1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 #include <linux/sizes.h> 44 #include <linux/module.h> 45 46 #include <drm/drm_drv.h> 47 #include <drm/ttm/ttm_bo_api.h> 48 #include <drm/ttm/ttm_bo_driver.h> 49 #include <drm/ttm/ttm_placement.h> 50 #include <drm/ttm/ttm_range_manager.h> 51 52 #include <drm/amdgpu_drm.h> 53 #include <drm/drm_drv.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_atomfirmware.h" 62 #include "amdgpu_res_cursor.h" 63 #include "bif/bif_4_1_d.h" 64 65 MODULE_IMPORT_NS(DMA_BUF); 66 67 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 68 69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 70 struct ttm_tt *ttm, 71 struct ttm_resource *bo_mem); 72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 73 struct ttm_tt *ttm); 74 75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 76 unsigned int type, 77 uint64_t size_in_page) 78 { 79 return ttm_range_man_init(&adev->mman.bdev, type, 80 false, size_in_page); 81 } 82 83 /** 84 * amdgpu_evict_flags - Compute placement flags 85 * 86 * @bo: The buffer object to evict 87 * @placement: Possible destination(s) for evicted BO 88 * 89 * Fill in placement data when ttm_bo_evict() is called 90 */ 91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 92 struct ttm_placement *placement) 93 { 94 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 95 struct amdgpu_bo *abo; 96 static const struct ttm_place placements = { 97 .fpfn = 0, 98 .lpfn = 0, 99 .mem_type = TTM_PL_SYSTEM, 100 .flags = 0 101 }; 102 103 /* Don't handle scatter gather BOs */ 104 if (bo->type == ttm_bo_type_sg) { 105 placement->num_placement = 0; 106 placement->num_busy_placement = 0; 107 return; 108 } 109 110 /* Object isn't an AMDGPU object so ignore */ 111 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 112 placement->placement = &placements; 113 placement->busy_placement = &placements; 114 placement->num_placement = 1; 115 placement->num_busy_placement = 1; 116 return; 117 } 118 119 abo = ttm_to_amdgpu_bo(bo); 120 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 121 placement->num_placement = 0; 122 placement->num_busy_placement = 0; 123 return; 124 } 125 126 switch (bo->resource->mem_type) { 127 case AMDGPU_PL_GDS: 128 case AMDGPU_PL_GWS: 129 case AMDGPU_PL_OA: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct dma_fence *fence; 193 struct amdgpu_job *job; 194 void *cpu_addr; 195 uint64_t flags; 196 unsigned int i; 197 int r; 198 199 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 200 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 201 202 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 203 return -EINVAL; 204 205 /* Map only what can't be accessed directly */ 206 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 207 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 208 mm_cur->start; 209 return 0; 210 } 211 212 213 /* 214 * If start begins at an offset inside the page, then adjust the size 215 * and addr accordingly 216 */ 217 offset = mm_cur->start & ~PAGE_MASK; 218 219 num_pages = PFN_UP(*size + offset); 220 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 221 222 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 223 224 *addr = adev->gmc.gart_start; 225 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 226 AMDGPU_GPU_PAGE_SIZE; 227 *addr += offset; 228 229 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 230 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 231 232 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 233 AMDGPU_IB_POOL_DELAYED, &job); 234 if (r) 235 return r; 236 237 src_addr = num_dw * 4; 238 src_addr += job->ibs[0].gpu_addr; 239 240 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 241 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 242 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 243 dst_addr, num_bytes, false); 244 245 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 246 WARN_ON(job->ibs[0].length_dw > num_dw); 247 248 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 249 if (tmz) 250 flags |= AMDGPU_PTE_TMZ; 251 252 cpu_addr = &job->ibs[0].ptr[num_dw]; 253 254 if (mem->mem_type == TTM_PL_TT) { 255 dma_addr_t *dma_addr; 256 257 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 258 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 259 } else { 260 dma_addr_t dma_address; 261 262 dma_address = mm_cur->start; 263 dma_address += adev->vm_manager.vram_base_offset; 264 265 for (i = 0; i < num_pages; ++i) { 266 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 267 flags, cpu_addr); 268 dma_address += PAGE_SIZE; 269 } 270 } 271 272 r = amdgpu_job_submit(job, &adev->mman.entity, 273 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 274 if (r) 275 goto error_free; 276 277 dma_fence_put(fence); 278 279 return r; 280 281 error_free: 282 amdgpu_job_free(job); 283 return r; 284 } 285 286 /** 287 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 288 * @adev: amdgpu device 289 * @src: buffer/address where to read from 290 * @dst: buffer/address where to write to 291 * @size: number of bytes to copy 292 * @tmz: if a secure copy should be used 293 * @resv: resv object to sync to 294 * @f: Returns the last fence if multiple jobs are submitted. 295 * 296 * The function copies @size bytes from {src->mem + src->offset} to 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 298 * move and different for a BO to BO copy. 299 * 300 */ 301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 302 const struct amdgpu_copy_mem *src, 303 const struct amdgpu_copy_mem *dst, 304 uint64_t size, bool tmz, 305 struct dma_resv *resv, 306 struct dma_fence **f) 307 { 308 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 309 struct amdgpu_res_cursor src_mm, dst_mm; 310 struct dma_fence *fence = NULL; 311 int r = 0; 312 313 if (!adev->mman.buffer_funcs_enabled) { 314 DRM_ERROR("Trying to move memory with ring turned off.\n"); 315 return -EINVAL; 316 } 317 318 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 319 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 320 321 mutex_lock(&adev->mman.gtt_window_lock); 322 while (src_mm.remaining) { 323 uint64_t from, to, cur_size; 324 struct dma_fence *next; 325 326 /* Never copy more than 256MiB at once to avoid a timeout */ 327 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 328 329 /* Map src to window 0 and dst to window 1. */ 330 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 331 0, ring, tmz, &cur_size, &from); 332 if (r) 333 goto error; 334 335 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 336 1, ring, tmz, &cur_size, &to); 337 if (r) 338 goto error; 339 340 r = amdgpu_copy_buffer(ring, from, to, cur_size, 341 resv, &next, false, true, tmz); 342 if (r) 343 goto error; 344 345 dma_fence_put(fence); 346 fence = next; 347 348 amdgpu_res_next(&src_mm, cur_size); 349 amdgpu_res_next(&dst_mm, cur_size); 350 } 351 error: 352 mutex_unlock(&adev->mman.gtt_window_lock); 353 if (f) 354 *f = dma_fence_get(fence); 355 dma_fence_put(fence); 356 return r; 357 } 358 359 /* 360 * amdgpu_move_blit - Copy an entire buffer to another buffer 361 * 362 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 363 * help move buffers to and from VRAM. 364 */ 365 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 366 bool evict, 367 struct ttm_resource *new_mem, 368 struct ttm_resource *old_mem) 369 { 370 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 371 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 372 struct amdgpu_copy_mem src, dst; 373 struct dma_fence *fence = NULL; 374 int r; 375 376 src.bo = bo; 377 dst.bo = bo; 378 src.mem = old_mem; 379 dst.mem = new_mem; 380 src.offset = 0; 381 dst.offset = 0; 382 383 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 384 new_mem->num_pages << PAGE_SHIFT, 385 amdgpu_bo_encrypted(abo), 386 bo->base.resv, &fence); 387 if (r) 388 goto error; 389 390 /* clear the space being freed */ 391 if (old_mem->mem_type == TTM_PL_VRAM && 392 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 393 struct dma_fence *wipe_fence = NULL; 394 395 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence); 396 if (r) { 397 goto error; 