1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 
43 #include <drm/ttm/ttm_bo_api.h>
44 #include <drm/ttm/ttm_bo_driver.h>
45 #include <drm/ttm/ttm_placement.h>
46 #include <drm/ttm/ttm_module.h>
47 #include <drm/ttm/ttm_page_alloc.h>
48 
49 #include <drm/drm_debugfs.h>
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "bif/bif_4_1_d.h"
59 
60 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
61 			     struct ttm_mem_reg *mem, unsigned num_pages,
62 			     uint64_t offset, unsigned window,
63 			     struct amdgpu_ring *ring,
64 			     uint64_t *addr);
65 
66 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
67 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
68 
69 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
70 {
71 	return 0;
72 }
73 
74 /**
75  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
76  * memory request.
77  *
78  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
79  * @type: The type of memory requested
80  * @man: The memory type manager for each domain
81  *
82  * This is called by ttm_bo_init_mm() when a buffer object is being
83  * initialized.
84  */
85 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
86 				struct ttm_mem_type_manager *man)
87 {
88 	struct amdgpu_device *adev;
89 
90 	adev = amdgpu_ttm_adev(bdev);
91 
92 	switch (type) {
93 	case TTM_PL_SYSTEM:
94 		/* System memory */
95 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
96 		man->available_caching = TTM_PL_MASK_CACHING;
97 		man->default_caching = TTM_PL_FLAG_CACHED;
98 		break;
99 	case TTM_PL_TT:
100 		/* GTT memory  */
101 		man->func = &amdgpu_gtt_mgr_func;
102 		man->gpu_offset = adev->gmc.gart_start;
103 		man->available_caching = TTM_PL_MASK_CACHING;
104 		man->default_caching = TTM_PL_FLAG_CACHED;
105 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
106 		break;
107 	case TTM_PL_VRAM:
108 		/* "On-card" video ram */
109 		man->func = &amdgpu_vram_mgr_func;
110 		man->gpu_offset = adev->gmc.vram_start;
111 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
112 			     TTM_MEMTYPE_FLAG_MAPPABLE;
113 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
114 		man->default_caching = TTM_PL_FLAG_WC;
115 		break;
116 	case AMDGPU_PL_GDS:
117 	case AMDGPU_PL_GWS:
118 	case AMDGPU_PL_OA:
119 		/* On-chip GDS memory*/
120 		man->func = &ttm_bo_manager_func;
121 		man->gpu_offset = 0;
122 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
123 		man->available_caching = TTM_PL_FLAG_UNCACHED;
124 		man->default_caching = TTM_PL_FLAG_UNCACHED;
125 		break;
126 	default:
127 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
128 		return -EINVAL;
129 	}
130 	return 0;
131 }
132 
133 /**
134  * amdgpu_evict_flags - Compute placement flags
135  *
136  * @bo: The buffer object to evict
137  * @placement: Possible destination(s) for evicted BO
138  *
139  * Fill in placement data when ttm_bo_evict() is called
140  */
141 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
142 				struct ttm_placement *placement)
143 {
144 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
145 	struct amdgpu_bo *abo;
146 	static const struct ttm_place placements = {
147 		.fpfn = 0,
148 		.lpfn = 0,
149 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
150 	};
151 
152 	/* Don't handle scatter gather BOs */
153 	if (bo->type == ttm_bo_type_sg) {
154 		placement->num_placement = 0;
155 		placement->num_busy_placement = 0;
156 		return;
157 	}
158 
159 	/* Object isn't an AMDGPU object so ignore */
160 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
161 		placement->placement = &placements;
162 		placement->busy_placement = &placements;
163 		placement->num_placement = 1;
164 		placement->num_busy_placement = 1;
165 		return;
166 	}
167 
168 	abo = ttm_to_amdgpu_bo(bo);
169 	switch (bo->mem.mem_type) {
170 	case AMDGPU_PL_GDS:
171 	case AMDGPU_PL_GWS:
172 	case AMDGPU_PL_OA:
173 		placement->num_placement = 0;
174 		placement->num_busy_placement = 0;
175 		return;
176 
177 	case TTM_PL_VRAM:
178 		if (!adev->mman.buffer_funcs_enabled) {
179 			/* Move to system memory */
180 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
181 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
182 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
183 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
184 
185 			/* Try evicting to the CPU inaccessible part of VRAM
186 			 * first, but only set GTT as busy placement, so this
187 			 * BO will be evicted to GTT rather than causing other
188 			 * BOs to be evicted from VRAM
189 			 */
190 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
191 							 AMDGPU_GEM_DOMAIN_GTT);
192 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
193 			abo->placements[0].lpfn = 0;
194 			abo->placement.busy_placement = &abo->placements[1];
195 			abo->placement.num_busy_placement = 1;
196 		} else {
197 			/* Move to GTT memory */
198 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
199 		}
200 		break;
201 	case TTM_PL_TT:
202 	default:
203 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
204 		break;
205 	}
206 	*placement = abo->placement;
207 }
208 
209 /**
210  * amdgpu_verify_access - Verify access for a mmap call
211  *
212  * @bo:	The buffer object to map
213  * @filp: The file pointer from the process performing the mmap
214  *
215  * This is called by ttm_bo_mmap() to verify whether a process
216  * has the right to mmap a BO to their process space.
