1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 #include <linux/sizes.h> 44 #include <linux/module.h> 45 46 #include <drm/drm_drv.h> 47 #include <drm/ttm/ttm_bo_api.h> 48 #include <drm/ttm/ttm_bo_driver.h> 49 #include <drm/ttm/ttm_placement.h> 50 #include <drm/ttm/ttm_range_manager.h> 51 52 #include <drm/amdgpu_drm.h> 53 #include <drm/drm_drv.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_atomfirmware.h" 62 #include "amdgpu_res_cursor.h" 63 #include "bif/bif_4_1_d.h" 64 65 MODULE_IMPORT_NS(DMA_BUF); 66 67 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 68 69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 70 struct ttm_tt *ttm, 71 struct ttm_resource *bo_mem); 72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 73 struct ttm_tt *ttm); 74 75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 76 unsigned int type, 77 uint64_t size_in_page) 78 { 79 return ttm_range_man_init(&adev->mman.bdev, type, 80 false, size_in_page); 81 } 82 83 /** 84 * amdgpu_evict_flags - Compute placement flags 85 * 86 * @bo: The buffer object to evict 87 * @placement: Possible destination(s) for evicted BO 88 * 89 * Fill in placement data when ttm_bo_evict() is called 90 */ 91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 92 struct ttm_placement *placement) 93 { 94 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 95 struct amdgpu_bo *abo; 96 static const struct ttm_place placements = { 97 .fpfn = 0, 98 .lpfn = 0, 99 .mem_type = TTM_PL_SYSTEM, 100 .flags = 0 101 }; 102 103 /* Don't handle scatter gather BOs */ 104 if (bo->type == ttm_bo_type_sg) { 105 placement->num_placement = 0; 106 placement->num_busy_placement = 0; 107 return; 108 } 109 110 /* Object isn't an AMDGPU object so ignore */ 111 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 112 placement->placement = &placements; 113 placement->busy_placement = &placements; 114 placement->num_placement = 1; 115 placement->num_busy_placement = 1; 116 return; 117 } 118 119 abo = ttm_to_amdgpu_bo(bo); 120 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 121 placement->num_placement = 0; 122 placement->num_busy_placement = 0; 123 return; 124 } 125 126 switch (bo->resource->mem_type) { 127 case AMDGPU_PL_GDS: 128 case AMDGPU_PL_GWS: 129 case AMDGPU_PL_OA: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct dma_fence *fence; 193 struct amdgpu_job *job; 194 void *cpu_addr; 195 uint64_t flags; 196 unsigned int i; 197 int r; 198 199 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 200 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 201 202 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 203 return -EINVAL; 204 205 /* Map only what can't be accessed directly */ 206 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 207 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 208 mm_cur->start; 209 return 0; 210 } 211 212 213 /* 214 * If start begins at an offset inside the page, then adjust the size 215 * and addr accordingly 216 */ 217 offset = mm_cur->start & ~PAGE_MASK; 218 219 num_pages = PFN_UP(*size + offset); 220 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 221 222 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 223 224 *addr = adev->gmc.gart_start; 225 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 226 AMDGPU_GPU_PAGE_SIZE; 227 *addr += offset; 228 229 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 230 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 231 232 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 233 AMDGPU_IB_POOL_DELAYED, &job); 234 if (r) 235 return r; 236 237 src_addr = num_dw * 4; 238 src_addr += job->ibs[0].gpu_addr; 239 240 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 241 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 242 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 243 dst_addr, num_bytes, false); 244 245 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 246 WARN_ON(job->ibs[0].length_dw > num_dw); 247 248 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 249 if (tmz) 250 flags |= AMDGPU_PTE_TMZ; 251 252 cpu_addr = &job->ibs[0].ptr[num_dw]; 253 254 if (mem->mem_type == TTM_PL_TT) { 255 dma_addr_t *dma_addr; 256 257 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 258 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 259 } else { 260 dma_addr_t dma_address; 261 262 dma_address = mm_cur->start; 263 dma_address += adev->vm_manager.vram_base_offset; 264 265 for (i = 0; i < num_pages; ++i) { 266 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 267 flags, cpu_addr); 268 dma_address += PAGE_SIZE; 269 } 270 } 271 272 r = amdgpu_job_submit(job, &adev->mman.entity, 273 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 274 if (r) 275 goto error_free; 276 277 dma_fence_put(fence); 278 279 return r; 280 281 error_free: 282 amdgpu_job_free(job); 283 return r; 284 } 285 286 /** 287 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 288 * @adev: amdgpu device 289 * @src: buffer/address where to read from 290 * @dst: buffer/address where to write to 291 * @size: number of bytes to copy 292 * @tmz: if a secure copy should be used 293 * @resv: resv object to sync to 294 * @f: Returns the last fence if multiple jobs are submitted. 295 * 296 * The function copies @size bytes from {src->mem + src->offset} to 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 298 * move and different for a BO to BO copy. 299 * 300 */ 301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 302 const struct amdgpu_copy_mem *src, 303 const struct amdgpu_copy_mem *dst, 304 uint64_t size, bool tmz, 305 struct dma_resv *resv, 306 struct dma_fence **f) 307 { 308 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 309 struct amdgpu_res_cursor src_mm, dst_mm; 310 struct dma_fence *fence = NULL; 311 int r = 0; 312 313 if (!adev->mman.buffer_funcs_enabled) { 314 DRM_ERROR("Trying to move memory with ring turned off.\n"); 315 return -EINVAL; 316 } 317 318 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 319 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 320 321 mutex_lock(&adev->mman.gtt_window_lock); 322 while (src_mm.remaining) { 323 uint64_t from, to, cur_size; 324 struct dma_fence *next; 325 326 /* Never copy more than 256MiB at once to avoid a timeout */ 327 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 328 329 /* Map src to window 0 and dst to window 1. */ 330 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 331 0, ring, tmz, &cur_size, &from); 332 if (r) 333 goto error; 334 335 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 336 1, ring, tmz, &cur_size, &to); 337 if (r) 338 goto error; 339 340 r = amdgpu_copy_buffer(ring, from, to, cur_size, 341 resv, &next, false, true, tmz); 342 if (r) 343 goto error; 344 345 dma_fence_put(fence); 346 fence = next; 347 348 amdgpu_res_next(&src_mm, cur_size); 349 amdgpu_res_next(&dst_mm, cur_size); 350 } 351 error: 352 mutex_unlock(&adev->mman.gtt_window_lock); 353 if (f) 354 *f = dma_fence_get(fence); 355 dma_fence_put(fence); 356 return r; 357 } 358 359 /* 360 * amdgpu_move_blit - Copy an entire buffer to another buffer 361 * 362 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 363 * help move buffers to and from VRAM. 364 */ 365 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 366 bool evict, 367 struct ttm_resource *new_mem, 368 struct ttm_resource *old_mem) 369 { 370 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 371 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 372 struct amdgpu_copy_mem src, dst; 373 struct dma_fence *fence = NULL; 374 int r; 375 376 src.bo = bo; 377 dst.bo = bo; 378 src.mem = old_mem; 379 dst.mem = new_mem; 380 src.offset = 0; 381 dst.offset = 0; 382 383 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 384 new_mem->num_pages << PAGE_SHIFT, 385 amdgpu_bo_encrypted(abo), 386 bo->base.resv, &fence); 387 if (r) 388 goto error; 389 390 /* clear the space being freed */ 391 if (old_mem->mem_type == TTM_PL_VRAM && 392 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 393 struct dma_fence *wipe_fence = NULL; 394 395 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence); 