398 } else if (wipe_fence) { 399 dma_fence_put(fence); 400 fence = wipe_fence; 401 } 402 } 403 404 /* Always block for VM page tables before committing the new location */ 405 if (bo->type == ttm_bo_type_kernel) 406 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 407 else 408 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 409 dma_fence_put(fence); 410 return r; 411 412 error: 413 if (fence) 414 dma_fence_wait(fence, false); 415 dma_fence_put(fence); 416 return r; 417 } 418 419 /* 420 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 421 * 422 * Called by amdgpu_bo_move() 423 */ 424 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 425 struct ttm_resource *mem) 426 { 427 uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT; 428 struct amdgpu_res_cursor cursor; 429 430 if (mem->mem_type == TTM_PL_SYSTEM || 431 mem->mem_type == TTM_PL_TT) 432 return true; 433 if (mem->mem_type != TTM_PL_VRAM) 434 return false; 435 436 amdgpu_res_first(mem, 0, mem_size, &cursor); 437 438 /* ttm_resource_ioremap only supports contiguous memory */ 439 if (cursor.size != mem_size) 440 return false; 441 442 return cursor.start + cursor.size <= adev->gmc.visible_vram_size; 443 } 444 445 /* 446 * amdgpu_bo_move - Move a buffer object to a new memory location 447 * 448 * Called by ttm_bo_handle_move_mem() 449 */ 450 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 451 struct ttm_operation_ctx *ctx, 452 struct ttm_resource *new_mem, 453 struct ttm_place *hop) 454 { 455 struct amdgpu_device *adev; 456 struct amdgpu_bo *abo; 457 struct ttm_resource *old_mem = bo->resource; 458 int r; 459 460 if (new_mem->mem_type == TTM_PL_TT || 461 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 462 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 463 if (r) 464 return r; 465 } 466 467 /* Can't move a pinned BO */ 468 abo = ttm_to_amdgpu_bo(bo); 469 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 470 return -EINVAL; 471 472 adev = amdgpu_ttm_adev(bo->bdev); 473 474 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 475 ttm_bo_move_null(bo, new_mem); 476 goto out; 477 } 478 if (old_mem->mem_type == TTM_PL_SYSTEM && 479 (new_mem->mem_type == TTM_PL_TT || 480 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 481 ttm_bo_move_null(bo, new_mem); 482 goto out; 483 } 484 if ((old_mem->mem_type == TTM_PL_TT || 485 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 486 new_mem->mem_type == TTM_PL_SYSTEM) { 487 r = ttm_bo_wait_ctx(bo, ctx); 488 if (r) 489 return r; 490 491 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 492 ttm_resource_free(bo, &bo->resource); 493 ttm_bo_assign_mem(bo, new_mem); 494 goto out; 495 } 496 497 if (old_mem->mem_type == AMDGPU_PL_GDS || 498 old_mem->mem_type == AMDGPU_PL_GWS || 499 old_mem->mem_type == AMDGPU_PL_OA || 500 new_mem->mem_type == AMDGPU_PL_GDS || 501 new_mem->mem_type == AMDGPU_PL_GWS || 502 new_mem->mem_type == AMDGPU_PL_OA) { 503 /* Nothing to save here */ 504 ttm_bo_move_null(bo, new_mem); 505 goto out; 506 } 507 508 if (bo->type == ttm_bo_type_device && 509 new_mem->mem_type == TTM_PL_VRAM && 510 old_mem->mem_type != TTM_PL_VRAM) { 511 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 512 * accesses the BO after it's moved. 513 */ 514 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 515 } 516 517 if (adev->mman.buffer_funcs_enabled) { 518 if (((old_mem->mem_type == TTM_PL_SYSTEM && 519 new_mem->mem_type == TTM_PL_VRAM) || 520 (old_mem->mem_type == TTM_PL_VRAM && 521 new_mem->mem_type == TTM_PL_SYSTEM))) { 522 hop->fpfn = 0; 523 hop->lpfn = 0; 524 hop->mem_type = TTM_PL_TT; 525 hop->flags = TTM_PL_FLAG_TEMPORARY; 526 return -EMULTIHOP; 527 } 528 529 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 530 } else { 531 r = -ENODEV; 532 } 533 534 if (r) { 535 /* Check that all memory is CPU accessible */ 536 if (!amdgpu_mem_visible(adev, old_mem) || 537 !amdgpu_mem_visible(adev, new_mem)) { 538 pr_err("Move buffer fallback to memcpy unavailable\n"); 539 return r; 540 } 541 542 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 543 if (r) 544 return r; 545 } 546 547 out: 548 /* update statistics */ 549 atomic64_add(bo->base.size, &adev->num_bytes_moved); 550 amdgpu_bo_move_notify(bo, evict, new_mem); 551 return 0; 552 } 553 554 /* 555 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 556 * 557 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 558 */ 559 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 560 struct ttm_resource *mem) 561 { 562 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 563 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 564 565 switch (mem->mem_type) { 566 case TTM_PL_SYSTEM: 567 /* system memory */ 568 return 0; 569 case TTM_PL_TT: 570 case AMDGPU_PL_PREEMPT: 571 break; 572 case TTM_PL_VRAM: 573 mem->bus.offset = mem->start << PAGE_SHIFT; 574 /* check if it's visible */ 575 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 576 return -EINVAL; 577 578 if (adev->mman.aper_base_kaddr && 579 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 580 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 581 mem->bus.offset; 582 583 mem->bus.offset += adev->gmc.aper_base; 584 mem->bus.is_iomem = true; 585 break; 586 default: 587 return -EINVAL; 588 } 589 return 0; 590 } 591 592 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 593 unsigned long page_offset) 594 { 595 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 596 struct amdgpu_res_cursor cursor; 597 598 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 599 &cursor); 600 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 601 } 602 603 /** 604 * amdgpu_ttm_domain_start - Returns GPU start address 605 * @adev: amdgpu device object 606 * @type: type of the memory 607 * 608 * Returns: 609 * GPU start address of a memory domain 610 */ 611 612 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 613 { 614 switch (type) { 615 case TTM_PL_TT: 616 return adev->gmc.gart_start; 617 case TTM_PL_VRAM: 618 return adev->gmc.vram_start; 619 } 620 621 return 0; 622 } 623 624 /* 625 * TTM backend functions. 626 */ 627 struct amdgpu_ttm_tt { 628 struct ttm_tt ttm; 629 struct drm_gem_object *gobj; 630 u64 offset; 631 uint64_t userptr; 632 struct task_struct *usertask; 633 uint32_t userflags; 634 bool bound; 635 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 636 struct hmm_range *range; 637 #endif 638 }; 639 640 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 641 642 #ifdef CONFIG_DRM_AMDGPU_USERPTR 643 /* 644 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 645 * memory and start HMM tracking CPU page table update 646 * 647 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 648 * once afterwards to stop HMM tracking 649 */ 650 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 651 { 652 struct ttm_tt *ttm = bo->tbo.ttm; 653 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 654 unsigned long start = gtt->userptr; 655 struct vm_area_struct *vma; 656 struct mm_struct *mm; 657 bool readonly; 658 int r = 0; 659 660 mm = bo->notifier.mm; 661 if (unlikely(!mm)) { 662 DRM_DEBUG_DRIVER("BO is not registered?\n"); 663 return -EFAULT; 664 } 665 666 /* Another get_user_pages is running at the same time?? */ 667 if (WARN_ON(gtt->range)) 668 return -EFAULT; 669 670 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 671 return -ESRCH; 672 673 mmap_read_lock(mm); 674 vma = vma_lookup(mm, start); 675 if (unlikely(!vma)) { 676 r = -EFAULT; 677 goto out_unlock; 678 } 679 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 680 vma->vm_file)) { 681 r = -EPERM; 682 goto out_unlock; 683 } 684 685 readonly = amdgpu_ttm_tt_is_readonly(ttm); 686 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start, 687 ttm->num_pages, >t->range, readonly, 688 true, NULL); 689 out_unlock: 690 mmap_read_unlock(mm); 691 if (r) 692 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 693 694 mmput(mm); 695 696 return r; 697 } 698 699 /* 700 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 701 * Check if the pages backing this ttm range have been invalidated 702 * 703 * Returns: true if pages are still valid 704 */ 705 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 706 { 707 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 708 bool r = false; 709 710 if (!gtt || !gtt->userptr) 711 return false; 712 713 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 714 gtt->userptr, ttm->num_pages); 715 716 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 717 "No user pages to check\n"); 718 719 if (gtt->range) { 720 /* 721 * FIXME: Must always hold notifier_lock for this, and must 722 * not ignore the return code. 723 */ 724 r = amdgpu_hmm_range_get_pages_done(gtt->range); 725 gtt->range = NULL; 726 } 727 728 return !r; 729 } 730 #endif 731 732 /* 733 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 734 * 735 * Called by amdgpu_cs_list_validate(). This creates the page list 736 * that backs user memory and will ultimately be mapped into the device 737 * address space. 