217  */
218 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
219 {
220 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
221 
222 	/*
223 	 * Don't verify access for KFD BOs. They don't have a GEM
224 	 * object associated with them.
225 	 */
226 	if (abo->kfd_bo)
227 		return 0;
228 
229 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
230 		return -EPERM;
231 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
232 					  filp->private_data);
233 }
234 
235 /**
236  * amdgpu_move_null - Register memory for a buffer object
237  *
238  * @bo: The bo to assign the memory to
239  * @new_mem: The memory to be assigned.
240  *
241  * Assign the memory from new_mem to the memory of the buffer object bo.
242  */
243 static void amdgpu_move_null(struct ttm_buffer_object *bo,
244 			     struct ttm_mem_reg *new_mem)
245 {
246 	struct ttm_mem_reg *old_mem = &bo->mem;
247 
248 	BUG_ON(old_mem->mm_node != NULL);
249 	*old_mem = *new_mem;
250 	new_mem->mm_node = NULL;
251 }
252 
253 /**
254  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
255  *
256  * @bo: The bo to assign the memory to.
257  * @mm_node: Memory manager node for drm allocator.
258  * @mem: The region where the bo resides.
259  *
260  */
261 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
262 				    struct drm_mm_node *mm_node,
263 				    struct ttm_mem_reg *mem)
264 {
265 	uint64_t addr = 0;
266 
267 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
268 		addr = mm_node->start << PAGE_SHIFT;
269 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
270 	}
271 	return addr;
272 }
273 
274 /**
275  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
276  * @offset. It also modifies the offset to be within the drm_mm_node returned
277  *
278  * @mem: The region where the bo resides.
279  * @offset: The offset that drm_mm_node is used for finding.
280  *
281  */
282 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
283 					       unsigned long *offset)
284 {
285 	struct drm_mm_node *mm_node = mem->mm_node;
286 
287 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
288 		*offset -= (mm_node->size << PAGE_SHIFT);
289 		++mm_node;
290 	}
291 	return mm_node;
292 }
293 
294 /**
295  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
296  *
297  * The function copies @size bytes from {src->mem + src->offset} to
298  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
299  * move and different for a BO to BO copy.
300  *
301  * @f: Returns the last fence if multiple jobs are submitted.