396 if (r) { 397 goto error; 398 } else if (wipe_fence) { 399 dma_fence_put(fence); 400 fence = wipe_fence; 401 } 402 } 403 404 /* Always block for VM page tables before committing the new location */ 405 if (bo->type == ttm_bo_type_kernel) 406 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 407 else 408 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 409 dma_fence_put(fence); 410 return r; 411 412 error: 413 if (fence) 414 dma_fence_wait(fence, false); 415 dma_fence_put(fence); 416 return r; 417 } 418 419 /* 420 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 421 * 422 * Called by amdgpu_bo_move() 423 */ 424 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 425 struct ttm_resource *mem) 426 { 427 u64 mem_size = (u64)mem->num_pages << PAGE_SHIFT; 428 struct amdgpu_res_cursor cursor; 429 u64 end; 430 431 if (mem->mem_type == TTM_PL_SYSTEM || 432 mem->mem_type == TTM_PL_TT) 433 return true; 434 if (mem->mem_type != TTM_PL_VRAM) 435 return false; 436 437 amdgpu_res_first(mem, 0, mem_size, &cursor); 438 end = cursor.start + cursor.size; 439 while (cursor.remaining) { 440 amdgpu_res_next(&cursor, cursor.size); 441 442 if (!cursor.remaining) 443 break; 444 445 /* ttm_resource_ioremap only supports contiguous memory */ 446 if (end != cursor.start) 447 return false; 448 449 end = cursor.start + cursor.size; 450 } 451 452 return end <= adev->gmc.visible_vram_size; 453 } 454 455 /* 456 * amdgpu_bo_move - Move a buffer object to a new memory location 457 * 458 * Called by ttm_bo_handle_move_mem() 459 */ 460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 461 struct ttm_operation_ctx *ctx, 462 struct ttm_resource *new_mem, 463 struct ttm_place *hop) 464 { 465 struct amdgpu_device *adev; 466 struct amdgpu_bo *abo; 467 struct ttm_resource *old_mem = bo->resource; 468 int r; 469 470 if (new_mem->mem_type == TTM_PL_TT || 471 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 472 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 473 if (r) 474 return r; 475 } 476 477 /* Can't move a pinned BO */ 478 abo = ttm_to_amdgpu_bo(bo); 479 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 480 return -EINVAL; 481 482 adev = amdgpu_ttm_adev(bo->bdev); 483 484 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 485 bo->ttm == NULL)) { 486 ttm_bo_move_null(bo, new_mem); 487 goto out; 488 } 489 if (old_mem->mem_type == TTM_PL_SYSTEM && 490 (new_mem->mem_type == TTM_PL_TT || 491 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 492 ttm_bo_move_null(bo, new_mem); 493 goto out; 494 } 495 if ((old_mem->mem_type == TTM_PL_TT || 496 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 497 new_mem->mem_type == TTM_PL_SYSTEM) { 498 r = ttm_bo_wait_ctx(bo, ctx); 499 if (r) 500 return r; 501 502 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 503 ttm_resource_free(bo, &bo->resource); 504 ttm_bo_assign_mem(bo, new_mem); 505 goto out; 506 } 507 508 if (old_mem->mem_type == AMDGPU_PL_GDS || 509 old_mem->mem_type == AMDGPU_PL_GWS || 510 old_mem->mem_type == AMDGPU_PL_OA || 511 new_mem->mem_type == AMDGPU_PL_GDS || 512 new_mem->mem_type == AMDGPU_PL_GWS || 513 new_mem->mem_type == AMDGPU_PL_OA) { 514 /* Nothing to save here */ 515 ttm_bo_move_null(bo, new_mem); 516 goto out; 517 } 518 519 if (bo->type == ttm_bo_type_device && 520 new_mem->mem_type == TTM_PL_VRAM && 521 old_mem->mem_type != TTM_PL_VRAM) { 522 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 523 * accesses the BO after it's moved. 524 */ 525 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 526 } 527 528 if (adev->mman.buffer_funcs_enabled) { 529 if (((old_mem->mem_type == TTM_PL_SYSTEM && 530 new_mem->mem_type == TTM_PL_VRAM) || 531 (old_mem->mem_type == TTM_PL_VRAM && 532 new_mem->mem_type == TTM_PL_SYSTEM))) { 533 hop->fpfn = 0; 534 hop->lpfn = 0; 535 hop->mem_type = TTM_PL_TT; 536 hop->flags = TTM_PL_FLAG_TEMPORARY; 537 return -EMULTIHOP; 538 } 539 540 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 541 } else { 542 r = -ENODEV; 543 } 544 545 if (r) { 546 /* Check that all memory is CPU accessible */ 547 if (!amdgpu_mem_visible(adev, old_mem) || 548 !amdgpu_mem_visible(adev, new_mem)) { 549 pr_err("Move buffer fallback to memcpy unavailable\n"); 550 return r; 551 } 552 553 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 554 if (r) 555 return r; 556 } 557 558 out: 559 /* update statistics */ 560 atomic64_add(bo->base.size, &adev->num_bytes_moved); 561 amdgpu_bo_move_notify(bo, evict, new_mem); 562 return 0; 563 } 564 565 /* 566 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 567 * 568 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 569 */ 570 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 571 struct ttm_resource *mem) 572 { 573 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 574 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 575 576 switch (mem->mem_type) { 577 case TTM_PL_SYSTEM: 578 /* system memory */ 579 return 0; 580 case TTM_PL_TT: 581 case AMDGPU_PL_PREEMPT: 582 break; 583 case TTM_PL_VRAM: 584 mem->bus.offset = mem->start << PAGE_SHIFT; 585 /* check if it's visible */ 586 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 587 return -EINVAL; 588 589 if (adev->mman.aper_base_kaddr && 590 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 591 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 592 mem->bus.offset; 593 594 mem->bus.offset += adev->gmc.aper_base; 595 mem->bus.is_iomem = true; 596 break; 597 default: 598 return -EINVAL; 599 } 600 return 0; 601 } 602 603 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 604 unsigned long page_offset) 605 { 606 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 607 struct amdgpu_res_cursor cursor; 608 609 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 610 &cursor); 611 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 612 } 613 614 /** 615 * amdgpu_ttm_domain_start - Returns GPU start address 616 * @adev: amdgpu device object 617 * @type: type of the memory 618 * 619 * Returns: 620 * GPU start address of a memory domain 621 */ 622 623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 624 { 625 switch (type) { 626 case TTM_PL_TT: 627 return adev->gmc.gart_start; 628 case TTM_PL_VRAM: 629 return adev->gmc.vram_start; 630 } 631 632 return 0; 633 } 634 635 /* 636 * TTM backend functions. 637 */ 638 struct amdgpu_ttm_tt { 639 struct ttm_tt ttm; 640 struct drm_gem_object *gobj; 641 u64 offset; 642 uint64_t userptr; 643 struct task_struct *usertask; 644 uint32_t userflags; 645 bool bound; 646 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 647 struct hmm_range *range; 648 #endif 649 }; 650 651 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 652 653 #ifdef CONFIG_DRM_AMDGPU_USERPTR 654 /* 655 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 656 * memory and start HMM tracking CPU page table update 657 * 658 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 659 * once afterwards to stop HMM tracking 660 */ 661 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 662 { 663 struct ttm_tt *ttm = bo->tbo.ttm; 664 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 665 unsigned long start = gtt->userptr; 666 struct vm_area_struct *vma; 667 struct mm_struct *mm; 668 bool readonly; 669 int r = 0; 670 671 mm = bo->notifier.mm; 672 if (unlikely(!mm)) { 673 DRM_DEBUG_DRIVER("BO is not registered?