738 */ 739 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 740 { 741 unsigned long i; 742 743 for (i = 0; i < ttm->num_pages; ++i) 744 ttm->pages[i] = pages ? pages[i] : NULL; 745 } 746 747 /* 748 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 749 * 750 * Called by amdgpu_ttm_backend_bind() 751 **/ 752 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 753 struct ttm_tt *ttm) 754 { 755 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 756 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 757 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 758 enum dma_data_direction direction = write ? 759 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 760 int r; 761 762 /* Allocate an SG array and squash pages into it */ 763 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 764 (u64)ttm->num_pages << PAGE_SHIFT, 765 GFP_KERNEL); 766 if (r) 767 goto release_sg; 768 769 /* Map SG to device */ 770 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 771 if (r) 772 goto release_sg; 773 774 /* convert SG to linear array of pages and dma addresses */ 775 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 776 ttm->num_pages); 777 778 return 0; 779 780 release_sg: 781 kfree(ttm->sg); 782 ttm->sg = NULL; 783 return r; 784 } 785 786 /* 787 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 788 */ 789 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 790 struct ttm_tt *ttm) 791 { 792 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 793 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 794 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 795 enum dma_data_direction direction = write ? 796 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 797 798 /* double check that we don't free the table twice */ 799 if (!ttm->sg || !ttm->sg->sgl) 800 return; 801 802 /* unmap the pages mapped to the device */ 803 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 804 sg_free_table(ttm->sg); 805 806 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 807 if (gtt->range) { 808 unsigned long i; 809 810 for (i = 0; i < ttm->num_pages; i++) { 811 if (ttm->pages[i] != 812 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 813 break; 814 } 815 816 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 817 } 818 #endif 819 } 820 821 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 822 struct ttm_buffer_object *tbo, 823 uint64_t flags) 824 { 825 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 826 struct ttm_tt *ttm = tbo->ttm; 827 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 828 829 if (amdgpu_bo_encrypted(abo)) 830 flags |= AMDGPU_PTE_TMZ; 831 832 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 833 uint64_t page_idx = 1; 834 835 amdgpu_gart_bind(adev, gtt->offset, page_idx, 836 gtt->ttm.dma_address, flags); 837 838 /* The memory type of the first page defaults to UC. Now 839 * modify the memory type to NC from the second page of 840 * the BO onward. 841 */ 842 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 843 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 844 845 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT), 846 ttm->num_pages - page_idx, 847 &(gtt->ttm.dma_address[page_idx]), flags); 848 } else { 849 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 850 gtt->ttm.dma_address, flags); 851 } 852 } 853 854 /* 855 * amdgpu_ttm_backend_bind - Bind GTT memory 856 * 857 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 858 * This handles binding GTT memory to the device address space. 859 */ 860 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 861 struct ttm_tt *ttm, 862 struct ttm_resource *bo_mem) 863 { 864 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 865 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 866 uint64_t flags; 867 int r; 868 869 if (!bo_mem) 870 return -EINVAL; 871 872 if (gtt->bound) 873 return 0; 874 875 if (gtt->userptr) { 876 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 877 if (r) { 878 DRM_ERROR("failed to pin userptr\n"); 879 return r; 880 } 881 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 882 if (!ttm->sg) { 883 struct dma_buf_attachment *attach; 884 struct sg_table *sgt; 885 886 attach = gtt->gobj->import_attach; 887 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 888 if (IS_ERR(sgt)) 889 return PTR_ERR(sgt); 890 891 ttm->sg = sgt; 892 } 893 894 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 895 ttm->num_pages); 896 } 897 898 if (!ttm->num_pages) { 899 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 900 ttm->num_pages, bo_mem, ttm); 901 } 902 903 if (bo_mem->mem_type != TTM_PL_TT || 904 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 905 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 906 return 0; 907 } 908 909 /* compute PTE flags relevant to this BO memory */ 910 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 911 912 /* bind pages into GART page tables */ 913 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 914 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 915 gtt->ttm.dma_address, flags); 916 gtt->bound = true; 917 return 0; 918 } 919 920 /* 921 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 922 * through AGP or GART aperture. 923 * 924 * If bo is accessible through AGP aperture, then use AGP aperture 925 * to access bo; otherwise allocate logical space in GART aperture 926 * and map bo to GART aperture. 927 */ 928 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 929 { 930 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 931 struct ttm_operation_ctx ctx = { false, false }; 932 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 933 struct ttm_placement placement; 934 struct ttm_place placements; 935 struct ttm_resource *tmp; 936 uint64_t addr, flags; 937 int r; 938 939 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 940 return 0; 941 942 addr = amdgpu_gmc_agp_addr(bo); 943 if (addr != AMDGPU_BO_INVALID_OFFSET) { 944 bo->resource->start = addr >> PAGE_SHIFT; 945 return 0; 946 } 947 948 /* allocate GART space */ 949 placement.num_placement = 1; 950 placement.placement = &placements; 951 placement.num_busy_placement = 1; 952 placement.busy_placement = &placements; 953 placements.fpfn = 0; 954 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 955 placements.mem_type = TTM_PL_TT; 956 placements.flags = bo->resource->placement; 957 958 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 959 if (unlikely(r)) 960 return r; 961 962 /* compute PTE flags for this buffer object */ 963 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 964 965 /* Bind pages */ 966 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 967 amdgpu_ttm_gart_bind(adev, bo, flags); 968 amdgpu_gart_invalidate_tlb(adev); 969 ttm_resource_free(bo, &bo->resource); 970 ttm_bo_assign_mem(bo, tmp); 971 972 return 0; 973 } 974 975 /* 976 * amdgpu_ttm_recover_gart - Rebind GTT pages 977 * 978 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 979 * rebind GTT pages during a GPU reset. 980 */ 981 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 982 { 983 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 984 uint64_t flags; 985 986 if (!tbo->ttm) 987 return; 988 989 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 990 amdgpu_ttm_gart_bind(adev, tbo, flags); 991 } 992 993 /* 994 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 995 * 996 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 997 * ttm_tt_destroy(). 