc.h> 37 #include <drm/drmP.h> 38 #include <drm/amdgpu_drm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swiotlb.h> 42 #include <linux/swap.h> 43 #include <linux/pagemap.h> 44 #include <linux/debugfs.h> 45 #include <linux/iommu.h> 46 #include <linux/hmm.h> 47 #include "amdgpu.h" 48 #include "amdgpu_object.h" 49 #include "amdgpu_trace.h" 50 #include "amdgpu_amdkfd.h" 51 #include "amdgpu_sdma.h" 52 #include "bif/bif_4_1_d.h" 53 54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 55 struct ttm_mem_reg *mem, unsigned num_pages, 56 uint64_t offset, unsigned window, 57 struct amdgpu_ring *ring, 58 uint64_t *addr); 59 60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 62 63 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 64 { 65 return 0; 66 } 67 68 /** 69 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 70 * memory request. 71 * 72 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 73 * @type: The type of memory requested 74 * @man: The memory type manager for each domain 75 * 76 * This is called by ttm_bo_init_mm() when a buffer object is being 77 * initialized. 78 */ 79 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 80 struct ttm_mem_type_manager *man) 81 { 82 struct amdgpu_device *adev; 83 84 adev = amdgpu_ttm_adev(bdev); 85 86 switch (type) { 87 case TTM_PL_SYSTEM: 88 /* System memory */ 89 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 90 man->available_caching = TTM_PL_MASK_CACHING; 91 man->default_caching = TTM_PL_FLAG_CACHED; 92 break; 93 case TTM_PL_TT: 94 /* GTT memory */ 95 man->func = &amdgpu_gtt_mgr_func; 96 man->gpu_offset = adev->gmc.gart_start; 97 man->available_caching = TTM_PL_MASK_CACHING; 98 man->default_caching = TTM_PL_FLAG_CACHED; 99 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 100 break; 101 case TTM_PL_VRAM: 102 /* "On-card" video ram */ 103 man->func = &amdgpu_vram_mgr_func; 104 man->gpu_offset = adev->gmc.vram_start; 105 man->flags = TTM_MEMTYPE_FLAG_FIXED | 106 TTM_MEMTYPE_FLAG_MAPPABLE; 107 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 108 man->default_caching = TTM_PL_FLAG_WC; 109 break; 110 case AMDGPU_PL_GDS: 111 case AMDGPU_PL_GWS: 112 case AMDGPU_PL_OA: 113 /* On-chip GDS memory*/ 114 man->func = &ttm_bo_manager_func; 115 man->gpu_offset = 0; 116 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 117 man->available_caching = TTM_PL_FLAG_UNCACHED; 118 man->default_caching = TTM_PL_FLAG_UNCACHED; 119 break; 120 default: 121 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 122 return -EINVAL; 123 } 124 return 0; 125 } 126 127 /** 128 * amdgpu_evict_flags - Compute placement flags 129 * 130 * @bo: The buffer object to evict 131 * @placement: Possible destination(s) for evicted BO 132 * 133 * Fill in placement data when ttm_bo_evict() is called 134 */ 135 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 136 struct ttm_placement *placement) 137 { 138 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 139 struct amdgpu_bo *abo; 140 static const struct ttm_place placements = { 141 .fpfn = 0, 142 .lpfn = 0, 143 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 144 }; 145 146 /* Don't handle scatter gather BOs */ 147 if (bo->type == ttm_bo_type_sg) { 148 placement->num_placement = 0; 149 placement->num_busy_placement = 0; 150 return; 151 } 152 153 /* Object isn't an AMDGPU object so ignore */ 154 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 155 placement->placement = &placements; 156 placement->busy_placement = &placements; 157 placement->num_placement = 1; 158 placement->num_busy_placement = 1; 159 return; 160 } 161 162 abo = ttm_to_amdgpu_bo(bo); 163 switch (bo->mem.mem_type) { 164 case AMDGPU_PL_GDS: 165 case AMDGPU_PL_GWS: 166 case AMDGPU_PL_OA: 167 placement->num_placement = 0; 168 placement->num_busy_placement = 0; 169 return; 170 171 case TTM_PL_VRAM: 172 if (!adev->mman.buffer_funcs_enabled) { 173 /* Move to system memory */ 174 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 175 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 176 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 177 amdgpu_bo_in_cpu_visible_vram(abo)) { 178 179 /* Try evicting to the CPU inaccessible part of VRAM 180 * first, but only set GTT as busy placement, so this 181 * BO will be evicted to GTT rather than causing other 182 * BOs to be evicted from VRAM 183 */ 184 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 185 AMDGPU_GEM_DOMAIN_GTT); 186 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 187 abo->placements[0].lpfn = 0; 188 abo->placement.busy_placement = &abo->placements[1]; 189 abo->placement.num_busy_placement = 1; 190 } else { 191 /* Move to GTT memory */ 192 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 193 } 194 break; 195 case TTM_PL_TT: 196 default: 197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 198 break; 199 } 200 *placement = abo->placement; 201 } 202 203 /** 204 * amdgpu_verify_access - Verify access for a mmap call 205 * 206 * @bo: The buffer object to map 207 * @filp: The file pointer from the process performing the mmap 208 * 209 * This is called by ttm_bo_mmap() to verify whether a process 210 * has the right to mmap a BO to their process space. 211 */ 212 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 213 { 214 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 215 216 /* 217 * Don't verify access for KFD BOs. They don't have a GEM 218 * object associated with them. 219 */ 220 if (abo->kfd_bo) 221 return 0; 222 223 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 224 return -EPERM; 225 return drm_vma_node_verify_access(&abo->gem_base.vma_node, 226 filp->private_data); 227 } 228 229 /** 230 * amdgpu_move_null - Register memory for a buffer object 231 * 232 * @bo: The bo to assign the memory to 233 * @new_mem: The memory to be assigned. 234 * 235 * Assign the memory from new_mem to the memory of the buffer object bo. 236 */ 237 static void amdgpu_move_null(struct ttm_buffer_object *bo, 238 struct ttm_mem_reg *new_mem) 239 { 240 struct ttm_mem_reg *old_mem = &bo->mem; 241 242 BUG_ON(old_mem->mm_node != NULL); 243 *old_mem = *new_mem; 244 new_mem->mm_node = NULL; 245 } 246 247 /** 248 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 249 * 250 * @bo: The bo to assign the memory to. 251 * @mm_node: Memory manager node for drm allocator. 252 * @mem: The region where the bo resides. 253 * 254 */ 255 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 256 struct drm_mm_node *mm_node, 257 struct ttm_mem_reg *mem) 258 { 259 uint64_t addr = 0; 260 261 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 262 addr = mm_node->start << PAGE_SHIFT; 263 addr += bo->bdev->man[mem->mem_type].gpu_offset; 264 } 265 return addr; 266 } 267 268 /** 269 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 270 * @offset. It also modifies the offset to be within the drm_mm_node returned 271 * 272 * @mem: The region where the bo resides. 273 * @offset: The offset that drm_mm_node is used for finding. 274 * 275 */ 276 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 277 unsigned long *offset) 278 { 279 struct drm_mm_node *mm_node = mem->mm_node; 280 281 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 282 *offset -= (mm_node->size << PAGE_SHIFT); 283 ++mm_node; 284 } 285 return mm_node; 286 } 287 288 /** 289 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 290 * 291 * The function copies @size bytes from {src->mem + src->offset} to 292 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 293 * move and different for a BO to BO copy. 294 * 295 * @f: Returns the last fence if multiple jobs are submitted. 296 */ 297 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 298 struct amdgpu_copy_mem *src, 299 struct amdgpu_copy_mem *dst, 300 uint64_t size, 301 struct reservation_object *resv, 302 struct dma_fence **f) 303 { 304 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 305 struct drm_mm_node *src_mm, *dst_mm; 306 uint64_t src_node_start, dst_node_start, src_node_size, 307 dst_node_size, src_page_offset, dst_page_offset; 308 struct dma_fence *fence = NULL; 309 int r = 0; 310 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 311 AMDGPU_GPU_PAGE_SIZE); 312 313 if (!adev->mman.buffer_funcs_enabled) { 314 DRM_ERROR("Trying to move memory with ring turned off.