\n"); 674 return -EFAULT; 675 } 676 677 /* Another get_user_pages is running at the same time?? */ 678 if (WARN_ON(gtt->range)) 679 return -EFAULT; 680 681 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 682 return -ESRCH; 683 684 mmap_read_lock(mm); 685 vma = vma_lookup(mm, start); 686 if (unlikely(!vma)) { 687 r = -EFAULT; 688 goto out_unlock; 689 } 690 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 691 vma->vm_file)) { 692 r = -EPERM; 693 goto out_unlock; 694 } 695 696 readonly = amdgpu_ttm_tt_is_readonly(ttm); 697 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start, 698 ttm->num_pages, >t->range, readonly, 699 true, NULL); 700 out_unlock: 701 mmap_read_unlock(mm); 702 if (r) 703 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 704 705 mmput(mm); 706 707 return r; 708 } 709 710 /* 711 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 712 * Check if the pages backing this ttm range have been invalidated 713 * 714 * Returns: true if pages are still valid 715 */ 716 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 717 { 718 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 719 bool r = false; 720 721 if (!gtt || !gtt->userptr) 722 return false; 723 724 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 725 gtt->userptr, ttm->num_pages); 726 727 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 728 "No user pages to check\n"); 729 730 if (gtt->range) { 731 /* 732 * FIXME: Must always hold notifier_lock for this, and must 733 * not ignore the return code. 734 */ 735 r = amdgpu_hmm_range_get_pages_done(gtt->range); 736 gtt->range = NULL; 737 } 738 739 return !r; 740 } 741 #endif 742 743 /* 744 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 745 * 746 * Called by amdgpu_cs_list_validate(). This creates the page list 747 * that backs user memory and will ultimately be mapped into the device 748 * address space. 749 */ 750 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 751 { 752 unsigned long i; 753 754 for (i = 0; i < ttm->num_pages; ++i) 755 ttm->pages[i] = pages ? pages[i] : NULL; 756 } 757 758 /* 759 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 760 * 761 * Called by amdgpu_ttm_backend_bind() 762 **/ 763 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 764 struct ttm_tt *ttm) 765 { 766 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 767 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 768 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 769 enum dma_data_direction direction = write ? 770 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 771 int r; 772 773 /* Allocate an SG array and squash pages into it */ 774 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 775 (u64)ttm->num_pages << PAGE_SHIFT, 776 GFP_KERNEL); 777 if (r) 778 goto release_sg; 779 780 /* Map SG to device */ 781 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 782 if (r) 783 goto release_sg; 784 785 /* convert SG to linear array of pages and dma addresses */ 786 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 787 ttm->num_pages); 788 789 return 0; 790 791 release_sg: 792 kfree(ttm->sg); 793 ttm->sg = NULL; 794 return r; 795 } 796 797 /* 798 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 799 */ 800 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 801 struct ttm_tt *ttm) 802 { 803 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 804 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 805 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 806 enum dma_data_direction direction = write ? 807 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 808 809 /* double check that we don't free the table twice */ 810 if (!ttm->sg || !ttm->sg->sgl) 811 return; 812 813 /* unmap the pages mapped to the device */ 814 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 815 sg_free_table(ttm->sg); 816 817 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 818 if (gtt->range) { 819 unsigned long i; 820 821 for (i = 0; i < ttm->num_pages; i++) { 822 if (ttm->pages[i] != 823 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 824 break; 825 } 826 827 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 828 } 829 #endif 830 } 831 832 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 833 struct ttm_buffer_object *tbo, 834 uint64_t flags) 835 { 836 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 837 struct ttm_tt *ttm = tbo->ttm; 838 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 839 840 if (amdgpu_bo_encrypted(abo)) 841 flags |= AMDGPU_PTE_TMZ; 842 843 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 844 uint64_t page_idx = 1; 845 846 amdgpu_gart_bind(adev, gtt->offset, page_idx, 847 gtt->ttm.dma_address, flags); 848 849 /* The memory type of the first page defaults to UC. Now 850 * modify the memory type to NC from the second page of 851 * the BO onward. 852 */ 853 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 854 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 855 856 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT), 857 ttm->num_pages - page_idx, 858 &(gtt->ttm.dma_address[page_idx]), flags); 859 } else { 860 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 861 gtt->ttm.dma_address, flags); 862 } 863 } 864 865 /* 866 * amdgpu_ttm_backend_bind - Bind GTT memory 867 * 868 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 869 * This handles binding GTT memory to the device address space. 870 */ 871 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 872 struct ttm_tt *ttm, 873 struct ttm_resource *bo_mem) 874 { 875 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 876 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 877 uint64_t flags; 878 int r; 879 880 if (!bo_mem) 881 return -EINVAL; 882 883 if (gtt->bound) 884 return 0; 885 886 if (gtt->userptr) { 887 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 888 if (r) { 889 DRM_ERROR("failed to pin userptr\n"); 890 return r; 891 } 892 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 893 if (!ttm->sg) { 894 struct dma_buf_attachment *attach; 895 struct sg_table *sgt; 896 897 attach = gtt->gobj->import_attach; 898 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 899 if (IS_ERR(sgt)) 900 return PTR_ERR(sgt); 901 902 ttm->sg = sgt; 903 } 904 905 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 906 ttm->num_pages); 907 } 908 909 if (!ttm->num_pages) { 910 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 911 ttm->num_pages, bo_mem, ttm); 912 } 913 914 if (bo_mem->mem_type != TTM_PL_TT || 915 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 916 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 917 return 0; 918 } 919 920 /* compute PTE flags relevant to this BO memory */ 921 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 922 923 /* bind pages into GART page tables */ 924 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 925 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 926 gtt->ttm.dma_address, flags); 927 gtt->bound = true; 928 return 0; 929 } 930 931 /* 932 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 933 * through AGP or GART aperture. 934 * 935 * If bo is accessible through AGP aperture, then use AGP aperture 936 * to access bo; otherwise allocate logical space in GART aperture 937 * and map bo to GART aperture. 938 */ 939 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 940 { 941 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 942 struct ttm_operation_ctx ctx = { false, false }; 943 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 944 struct ttm_placement placement; 945 struct ttm_place placements; 946 struct ttm_resource *tmp; 947 uint64_t addr, flags; 948 int r; 949 950 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 951 return 0; 952 953 addr = amdgpu_gmc_agp_addr(bo); 954 if (addr != AMDGPU_BO_INVALID_OFFSET) { 955 bo->resource->start = addr >> PAGE_SHIFT; 956 return 0; 957 } 958 959 /* allocate GART space */ 960 placement.num_placement = 1; 961 placement.placement = &placements; 962 placement.num_busy_placement = 1; 963 placement.busy_placement = &placements; 964 placements.fpfn = 0; 965 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 966 placements.mem_type = TTM_PL_TT; 967 placements.flags = bo->resource->placement; 968 969 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 970 if (unlikely(r)) 971 return r; 972 973 /* compute PTE flags for this buffer object */ 974 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 975 976 /* Bind pages */ 977 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 978 amdgpu_ttm_gart_bind(adev, bo, flags); 979 amdgpu_gart_invalidate_tlb(adev); 980 ttm_resource_free(bo, &bo->resource); 981 ttm_bo_assign_mem(bo, tmp); 982 983 return 0; 984 } 985 986 /* 987 * amdgpu_ttm_recover_gart - Rebind GTT pages 988 * 989 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 990 * rebind GTT pages during a GPU reset. 