998 */ 999 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1000 struct ttm_tt *ttm) 1001 { 1002 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1003 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1004 1005 /* if the pages have userptr pinning then clear that first */ 1006 if (gtt->userptr) { 1007 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1008 } else if (ttm->sg && gtt->gobj->import_attach) { 1009 struct dma_buf_attachment *attach; 1010 1011 attach = gtt->gobj->import_attach; 1012 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1013 ttm->sg = NULL; 1014 } 1015 1016 if (!gtt->bound) 1017 return; 1018 1019 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1020 return; 1021 1022 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1023 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1024 gtt->bound = false; 1025 } 1026 1027 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1028 struct ttm_tt *ttm) 1029 { 1030 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1031 1032 if (gtt->usertask) 1033 put_task_struct(gtt->usertask); 1034 1035 ttm_tt_fini(>t->ttm); 1036 kfree(gtt); 1037 } 1038 1039 /** 1040 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1041 * 1042 * @bo: The buffer object to create a GTT ttm_tt object around 1043 * @page_flags: Page flags to be added to the ttm_tt object 1044 * 1045 * Called by ttm_tt_create(). 1046 */ 1047 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1048 uint32_t page_flags) 1049 { 1050 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1051 struct amdgpu_ttm_tt *gtt; 1052 enum ttm_caching caching; 1053 1054 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1055 if (gtt == NULL) { 1056 return NULL; 1057 } 1058 gtt->gobj = &bo->base; 1059 1060 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1061 caching = ttm_write_combined; 1062 else 1063 caching = ttm_cached; 1064 1065 /* allocate space for the uninitialized page entries */ 1066 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1067 kfree(gtt); 1068 return NULL; 1069 } 1070 return >t->ttm; 1071 } 1072 1073 /* 1074 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1075 * 1076 * Map the pages of a ttm_tt object to an address space visible 1077 * to the underlying device. 1078 */ 1079 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1080 struct ttm_tt *ttm, 1081 struct ttm_operation_ctx *ctx) 1082 { 1083 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1084 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1085 pgoff_t i; 1086 int ret; 1087 1088 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1089 if (gtt->userptr) { 1090 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1091 if (!ttm->sg) 1092 return -ENOMEM; 1093 return 0; 1094 } 1095 1096 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1097 return 0; 1098 1099 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1100 if (ret) 1101 return ret; 1102 1103 for (i = 0; i < ttm->num_pages; ++i) 1104 ttm->pages[i]->mapping = bdev->dev_mapping; 1105 1106 return 0; 1107 } 1108 1109 /* 1110 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1111 * 1112 * Unmaps pages of a ttm_tt object from the device address space and 1113 * unpopulates the page array backing it. 1114 */ 1115 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1116 struct ttm_tt *ttm) 1117 { 1118 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1119 struct amdgpu_device *adev; 1120 pgoff_t i; 1121 1122 amdgpu_ttm_backend_unbind(bdev, ttm); 1123 1124 if (gtt->userptr) { 1125 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1126 kfree(ttm->sg); 1127 ttm->sg = NULL; 1128 return; 1129 } 1130 1131 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1132 return; 1133 1134 for (i = 0; i < ttm->num_pages; ++i) 1135 ttm->pages[i]->mapping = NULL; 1136 1137 adev = amdgpu_ttm_adev(bdev); 1138 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1139 } 1140 1141 /** 1142 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1143 * task 1144 * 1145 * @tbo: The ttm_buffer_object that contains the userptr 1146 * @user_addr: The returned value 1147 */ 1148 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1149 uint64_t *user_addr) 1150 { 1151 struct amdgpu_ttm_tt *gtt; 1152 1153 if (!tbo->ttm) 1154 return -EINVAL; 1155 1156 gtt = (void *)tbo->ttm; 1157 *user_addr = gtt->userptr; 1158 return 0; 1159 } 1160 1161 /** 1162 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1163 * task 1164 * 1165 * @bo: The ttm_buffer_object to bind this userptr to 1166 * @addr: The address in the current tasks VM space to use 1167 * @flags: Requirements of userptr object. 1168 * 1169 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1170 * to current task 1171 */ 1172 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1173 uint64_t addr, uint32_t flags) 1174 { 1175 struct amdgpu_ttm_tt *gtt; 1176 1177 if (!bo->ttm) { 1178 /* TODO: We want a separate TTM object type for userptrs */ 1179 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1180 if (bo->ttm == NULL) 1181 return -ENOMEM; 1182 } 1183 1184 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1185 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1186 1187 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1188 gtt->userptr = addr; 1189 gtt->userflags = flags; 1190 1191 if (gtt->usertask) 1192 put_task_struct(gtt->usertask); 1193 gtt->usertask = current->group_leader; 1194 get_task_struct(gtt->usertask); 1195 1196 return 0; 1197 } 1198 1199 /* 1200 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1201 */ 1202 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1203 { 1204 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1205 1206 if (gtt == NULL) 1207 return NULL; 1208 1209 if (gtt->usertask == NULL) 1210 return NULL; 1211 1212 return gtt->usertask->mm; 1213 } 1214 1215 /* 1216 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1217 * address range for the current task. 1218 * 1219 */ 1220 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1221 unsigned long end, unsigned long *userptr) 1222 { 1223 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1224 unsigned long size; 1225 1226 if (gtt == NULL || !gtt->userptr) 1227 return false; 1228 1229 /* Return false if no part of the ttm_tt object lies within 1230 * the range 1231 */ 1232 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1233 if (gtt->userptr > end || gtt->userptr + size <= start) 1234 return false; 1235 1236 if (userptr) 1237 *userptr = gtt->userptr; 1238 return true; 1239 } 1240 1241 /* 1242 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1243 */ 1244 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1245 { 1246 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1247 1248 if (gtt == NULL || !gtt->userptr) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 /* 1255 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1256 */ 1257 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1258 { 1259 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1260 1261 if (gtt == NULL) 1262 return false; 1263 1264 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1265 } 1266 1267 /** 1268 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1269 * 1270 * @ttm: The ttm_tt object to compute the flags for 1271 * @mem: The memory registry backing this ttm_tt object 1272 * 1273 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1274 */ 1275 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1276 { 1277 uint64_t flags = 0; 1278 1279 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1280 flags |= AMDGPU_PTE_VALID; 1281 1282 if (mem && (mem->mem_type == TTM_PL_TT || 1283 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1284 flags |= AMDGPU_PTE_SYSTEM; 1285 1286 if (ttm->caching == ttm_cached) 1287 flags |= AMDGPU_PTE_SNOOPED; 1288 } 1289 1290 if (mem && mem->mem_type == TTM_PL_VRAM && 1291 mem->bus.caching == ttm_cached) 1292 flags |= AMDGPU_PTE_SNOOPED; 1293 1294 return flags; 1295 } 1296 1297 /** 1298 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1299 * 1300 * @adev: amdgpu_device pointer 1301 * @ttm: The ttm_tt object to compute the flags for 1302 * @mem: The memory registry backing this ttm_tt object 1303 * 1304 * Figure out the flags to use for a VM PTE (Page Table Entry). 