302  */
303 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
304 			       struct amdgpu_copy_mem *src,
305 			       struct amdgpu_copy_mem *dst,
306 			       uint64_t size,
307 			       struct dma_resv *resv,
308 			       struct dma_fence **f)
309 {
310 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
311 	struct drm_mm_node *src_mm, *dst_mm;
312 	uint64_t src_node_start, dst_node_start, src_node_size,
313 		 dst_node_size, src_page_offset, dst_page_offset;
314 	struct dma_fence *fence = NULL;
315 	int r = 0;
316 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
317 					AMDGPU_GPU_PAGE_SIZE);
318 
319 	if (!adev->mman.buffer_funcs_enabled) {
320 		DRM_ERROR("Trying to move memory with ring turned off.\n");
321 		return -EINVAL;
322 	}
323 
324 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
325 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
326 					     src->offset;
327 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
328 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
329 
330 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
331 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
332 					     dst->offset;
333 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
334 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
335 
336 	mutex_lock(&adev->mman.gtt_window_lock);
337 
338 	while (size) {
339 		unsigned long cur_size;
340 		uint64_t from = src_node_start, to = dst_node_start;
341 		struct dma_fence *next;
342 
343 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
344 		 * begins at an offset, then adjust the size accordingly
345 		 */
346 		cur_size = min3(min(src_node_size, dst_node_size), size,
347 				GTT_MAX_BYTES);
348 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
349 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
350 			cur_size -= max(src_page_offset, dst_page_offset);
351 
352 		/* Map only what needs to be accessed. Map src to window 0 and
353 		 * dst to window 1
354 		 */
355 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
356 			r = amdgpu_map_buffer(src->bo, src->mem,
357 					PFN_UP(cur_size + src_page_offset),
358 					src_node_start, 0, ring,
359 					&from);
360 			if (r)
361 				goto error;
362 			/* Adjust the offset because amdgpu_map_buffer returns
363 			 * start of mapped page
364 			 */
365 			from += src_page_offset;
366 		}
367 
368 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
369 			r = amdgpu_map_buffer(dst->bo, dst->mem,
370 					PFN_UP(cur_size + dst_page_offset),
371 					dst_node_start, 1, ring,
372 					&to);
373 			if (r)
374 				goto error;
375 			to += dst_page_offset;
376 		}
377 
378 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
379 				       resv, &next, false, true);
380 		if (r)
381 			goto error;
382 
383 		dma_fence_put(fence);
384 		fence = next;
385 
386 		size -= cur_size;
387 		if (!size)
388 			break;
389 
390 		src_node_size -= cur_size;
391 		if (!src_node_size) {
392 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
393 							     src->mem);
394 			src_node_size = (src_mm->size << PAGE_SHIFT);
395 			src_page_offset = 0;
396 		} else {
397 			src_node_start += cur_size;
398 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
399 		}
400 		dst_node_size -= cur_size;
401 		if (!dst_node_size) {
402 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
403 							     dst->mem);
404 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
405 			dst_page_offset = 0;
406 		} else {
407 			dst_node_start += cur_size;
408 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
409 		}
410 	}
411 error:
412 	mutex_unlock(&adev->mman.gtt_window_lock);
413 	if (f)
414 		*f = dma_fence_get(fence);
415 	dma_fence_put(fence);
416 	return r;
417 }
418 
419 /**
420  * amdgpu_move_blit - Copy an entire buffer to another buffer
421  *
422  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
423  * help move buffers to and from VRAM.
424  */
425 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
426 			    bool evict, bool no_wait_gpu,
427 			    struct ttm_mem_reg *new_mem,
428 			    struct ttm_mem_reg *old_mem)
429 {
430 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
431 	struct amdgpu_copy_mem src, dst;
432 	struct dma_fence *fence = NULL;
433 	int r;
434 
435 	src.bo = bo;
436 	dst.bo = bo;
437 	src.mem = old_mem;
438 	dst.mem = new_mem;
439 	src.offset = 0;
440 	dst.offset = 0;
441 
442 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
443 				       new_mem->num_pages << PAGE_SHIFT,
444 				       bo->base.resv, &fence);
445 	if (r)
446 		goto error;
447 
448 	/* clear the space being freed */
449 	if (old_mem->mem_type == TTM_PL_VRAM &&
450 	    (ttm_to_amdgpu_bo(bo)->flags &
451 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
452 		struct dma_fence *wipe_fence = NULL;
453 
454 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
455 				       NULL, &wipe_fence);
456 		if (r) {
457 			goto error;
458 		} else if (wipe_fence) {
459 			dma_fence_put(fence);
460 			fence = wipe_fence;
461 		}
462 	}
463 
464 	/* Always block for VM page tables before committing the new location */
465 	if (bo->type == ttm_bo_type_kernel)
466 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
467 	else
468 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
469 	dma_fence_put(fence);
470 	return r;
471 
472 error:
473 	if (fence)
474 		dma_fence_wait(fence, false);
475 	dma_fence_put(fence);
476 	return r;
477 }
478 
479 /**
480  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
481  *
482  * Called by amdgpu_bo_move().