991 */ 992 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 993 { 994 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 995 uint64_t flags; 996 997 if (!tbo->ttm) 998 return; 999 1000 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1001 amdgpu_ttm_gart_bind(adev, tbo, flags); 1002 } 1003 1004 /* 1005 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1006 * 1007 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1008 * ttm_tt_destroy(). 1009 */ 1010 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1011 struct ttm_tt *ttm) 1012 { 1013 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1014 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1015 1016 /* if the pages have userptr pinning then clear that first */ 1017 if (gtt->userptr) { 1018 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1019 } else if (ttm->sg && gtt->gobj->import_attach) { 1020 struct dma_buf_attachment *attach; 1021 1022 attach = gtt->gobj->import_attach; 1023 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1024 ttm->sg = NULL; 1025 } 1026 1027 if (!gtt->bound) 1028 return; 1029 1030 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1031 return; 1032 1033 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1034 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1035 gtt->bound = false; 1036 } 1037 1038 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1039 struct ttm_tt *ttm) 1040 { 1041 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1042 1043 if (gtt->usertask) 1044 put_task_struct(gtt->usertask); 1045 1046 ttm_tt_fini(>t->ttm); 1047 kfree(gtt); 1048 } 1049 1050 /** 1051 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1052 * 1053 * @bo: The buffer object to create a GTT ttm_tt object around 1054 * @page_flags: Page flags to be added to the ttm_tt object 1055 * 1056 * Called by ttm_tt_create(). 1057 */ 1058 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1059 uint32_t page_flags) 1060 { 1061 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1062 struct amdgpu_ttm_tt *gtt; 1063 enum ttm_caching caching; 1064 1065 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1066 if (gtt == NULL) { 1067 return NULL; 1068 } 1069 gtt->gobj = &bo->base; 1070 1071 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1072 caching = ttm_write_combined; 1073 else 1074 caching = ttm_cached; 1075 1076 /* allocate space for the uninitialized page entries */ 1077 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1078 kfree(gtt); 1079 return NULL; 1080 } 1081 return >t->ttm; 1082 } 1083 1084 /* 1085 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1086 * 1087 * Map the pages of a ttm_tt object to an address space visible 1088 * to the underlying device. 1089 */ 1090 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1091 struct ttm_tt *ttm, 1092 struct ttm_operation_ctx *ctx) 1093 { 1094 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1095 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1096 pgoff_t i; 1097 int ret; 1098 1099 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1100 if (gtt->userptr) { 1101 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1102 if (!ttm->sg) 1103 return -ENOMEM; 1104 return 0; 1105 } 1106 1107 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1108 return 0; 1109 1110 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1111 if (ret) 1112 return ret; 1113 1114 for (i = 0; i < ttm->num_pages; ++i) 1115 ttm->pages[i]->mapping = bdev->dev_mapping; 1116 1117 return 0; 1118 } 1119 1120 /* 1121 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1122 * 1123 * Unmaps pages of a ttm_tt object from the device address space and 1124 * unpopulates the page array backing it. 1125 */ 1126 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1127 struct ttm_tt *ttm) 1128 { 1129 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1130 struct amdgpu_device *adev; 1131 pgoff_t i; 1132 1133 amdgpu_ttm_backend_unbind(bdev, ttm); 1134 1135 if (gtt->userptr) { 1136 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1137 kfree(ttm->sg); 1138 ttm->sg = NULL; 1139 return; 1140 } 1141 1142 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1143 return; 1144 1145 for (i = 0; i < ttm->num_pages; ++i) 1146 ttm->pages[i]->mapping = NULL; 1147 1148 adev = amdgpu_ttm_adev(bdev); 1149 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1150 } 1151 1152 /** 1153 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1154 * task 1155 * 1156 * @tbo: The ttm_buffer_object that contains the userptr 1157 * @user_addr: The returned value 1158 */ 1159 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1160 uint64_t *user_addr) 1161 { 1162 struct amdgpu_ttm_tt *gtt; 1163 1164 if (!tbo->ttm) 1165 return -EINVAL; 1166 1167 gtt = (void *)tbo->ttm; 1168 *user_addr = gtt->userptr; 1169 return 0; 1170 } 1171 1172 /** 1173 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1174 * task 1175 * 1176 * @bo: The ttm_buffer_object to bind this userptr to 1177 * @addr: The address in the current tasks VM space to use 1178 * @flags: Requirements of userptr object. 1179 * 1180 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1181 * to current task 1182 */ 1183 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1184 uint64_t addr, uint32_t flags) 1185 { 1186 struct amdgpu_ttm_tt *gtt; 1187 1188 if (!bo->ttm) { 1189 /* TODO: We want a separate TTM object type for userptrs */ 1190 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1191 if (bo->ttm == NULL) 1192 return -ENOMEM; 1193 } 1194 1195 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1196 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1197 1198 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1199 gtt->userptr = addr; 1200 gtt->userflags = flags; 1201 1202 if (gtt->usertask) 1203 put_task_struct(gtt->usertask); 1204 gtt->usertask = current->group_leader; 1205 get_task_struct(gtt->usertask); 1206 1207 return 0; 1208 } 1209 1210 /* 1211 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1212 */ 1213 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1214 { 1215 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1216 1217 if (gtt == NULL) 1218 return NULL; 1219 1220 if (gtt->usertask == NULL) 1221 return NULL; 1222 1223 return gtt->usertask->mm; 1224 } 1225 1226 /* 1227 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1228 * address range for the current task. 1229 * 1230 */ 1231 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1232 unsigned long end, unsigned long *userptr) 1233 { 1234 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1235 unsigned long size; 1236 1237 if (gtt == NULL || !gtt->userptr) 1238 return false; 1239 1240 /* Return false if no part of the ttm_tt object lies within 1241 * the range 1242 */ 1243 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1244 if (gtt->userptr > end || gtt->userptr + size <= start) 1245 return false; 1246 1247 if (userptr) 1248 *userptr = gtt->userptr; 1249 return true; 1250 } 1251 1252 /* 1253 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1254 */ 1255 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1256 { 1257 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1258 1259 if (gtt == NULL || !gtt->userptr) 1260 return false; 1261 1262 return true; 1263 } 1264 1265 /* 1266 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1267 */ 1268 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1269 { 1270 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1271 1272 if (gtt == NULL) 1273 return false; 1274 1275 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1276 } 1277 1278 /** 1279 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1280 * 1281 * @ttm: The ttm_tt object to compute the flags for 1282 * @mem: The memory registry backing this ttm_tt object 1283 * 1284 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1285 */ 1286 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1287 { 1288 uint64_t flags = 0; 1289 1290 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1291 flags |= AMDGPU_PTE_VALID; 1292 1293 if (mem && (mem->mem_type == TTM_PL_TT || 1294 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1295 flags |= AMDGPU_PTE_SYSTEM; 1296 1297 if (ttm->caching == ttm_cached) 1298 flags |= AMDGPU_PTE_SNOOPED; 1299 } 1300 1301 if (mem && mem->mem_type == TTM_PL_VRAM && 1302 mem->bus.caching == ttm_cached) 1303 flags |= AMDGPU_PTE_SNOOPED; 1304 1305 return flags; 1306 } 1307 1308 /** 1309 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1310 * 1311 * @adev: amdgpu_device pointer 1312 * @ttm: The ttm_tt object to compute the flags for 1313 * @mem: The memory registry backing this ttm_tt object 1314 * 1315 * Figure out the flags to use for a VM PTE (Page Table Entry). 