1305 */ 1306 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1307 struct ttm_resource *mem) 1308 { 1309 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1310 1311 flags |= adev->gart.gart_pte_flags; 1312 flags |= AMDGPU_PTE_READABLE; 1313 1314 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1315 flags |= AMDGPU_PTE_WRITEABLE; 1316 1317 return flags; 1318 } 1319 1320 /* 1321 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1322 * object. 1323 * 1324 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1325 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1326 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1327 * used to clean out a memory space. 1328 */ 1329 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1330 const struct ttm_place *place) 1331 { 1332 unsigned long num_pages = bo->resource->num_pages; 1333 struct dma_resv_iter resv_cursor; 1334 struct amdgpu_res_cursor cursor; 1335 struct dma_fence *f; 1336 1337 /* Swapout? */ 1338 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1339 return true; 1340 1341 if (bo->type == ttm_bo_type_kernel && 1342 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1343 return false; 1344 1345 /* If bo is a KFD BO, check if the bo belongs to the current process. 1346 * If true, then return false as any KFD process needs all its BOs to 1347 * be resident to run successfully 1348 */ 1349 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1350 DMA_RESV_USAGE_BOOKKEEP, f) { 1351 if (amdkfd_fence_check_mm(f, current->mm)) 1352 return false; 1353 } 1354 1355 switch (bo->resource->mem_type) { 1356 case AMDGPU_PL_PREEMPT: 1357 /* Preemptible BOs don't own system resources managed by the 1358 * driver (pages, VRAM, GART space). They point to resources 1359 * owned by someone else (e.g. pageable memory in user mode 1360 * or a DMABuf). They are used in a preemptible context so we 1361 * can guarantee no deadlocks and good QoS in case of MMU 1362 * notifiers or DMABuf move notifiers from the resource owner. 1363 */ 1364 return false; 1365 case TTM_PL_TT: 1366 if (amdgpu_bo_is_amdgpu_bo(bo) && 1367 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1368 return false; 1369 return true; 1370 1371 case TTM_PL_VRAM: 1372 /* Check each drm MM node individually */ 1373 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT, 1374 &cursor); 1375 while (cursor.remaining) { 1376 if (place->fpfn < PFN_DOWN(cursor.start + cursor.size) 1377 && !(place->lpfn && 1378 place->lpfn <= PFN_DOWN(cursor.start))) 1379 return true; 1380 1381 amdgpu_res_next(&cursor, cursor.size); 1382 } 1383 return false; 1384 1385 default: 1386 break; 1387 } 1388 1389 return ttm_bo_eviction_valuable(bo, place); 1390 } 1391 1392 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1393 void *buf, size_t size, bool write) 1394 { 1395 while (size) { 1396 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1397 uint64_t bytes = 4 - (pos & 0x3); 1398 uint32_t shift = (pos & 0x3) * 8; 1399 uint32_t mask = 0xffffffff << shift; 1400 uint32_t value = 0; 1401 1402 if (size < bytes) { 1403 mask &= 0xffffffff >> (bytes - size) * 8; 1404 bytes = size; 1405 } 1406 1407 if (mask != 0xffffffff) { 1408 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1409 if (write) { 1410 value &= ~mask; 1411 value |= (*(uint32_t *)buf << shift) & mask; 1412 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1413 } else { 1414 value = (value & mask) >> shift; 1415 memcpy(buf, &value, bytes); 1416 } 1417 } else { 1418 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1419 } 1420 1421 pos += bytes; 1422 buf += bytes; 1423 size -= bytes; 1424 } 1425 } 1426 1427 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1428 unsigned long offset, void *buf, int len, int write) 1429 { 1430 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1431 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1432 struct amdgpu_res_cursor src_mm; 1433 struct amdgpu_job *job; 1434 struct dma_fence *fence; 1435 uint64_t src_addr, dst_addr; 1436 unsigned int num_dw; 1437 int r, idx; 1438 1439 if (len != PAGE_SIZE) 1440 return -EINVAL; 1441 1442 if (!adev->mman.sdma_access_ptr) 1443 return -EACCES; 1444 1445 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1446 return -ENODEV; 1447 1448 if (write) 1449 memcpy(adev->mman.sdma_access_ptr, buf, len); 1450 1451 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1452 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job); 1453 if (r) 1454 goto out; 1455 1456 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1457 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start; 1458 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1459 if (write) 1460 swap(src_addr, dst_addr); 1461 1462 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false); 1463 1464 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1465 WARN_ON(job->ibs[0].length_dw > num_dw); 1466 1467 r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1468 if (r) { 1469 amdgpu_job_free(job); 1470 goto out; 1471 } 1472 1473 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1474 r = -ETIMEDOUT; 1475 dma_fence_put(fence); 1476 1477 if (!(r || write)) 1478 memcpy(buf, adev->mman.sdma_access_ptr, len); 1479 out: 1480 drm_dev_exit(idx); 1481 return r; 1482 } 1483 1484 /** 1485 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1486 * 1487 * @bo: The buffer object to read/write 1488 * @offset: Offset into buffer object 1489 * @buf: Secondary buffer to write/read from 1490 * @len: Length in bytes of access 1491 * @write: true if writing 1492 * 1493 * This is used to access VRAM that backs a buffer object via MMIO 1494 * access for debugging purposes. 1495 */ 1496 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1497 unsigned long offset, void *buf, int len, 1498 int write) 1499 { 1500 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1501 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1502 struct amdgpu_res_cursor cursor; 1503 int ret = 0; 1504 1505 if (bo->resource->mem_type != TTM_PL_VRAM) 1506 return -EIO; 1507 1508 if (amdgpu_device_has_timeouts_enabled(adev) && 1509 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1510 return len; 1511 1512 amdgpu_res_first(bo->resource, offset, len, &cursor); 1513 while (cursor.remaining) { 1514 size_t count, size = cursor.size; 1515 loff_t pos = cursor.start; 1516 1517 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1518 size -= count; 1519 if (size) { 1520 /* using MM to access rest vram and handle un-aligned address */ 1521 pos += count; 1522 buf += count; 1523 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1524 } 1525 1526 ret += cursor.size; 1527 buf += cursor.size; 1528 amdgpu_res_next(&cursor, cursor.size); 1529 } 1530 1531 return ret; 1532 } 1533 1534 static void 1535 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1536 { 1537 amdgpu_bo_move_notify(bo, false, NULL); 1538 } 1539 1540 static struct ttm_device_funcs amdgpu_bo_driver = { 1541 .ttm_tt_create = &amdgpu_ttm_tt_create, 1542 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1543 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1544 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1545 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1546 .evict_flags = &amdgpu_evict_flags, 1547 .move = &amdgpu_bo_move, 1548 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1549 .release_notify = &amdgpu_bo_release_notify, 1550 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1551 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1552 .access_memory = &amdgpu_ttm_access_memory, 1553 }; 1554 1555 /* 1556 * Firmware Reservation functions 1557 */ 1558 /** 1559 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1560 * 1561 * @adev: amdgpu_device pointer 1562 * 1563 * free fw reserved vram if it has been reserved. 