483  */
484 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
485 				struct ttm_operation_ctx *ctx,
486 				struct ttm_mem_reg *new_mem)
487 {
488 	struct amdgpu_device *adev;
489 	struct ttm_mem_reg *old_mem = &bo->mem;
490 	struct ttm_mem_reg tmp_mem;
491 	struct ttm_place placements;
492 	struct ttm_placement placement;
493 	int r;
494 
495 	adev = amdgpu_ttm_adev(bo->bdev);
496 
497 	/* create space/pages for new_mem in GTT space */
498 	tmp_mem = *new_mem;
499 	tmp_mem.mm_node = NULL;
500 	placement.num_placement = 1;
501 	placement.placement = &placements;
502 	placement.num_busy_placement = 1;
503 	placement.busy_placement = &placements;
504 	placements.fpfn = 0;
505 	placements.lpfn = 0;
506 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
507 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
508 	if (unlikely(r)) {
509 		pr_err("Failed to find GTT space for blit from VRAM\n");
510 		return r;
511 	}
512 
513 	/* set caching flags */
514 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
515 	if (unlikely(r)) {
516 		goto out_cleanup;
517 	}
518 
519 	/* Bind the memory to the GTT space */
520 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
521 	if (unlikely(r)) {
522 		goto out_cleanup;
523 	}
524 
525 	/* blit VRAM to GTT */
526 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
527 	if (unlikely(r)) {
528 		goto out_cleanup;
529 	}
530 
531 	/* move BO (in tmp_mem) to new_mem */
532 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
533 out_cleanup:
534 	ttm_bo_mem_put(bo, &tmp_mem);
535 	return r;
536 }
537 
538 /**
539  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
540  *
541  * Called by amdgpu_bo_move().
542  */
543 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
544 				struct ttm_operation_ctx *ctx,
545 				struct ttm_mem_reg *new_mem)
546 {
547 	struct amdgpu_device *adev;
548 	struct ttm_mem_reg *old_mem = &bo->mem;
549 	struct ttm_mem_reg tmp_mem;
550 	struct ttm_placement placement;
551 	struct ttm_place placements;
552 	int r;
553 
554 	adev = amdgpu_ttm_adev(bo->bdev);
555 
556 	/* make space in GTT for old_mem buffer */
557 	tmp_mem = *new_mem;
558 	tmp_mem.mm_node = NULL;
559 	placement.num_placement = 1;
560 	placement.placement = &placements;
561 	placement.num_busy_placement = 1;
562 	placement.busy_placement = &placements;
563 	placements.fpfn = 0;
564 	placements.lpfn = 0;
565 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
566 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
567 	if (unlikely(r)) {
568 		pr_err("Failed to find GTT space for blit to VRAM\n");
569 		return r;
570 	}
571 
572 	/* move/bind old memory to GTT space */
573 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
574 	if (unlikely(r)) {
575 		goto out_cleanup;
576 	}
577 
578 	/* copy to VRAM */
579 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
580 	if (unlikely(r)) {
581 		goto out_cleanup;
582 	}
583 out_cleanup:
584 	ttm_bo_mem_put(bo, &tmp_mem);
585 	return r;
586 }
587 
588 /**
589  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
590  *
591  * Called by amdgpu_bo_move()
592  */
593 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
594 			       struct ttm_mem_reg *mem)
595 {
596 	struct drm_mm_node *nodes = mem->mm_node;
597 
598 	if (mem->mem_type == TTM_PL_SYSTEM ||
599 	    mem->mem_type == TTM_PL_TT)
600 		return true;
601 	if (mem->mem_type != TTM_PL_VRAM)
602 		return false;
603 
604 	/* ttm_mem_reg_ioremap only supports contiguous memory */
605 	if (nodes->size != mem->num_pages)
606 		return false;
607 
608 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
609 		<= adev->gmc.visible_vram_size;
610 }
611 
612 /**
613  * amdgpu_bo_move - Move a buffer object to a new memory location
614  *
615  * Called by ttm_bo_handle_move_mem()
616  */
617 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
618 			  struct ttm_operation_ctx *ctx,
619 			  struct ttm_mem_reg *new_mem)
620 {
621 	struct amdgpu_device *adev;
622 	struct amdgpu_bo *abo;
623 	struct ttm_mem_reg *old_mem = &bo->mem;