1316 */ 1317 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1318 struct ttm_resource *mem) 1319 { 1320 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1321 1322 flags |= adev->gart.gart_pte_flags; 1323 flags |= AMDGPU_PTE_READABLE; 1324 1325 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1326 flags |= AMDGPU_PTE_WRITEABLE; 1327 1328 return flags; 1329 } 1330 1331 /* 1332 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1333 * object. 1334 * 1335 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1336 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1337 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1338 * used to clean out a memory space. 1339 */ 1340 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1341 const struct ttm_place *place) 1342 { 1343 struct dma_resv_iter resv_cursor; 1344 struct dma_fence *f; 1345 1346 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1347 return ttm_bo_eviction_valuable(bo, place); 1348 1349 /* Swapout? */ 1350 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1351 return true; 1352 1353 if (bo->type == ttm_bo_type_kernel && 1354 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1355 return false; 1356 1357 /* If bo is a KFD BO, check if the bo belongs to the current process. 1358 * If true, then return false as any KFD process needs all its BOs to 1359 * be resident to run successfully 1360 */ 1361 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1362 DMA_RESV_USAGE_BOOKKEEP, f) { 1363 if (amdkfd_fence_check_mm(f, current->mm)) 1364 return false; 1365 } 1366 1367 /* Preemptible BOs don't own system resources managed by the 1368 * driver (pages, VRAM, GART space). They point to resources 1369 * owned by someone else (e.g. pageable memory in user mode 1370 * or a DMABuf). They are used in a preemptible context so we 1371 * can guarantee no deadlocks and good QoS in case of MMU 1372 * notifiers or DMABuf move notifiers from the resource owner. 1373 */ 1374 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1375 return false; 1376 1377 if (bo->resource->mem_type == TTM_PL_TT && 1378 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1379 return false; 1380 1381 return ttm_bo_eviction_valuable(bo, place); 1382 } 1383 1384 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1385 void *buf, size_t size, bool write) 1386 { 1387 while (size) { 1388 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1389 uint64_t bytes = 4 - (pos & 0x3); 1390 uint32_t shift = (pos & 0x3) * 8; 1391 uint32_t mask = 0xffffffff << shift; 1392 uint32_t value = 0; 1393 1394 if (size < bytes) { 1395 mask &= 0xffffffff >> (bytes - size) * 8; 1396 bytes = size; 1397 } 1398 1399 if (mask != 0xffffffff) { 1400 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1401 if (write) { 1402 value &= ~mask; 1403 value |= (*(uint32_t *)buf << shift) & mask; 1404 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1405 } else { 1406 value = (value & mask) >> shift; 1407 memcpy(buf, &value, bytes); 1408 } 1409 } else { 1410 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1411 } 1412 1413 pos += bytes; 1414 buf += bytes; 1415 size -= bytes; 1416 } 1417 } 1418 1419 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1420 unsigned long offset, void *buf, int len, int write) 1421 { 1422 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1423 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1424 struct amdgpu_res_cursor src_mm; 1425 struct amdgpu_job *job; 1426 struct dma_fence *fence; 1427 uint64_t src_addr, dst_addr; 1428 unsigned int num_dw; 1429 int r, idx; 1430 1431 if (len != PAGE_SIZE) 1432 return -EINVAL; 1433 1434 if (!adev->mman.sdma_access_ptr) 1435 return -EACCES; 1436 1437 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1438 return -ENODEV; 1439 1440 if (write) 1441 memcpy(adev->mman.sdma_access_ptr, buf, len); 1442 1443 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1444 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job); 1445 if (r) 1446 goto out; 1447 1448 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1449 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start; 1450 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1451 if (write) 1452 swap(src_addr, dst_addr); 1453 1454 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false); 1455 1456 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1457 WARN_ON(job->ibs[0].length_dw > num_dw); 1458 1459 r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1460 if (r) { 1461 amdgpu_job_free(job); 1462 goto out; 1463 } 1464 1465 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1466 r = -ETIMEDOUT; 1467 dma_fence_put(fence); 1468 1469 if (!(r || write)) 1470 memcpy(buf, adev->mman.sdma_access_ptr, len); 1471 out: 1472 drm_dev_exit(idx); 1473 return r; 1474 } 1475 1476 /** 1477 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1478 * 1479 * @bo: The buffer object to read/write 1480 * @offset: Offset into buffer object 1481 * @buf: Secondary buffer to write/read from 1482 * @len: Length in bytes of access 1483 * @write: true if writing 1484 * 1485 * This is used to access VRAM that backs a buffer object via MMIO 1486 * access for debugging purposes. 1487 */ 1488 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1489 unsigned long offset, void *buf, int len, 1490 int write) 1491 { 1492 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1493 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1494 struct amdgpu_res_cursor cursor; 1495 int ret = 0; 1496 1497 if (bo->resource->mem_type != TTM_PL_VRAM) 1498 return -EIO; 1499 1500 if (amdgpu_device_has_timeouts_enabled(adev) && 1501 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1502 return len; 1503 1504 amdgpu_res_first(bo->resource, offset, len, &cursor); 1505 while (cursor.remaining) { 1506 size_t count, size = cursor.size; 1507 loff_t pos = cursor.start; 1508 1509 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1510 size -= count; 1511 if (size) { 1512 /* using MM to access rest vram and handle un-aligned address */ 1513 pos += count; 1514 buf += count; 1515 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1516 } 1517 1518 ret += cursor.size; 1519 buf += cursor.size; 1520 amdgpu_res_next(&cursor, cursor.size); 1521 } 1522 1523 return ret; 1524 } 1525 1526 static void 1527 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1528 { 1529 amdgpu_bo_move_notify(bo, false, NULL); 1530 } 1531 1532 static struct ttm_device_funcs amdgpu_bo_driver = { 1533 .ttm_tt_create = &amdgpu_ttm_tt_create, 1534 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1535 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1536 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1537 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1538 .evict_flags = &amdgpu_evict_flags, 1539 .move = &amdgpu_bo_move, 1540 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1541 .release_notify = &amdgpu_bo_release_notify, 1542 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1543 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1544 .access_memory = &amdgpu_ttm_access_memory, 1545 }; 1546 1547 /* 1548 * Firmware Reservation functions 1549 */ 1550 /** 1551 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1552 * 1553 * @adev: amdgpu_device pointer 1554 * 1555 * free fw reserved vram if it has been reserved. 