1564 */ 1565 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1566 { 1567 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1568 NULL, &adev->mman.fw_vram_usage_va); 1569 } 1570 1571 /** 1572 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1573 * 1574 * @adev: amdgpu_device pointer 1575 * 1576 * create bo vram reservation from fw. 1577 */ 1578 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1579 { 1580 uint64_t vram_size = adev->gmc.visible_vram_size; 1581 1582 adev->mman.fw_vram_usage_va = NULL; 1583 adev->mman.fw_vram_usage_reserved_bo = NULL; 1584 1585 if (adev->mman.fw_vram_usage_size == 0 || 1586 adev->mman.fw_vram_usage_size > vram_size) 1587 return 0; 1588 1589 return amdgpu_bo_create_kernel_at(adev, 1590 adev->mman.fw_vram_usage_start_offset, 1591 adev->mman.fw_vram_usage_size, 1592 AMDGPU_GEM_DOMAIN_VRAM, 1593 &adev->mman.fw_vram_usage_reserved_bo, 1594 &adev->mman.fw_vram_usage_va); 1595 } 1596 1597 /* 1598 * Memoy training reservation functions 1599 */ 1600 1601 /** 1602 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1603 * 1604 * @adev: amdgpu_device pointer 1605 * 1606 * free memory training reserved vram if it has been reserved. 1607 */ 1608 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1609 { 1610 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1611 1612 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1613 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1614 ctx->c2p_bo = NULL; 1615 1616 return 0; 1617 } 1618 1619 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1620 { 1621 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1622 1623 memset(ctx, 0, sizeof(*ctx)); 1624 1625 ctx->c2p_train_data_offset = 1626 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1627 ctx->p2c_train_data_offset = 1628 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1629 ctx->train_data_size = 1630 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1631 1632 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1633 ctx->train_data_size, 1634 ctx->p2c_train_data_offset, 1635 ctx->c2p_train_data_offset); 1636 } 1637 1638 /* 1639 * reserve TMR memory at the top of VRAM which holds 1640 * IP Discovery data and is protected by PSP. 1641 */ 1642 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1643 { 1644 int ret; 1645 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1646 bool mem_train_support = false; 1647 1648 if (!amdgpu_sriov_vf(adev)) { 1649 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1650 mem_train_support = true; 1651 else 1652 DRM_DEBUG("memory training does not support!\n"); 1653 } 1654 1655 /* 1656 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1657 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1658 * 1659 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1660 * discovery data and G6 memory training data respectively 1661 */ 1662 adev->mman.discovery_tmr_size = 1663 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1664 if (!adev->mman.discovery_tmr_size) 1665 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1666 1667 if (mem_train_support) { 1668 /* reserve vram for mem train according to TMR location */ 1669 amdgpu_ttm_training_data_block_init(adev); 1670 ret = amdgpu_bo_create_kernel_at(adev, 1671 ctx->c2p_train_data_offset, 1672 ctx->train_data_size, 1673 AMDGPU_GEM_DOMAIN_VRAM, 1674 &ctx->c2p_bo, 1675 NULL); 1676 if (ret) { 1677 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1678 amdgpu_ttm_training_reserve_vram_fini(adev); 1679 return ret; 1680 } 1681 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1682 } 1683 1684 ret = amdgpu_bo_create_kernel_at(adev, 1685 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1686 adev->mman.discovery_tmr_size, 1687 AMDGPU_GEM_DOMAIN_VRAM, 1688 &adev->mman.discovery_memory, 1689 NULL); 1690 if (ret) { 1691 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1692 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1693 return ret; 1694 } 1695 1696 return 0; 1697 } 1698 1699 /* 1700 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1701 * gtt/vram related fields. 1702 * 1703 * This initializes all of the memory space pools that the TTM layer 1704 * will need such as the GTT space (system memory mapped to the device), 1705 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1706 * can be mapped per VMID. 1707 */ 1708 int amdgpu_ttm_init(struct amdgpu_device *adev) 1709 { 1710 uint64_t gtt_size; 1711 int r; 1712 u64 vis_vram_limit; 1713 1714 mutex_init(&adev->mman.gtt_window_lock); 1715 1716 /* No others user of address space so set it to 0 */ 1717 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1718 adev_to_drm(adev)->anon_inode->i_mapping, 1719 adev_to_drm(adev)->vma_offset_manager, 1720 adev->need_swiotlb, 1721 dma_addressing_limited(adev->dev)); 1722 if (r) { 1723 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1724 return r; 1725 } 1726 adev->mman.initialized = true; 1727 1728 /* Initialize VRAM pool with all of VRAM divided into pages */ 1729 r = amdgpu_vram_mgr_init(adev); 1730 if (r) { 1731 DRM_ERROR("Failed initializing VRAM heap.\n"); 1732 return r; 1733 } 1734 1735 /* Reduce size of CPU-visible VRAM if requested */ 1736 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1737 if (amdgpu_vis_vram_limit > 0 && 1738 vis_vram_limit <= adev->gmc.visible_vram_size) 1739 adev->gmc.visible_vram_size = vis_vram_limit; 1740 1741 /* Change the size here instead of the init above so only lpfn is affected */ 1742 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1743 #ifdef CONFIG_64BIT 1744 #ifdef CONFIG_X86 1745 if (adev->gmc.xgmi.connected_to_cpu) 1746 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1747 adev->gmc.visible_vram_size); 1748 1749 else 1750 #endif 1751 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1752 adev->gmc.visible_vram_size); 1753 #endif 1754 1755 /* 1756 *The reserved vram for firmware must be pinned to the specified 1757 *place on the VRAM, so reserve it early. 1758 */ 1759 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1760 if (r) { 1761 return r; 1762 } 1763 1764 /* 1765 * only NAVI10 and onwards ASIC support for IP discovery. 1766 * If IP discovery enabled, a block of memory should be 1767 * reserved for IP discovey. 1768 */ 1769 if (adev->mman.discovery_bin) { 1770 r = amdgpu_ttm_reserve_tmr(adev); 1771 if (r) 1772 return r; 1773 } 1774 1775 /* allocate memory as required for VGA 1776 * This is used for VGA emulation and pre-OS scanout buffers to 1777 * avoid display artifacts while transitioning between pre-OS 1778 * and driver. */ 1779 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1780 AMDGPU_GEM_DOMAIN_VRAM, 1781 &adev->mman.stolen_vga_memory, 1782 NULL); 1783 if (r) 1784 return r; 1785 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1786 adev->mman.stolen_extended_size, 1787 AMDGPU_GEM_DOMAIN_VRAM, 1788 &adev->mman.stolen_extended_memory, 1789 NULL); 1790 if (r) 1791 return r; 1792 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, 1793 adev->mman.stolen_reserved_size, 1794 AMDGPU_GEM_DOMAIN_VRAM, 1795 &adev->mman.stolen_reserved_memory, 1796 NULL); 1797 if (r) 1798 return r; 1799 1800 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1801 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1802 1803 /* Compute GTT size, either based on 1/2 the size of RAM size 1804 * or whatever the user passed on module init */ 1805 if (amdgpu_gtt_size == -1) { 1806 struct sysinfo si; 1807 1808 si_meminfo(&si); 1809 /* Certain GL unit tests for large textures can cause problems 1810 * with the OOM killer since there is no way to link this memory 1811 * to a process. This was originally mitigated (but not necessarily 1812 * eliminated) by limiting the GTT size. The problem is this limit 1813 * is often too low for many modern games so just make the limit 1/2 1814 * of system memory which aligns with TTM. The OOM accounting needs 1815 * to be addressed, but we shouldn't prevent common 3D applications 1816 * from being usable just to potentially mitigate that corner case. 1817 */ 1818 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1819 (u64)si.totalram * si.mem_unit / 2); 1820 } else { 1821 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1822 } 1823 1824 /* Initialize GTT memory pool */ 1825 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1826 if (r) { 1827 DRM_ERROR("Failed initializing GTT heap.