\n"); 315 return -EINVAL; 316 } 317 318 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 319 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 320 src->offset; 321 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 322 src_page_offset = src_node_start & (PAGE_SIZE - 1); 323 324 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 325 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 326 dst->offset; 327 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 328 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 329 330 mutex_lock(&adev->mman.gtt_window_lock); 331 332 while (size) { 333 unsigned long cur_size; 334 uint64_t from = src_node_start, to = dst_node_start; 335 struct dma_fence *next; 336 337 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 338 * begins at an offset, then adjust the size accordingly 339 */ 340 cur_size = min3(min(src_node_size, dst_node_size), size, 341 GTT_MAX_BYTES); 342 if (cur_size + src_page_offset > GTT_MAX_BYTES || 343 cur_size + dst_page_offset > GTT_MAX_BYTES) 344 cur_size -= max(src_page_offset, dst_page_offset); 345 346 /* Map only what needs to be accessed. Map src to window 0 and 347 * dst to window 1 348 */ 349 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 350 r = amdgpu_map_buffer(src->bo, src->mem, 351 PFN_UP(cur_size + src_page_offset), 352 src_node_start, 0, ring, 353 &from); 354 if (r) 355 goto error; 356 /* Adjust the offset because amdgpu_map_buffer returns 357 * start of mapped page 358 */ 359 from += src_page_offset; 360 } 361 362 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 363 r = amdgpu_map_buffer(dst->bo, dst->mem, 364 PFN_UP(cur_size + dst_page_offset), 365 dst_node_start, 1, ring, 366 &to); 367 if (r) 368 goto error; 369 to += dst_page_offset; 370 } 371 372 r = amdgpu_copy_buffer(ring, from, to, cur_size, 373 resv, &next, false, true); 374 if (r) 375 goto error; 376 377 dma_fence_put(fence); 378 fence = next; 379 380 size -= cur_size; 381 if (!size) 382 break; 383 384 src_node_size -= cur_size; 385 if (!src_node_size) { 386 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 387 src->mem); 388 src_node_size = (src_mm->size << PAGE_SHIFT); 389 } else { 390 src_node_start += cur_size; 391 src_page_offset = src_node_start & (PAGE_SIZE - 1); 392 } 393 dst_node_size -= cur_size; 394 if (!dst_node_size) { 395 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 396 dst->mem); 397 dst_node_size = (dst_mm->size << PAGE_SHIFT); 398 } else { 399 dst_node_start += cur_size; 400 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 401 } 402 } 403 error: 404 mutex_unlock(&adev->mman.gtt_window_lock); 405 if (f) 406 *f = dma_fence_get(fence); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /** 412 * amdgpu_move_blit - Copy an entire buffer to another buffer 413 * 414 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 415 * help move buffers to and from VRAM. 416 */ 417 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 418 bool evict, bool no_wait_gpu, 419 struct ttm_mem_reg *new_mem, 420 struct ttm_mem_reg *old_mem) 421 { 422 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 423 struct amdgpu_copy_mem src, dst; 424 struct dma_fence *fence = NULL; 425 int r; 426 427 src.bo = bo; 428 dst.bo = bo; 429 src.mem = old_mem; 430 dst.mem = new_mem; 431 src.offset = 0; 432 dst.offset = 0; 433 434 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 435 new_mem->num_pages << PAGE_SHIFT, 436 bo->resv, &fence); 437 if (r) 438 goto error; 439 440 /* Always block for VM page tables before committing the new location */ 441 if (bo->type == ttm_bo_type_kernel) 442 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 443 else 444 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 445 dma_fence_put(fence); 446 return r; 447 448 error: 449 if (fence) 450 dma_fence_wait(fence, false); 451 dma_fence_put(fence); 452 return r; 453 } 454 455 /** 456 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 457 * 458 * Called by amdgpu_bo_move(). 459 */ 460 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 461 struct ttm_operation_ctx *ctx, 462 struct ttm_mem_reg *new_mem) 463 { 464 struct amdgpu_device *adev; 465 struct ttm_mem_reg *old_mem = &bo->mem; 466 struct ttm_mem_reg tmp_mem; 467 struct ttm_place placements; 468 struct ttm_placement placement; 469 int r; 470 471 adev = amdgpu_ttm_adev(bo->bdev); 472 473 /* create space/pages for new_mem in GTT space */ 474 tmp_mem = *new_mem; 475 tmp_mem.mm_node = NULL; 476 placement.num_placement = 1; 477 placement.placement = &placements; 478 placement.num_busy_placement = 1; 479 placement.busy_placement = &placements; 480 placements.fpfn = 0; 481 placements.lpfn = 0; 482 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 483 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 484 if (unlikely(r)) { 485 return r; 486 } 487 488 /* set caching flags */ 489 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 490 if (unlikely(r)) { 491 goto out_cleanup; 492 } 493 494 /* Bind the memory to the GTT space */ 495 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 496 if (unlikely(r)) { 497 goto out_cleanup; 498 } 499 500 /* blit VRAM to GTT */ 501 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 502 if (unlikely(r)) { 503 goto out_cleanup; 504 } 505 506 /* move BO (in tmp_mem) to new_mem */ 507 r = ttm_bo_move_ttm(bo, ctx, new_mem); 508 out_cleanup: 509 ttm_bo_mem_put(bo, &tmp_mem); 510 return r; 511 } 512 513 /** 514 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 515 * 516 * Called by amdgpu_bo_move(). 517 */ 518 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 519 struct ttm_operation_ctx *ctx, 520 struct ttm_mem_reg *new_mem) 521 { 522 struct amdgpu_device *adev; 523 struct ttm_mem_reg *old_mem = &bo->mem; 524 struct ttm_mem_reg tmp_mem; 525 struct ttm_placement placement; 526 struct ttm_place placements; 527 int r; 528 529 adev = amdgpu_ttm_adev(bo->bdev); 530 531 /* make space in GTT for old_mem buffer */ 532 tmp_mem = *new_mem; 533 tmp_mem.mm_node = NULL; 534 placement.num_placement = 1; 535 placement.placement = &placements; 536 placement.num_busy_placement = 1; 537 placement.busy_placement = &placements; 538 placements.fpfn = 0; 539 placements.lpfn = 0; 540 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 541 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 542 if (unlikely(r)) { 543 return r; 544 } 545 546 /* move/bind old memory to GTT space */ 547 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 548 if (unlikely(r)) { 549 goto out_cleanup; 550 } 551 552 /* copy to VRAM */ 553 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 554 if (unlikely(r)) { 555 goto out_cleanup; 556 } 557 out_cleanup: 558 ttm_bo_mem_put(bo, &tmp_mem); 559 return r; 560 } 561 562 /** 563 * amdgpu_bo_move - Move a buffer object to a new memory location 564 * 565 * Called by ttm_bo_handle_move_mem() 566 */ 567 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 568 struct ttm_operation_ctx *ctx, 569 struct ttm_mem_reg *new_mem) 570 { 571 struct amdgpu_device *adev; 572 struct amdgpu_bo *abo; 573 struct ttm_mem_reg *old_mem = &bo->mem; 574 int r; 575 576 /* Can't move a pinned BO */ 577 abo = ttm_to_amdgpu_bo(bo); 578 if (WARN_ON_ONCE(abo->pin_count > 0)) 579 return -EINVAL; 580 581 adev = amdgpu_ttm_adev(bo->bdev); 582 583 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 584 amdgpu_move_null(bo, new_mem); 585 return 0; 586 } 587 if ((old_mem->mem_type == TTM_PL_TT && 588 new_mem->mem_type == TTM_PL_SYSTEM) || 589 (old_mem->mem_type == TTM_PL_SYSTEM && 590 new_mem->mem_type == TTM_PL_TT)) { 591 /* bind is enough */ 592 amdgpu_move_null(bo, new_mem); 593 return 0; 594 } 595 if (old_mem->mem_type == AMDGPU_PL_GDS || 596 old_mem->mem_type == AMDGPU_PL_GWS || 597 old_mem->mem_type == AMDGPU_PL_OA || 598 new_mem->mem_type == AMDGPU_PL_GDS || 599 new_mem->mem_type == AMDGPU_PL_GWS || 600 new_mem->mem_type == AMDGPU_PL_OA) { 601 /* Nothing to save here */ 602 amdgpu_move_null(bo, new_mem); 603 return 0; 604 } 605 606 if (!adev->mman.buffer_funcs_enabled) 607 goto memcpy; 608 609 if (old_mem->mem_type == TTM_PL_VRAM && 610 new_mem->mem_type == TTM_PL_SYSTEM) { 611 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 612 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 613 new_mem->mem_type == TTM_PL_VRAM) { 614 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 615 } else { 616 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 617 new_mem, old_mem); 618 } 619 620 if (r) { 621 memcpy: 622 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 623 if (r) { 624 return r; 625 } 626 } 627 628 if (bo->type == ttm_bo_type_device && 629 new_mem->mem_type == TTM_PL_VRAM && 630 old_mem->mem_type != TTM_PL_VRAM) { 631 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 632 * accesses the BO after it's moved. 