1556 */ 1557 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1558 { 1559 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1560 NULL, &adev->mman.fw_vram_usage_va); 1561 } 1562 1563 /** 1564 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1565 * 1566 * @adev: amdgpu_device pointer 1567 * 1568 * create bo vram reservation from fw. 1569 */ 1570 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1571 { 1572 uint64_t vram_size = adev->gmc.visible_vram_size; 1573 1574 adev->mman.fw_vram_usage_va = NULL; 1575 adev->mman.fw_vram_usage_reserved_bo = NULL; 1576 1577 if (adev->mman.fw_vram_usage_size == 0 || 1578 adev->mman.fw_vram_usage_size > vram_size) 1579 return 0; 1580 1581 return amdgpu_bo_create_kernel_at(adev, 1582 adev->mman.fw_vram_usage_start_offset, 1583 adev->mman.fw_vram_usage_size, 1584 AMDGPU_GEM_DOMAIN_VRAM, 1585 &adev->mman.fw_vram_usage_reserved_bo, 1586 &adev->mman.fw_vram_usage_va); 1587 } 1588 1589 /* 1590 * Memoy training reservation functions 1591 */ 1592 1593 /** 1594 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1595 * 1596 * @adev: amdgpu_device pointer 1597 * 1598 * free memory training reserved vram if it has been reserved. 1599 */ 1600 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1601 { 1602 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1603 1604 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1605 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1606 ctx->c2p_bo = NULL; 1607 1608 return 0; 1609 } 1610 1611 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1612 { 1613 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1614 1615 memset(ctx, 0, sizeof(*ctx)); 1616 1617 ctx->c2p_train_data_offset = 1618 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1619 ctx->p2c_train_data_offset = 1620 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1621 ctx->train_data_size = 1622 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1623 1624 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1625 ctx->train_data_size, 1626 ctx->p2c_train_data_offset, 1627 ctx->c2p_train_data_offset); 1628 } 1629 1630 /* 1631 * reserve TMR memory at the top of VRAM which holds 1632 * IP Discovery data and is protected by PSP. 1633 */ 1634 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1635 { 1636 int ret; 1637 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1638 bool mem_train_support = false; 1639 1640 if (!amdgpu_sriov_vf(adev)) { 1641 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1642 mem_train_support = true; 1643 else 1644 DRM_DEBUG("memory training does not support!\n"); 1645 } 1646 1647 /* 1648 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1649 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1650 * 1651 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1652 * discovery data and G6 memory training data respectively 1653 */ 1654 adev->mman.discovery_tmr_size = 1655 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1656 if (!adev->mman.discovery_tmr_size) 1657 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1658 1659 if (mem_train_support) { 1660 /* reserve vram for mem train according to TMR location */ 1661 amdgpu_ttm_training_data_block_init(adev); 1662 ret = amdgpu_bo_create_kernel_at(adev, 1663 ctx->c2p_train_data_offset, 1664 ctx->train_data_size, 1665 AMDGPU_GEM_DOMAIN_VRAM, 1666 &ctx->c2p_bo, 1667 NULL); 1668 if (ret) { 1669 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1670 amdgpu_ttm_training_reserve_vram_fini(adev); 1671 return ret; 1672 } 1673 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1674 } 1675 1676 ret = amdgpu_bo_create_kernel_at(adev, 1677 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1678 adev->mman.discovery_tmr_size, 1679 AMDGPU_GEM_DOMAIN_VRAM, 1680 &adev->mman.discovery_memory, 1681 NULL); 1682 if (ret) { 1683 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1684 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1685 return ret; 1686 } 1687 1688 return 0; 1689 } 1690 1691 /* 1692 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1693 * gtt/vram related fields. 1694 * 1695 * This initializes all of the memory space pools that the TTM layer 1696 * will need such as the GTT space (system memory mapped to the device), 1697 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1698 * can be mapped per VMID. 1699 */ 1700 int amdgpu_ttm_init(struct amdgpu_device *adev) 1701 { 1702 uint64_t gtt_size; 1703 int r; 1704 u64 vis_vram_limit; 1705 1706 mutex_init(&adev->mman.gtt_window_lock); 1707 1708 /* No others user of address space so set it to 0 */ 1709 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1710 adev_to_drm(adev)->anon_inode->i_mapping, 1711 adev_to_drm(adev)->vma_offset_manager, 1712 adev->need_swiotlb, 1713 dma_addressing_limited(adev->dev)); 1714 if (r) { 1715 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1716 return r; 1717 } 1718 adev->mman.initialized = true; 1719 1720 /* Initialize VRAM pool with all of VRAM divided into pages */ 1721 r = amdgpu_vram_mgr_init(adev); 1722 if (r) { 1723 DRM_ERROR("Failed initializing VRAM heap.\n"); 1724 return r; 1725 } 1726 1727 /* Reduce size of CPU-visible VRAM if requested */ 1728 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1729 if (amdgpu_vis_vram_limit > 0 && 1730 vis_vram_limit <= adev->gmc.visible_vram_size) 1731 adev->gmc.visible_vram_size = vis_vram_limit; 1732 1733 /* Change the size here instead of the init above so only lpfn is affected */ 1734 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1735 #ifdef CONFIG_64BIT 1736 #ifdef CONFIG_X86 1737 if (adev->gmc.xgmi.connected_to_cpu) 1738 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1739 adev->gmc.visible_vram_size); 1740 1741 else 1742 #endif 1743 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1744 adev->gmc.visible_vram_size); 1745 #endif 1746 1747 /* 1748 *The reserved vram for firmware must be pinned to the specified 1749 *place on the VRAM, so reserve it early. 1750 */ 1751 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1752 if (r) { 1753 return r; 1754 } 1755 1756 /* 1757 * only NAVI10 and onwards ASIC support for IP discovery. 1758 * If IP discovery enabled, a block of memory should be 1759 * reserved for IP discovey. 1760 */ 1761 if (adev->mman.discovery_bin) { 1762 r = amdgpu_ttm_reserve_tmr(adev); 1763 if (r) 1764 return r; 1765 } 1766 1767 /* allocate memory as required for VGA 1768 * This is used for VGA emulation and pre-OS scanout buffers to 1769 * avoid display artifacts while transitioning between pre-OS 1770 * and driver. */ 1771 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1772 AMDGPU_GEM_DOMAIN_VRAM, 1773 &adev->mman.stolen_vga_memory, 1774 NULL); 1775 if (r) 1776 return r; 1777 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1778 adev->mman.stolen_extended_size, 1779 AMDGPU_GEM_DOMAIN_VRAM, 1780 &adev->mman.stolen_extended_memory, 1781 NULL); 1782 if (r) 1783 return r; 1784 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, 1785 adev->mman.stolen_reserved_size, 1786 AMDGPU_GEM_DOMAIN_VRAM, 1787 &adev->mman.stolen_reserved_memory, 1788 NULL); 1789 if (r) 1790 return r; 1791 1792 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1793 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1794 1795 /* Compute GTT size, either based on 1/2 the size of RAM size 1796 * or whatever the user passed on module init */ 1797 if (amdgpu_gtt_size == -1) { 1798 struct sysinfo si; 1799 1800 si_meminfo(&si); 1801 /* Certain GL unit tests for large textures can cause problems 1802 * with the OOM killer since there is no way to link this memory 1803 * to a process. This was originally mitigated (but not necessarily 1804 * eliminated) by limiting the GTT size. The problem is this limit 1805 * is often too low for many modern games so just make the limit 1/2 1806 * of system memory which aligns with TTM. The OOM accounting needs 1807 * to be addressed, but we shouldn't prevent common 3D applications 1808 * from being usable just to potentially mitigate that corner case. 1809 */ 1810 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1811 (u64)si.totalram * si.mem_unit / 2); 1812 } else { 1813 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1814 } 1815 1816 /* Initialize GTT memory pool */ 1817 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1818 if (r) { 1819 DRM_ERROR("Failed initializing GTT heap.