\n"); 1828 return r; 1829 } 1830 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1831 (unsigned)(gtt_size / (1024 * 1024))); 1832 1833 /* Initialize preemptible memory pool */ 1834 r = amdgpu_preempt_mgr_init(adev); 1835 if (r) { 1836 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1837 return r; 1838 } 1839 1840 /* Initialize various on-chip memory pools */ 1841 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1842 if (r) { 1843 DRM_ERROR("Failed initializing GDS heap.\n"); 1844 return r; 1845 } 1846 1847 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1848 if (r) { 1849 DRM_ERROR("Failed initializing gws heap.\n"); 1850 return r; 1851 } 1852 1853 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1854 if (r) { 1855 DRM_ERROR("Failed initializing oa heap.\n"); 1856 return r; 1857 } 1858 1859 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1860 AMDGPU_GEM_DOMAIN_GTT, 1861 &adev->mman.sdma_access_bo, NULL, 1862 &adev->mman.sdma_access_ptr)) 1863 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1864 1865 return 0; 1866 } 1867 1868 /* 1869 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1870 */ 1871 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1872 { 1873 int idx; 1874 if (!adev->mman.initialized) 1875 return; 1876 1877 amdgpu_ttm_training_reserve_vram_fini(adev); 1878 /* return the stolen vga memory back to VRAM */ 1879 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1880 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1881 /* return the IP Discovery TMR memory back to VRAM */ 1882 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1883 if (adev->mman.stolen_reserved_size) 1884 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1885 NULL, NULL); 1886 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 1887 &adev->mman.sdma_access_ptr); 1888 amdgpu_ttm_fw_reserve_vram_fini(adev); 1889 1890 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 1891 1892 if (adev->mman.aper_base_kaddr) 1893 iounmap(adev->mman.aper_base_kaddr); 1894 adev->mman.aper_base_kaddr = NULL; 1895 1896 drm_dev_exit(idx); 1897 } 1898 1899 amdgpu_vram_mgr_fini(adev); 1900 amdgpu_gtt_mgr_fini(adev); 1901 amdgpu_preempt_mgr_fini(adev); 1902 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1903 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1904 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1905 ttm_device_fini(&adev->mman.bdev); 1906 adev->mman.initialized = false; 1907 DRM_INFO("amdgpu: ttm finalized\n"); 1908 } 1909 1910 /** 1911 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1912 * 1913 * @adev: amdgpu_device pointer 1914 * @enable: true when we can use buffer functions. 1915 * 1916 * Enable/disable use of buffer functions during suspend/resume. This should 1917 * only be called at bootup or when userspace isn't running. 1918 */ 1919 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1920 { 1921 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1922 uint64_t size; 1923 int r; 1924 1925 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1926 adev->mman.buffer_funcs_enabled == enable) 1927 return; 1928 1929 if (enable) { 1930 struct amdgpu_ring *ring; 1931 struct drm_gpu_scheduler *sched; 1932 1933 ring = adev->mman.buffer_funcs_ring; 1934 sched = &ring->sched; 1935 r = drm_sched_entity_init(&adev->mman.entity, 1936 DRM_SCHED_PRIORITY_KERNEL, &sched, 1937 1, NULL); 1938 if (r) { 1939 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1940 r); 1941 return; 1942 } 1943 } else { 1944 drm_sched_entity_destroy(&adev->mman.entity); 1945 dma_fence_put(man->move); 1946 man->move = NULL; 1947 } 1948 1949 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1950 if (enable) 1951 size = adev->gmc.real_vram_size; 1952 else 1953 size = adev->gmc.visible_vram_size; 1954 man->size = size; 1955 adev->mman.buffer_funcs_enabled = enable; 1956 } 1957 1958 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 1959 bool direct_submit, 1960 unsigned int num_dw, 1961 struct dma_resv *resv, 1962 bool vm_needs_flush, 1963 struct amdgpu_job **job) 1964 { 1965 enum amdgpu_ib_pool_type pool = direct_submit ? 1966 AMDGPU_IB_POOL_DIRECT : 1967 AMDGPU_IB_POOL_DELAYED; 1968 int r; 1969 1970 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job); 1971 if (r) 1972 return r; 1973 1974 if (vm_needs_flush) { 1975 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1976 adev->gmc.pdb0_bo : 1977 adev->gart.bo); 1978 (*job)->vm_needs_flush = true; 1979 } 1980 if (resv) { 1981 r = amdgpu_sync_resv(adev, &(*job)->sync, resv, 1982 AMDGPU_SYNC_ALWAYS, 1983 AMDGPU_FENCE_OWNER_UNDEFINED); 1984 if (r) { 1985 DRM_ERROR("sync failed (%d).\n", r); 1986 amdgpu_job_free(*job); 1987 return r; 1988 } 1989 } 1990 return 0; 1991 } 1992 1993 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1994 uint64_t dst_offset, uint32_t byte_count, 1995 struct dma_resv *resv, 1996 struct dma_fence **fence, bool direct_submit, 1997 bool vm_needs_flush, bool tmz) 1998 { 1999 struct amdgpu_device *adev = ring->adev; 2000 unsigned num_loops, num_dw; 2001 struct amdgpu_job *job; 2002 uint32_t max_bytes; 2003 unsigned i; 2004 int r; 2005 2006 if (!direct_submit && !ring->sched.ready) { 2007 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2008 return -EINVAL; 2009 } 2010 2011 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2012 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2013 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2014 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2015 resv, vm_needs_flush, &job); 2016 if (r) 2017 return r; 2018 2019 for (i = 0; i < num_loops; i++) { 2020 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2021 2022 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2023 dst_offset, cur_size_in_bytes, tmz); 2024 2025 src_offset += cur_size_in_bytes; 2026 dst_offset += cur_size_in_bytes; 2027 byte_count -= cur_size_in_bytes; 2028 } 2029 2030 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2031 WARN_ON(job->ibs[0].length_dw > num_dw); 2032 if (direct_submit) 2033 r = amdgpu_job_submit_direct(job, ring, fence); 2034 else 2035 r = amdgpu_job_submit(job, &adev->mman.entity, 2036 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2037 if (r) 2038 goto error_free; 2039 2040 return r; 2041 2042 error_free: 2043 amdgpu_job_free(job); 2044 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2045 return r; 2046 } 2047 2048 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2049 uint64_t dst_addr, uint32_t byte_count, 2050 struct dma_resv *resv, 2051 struct dma_fence **fence, 2052 bool vm_needs_flush) 2053 { 2054 struct amdgpu_device *adev = ring->adev; 2055 unsigned int num_loops, num_dw; 2056 struct amdgpu_job *job; 2057 uint32_t max_bytes; 2058 unsigned int i; 2059 int r; 2060 2061 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2062 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2063 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2064 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2065 &job); 2066 if (r) 2067 return r; 2068 2069 for (i = 0; i < num_loops; i++) { 2070 uint32_t cur_size = min(byte_count, max_bytes); 2071 2072 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2073 cur_size); 2074 2075 dst_addr += cur_size; 2076 byte_count -= cur_size; 2077 } 2078 2079 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2080 WARN_ON(job->ibs[0].length_dw > num_dw); 2081 r = amdgpu_job_submit(job, &adev->mman.entity, 2082 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2083 if (r) 2084 goto error_free; 2085 2086 return 0; 2087 2088 error_free: 2089 amdgpu_job_free(job); 2090 return r; 2091 } 2092 2093 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2094 uint32_t src_data, 2095 struct dma_resv *resv, 2096 struct dma_fence **f) 2097 { 2098 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2099 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2100 struct dma_fence *fence = NULL; 2101 struct