633 */ 634 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 635 } 636 637 /* update statistics */ 638 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 639 return 0; 640 } 641 642 /** 643 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 644 * 645 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 646 */ 647 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 648 { 649 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 650 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 651 struct drm_mm_node *mm_node = mem->mm_node; 652 653 mem->bus.addr = NULL; 654 mem->bus.offset = 0; 655 mem->bus.size = mem->num_pages << PAGE_SHIFT; 656 mem->bus.base = 0; 657 mem->bus.is_iomem = false; 658 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 659 return -EINVAL; 660 switch (mem->mem_type) { 661 case TTM_PL_SYSTEM: 662 /* system memory */ 663 return 0; 664 case TTM_PL_TT: 665 break; 666 case TTM_PL_VRAM: 667 mem->bus.offset = mem->start << PAGE_SHIFT; 668 /* check if it's visible */ 669 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 670 return -EINVAL; 671 /* Only physically contiguous buffers apply. In a contiguous 672 * buffer, size of the first mm_node would match the number of 673 * pages in ttm_mem_reg. 674 */ 675 if (adev->mman.aper_base_kaddr && 676 (mm_node->size == mem->num_pages)) 677 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 678 mem->bus.offset; 679 680 mem->bus.base = adev->gmc.aper_base; 681 mem->bus.is_iomem = true; 682 break; 683 default: 684 return -EINVAL; 685 } 686 return 0; 687 } 688 689 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 690 { 691 } 692 693 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 694 unsigned long page_offset) 695 { 696 struct drm_mm_node *mm; 697 unsigned long offset = (page_offset << PAGE_SHIFT); 698 699 mm = amdgpu_find_mm_node(&bo->mem, &offset); 700 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 701 (offset >> PAGE_SHIFT); 702 } 703 704 /* 705 * TTM backend functions. 706 */ 707 struct amdgpu_ttm_tt { 708 struct ttm_dma_tt ttm; 709 u64 offset; 710 uint64_t userptr; 711 struct task_struct *usertask; 712 uint32_t userflags; 713 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 714 struct hmm_range *range; 715 #endif 716 }; 717 718 /** 719 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 720 * memory and start HMM tracking CPU page table update 721 * 722 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 723 * once afterwards to stop HMM tracking 724 */ 725 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 726 727 #define MAX_RETRY_HMM_RANGE_FAULT 16 728 729 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages) 730 { 731 struct amdgpu_ttm_tt *gtt = (void *)ttm; 732 struct mm_struct *mm = gtt->usertask->mm; 733 unsigned long start = gtt->userptr; 734 struct vm_area_struct *vma; 735 struct hmm_range *range; 736 unsigned long i; 737 uint64_t *pfns; 738 int retry = 0; 739 int r = 0; 740 741 if (!mm) /* Happens during process shutdown */ 742 return -ESRCH; 743 744 vma = find_vma(mm, start); 745 if (unlikely(!vma || start < vma->vm_start)) { 746 r = -EFAULT; 747 goto out; 748 } 749 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 750 vma->vm_file)) { 751 r = -EPERM; 752 goto out; 753 } 754 755 range = kzalloc(sizeof(*range), GFP_KERNEL); 756 if (unlikely(!range)) { 757 r = -ENOMEM; 758 goto out; 759 } 760 761 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL); 762 if (unlikely(!pfns)) { 763 r = -ENOMEM; 764 goto out_free_ranges; 765 } 766 767 amdgpu_hmm_init_range(range); 768 range->default_flags = range->flags[HMM_PFN_VALID]; 769 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ? 770 0 : range->flags[HMM_PFN_WRITE]; 771 range->pfn_flags_mask = 0; 772 range->pfns = pfns; 773 hmm_range_register(range, mm, start, 774 start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT); 775 776 retry: 777 /* 778 * Just wait for range to be valid, safe to ignore return value as we 779 * will use the return value of hmm_range_fault() below under the 780 * mmap_sem to ascertain the validity of the range. 781 */ 782 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT); 783 784 down_read(&mm->mmap_sem); 785 786 r = hmm_range_fault(range, true); 787 if (unlikely(r < 0)) { 788 if (likely(r == -EAGAIN)) { 789 /* 790 * return -EAGAIN, mmap_sem is dropped 791 */ 792 if (retry++ < MAX_RETRY_HMM_RANGE_FAULT) 793 goto retry; 794 else 795 pr_err("Retry hmm fault too many times\n"); 796 } 797 798 goto out_up_read; 799 } 800 801 up_read(&mm->mmap_sem); 802 803 for (i = 0; i < ttm->num_pages; i++) { 804 pages[i] = hmm_device_entry_to_page(range, pfns[i]); 805 if (unlikely(!pages[i])) { 806 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 807 i, pfns[i]); 808 r = -ENOMEM; 809 810 goto out_free_pfns; 811 } 812 } 813 814 gtt->range = range; 815 816 return 0; 817 818 out_up_read: 819 if (likely(r != -EAGAIN)) 820 up_read(&mm->mmap_sem); 821 out_free_pfns: 822 hmm_range_unregister(range); 823 kvfree(pfns); 824 out_free_ranges: 825 kfree(range); 826 out: 827 return r; 828 } 829 830 /** 831 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 832 * Check if the pages backing this ttm range have been invalidated 833 * 834 * Returns: true if pages are still valid 835 */ 836 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 837 { 838 struct amdgpu_ttm_tt *gtt = (void *)ttm; 839 bool r = false; 840 841 if (!gtt || !gtt->userptr) 842 return false; 843 844 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 845 gtt->userptr, ttm->num_pages); 846 847 WARN_ONCE(!gtt->range || !gtt->range->pfns, 848 "No user pages to check\n"); 849 850 if (gtt->range) { 851 r = hmm_range_valid(gtt->range); 852 hmm_range_unregister(gtt->range); 853 854 kvfree(gtt->range->pfns); 855 kfree(gtt->range); 856 gtt->range = NULL; 857 } 858 859 return r; 860 } 861 #endif 862 863 /** 864 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 865 * 866 * Called by amdgpu_cs_list_validate(). This creates the page list 867 * that backs user memory and will ultimately be mapped into the device 868 * address space. 869 */ 870 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 871 { 872 unsigned long i; 873 874 for (i = 0; i < ttm->num_pages; ++i) 875 ttm->pages[i] = pages ? pages[i] : NULL; 876 } 877 878 /** 879 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 880 * 881 * Called by amdgpu_ttm_backend_bind() 882 **/ 883 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 884 { 885 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 886 struct amdgpu_ttm_tt *gtt = (void *)ttm; 887 unsigned nents; 888 int r; 889 890 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 891 enum dma_data_direction direction = write ? 892 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 893 894 /* Allocate an SG array and squash pages into it */ 895 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 896 ttm->num_pages << PAGE_SHIFT, 897 GFP_KERNEL); 898 if (r) 899 goto release_sg; 900 901 /* Map SG to device */ 902 r = -ENOMEM; 903 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 904 if (nents != ttm->sg->nents) 905 goto release_sg; 906 907 /* convert SG to linear array of pages and dma addresses */ 908 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 909 gtt->ttm.dma_address, ttm->num_pages); 910 911 return 0; 912 913 release_sg: 914 kfree(ttm->sg); 915 return r; 916 } 917 918 /** 919 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 920 */ 921 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 922 { 923 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 924 struct amdgpu_ttm_tt *gtt = (void *)ttm; 925 926 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 927 enum dma_data_direction direction = write ? 