\n"); 1820 return r; 1821 } 1822 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1823 (unsigned)(gtt_size / (1024 * 1024))); 1824 1825 /* Initialize preemptible memory pool */ 1826 r = amdgpu_preempt_mgr_init(adev); 1827 if (r) { 1828 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1829 return r; 1830 } 1831 1832 /* Initialize various on-chip memory pools */ 1833 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1834 if (r) { 1835 DRM_ERROR("Failed initializing GDS heap.\n"); 1836 return r; 1837 } 1838 1839 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1840 if (r) { 1841 DRM_ERROR("Failed initializing gws heap.\n"); 1842 return r; 1843 } 1844 1845 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1846 if (r) { 1847 DRM_ERROR("Failed initializing oa heap.\n"); 1848 return r; 1849 } 1850 1851 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1852 AMDGPU_GEM_DOMAIN_GTT, 1853 &adev->mman.sdma_access_bo, NULL, 1854 &adev->mman.sdma_access_ptr)) 1855 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1856 1857 return 0; 1858 } 1859 1860 /* 1861 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1862 */ 1863 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1864 { 1865 int idx; 1866 if (!adev->mman.initialized) 1867 return; 1868 1869 amdgpu_ttm_training_reserve_vram_fini(adev); 1870 /* return the stolen vga memory back to VRAM */ 1871 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1872 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1873 /* return the IP Discovery TMR memory back to VRAM */ 1874 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1875 if (adev->mman.stolen_reserved_size) 1876 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1877 NULL, NULL); 1878 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 1879 &adev->mman.sdma_access_ptr); 1880 amdgpu_ttm_fw_reserve_vram_fini(adev); 1881 1882 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 1883 1884 if (adev->mman.aper_base_kaddr) 1885 iounmap(adev->mman.aper_base_kaddr); 1886 adev->mman.aper_base_kaddr = NULL; 1887 1888 drm_dev_exit(idx); 1889 } 1890 1891 amdgpu_vram_mgr_fini(adev); 1892 amdgpu_gtt_mgr_fini(adev); 1893 amdgpu_preempt_mgr_fini(adev); 1894 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1895 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1896 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1897 ttm_device_fini(&adev->mman.bdev); 1898 adev->mman.initialized = false; 1899 DRM_INFO("amdgpu: ttm finalized\n"); 1900 } 1901 1902 /** 1903 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1904 * 1905 * @adev: amdgpu_device pointer 1906 * @enable: true when we can use buffer functions. 1907 * 1908 * Enable/disable use of buffer functions during suspend/resume. This should 1909 * only be called at bootup or when userspace isn't running. 1910 */ 1911 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1912 { 1913 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1914 uint64_t size; 1915 int r; 1916 1917 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1918 adev->mman.buffer_funcs_enabled == enable) 1919 return; 1920 1921 if (enable) { 1922 struct amdgpu_ring *ring; 1923 struct drm_gpu_scheduler *sched; 1924 1925 ring = adev->mman.buffer_funcs_ring; 1926 sched = &ring->sched; 1927 r = drm_sched_entity_init(&adev->mman.entity, 1928 DRM_SCHED_PRIORITY_KERNEL, &sched, 1929 1, NULL); 1930 if (r) { 1931 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1932 r); 1933 return; 1934 } 1935 } else { 1936 drm_sched_entity_destroy(&adev->mman.entity); 1937 dma_fence_put(man->move); 1938 man->move = NULL; 1939 } 1940 1941 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1942 if (enable) 1943 size = adev->gmc.real_vram_size; 1944 else 1945 size = adev->gmc.visible_vram_size; 1946 man->size = size; 1947 adev->mman.buffer_funcs_enabled = enable; 1948 } 1949 1950 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 1951 bool direct_submit, 1952 unsigned int num_dw, 1953 struct dma_resv *resv, 1954 bool vm_needs_flush, 1955 struct amdgpu_job **job) 1956 { 1957 enum amdgpu_ib_pool_type pool = direct_submit ? 1958 AMDGPU_IB_POOL_DIRECT : 1959 AMDGPU_IB_POOL_DELAYED; 1960 int r; 1961 1962 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job); 1963 if (r) 1964 return r; 1965 1966 if (vm_needs_flush) { 1967 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1968 adev->gmc.pdb0_bo : 1969 adev->gart.bo); 1970 (*job)->vm_needs_flush = true; 1971 } 1972 if (resv) { 1973 r = amdgpu_sync_resv(adev, &(*job)->sync, resv, 1974 AMDGPU_SYNC_ALWAYS, 1975 AMDGPU_FENCE_OWNER_UNDEFINED); 1976 if (r) { 1977 DRM_ERROR("sync failed (%d).\n", r); 1978 amdgpu_job_free(*job); 1979 return r; 1980 } 1981 } 1982 return 0; 1983 } 1984 1985 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1986 uint64_t dst_offset, uint32_t byte_count, 1987 struct dma_resv *resv, 1988 struct dma_fence **fence, bool direct_submit, 1989 bool vm_needs_flush, bool tmz) 1990 { 1991 struct amdgpu_device *adev = ring->adev; 1992 unsigned num_loops, num_dw; 1993 struct amdgpu_job *job; 1994 uint32_t max_bytes; 1995 unsigned i; 1996 int r; 1997 1998 if (!direct_submit && !ring->sched.ready) { 1999 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2000 return -EINVAL; 2001 } 2002 2003 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2004 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2005 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2006 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2007 resv, vm_needs_flush, &job); 2008 if (r) 2009 return r; 2010 2011 for (i = 0; i < num_loops; i++) { 2012 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2013 2014 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2015 dst_offset, cur_size_in_bytes, tmz); 2016 2017 src_offset += cur_size_in_bytes; 2018 dst_offset += cur_size_in_bytes; 2019 byte_count -= cur_size_in_bytes; 2020 } 2021 2022 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2023 WARN_ON(job->ibs[0].length_dw > num_dw); 2024 if (direct_submit) 2025 r = amdgpu_job_submit_direct(job, ring, fence); 2026 else 2027 r = amdgpu_job_submit(job, &adev->mman.entity, 2028 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2029 if (r) 2030 goto error_free; 2031 2032 return r; 2033 2034 error_free: 2035 amdgpu_job_free(job); 2036 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2037 return r; 2038 } 2039 2040 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2041 uint64_t dst_addr, uint32_t byte_count, 2042 struct dma_resv *resv, 2043 struct dma_fence **fence, 2044 bool vm_needs_flush) 2045 { 2046 struct amdgpu_device *adev = ring->adev; 2047 unsigned int num_loops, num_dw; 2048 struct amdgpu_job *job; 2049 uint32_t max_bytes; 2050 unsigned int i; 2051 int r; 2052 2053 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2054 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2055 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2056 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2057 &job); 2058 if (r) 2059 return r; 2060 2061 for (i = 0; i < num_loops; i++) { 2062 uint32_t cur_size = min(byte_count, max_bytes); 2063 2064 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2065 cur_size); 2066 2067 dst_addr += cur_size; 2068 byte_count -= cur_size; 2069 } 2070 2071 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2072 WARN_ON(job->ibs[0].length_dw > num_dw); 2073 r = amdgpu_job_submit(job, &adev->mman.entity, 2074 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2075 if (r) 2076 goto error_free; 2077 2078 return 0; 2079 2080 error_free: 2081 amdgpu_job_free(job); 2082 return r; 2083 } 2084 2085 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2086 uint32_t src_data, 2087 struct dma_resv *resv, 2088 struct dma_fence **f) 2089 { 2090 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2091 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2092 struct dma_fence *fence = NULL; 2093 struct amdgpu_res_cursor dst; 2094 