amdgpu_res_cursor dst; 2102 int r; 2103 2104 if (!adev->mman.buffer_funcs_enabled) { 2105 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2106 return -EINVAL; 2107 } 2108 2109 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2110 2111 mutex_lock(&adev->mman.gtt_window_lock); 2112 while (dst.remaining) { 2113 struct dma_fence *next; 2114 uint64_t cur_size, to; 2115 2116 /* Never fill more than 256MiB at once to avoid timeouts */ 2117 cur_size = min(dst.size, 256ULL << 20); 2118 2119 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2120 1, ring, false, &cur_size, &to); 2121 if (r) 2122 goto error; 2123 2124 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2125 &next, true); 2126 if (r) 2127 goto error; 2128 2129 dma_fence_put(fence); 2130 fence = next; 2131 2132 amdgpu_res_next(&dst, cur_size); 2133 } 2134 error: 2135 mutex_unlock(&adev->mman.gtt_window_lock); 2136 if (f) 2137 *f = dma_fence_get(fence); 2138 dma_fence_put(fence); 2139 return r; 2140 } 2141 2142 /** 2143 * amdgpu_ttm_evict_resources - evict memory buffers 2144 * @adev: amdgpu device object 2145 * @mem_type: evicted BO's memory type 2146 * 2147 * Evicts all @mem_type buffers on the lru list of the memory type. 2148 * 2149 * Returns: 2150 * 0 for success or a negative error code on failure. 2151 */ 2152 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2153 { 2154 struct ttm_resource_manager *man; 2155 2156 switch (mem_type) { 2157 case TTM_PL_VRAM: 2158 case TTM_PL_TT: 2159 case AMDGPU_PL_GWS: 2160 case AMDGPU_PL_GDS: 2161 case AMDGPU_PL_OA: 2162 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2163 break; 2164 default: 2165 DRM_ERROR("Trying to evict invalid memory type\n"); 2166 return -EINVAL; 2167 } 2168 2169 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2170 } 2171 2172 #if defined(CONFIG_DEBUG_FS) 2173 2174 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2175 { 2176 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2177 2178 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2179 } 2180 2181 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2182 2183 /* 2184 * amdgpu_ttm_vram_read - Linear read access to VRAM 2185 * 2186 * Accesses VRAM via MMIO for debugging purposes. 2187 */ 2188 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2189 size_t size, loff_t *pos) 2190 { 2191 struct amdgpu_device *adev = file_inode(f)->i_private; 2192 ssize_t result = 0; 2193 2194 if (size & 0x3 || *pos & 0x3) 2195 return -EINVAL; 2196 2197 if (*pos >= adev->gmc.mc_vram_size) 2198 return -ENXIO; 2199 2200 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2201 while (size) { 2202 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2203 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2204 2205 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2206 if (copy_to_user(buf, value, bytes)) 2207 return -EFAULT; 2208 2209 result += bytes; 2210 buf += bytes; 2211 *pos += bytes; 2212 size -= bytes; 2213 } 2214 2215 return result; 2216 } 2217 2218 /* 2219 * amdgpu_ttm_vram_write - Linear write access to VRAM 2220 * 2221 * Accesses VRAM via MMIO for debugging purposes. 2222 */ 2223 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2224 size_t size, loff_t *pos) 2225 { 2226 struct amdgpu_device *adev = file_inode(f)->i_private; 2227 ssize_t result = 0; 2228 int r; 2229 2230 if (size & 0x3 || *pos & 0x3) 2231 return -EINVAL; 2232 2233 if (*pos >= adev->gmc.mc_vram_size) 2234 return -ENXIO; 2235 2236 while (size) { 2237 uint32_t value; 2238 2239 if (*pos >= adev->gmc.mc_vram_size) 2240 return result; 2241 2242 r = get_user(value, (uint32_t *)buf); 2243 if (r) 2244 return r; 2245 2246 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2247 2248 result += 4; 2249 buf += 4; 2250 *pos += 4; 2251 size -= 4; 2252 } 2253 2254 return result; 2255 } 2256 2257 static const struct file_operations amdgpu_ttm_vram_fops = { 2258 .owner = THIS_MODULE, 2259 .read = amdgpu_ttm_vram_read, 2260 .write = amdgpu_ttm_vram_write, 2261 .llseek = default_llseek, 2262 }; 2263 2264 /* 2265 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2266 * 2267 * This function is used to read memory that has been mapped to the 2268 * GPU and the known addresses are not physical addresses but instead 2269 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2270 */ 2271 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2272 size_t size, loff_t *pos) 2273 { 2274 struct amdgpu_device *adev = file_inode(f)->i_private; 2275 struct iommu_domain *dom; 2276 ssize_t result = 0; 2277 int r; 2278 2279 /* retrieve the IOMMU domain if any for this device */ 2280 dom = iommu_get_domain_for_dev(adev->dev); 2281 2282 while (size) { 2283 phys_addr_t addr = *pos & PAGE_MASK; 2284 loff_t off = *pos & ~PAGE_MASK; 2285 size_t bytes = PAGE_SIZE - off; 2286 unsigned long pfn; 2287 struct page *p; 2288 void *ptr; 2289 2290 bytes = bytes < size ? bytes : size; 2291 2292 /* Translate the bus address to a physical address. If 2293 * the domain is NULL it means there is no IOMMU active 2294 * and the address translation is the identity 2295 */ 2296 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2297 2298 pfn = addr >> PAGE_SHIFT; 2299 if (!pfn_valid(pfn)) 2300 return -EPERM; 2301 2302 p = pfn_to_page(pfn); 2303 if (p->mapping != adev->mman.bdev.dev_mapping) 2304 return -EPERM; 2305 2306 ptr = kmap(p); 2307 r = copy_to_user(buf, ptr + off, bytes); 2308 kunmap(p); 2309 if (r) 2310 return -EFAULT; 2311 2312 size -= bytes; 2313 *pos += bytes; 2314 result += bytes; 2315 } 2316 2317 return result; 2318 } 2319 2320 /* 2321 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2322 * 2323 * This function is used to write memory that has been mapped to the 2324 * GPU and the known addresses are not physical addresses but instead 2325 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2326 */ 2327 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2328 size_t size, loff_t *pos) 2329 { 2330 struct amdgpu_device *adev = file_inode(f)->i_private; 2331 struct iommu_domain *dom; 2332 ssize_t result = 0; 2333 int r; 2334 2335 dom = iommu_get_domain_for_dev(adev->dev); 2336 2337 while (size) { 2338 phys_addr_t addr = *pos & PAGE_MASK; 2339 loff_t off = *pos & ~PAGE_MASK; 2340 size_t bytes = PAGE_SIZE - off; 2341 unsigned long pfn; 2342 struct page *p; 2343 void *ptr; 2344 2345 bytes = bytes < size ? bytes : size; 2346 2347 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2348 2349 pfn = addr >> PAGE_SHIFT; 2350 if (!pfn_valid(pfn)) 2351 return -EPERM; 2352 2353 p = pfn_to_page(pfn); 2354 if (p->mapping != adev->mman.bdev.dev_mapping) 2355 return -EPERM; 2356 2357 ptr = kmap(p); 2358 r = copy_from_user(ptr + off, buf, bytes); 2359 kunmap(p); 2360 if (r) 2361 return -EFAULT; 2362 2363 size -= bytes; 2364 *pos += bytes; 2365 result += bytes; 2366 } 2367 2368 return result; 2369 } 2370 2371 static const struct file_operations amdgpu_ttm_iomem_fops = { 2372 .owner = THIS_MODULE, 2373 .read = amdgpu_iomem_read, 2374 .write = amdgpu_iomem_write, 2375 .llseek = default_llseek 2376 }; 2377 2378 #endif 2379 2380 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2381 { 2382 #if defined(CONFIG_DEBUG_FS) 2383 struct drm_minor *minor = adev_to_drm(adev)->primary; 2384 struct dentry *root = minor->debugfs_root; 2385 2386 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2387 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2388 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2389 &amdgpu_ttm_iomem_fops); 2390 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2391 &amdgpu_ttm_page_pool_fops); 2392 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2393 TTM_PL_VRAM), 2394 root, "amdgpu_vram_mm"); 2395 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2396 TTM_PL_TT), 2397 root, "amdgpu_gtt_mm"); 2398 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2399 AMDGPU_PL_GDS), 2400 root, "amdgpu_gds_mm"); 2401 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2402 AMDGPU_PL_GWS), 2403 root, "amdgpu_gws_mm"); 2404 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2405 AMDGPU_PL_OA), 2406 root, "amdgpu_oa_mm"); 2407 2408 #endif 2409 } 2410