928 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 929 930 /* double check that we don't free the table twice */ 931 if (!ttm->sg->sgl) 932 return; 933 934 /* unmap the pages mapped to the device */ 935 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 936 937 sg_free_table(ttm->sg); 938 939 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 940 if (gtt->range && 941 ttm->pages[0] == hmm_device_entry_to_page(gtt->range, 942 gtt->range->pfns[0])) 943 WARN_ONCE(1, "Missing get_user_page_done\n"); 944 #endif 945 } 946 947 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 948 struct ttm_buffer_object *tbo, 949 uint64_t flags) 950 { 951 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 952 struct ttm_tt *ttm = tbo->ttm; 953 struct amdgpu_ttm_tt *gtt = (void *)ttm; 954 int r; 955 956 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 957 uint64_t page_idx = 1; 958 959 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 960 ttm->pages, gtt->ttm.dma_address, flags); 961 if (r) 962 goto gart_bind_fail; 963 964 /* Patch mtype of the second part BO */ 965 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 966 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 967 968 r = amdgpu_gart_bind(adev, 969 gtt->offset + (page_idx << PAGE_SHIFT), 970 ttm->num_pages - page_idx, 971 &ttm->pages[page_idx], 972 &(gtt->ttm.dma_address[page_idx]), flags); 973 } else { 974 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 975 ttm->pages, gtt->ttm.dma_address, flags); 976 } 977 978 gart_bind_fail: 979 if (r) 980 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 981 ttm->num_pages, gtt->offset); 982 983 return r; 984 } 985 986 /** 987 * amdgpu_ttm_backend_bind - Bind GTT memory 988 * 989 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 990 * This handles binding GTT memory to the device address space. 991 */ 992 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 993 struct ttm_mem_reg *bo_mem) 994 { 995 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 996 struct amdgpu_ttm_tt *gtt = (void*)ttm; 997 uint64_t flags; 998 int r = 0; 999 1000 if (gtt->userptr) { 1001 r = amdgpu_ttm_tt_pin_userptr(ttm); 1002 if (r) { 1003 DRM_ERROR("failed to pin userptr\n"); 1004 return r; 1005 } 1006 } 1007 if (!ttm->num_pages) { 1008 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1009 ttm->num_pages, bo_mem, ttm); 1010 } 1011 1012 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1013 bo_mem->mem_type == AMDGPU_PL_GWS || 1014 bo_mem->mem_type == AMDGPU_PL_OA) 1015 return -EINVAL; 1016 1017 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1018 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1019 return 0; 1020 } 1021 1022 /* compute PTE flags relevant to this BO memory */ 1023 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1024 1025 /* bind pages into GART page tables */ 1026 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1027 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1028 ttm->pages, gtt->ttm.dma_address, flags); 1029 1030 if (r) 1031 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1032 ttm->num_pages, gtt->offset); 1033 return r; 1034 } 1035 1036 /** 1037 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1038 */ 1039 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1040 { 1041 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1042 struct ttm_operation_ctx ctx = { false, false }; 1043 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1044 struct ttm_mem_reg tmp; 1045 struct ttm_placement placement; 1046 struct ttm_place placements; 1047 uint64_t addr, flags; 1048 int r; 1049 1050 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1051 return 0; 1052 1053 addr = amdgpu_gmc_agp_addr(bo); 1054 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1055 bo->mem.start = addr >> PAGE_SHIFT; 1056 } else { 1057 1058 /* allocate GART space */ 1059 tmp = bo->mem; 1060 tmp.mm_node = NULL; 1061 placement.num_placement = 1; 1062 placement.placement = &placements; 1063 placement.num_busy_placement = 1; 1064 placement.busy_placement = &placements; 1065 placements.fpfn = 0; 1066 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1067 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1068 TTM_PL_FLAG_TT; 1069 1070 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1071 if (unlikely(r)) 1072 return r; 1073 1074 /* compute PTE flags for this buffer object */ 1075 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1076 1077 /* Bind pages */ 1078 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1079 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1080 if (unlikely(r)) { 1081 ttm_bo_mem_put(bo, &tmp); 1082 return r; 1083 } 1084 1085 ttm_bo_mem_put(bo, &bo->mem); 1086 bo->mem = tmp; 1087 } 1088 1089 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1090 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1091 1092 return 0; 1093 } 1094 1095 /** 1096 * amdgpu_ttm_recover_gart - Rebind GTT pages 1097 * 1098 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1099 * rebind GTT pages during a GPU reset. 1100 */ 1101 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1102 { 1103 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1104 uint64_t flags; 1105 int r; 1106 1107 if (!tbo->ttm) 1108 return 0; 1109 1110 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1111 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1112 1113 return r; 1114 } 1115 1116 /** 1117 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1118 * 1119 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1120 * ttm_tt_destroy(). 1121 */ 1122 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1123 { 1124 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1125 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1126 int r; 1127 1128 /* if the pages have userptr pinning then clear that first */ 1129 if (gtt->userptr) 1130 amdgpu_ttm_tt_unpin_userptr(ttm); 1131 1132 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1133 return 0; 1134 1135 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1136 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1137 if (r) 1138 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1139 gtt->ttm.ttm.num_pages, gtt->offset); 1140 return r; 1141 } 1142 1143 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1144 { 1145 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1146 1147 if (gtt->usertask) 1148 put_task_struct(gtt->usertask); 1149 1150 ttm_dma_tt_fini(>t->ttm); 1151 kfree(gtt); 1152 } 1153 1154 static struct ttm_backend_func amdgpu_backend_func = { 1155 .bind = &amdgpu_ttm_backend_bind, 1156 .unbind = &amdgpu_ttm_backend_unbind, 1157 .destroy = &amdgpu_ttm_backend_destroy, 1158 }; 1159 1160 /** 1161 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1162 * 1163 * @bo: The buffer object to create a GTT ttm_tt object around 1164 * 1165 * Called by ttm_tt_create(). 1166 */ 1167 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1168 uint32_t page_flags) 1169 { 1170 struct amdgpu_device *adev; 1171 struct amdgpu_ttm_tt *gtt; 1172 1173 adev = amdgpu_ttm_adev(bo->bdev); 1174 1175 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1176 if (gtt == NULL) { 1177 return NULL; 1178 } 1179 gtt->ttm.ttm.func = &amdgpu_backend_func; 1180 1181 /* allocate space for the uninitialized page entries */ 1182 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1183 kfree(gtt); 1184 return NULL; 1185 } 1186 return >t->ttm.ttm; 1187 } 1188 1189 /** 1190 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1191 * 1192 * Map the pages of a ttm_tt object to an address space visible 1193 * to the underlying device. 1194 */ 1195 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1196 struct ttm_operation_ctx *ctx) 1197 { 1198 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1199 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1200 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1201 1202 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1203 if (gtt && gtt->userptr) { 1204 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1205 if (!ttm->sg) 1206 return -ENOMEM; 1207 1208 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1209 ttm->state = tt_unbound; 1210 return 0; 1211 } 1212 1213 if (slave && ttm->sg) { 1214 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1215 gtt->ttm.dma_address, 1216 ttm->num_pages); 1217 ttm->state = tt_unbound; 1218 return 0; 1219 } 1220 1221 #ifdef CONFIG_SWIOTLB 1222 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1223 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1224 } 1225 #endif 1226 1227 /* fall back to generic helper to populate the page array 1228 * and map them to the device */ 1229 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1230 } 1231 1232 /** 1233 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1234 * 1235 * Unmaps pages of a ttm_tt object from the device address space and 1236 * unpopulates the page array backing it. 1237 */ 1238 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1239 { 1240 struct amdgpu_device *adev; 1241 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1242 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1243 1244 if (gtt && gtt->userptr) { 1245 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1246 kfree(ttm->sg); 1247 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1248 return; 1249 } 1250 1251 if (slave) 1252 return; 1253 1254 adev = amdgpu_ttm_adev(ttm->bdev); 1255 1256 #ifdef CONFIG_SWIOTLB 1257 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1258 ttm_dma_unpopulate(>t->ttm, adev->dev); 1259 return; 1260 } 1261 #endif 1262 1263 /* fall back to generic helper to unmap and unpopulate array */ 1264 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1265 } 1266 1267 /** 1268 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1269 * task 1270 * 1271 * @ttm: The ttm_tt object to bind this userptr object to 1272 * @addr: The address in the current tasks VM space to use 1273 * @flags: Requirements of userptr object. 