int r; 2095 2096 if (!adev->mman.buffer_funcs_enabled) { 2097 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2098 return -EINVAL; 2099 } 2100 2101 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2102 2103 mutex_lock(&adev->mman.gtt_window_lock); 2104 while (dst.remaining) { 2105 struct dma_fence *next; 2106 uint64_t cur_size, to; 2107 2108 /* Never fill more than 256MiB at once to avoid timeouts */ 2109 cur_size = min(dst.size, 256ULL << 20); 2110 2111 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2112 1, ring, false, &cur_size, &to); 2113 if (r) 2114 goto error; 2115 2116 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2117 &next, true); 2118 if (r) 2119 goto error; 2120 2121 dma_fence_put(fence); 2122 fence = next; 2123 2124 amdgpu_res_next(&dst, cur_size); 2125 } 2126 error: 2127 mutex_unlock(&adev->mman.gtt_window_lock); 2128 if (f) 2129 *f = dma_fence_get(fence); 2130 dma_fence_put(fence); 2131 return r; 2132 } 2133 2134 /** 2135 * amdgpu_ttm_evict_resources - evict memory buffers 2136 * @adev: amdgpu device object 2137 * @mem_type: evicted BO's memory type 2138 * 2139 * Evicts all @mem_type buffers on the lru list of the memory type. 2140 * 2141 * Returns: 2142 * 0 for success or a negative error code on failure. 2143 */ 2144 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2145 { 2146 struct ttm_resource_manager *man; 2147 2148 switch (mem_type) { 2149 case TTM_PL_VRAM: 2150 case TTM_PL_TT: 2151 case AMDGPU_PL_GWS: 2152 case AMDGPU_PL_GDS: 2153 case AMDGPU_PL_OA: 2154 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2155 break; 2156 default: 2157 DRM_ERROR("Trying to evict invalid memory type\n"); 2158 return -EINVAL; 2159 } 2160 2161 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2162 } 2163 2164 #if defined(CONFIG_DEBUG_FS) 2165 2166 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2167 { 2168 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2169 2170 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2171 } 2172 2173 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2174 2175 /* 2176 * amdgpu_ttm_vram_read - Linear read access to VRAM 2177 * 2178 * Accesses VRAM via MMIO for debugging purposes. 2179 */ 2180 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2181 size_t size, loff_t *pos) 2182 { 2183 struct amdgpu_device *adev = file_inode(f)->i_private; 2184 ssize_t result = 0; 2185 2186 if (size & 0x3 || *pos & 0x3) 2187 return -EINVAL; 2188 2189 if (*pos >= adev->gmc.mc_vram_size) 2190 return -ENXIO; 2191 2192 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2193 while (size) { 2194 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2195 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2196 2197 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2198 if (copy_to_user(buf, value, bytes)) 2199 return -EFAULT; 2200 2201 result += bytes; 2202 buf += bytes; 2203 *pos += bytes; 2204 size -= bytes; 2205 } 2206 2207 return result; 2208 } 2209 2210 /* 2211 * amdgpu_ttm_vram_write - Linear write access to VRAM 2212 * 2213 * Accesses VRAM via MMIO for debugging purposes. 2214 */ 2215 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2216 size_t size, loff_t *pos) 2217 { 2218 struct amdgpu_device *adev = file_inode(f)->i_private; 2219 ssize_t result = 0; 2220 int r; 2221 2222 if (size & 0x3 || *pos & 0x3) 2223 return -EINVAL; 2224 2225 if (*pos >= adev->gmc.mc_vram_size) 2226 return -ENXIO; 2227 2228 while (size) { 2229 uint32_t value; 2230 2231 if (*pos >= adev->gmc.mc_vram_size) 2232 return result; 2233 2234 r = get_user(value, (uint32_t *)buf); 2235 if (r) 2236 return r; 2237 2238 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2239 2240 result += 4; 2241 buf += 4; 2242 *pos += 4; 2243 size -= 4; 2244 } 2245 2246 return result; 2247 } 2248 2249 static const struct file_operations amdgpu_ttm_vram_fops = { 2250 .owner = THIS_MODULE, 2251 .read = amdgpu_ttm_vram_read, 2252 .write = amdgpu_ttm_vram_write, 2253 .llseek = default_llseek, 2254 }; 2255 2256 /* 2257 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2258 * 2259 * This function is used to read memory that has been mapped to the 2260 * GPU and the known addresses are not physical addresses but instead 2261 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2262 */ 2263 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2264 size_t size, loff_t *pos) 2265 { 2266 struct amdgpu_device *adev = file_inode(f)->i_private; 2267 struct iommu_domain *dom; 2268 ssize_t result = 0; 2269 int r; 2270 2271 /* retrieve the IOMMU domain if any for this device */ 2272 dom = iommu_get_domain_for_dev(adev->dev); 2273 2274 while (size) { 2275 phys_addr_t addr = *pos & PAGE_MASK; 2276 loff_t off = *pos & ~PAGE_MASK; 2277 size_t bytes = PAGE_SIZE - off; 2278 unsigned long pfn; 2279 struct page *p; 2280 void *ptr; 2281 2282 bytes = bytes < size ? bytes : size; 2283 2284 /* Translate the bus address to a physical address. If 2285 * the domain is NULL it means there is no IOMMU active 2286 * and the address translation is the identity 2287 */ 2288 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2289 2290 pfn = addr >> PAGE_SHIFT; 2291 if (!pfn_valid(pfn)) 2292 return -EPERM; 2293 2294 p = pfn_to_page(pfn); 2295 if (p->mapping != adev->mman.bdev.dev_mapping) 2296 return -EPERM; 2297 2298 ptr = kmap(p); 2299 r = copy_to_user(buf, ptr + off, bytes); 2300 kunmap(p); 2301 if (r) 2302 return -EFAULT; 2303 2304 size -= bytes; 2305 *pos += bytes; 2306 result += bytes; 2307 } 2308 2309 return result; 2310 } 2311 2312 /* 2313 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2314 * 2315 * This function is used to write memory that has been mapped to the 2316 * GPU and the known addresses are not physical addresses but instead 2317 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2318 */ 2319 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2320 size_t size, loff_t *pos) 2321 { 2322 struct amdgpu_device *adev = file_inode(f)->i_private; 2323 struct iommu_domain *dom; 2324 ssize_t result = 0; 2325 int r; 2326 2327 dom = iommu_get_domain_for_dev(adev->dev); 2328 2329 while (size) { 2330 phys_addr_t addr = *pos & PAGE_MASK; 2331 loff_t off = *pos & ~PAGE_MASK; 2332 size_t bytes = PAGE_SIZE - off; 2333 unsigned long pfn; 2334 struct page *p; 2335 void *ptr; 2336 2337 bytes = bytes < size ? bytes : size; 2338 2339 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2340 2341 pfn = addr >> PAGE_SHIFT; 2342 if (!pfn_valid(pfn)) 2343 return -EPERM; 2344 2345 p = pfn_to_page(pfn); 2346 if (p->mapping != adev->mman.bdev.dev_mapping) 2347 return -EPERM; 2348 2349 ptr = kmap(p); 2350 r = copy_from_user(ptr + off, buf, bytes); 2351 kunmap(p); 2352 if (r) 2353 return -EFAULT; 2354 2355 size -= bytes; 2356 *pos += bytes; 2357 result += bytes; 2358 } 2359 2360 return result; 2361 } 2362 2363 static const struct file_operations amdgpu_ttm_iomem_fops = { 2364 .owner = THIS_MODULE, 2365 .read = amdgpu_iomem_read, 2366 .write = amdgpu_iomem_write, 2367 .llseek = default_llseek 2368 }; 2369 2370 #endif 2371 2372 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2373 { 2374 #if defined(CONFIG_DEBUG_FS) 2375 struct drm_minor *minor = adev_to_drm(adev)->primary; 2376 struct dentry *root = minor->debugfs_root; 2377 2378 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2379 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2380 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2381 &amdgpu_ttm_iomem_fops); 2382 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2383 &amdgpu_ttm_page_pool_fops); 2384 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2385 TTM_PL_VRAM), 2386 root, "amdgpu_vram_mm"); 2387 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2388 TTM_PL_TT), 2389 root, "amdgpu_gtt_mm"); 2390 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2391 AMDGPU_PL_GDS), 2392 root, "amdgpu_gds_mm"); 2393 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2394 AMDGPU_PL_GWS), 2395 root, "amdgpu_gws_mm"); 2396 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2397 AMDGPU_PL_OA), 2398 root, "amdgpu_oa_mm"); 2399 2400 #endif 2401 } 2402