1274 * 1275 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1276 * to current task 1277 */ 1278 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1279 uint32_t flags) 1280 { 1281 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1282 1283 if (gtt == NULL) 1284 return -EINVAL; 1285 1286 gtt->userptr = addr; 1287 gtt->userflags = flags; 1288 1289 if (gtt->usertask) 1290 put_task_struct(gtt->usertask); 1291 gtt->usertask = current->group_leader; 1292 get_task_struct(gtt->usertask); 1293 1294 return 0; 1295 } 1296 1297 /** 1298 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1299 */ 1300 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1301 { 1302 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1303 1304 if (gtt == NULL) 1305 return NULL; 1306 1307 if (gtt->usertask == NULL) 1308 return NULL; 1309 1310 return gtt->usertask->mm; 1311 } 1312 1313 /** 1314 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1315 * address range for the current task. 1316 * 1317 */ 1318 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1319 unsigned long end) 1320 { 1321 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1322 unsigned long size; 1323 1324 if (gtt == NULL || !gtt->userptr) 1325 return false; 1326 1327 /* Return false if no part of the ttm_tt object lies within 1328 * the range 1329 */ 1330 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1331 if (gtt->userptr > end || gtt->userptr + size <= start) 1332 return false; 1333 1334 return true; 1335 } 1336 1337 /** 1338 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1339 */ 1340 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1341 { 1342 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1343 1344 if (gtt == NULL || !gtt->userptr) 1345 return false; 1346 1347 return true; 1348 } 1349 1350 /** 1351 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1352 */ 1353 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1354 { 1355 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1356 1357 if (gtt == NULL) 1358 return false; 1359 1360 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1361 } 1362 1363 /** 1364 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1365 * 1366 * @ttm: The ttm_tt object to compute the flags for 1367 * @mem: The memory registry backing this ttm_tt object 1368 * 1369 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1370 */ 1371 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1372 { 1373 uint64_t flags = 0; 1374 1375 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1376 flags |= AMDGPU_PTE_VALID; 1377 1378 if (mem && mem->mem_type == TTM_PL_TT) { 1379 flags |= AMDGPU_PTE_SYSTEM; 1380 1381 if (ttm->caching_state == tt_cached) 1382 flags |= AMDGPU_PTE_SNOOPED; 1383 } 1384 1385 return flags; 1386 } 1387 1388 /** 1389 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1390 * 1391 * @ttm: The ttm_tt object to compute the flags for 1392 * @mem: The memory registry backing this ttm_tt object 1393 1394 * Figure out the flags to use for a VM PTE (Page Table Entry). 1395 */ 1396 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1397 struct ttm_mem_reg *mem) 1398 { 1399 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1400 1401 flags |= adev->gart.gart_pte_flags; 1402 flags |= AMDGPU_PTE_READABLE; 1403 1404 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1405 flags |= AMDGPU_PTE_WRITEABLE; 1406 1407 return flags; 1408 } 1409 1410 /** 1411 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1412 * object. 1413 * 1414 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1415 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1416 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1417 * used to clean out a memory space. 1418 */ 1419 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1420 const struct ttm_place *place) 1421 { 1422 unsigned long num_pages = bo->mem.num_pages; 1423 struct drm_mm_node *node = bo->mem.mm_node; 1424 struct reservation_object_list *flist; 1425 struct dma_fence *f; 1426 int i; 1427 1428 /* Don't evict VM page tables while they are busy, otherwise we can't 1429 * cleanly handle page faults. 1430 */ 1431 if (bo->type == ttm_bo_type_kernel && 1432 !reservation_object_test_signaled_rcu(bo->resv, true)) 1433 return false; 1434 1435 /* If bo is a KFD BO, check if the bo belongs to the current process. 1436 * If true, then return false as any KFD process needs all its BOs to 1437 * be resident to run successfully 1438 */ 1439 flist = reservation_object_get_list(bo->resv); 1440 if (flist) { 1441 for (i = 0; i < flist->shared_count; ++i) { 1442 f = rcu_dereference_protected(flist->shared[i], 1443 reservation_object_held(bo->resv)); 1444 if (amdkfd_fence_check_mm(f, current->mm)) 1445 return false; 1446 } 1447 } 1448 1449 switch (bo->mem.mem_type) { 1450 case TTM_PL_TT: 1451 return true; 1452 1453 case TTM_PL_VRAM: 1454 /* Check each drm MM node individually */ 1455 while (num_pages) { 1456 if (place->fpfn < (node->start + node->size) && 1457 !(place->lpfn && place->lpfn <= node->start)) 1458 return true; 1459 1460 num_pages -= node->size; 1461 ++node; 1462 } 1463 return false; 1464 1465 default: 1466 break; 1467 } 1468 1469 return ttm_bo_eviction_valuable(bo, place); 1470 } 1471 1472 /** 1473 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1474 * 1475 * @bo: The buffer object to read/write 1476 * @offset: Offset into buffer object 1477 * @buf: Secondary buffer to write/read from 1478 * @len: Length in bytes of access 1479 * @write: true if writing 1480 * 1481 * This is used to access VRAM that backs a buffer object via MMIO 1482 * access for debugging purposes. 1483 */ 1484 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1485 unsigned long offset, 1486 void *buf, int len, int write) 1487 { 1488 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1489 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1490 struct drm_mm_node *nodes; 1491 uint32_t value = 0; 1492 int ret = 0; 1493 uint64_t pos; 1494 unsigned long flags; 1495 1496 if (bo->mem.mem_type != TTM_PL_VRAM) 1497 return -EIO; 1498 1499 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1500 pos = (nodes->start << PAGE_SHIFT) + offset; 1501 1502 while (len && pos < adev->gmc.mc_vram_size) { 1503 uint64_t aligned_pos = pos & ~(uint64_t)3; 1504 uint32_t bytes = 4 - (pos & 3); 1505 uint32_t shift = (pos & 3) * 8; 1506 uint32_t mask = 0xffffffff << shift; 1507 1508 if (len < bytes) { 1509 mask &= 0xffffffff >> (bytes - len) * 8; 1510 bytes = len; 1511 } 1512 1513 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1514 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1515 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1516 if (!write || mask != 0xffffffff) 1517 value = RREG32_NO_KIQ(mmMM_DATA); 1518 if (write) { 1519 value &= ~mask; 1520 value |= (*(uint32_t *)buf << shift) & mask; 1521 WREG32_NO_KIQ(mmMM_DATA, value); 1522 } 1523 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1524 if (!write) { 1525 value = (value & mask) >> shift; 1526 memcpy(buf, &value, bytes); 1527 } 1528 1529 ret += bytes; 1530 buf = (uint8_t *)buf + bytes; 1531 pos += bytes; 1532 len -= bytes; 1533 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1534 ++nodes; 1535 pos = (nodes->start << PAGE_SHIFT); 1536 } 1537 } 1538 1539 return ret; 1540 } 1541 1542 static struct ttm_bo_driver amdgpu_bo_driver = { 1543 .ttm_tt_create = &amdgpu_ttm_tt_create, 1544 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1545 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1546 .invalidate_caches = &amdgpu_invalidate_caches, 1547 .init_mem_type = &amdgpu_init_mem_type, 1548 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1549 .evict_flags = &amdgpu_evict_flags, 1550 .move = &amdgpu_bo_move, 1551 .verify_access = &amdgpu_verify_access, 1552 .move_notify = &amdgpu_bo_move_notify, 1553 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1554 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1555 .io_mem_free = &amdgpu_ttm_io_mem_free, 1556 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1557 .access_memory = &amdgpu_ttm_access_memory, 1558 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1559 }; 1560 1561 /* 1562 * Firmware Reservation functions 1563 */ 1564 /** 1565 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1566 * 1567 * @adev: amdgpu_device pointer 1568 * 1569 * free fw reserved vram if it has been reserved. 1570 */ 1571 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1572 { 1573 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1574 NULL, &adev->fw_vram_usage.va); 1575 } 1576 1577 /** 1578 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1579 * 1580 * @adev: amdgpu_device pointer 1581 * 1582 * create bo vram reservation from fw. 1583 */ 1584 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1585 { 1586 struct ttm_operation_ctx ctx = { false, false }; 1587 struct amdgpu_bo_param bp; 1588 int r = 0; 1589 int i; 1590 u64 vram_size = adev->gmc.visible_vram_size; 1591 u64 offset = adev->fw_vram_usage.start_offset; 1592 u64 size = adev->fw_vram_usage.size; 1593 struct amdgpu_bo *bo; 1594 1595 memset(&bp, 0, sizeof(bp)); 1596 bp.size = adev->fw_vram_usage.size; 1597 bp.byte_align = PAGE_SIZE; 1598 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1599 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1600 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1601 bp.type = ttm_bo_type_kernel; 1602 bp.resv = NULL; 1603 adev->fw_vram_usage.va = NULL; 1604 adev->fw_vram_usage.reserved_bo = NULL; 1605 1606 if (adev->fw_vram_usage.size > 0 && 1607 adev->fw_vram_usage.size <= vram_size) { 1608 1609 r = amdgpu_bo_create(adev, &bp, 1610 &adev->fw_vram_usage.reserved_bo); 1611 if (r) 1612 goto error_create; 1613 1614 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1615 if (r) 1616 goto error_reserve; 1617 1618 /* remove the original mem node and create a new one at the 1619 * request position 1620 */ 1621 bo = adev->fw_vram_usage.reserved_bo; 1622 offset = ALIGN(offset, PAGE_SIZE); 1623 for (i = 0; i < bo->placement.num_placement; ++i) { 1624 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1625 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1626 } 1627 1628 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1629 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1630 &bo->tbo.mem, &ctx); 1631 if (r) 1632 goto error_pin; 1633 1634 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1635 AMDGPU_GEM_DOMAIN_VRAM, 1636 adev->fw_vram_usage.start_offset, 1637 (adev->fw_vram_usage.start_offset + 1638 adev->fw_vram_usage.size)); 1639 if (r) 1640 goto error_pin; 1641 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1642 &adev->fw_vram_usage.va); 1643 if (r) 1644 goto error_kmap; 1645 1646 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1647 } 1648 return r; 1649 1650 error_kmap: 1651 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1652 error_pin: 1653 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1654 error_reserve: 1655 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1656 error_create: 1657 adev->fw_vram_usage.va = NULL; 1658 adev->fw_vram_usage.reserved_bo = NULL; 1659 return r; 1660 } 1661 /** 1662 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1663 * gtt/vram related fields. 1664 * 1665 * This initializes all of the memory space pools that the TTM layer 1666 * will need such as the GTT space (system memory mapped to the device), 1667 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1668 * can be mapped per VMID. 1669 */ 1670 int amdgpu_ttm_init(struct amdgpu_device *adev) 1671 { 1672 uint64_t gtt_size; 1673 int r; 1674 u64 vis_vram_limit; 1675 1676 mutex_init(&adev->mman.gtt_window_lock); 1677 1678 /* No others user of address space so set it to 0 */ 1679 r = ttm_bo_device_init(&adev->mman.bdev, 1680 &amdgpu_bo_driver, 1681 adev->ddev->anon_inode->i_mapping, 1682 adev->need_dma32); 1683 if (r) { 1684 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1685 return r; 1686 } 1687 adev->mman.initialized = true; 1688 1689 /* We opt to avoid OOM on system pages allocations */ 1690 adev->mman.bdev.no_retry = true; 1691 1692 /* Initialize VRAM pool with all of VRAM divided into pages */ 1693 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1694 adev->gmc.real_vram_size >> PAGE_SHIFT); 1695 if (r) { 1696 DRM_ERROR("Failed initializing VRAM heap.\n"); 1697 return r; 1698 } 1699 1700 /* Reduce size of CPU-visible VRAM if requested */ 1701 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1702 if (amdgpu_vis_vram_limit > 0 && 1703 vis_vram_limit <= adev->gmc.visible_vram_size) 1704 adev->gmc.visible_vram_size = vis_vram_limit; 1705 1706 /* Change the size here instead of the init above so only lpfn is affected */ 1707 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1708 #ifdef CONFIG_64BIT 1709 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1710 adev->gmc.visible_vram_size); 1711 #endif 1712 1713 /* 1714 *The reserved vram for firmware must be pinned to the specified 1715 *place on the VRAM, so reserve it early. 1716 */ 1717 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1718 if (r) { 1719 return r; 1720 } 1721 1722 /* allocate memory as required for VGA 1723 * This is used for VGA emulation and pre-OS scanout buffers to 1724 * avoid display artifacts while transitioning between pre-OS 1725 * and driver. */ 1726 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1727 AMDGPU_GEM_DOMAIN_VRAM, 1728 &adev->stolen_vga_memory, 1729 NULL, NULL); 1730 if (r) 1731 return r; 1732 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1733 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1734 1735 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1736 * or whatever the user passed on module init */ 1737 if (amdgpu_gtt_size == -1) { 1738 struct sysinfo si; 1739 1740 si_meminfo(&si); 1741 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1742 adev->gmc.mc_vram_size), 1743 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1744 } 1745 else 1746 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1747 1748 /* Initialize GTT memory pool */ 1749 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1750 if (r) { 1751 DRM_ERROR("Failed initializing GTT heap.\n"); 1752 return r; 1753 } 1754 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1755 (unsigned)(gtt_size / (1024 * 1024))); 1756 1757 /* Initialize various on-chip memory pools */ 1758 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1759 adev->gds.gds_size); 1760 if (r) { 1761 DRM_ERROR("Failed initializing GDS heap.\n"); 1762 return r; 1763 } 1764 1765 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1766 adev->gds.gws_size); 1767 if (r) { 1768 DRM_ERROR("Failed initializing gws heap.\n"); 1769 return r; 1770 } 1771 1772 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1773 adev->gds.oa_size); 1774 if (r) { 1775 DRM_ERROR("Failed initializing oa heap.\n"); 1776 return r; 1777 } 1778 1779 /* Register debugfs entries for amdgpu_ttm */ 1780 r = amdgpu_ttm_debugfs_init(adev); 1781 if (r) { 1782 DRM_ERROR("Failed to init debugfs\n"); 1783 return r; 1784 } 1785 return 0; 1786 } 1787 1788 /** 1789 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1790 */ 1791 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1792 { 1793 /* return the VGA stolen memory (if any) back to VRAM */ 1794 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1795 } 1796 1797 /** 1798 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1799 */ 1800 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1801 { 1802 if (!adev->mman.initialized) 1803 return; 1804 1805 amdgpu_ttm_debugfs_fini(adev); 1806 amdgpu_ttm_fw_reserve_vram_fini(adev); 1807 if (adev->mman.aper_base_kaddr) 1808 iounmap(adev->mman.aper_base_kaddr); 1809 adev->mman.aper_base_kaddr = NULL; 1810 1811 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1812 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1813 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1814 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1815 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1816 ttm_bo_device_release(&adev->mman.bdev); 1817 adev->mman.initialized = false; 1818 DRM_INFO("amdgpu: ttm finalized\n"); 1819 } 1820 1821 /** 1822 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1823 * 1824 * @adev: amdgpu_device pointer 1825 * @enable: true when we can use buffer functions. 1826 * 1827 * Enable/disable use of buffer functions during suspend/resume. This should 1828 * only be called at bootup or when userspace isn't running. 1829 */ 1830 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1831 { 1832 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1833 uint64_t size; 1834 int r; 1835 1836 if (!adev->mman.initialized || adev->in_gpu_reset || 1837 adev->mman.buffer_funcs_enabled == enable) 1838 return; 1839 1840 if (enable) { 1841 struct amdgpu_ring *ring; 1842 struct drm_sched_rq *rq; 1843 1844 ring = adev->mman.buffer_funcs_ring; 1845 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1846 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1847 if (r) { 1848 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1849 r); 1850 return; 1851 } 1852 } else { 1853 drm_sched_entity_destroy(&adev->mman.entity); 1854 dma_fence_put(man->move); 1855 man->move = NULL; 1856 } 1857 1858 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1859 if (enable) 1860 size = adev->gmc.real_vram_size; 1861 else 1862 size = adev->gmc.visible_vram_size; 1863 man->size = size >> PAGE_SHIFT; 1864 adev->mman.buffer_funcs_enabled = enable; 1865 } 1866 1867 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1868 { 1869 struct drm_file *file_priv = filp->private_data; 1870 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 1871 1872 if (adev == NULL) 1873 return -EINVAL; 1874 1875 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1876 } 1877 1878 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1879 struct ttm_mem_reg *mem, unsigned num_pages, 1880 uint64_t offset, unsigned window, 1881 struct amdgpu_ring *ring, 1882 uint64_t *addr) 1883 { 1884 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1885 struct amdgpu_device *adev = ring->adev; 1886 struct ttm_tt *ttm = bo->ttm; 1887 struct amdgpu_job *job; 1888 unsigned num_dw, num_bytes; 1889 dma_addr_t *dma_address; 1890 struct dma_fence *fence; 1891 uint64_t src_addr, dst_addr; 1892 uint64_t flags; 1893 int r; 1894 1895 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1896 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1897 1898 *addr = adev->gmc.gart_start; 1899 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1900 AMDGPU_GPU_PAGE_SIZE; 1901 1902 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1903 while (num_dw & 0x7) 1904 num_dw++; 1905 1906 num_bytes = num_pages * 8; 1907 1908 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1909 if (r) 1910 return r; 1911 1912 src_addr = num_dw * 4; 1913 src_addr += job->ibs[0].gpu_addr; 1914 1915 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 1916 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1917 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1918 dst_addr, num_bytes); 1919 1920 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1921 WARN_ON(job->ibs[0].length_dw > num_dw); 1922 1923 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 1924 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 1925 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 1926 &job->ibs[0].ptr[num_dw]); 1927 if (r) 1928 goto error_free; 1929 1930 r = amdgpu_job_submit(job, &adev->mman.entity, 1931 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1932 if (r) 1933 goto error_free; 1934 1935 dma_fence_put(fence); 1936 1937 return r; 1938 1939 error_free: 1940 amdgpu_job_free(job); 1941 return r; 1942 } 1943 1944 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1945 uint64_t dst_offset, uint32_t byte_count, 1946 struct reservation_object *resv, 1947 struct dma_fence **fence, bool direct_submit, 1948 bool vm_needs_flush) 1949 { 1950 struct amdgpu_device *adev = ring->adev; 1951 struct amdgpu_job *job; 1952 1953 uint32_t max_bytes; 1954 unsigned num_loops, num_dw; 1955 unsigned i; 1956 int r; 1957 1958 if (direct_submit && !ring->sched.ready) { 1959 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1960 return -EINVAL; 1961 } 1962 1963 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 1964 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 1965 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 1966 1967 /* for IB padding */ 1968 while (num_dw & 0x7) 1969 num_dw++; 1970 1971 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 1972 if (r) 1973 return r; 1974 1975 if (vm_needs_flush) { 1976 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 1977 job->vm_needs_flush = true; 1978 } 1979 if (resv) { 1980 r = amdgpu_sync_resv(adev, &job->sync, resv, 1981 AMDGPU_FENCE_OWNER_UNDEFINED, 1982 false); 1983 if (r) { 1984 DRM_ERROR("sync failed (%d).\n", r); 1985 goto error_free; 1986 } 1987 } 1988 1989 for (i = 0; i < num_loops; i++) { 1990 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 1991 1992 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 1993 dst_offset, cur_size_in_bytes); 1994 1995 src_offset += cur_size_in_bytes; 1996 dst_offset += cur_size_in_bytes; 1997 byte_count -= cur_size_in_bytes; 1998 } 1999 2000 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2001 WARN_ON(job->ibs[0].length_dw > num_dw); 2002 if (direct_submit) 2003 r = amdgpu_job_submit_direct(job, ring, fence); 2004 else 2005 r = amdgpu_job_submit(job, &adev->mman.entity, 2006 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2007 if (r) 2008 goto error_free; 2009 2010 return r; 2011 2012 error_free: 2013 amdgpu_job_free(job); 2014 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2015 return r; 2016 } 2017 2018 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2019 uint32_t src_data, 2020 struct reservation_object *resv, 2021 struct dma_fence **fence) 2022 { 2023 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2024 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2025 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2026 2027 struct drm_mm_node *mm_node; 2028 unsigned long num_pages; 2029 unsigned int num_loops, num_dw; 2030 2031 struct amdgpu_job *job; 2032 int r; 2033 2034 if (!adev->mman.buffer_funcs_enabled) { 2035 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2036 return -EINVAL; 2037 } 2038 2039 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2040 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2041 if (r) 2042 return r; 2043 } 2044 2045 num_pages = bo->tbo.num_pages; 2046 mm_node = bo->tbo.mem.mm_node; 2047 num_loops = 0; 2048 while (num_pages) { 2049 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2050 2051 num_loops += DIV_ROUND_UP(byte_count, max_bytes); 2052 num_pages -= mm_node->size; 2053 ++mm_node; 2054 } 2055 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2056 2057 /* for IB padding */ 2058 num_dw += 64; 2059 2060 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2061 if (r) 2062 return r; 2063 2064 if (resv) { 2065 r = amdgpu_sync_resv(adev, &job->sync, resv, 2066 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2067 if (r) { 2068 DRM_ERROR("sync failed (%d).\n", r); 2069 goto error_free; 2070 } 2071 } 2072 2073 num_pages = bo->tbo.num_pages; 2074 mm_node = bo->tbo.mem.mm_node; 2075 2076 while (num_pages) { 2077 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2078 uint64_t dst_addr; 2079 2080 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2081 while (byte_count) { 2082 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2083 2084 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2085 dst_addr, cur_size_in_bytes); 2086 2087 dst_addr += cur_size_in_bytes; 2088 byte_count -= cur_size_in_bytes; 2089 } 2090 2091 num_pages -= mm_node->size; 2092 ++mm_node; 2093 } 2094 2095 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2096 WARN_ON(job->ibs[0].length_dw > num_dw); 2097 r = amdgpu_job_submit(job, &adev->mman.entity, 2098 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2099 if (r) 2100 goto error_free; 2101 2102 return 0; 2103 2104 error_free: 2105 amdgpu_job_free(job); 2106 return r; 2107 } 2108 2109 #if defined(CONFIG_DEBUG_FS) 2110 2111 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2112 { 2113 struct drm_info_node *node = (struct drm_info_node *)m->private; 2114 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2115 struct drm_device *dev = node->minor->dev; 2116 struct amdgpu_device *adev = dev->dev_private; 2117 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2118 struct drm_printer p = drm_seq_file_printer(m); 2119 2120 man->func->debug(man, &p); 2121 return 0; 2122 } 2123 2124 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2125 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2126 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2127 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2128 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2129 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2130 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2131 #ifdef CONFIG_SWIOTLB 2132 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2133 #endif 2134 }; 2135 2136 /** 2137 * amdgpu_ttm_vram_read - Linear read access to VRAM 2138 * 2139 * Accesses VRAM via MMIO for debugging purposes. 2140 */ 2141 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2142 size_t size, loff_t *pos) 2143 { 2144 struct amdgpu_device *adev = file_inode(f)->i_private; 2145 ssize_t result = 0; 2146 int r; 2147 2148 if (size & 0x3 || *pos & 0x3) 2149 return -EINVAL; 2150 2151 if (*pos >= adev->gmc.mc_vram_size) 2152 return -ENXIO; 2153 2154 while (size) { 2155 unsigned long flags; 2156 uint32_t value; 2157 2158 if (*pos >= adev->gmc.mc_vram_size) 2159 return result; 2160 2161 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2162 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2163 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2164 value = RREG32_NO_KIQ(mmMM_DATA); 2165 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2166 2167 r = put_user(value, (uint32_t *)buf); 2168 if (r) 2169 return r; 2170 2171 result += 4; 2172 buf += 4; 2173 *pos += 4; 2174 size -= 4; 2175 } 2176 2177 return result; 2178 } 2179 2180 /** 2181 * amdgpu_ttm_vram_write - Linear write access to VRAM 2182 * 2183 * Accesses VRAM via MMIO for debugging purposes. 2184 */ 2185 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2186 size_t size, loff_t *pos) 2187 { 2188 struct amdgpu_device *adev = file_inode(f)->i_private; 2189 ssize_t result = 0; 2190 int r; 2191 2192 if (size & 0x3 || *pos & 0x3) 2193 return -EINVAL; 2194 2195 if (*pos >= adev->gmc.mc_vram_size) 2196 return -ENXIO; 2197 2198 while (size) { 2199 unsigned long flags; 2200 uint32_t value; 2201 2202 if (*pos >= adev->gmc.mc_vram_size) 2203 return result; 2204 2205 r = get_user(value, (uint32_t *)buf); 2206 if (r) 2207 return r; 2208 2209 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2210 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2211 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2212 WREG32_NO_KIQ(mmMM_DATA, value); 2213 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2214 2215 result += 4; 2216 buf += 4; 2217 *pos += 4; 2218 size -= 4; 2219 } 2220 2221 return result; 2222 } 2223 2224 static const struct file_operations amdgpu_ttm_vram_fops = { 2225 .owner = THIS_MODULE, 2226 .read = amdgpu_ttm_vram_read, 2227 .write = amdgpu_ttm_vram_write, 2228 .llseek = default_llseek, 2229 }; 2230 2231 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2232 2233 /** 2234 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2235 */ 2236 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2237 size_t size, loff_t *pos) 2238 { 2239 struct amdgpu_device *adev = file_inode(f)->i_private; 2240 ssize_t result = 0; 2241 int r; 2242 2243 while (size) { 2244 loff_t p = *pos / PAGE_SIZE; 2245 unsigned off = *pos & ~PAGE_MASK; 2246 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2247 struct page *page; 2248 void *ptr; 2249 2250 if (p >= adev->gart.num_cpu_pages) 2251 return result; 2252 2253 page = adev->gart.pages[p]; 2254 if (page) { 2255 ptr = kmap(page); 2256 ptr += off; 2257 2258 r = copy_to_user(buf, ptr, cur_size); 2259 kunmap(adev->gart.pages[p]); 2260 } else 2261 r = clear_user(buf, cur_size); 2262 2263 if (r) 2264 return -EFAULT; 2265 2266 result += cur_size; 2267 buf += cur_size; 2268 *pos += cur_size; 2269 size -= cur_size; 2270 } 2271 2272 return result; 2273 } 2274 2275 static const struct file_operations amdgpu_ttm_gtt_fops = { 2276 .owner = THIS_MODULE, 2277 .read = amdgpu_ttm_gtt_read, 2278 .llseek = default_llseek 2279 }; 2280 2281 #endif 2282 2283 /** 2284 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2285 * 2286 * This function is used to read memory that has been mapped to the 2287 * GPU and the known addresses are not physical addresses but instead 2288 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2289 */ 2290 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2291 size_t size, loff_t *pos) 2292 { 2293 struct amdgpu_device *adev = file_inode(f)->i_private; 2294 struct iommu_domain *dom; 2295 ssize_t result = 0; 2296 int r; 2297 2298 /* retrieve the IOMMU domain if any for this device */ 2299 dom = iommu_get_domain_for_dev(adev->dev); 2300 2301 while (size) { 2302 phys_addr_t addr = *pos & PAGE_MASK; 2303 loff_t off = *pos & ~PAGE_MASK; 2304 size_t bytes = PAGE_SIZE - off; 2305 unsigned long pfn; 2306 struct page *p; 2307 void *ptr; 2308 2309 bytes = bytes < size ? bytes : size; 2310 2311 /* Translate the bus address to a physical address. If 2312 * the domain is NULL it means there is no IOMMU active 2313 * and the address translation is the identity 2314 */ 2315 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2316 2317 pfn = addr >> PAGE_SHIFT; 2318 if (!pfn_valid(pfn)) 2319 return -EPERM; 2320 2321 p = pfn_to_page(pfn); 2322 if (p->mapping != adev->mman.bdev.dev_mapping) 2323 return -EPERM; 2324 2325 ptr = kmap(p); 2326 r = copy_to_user(buf, ptr + off, bytes); 2327 kunmap(p); 2328 if (r) 2329 return -EFAULT; 2330 2331 size -= bytes; 2332 *pos += bytes; 2333 result += bytes; 2334 } 2335 2336 return result; 2337 } 2338 2339 /** 2340 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2341 * 2342 * This function is used to write memory that has been mapped to the 2343 * GPU and the known addresses are not physical addresses but instead 2344 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2345 */ 2346 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2347 size_t size, loff_t *pos) 2348 { 2349 struct amdgpu_device *adev = file_inode(f)->i_private; 2350 struct iommu_domain *dom; 2351 ssize_t result = 0; 2352 int r; 2353 2354 dom = iommu_get_domain_for_dev(adev->dev); 2355 2356 while (size) { 2357 phys_addr_t addr = *pos & PAGE_MASK; 2358 loff_t off = *pos & ~PAGE_MASK; 2359 size_t bytes = PAGE_SIZE - off; 2360 unsigned long pfn; 2361 struct page *p; 2362 void *ptr; 2363 2364 bytes = bytes < size ? bytes : size; 2365 2366 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2367 2368 pfn = addr >> PAGE_SHIFT; 2369 if (!pfn_valid(pfn)) 2370 return -EPERM; 2371 2372 p = pfn_to_page(pfn); 2373 if (p->mapping != adev->mman.bdev.dev_mapping) 2374 return -EPERM; 2375 2376 ptr = kmap(p); 2377 r = copy_from_user(ptr + off, buf, bytes); 2378 kunmap(p); 2379 if (r) 2380 return -EFAULT; 2381 2382 size -= bytes; 2383 *pos += bytes; 2384 result += bytes; 2385 } 2386 2387 return result; 2388 } 2389 2390 static const struct file_operations amdgpu_ttm_iomem_fops = { 2391 .owner = THIS_MODULE, 2392 .read = amdgpu_iomem_read, 2393 .write = amdgpu_iomem_write, 2394 .llseek = default_llseek 2395 }; 2396 2397 static const struct { 2398 char *name; 2399 const struct file_operations *fops; 2400 int domain; 2401 } ttm_debugfs_entries[] = { 2402 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2403 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2404 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2405 #endif 2406 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2407 }; 2408 2409 #endif 2410 2411 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2412 { 2413 #if defined(CONFIG_DEBUG_FS) 2414 unsigned count; 2415 2416 struct drm_minor *minor = adev->ddev->primary; 2417 struct dentry *ent, *root = minor->debugfs_root; 2418 2419 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2420 ent = debugfs_create_file( 2421 ttm_debugfs_entries[count].name, 2422 S_IFREG | S_IRUGO, root, 2423 adev, 2424 ttm_debugfs_entries[count].fops); 2425 if (IS_ERR(ent)) 2426 return PTR_ERR(ent); 2427 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2428 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2429 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2430 i_size_write(ent->d_inode, adev->gmc.gart_size); 2431 adev->mman.debugfs_entries[count] = ent; 2432 } 2433 2434 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2435 2436 #ifdef CONFIG_SWIOTLB 2437 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2438 --count; 2439 #endif 2440 2441 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2442 #else 2443 return 0; 2444 #endif 2445 } 2446 2447 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2448 { 2449 #if defined(CONFIG_DEBUG_FS) 2450 unsigned i; 2451 2452 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2453 debugfs_remove(adev->mman.debugfs_entries[i]); 2454 #endif 2455 } 2456