624 	int r;
625 
626 	/* Can't move a pinned BO */
627 	abo = ttm_to_amdgpu_bo(bo);
628 	if (WARN_ON_ONCE(abo->pin_count > 0))
629 		return -EINVAL;
630 
631 	adev = amdgpu_ttm_adev(bo->bdev);
632 
633 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
634 		amdgpu_move_null(bo, new_mem);
635 		return 0;
636 	}
637 	if ((old_mem->mem_type == TTM_PL_TT &&
638 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
639 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
640 	     new_mem->mem_type == TTM_PL_TT)) {
641 		/* bind is enough */
642 		amdgpu_move_null(bo, new_mem);
643 		return 0;
644 	}
645 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
646 	    old_mem->mem_type == AMDGPU_PL_GWS ||
647 	    old_mem->mem_type == AMDGPU_PL_OA ||
648 	    new_mem->mem_type == AMDGPU_PL_GDS ||
649 	    new_mem->mem_type == AMDGPU_PL_GWS ||
650 	    new_mem->mem_type == AMDGPU_PL_OA) {
651 		/* Nothing to save here */
652 		amdgpu_move_null(bo, new_mem);
653 		return 0;
654 	}
655 
656 	if (!adev->mman.buffer_funcs_enabled) {
657 		r = -ENODEV;
658 		goto memcpy;
659 	}
660 
661 	if (old_mem->mem_type == TTM_PL_VRAM &&
662 	    new_mem->mem_type == TTM_PL_SYSTEM) {
663 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
664 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
665 		   new_mem->mem_type == TTM_PL_VRAM) {
666 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
667 	} else {
668 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
669 				     new_mem, old_mem);
670 	}
671 
672 	if (r) {
673 memcpy:
674 		/* Check that all memory is CPU accessible */
675 		if (!amdgpu_mem_visible(adev, old_mem) ||
676 		    !amdgpu_mem_visible(adev, new_mem)) {
677 			pr_err("Move buffer fallback to memcpy unavailable\n");
678 			return r;
679 		}
680 
681 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
682 		if (r)
683 			return r;
684 	}
685 
686 	if (bo->type == ttm_bo_type_device &&
687 	    new_mem->mem_type == TTM_PL_VRAM &&
688 	    old_mem->mem_type != TTM_PL_VRAM) {
689 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
690 		 * accesses the BO after it's moved.
691 		 */
692 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
693 	}
694 
695 	/* update statistics */
696 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
697 	return 0;
698 }
699 
700 /**
701  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
702  *
703  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
704  */
705 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
706 {
707 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
708 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
709 	struct drm_mm_node *mm_node = mem->mm_node;
710 
711 	mem->bus.addr = NULL;
712 	mem->bus.offset = 0;
713 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
714 	mem->bus.base = 0;
715 	mem->bus.is_iomem = false;
716 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
717 		return -EINVAL;
718 	switch (mem->mem_type) {
719 	case TTM_PL_SYSTEM:
720 		/* system memory */
721 		return 0;
722 	case TTM_PL_TT:
723 		break;
724 	case TTM_PL_VRAM:
725 		mem->bus.offset = mem->start << PAGE_SHIFT;
726 		/* check if it's visible */
727 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
728 			return -EINVAL;
729 		/* Only physically contiguous buffers apply. In a contiguous
730 		 * buffer, size of the first mm_node would match the number of
731 		 * pages in ttm_mem_reg.
732 		 */
733 		if (adev->mman.aper_base_kaddr &&
734 		    (mm_node->size == mem->num_pages))
735 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
736 					mem->bus.offset;
737 
738 		mem->bus.base = adev->gmc.aper_base;
739 		mem->bus.is_iomem = true;
740 		break;
741 	default:
742 		return -EINVAL;
743 	}
744 	return 0;
745 }
746 
747 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
748 {
749 }
750 
751 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
752 					   unsigned long page_offset)
753 {
754 	struct drm_mm_node *mm;
755 	unsigned long offset = (page_offset << PAGE_SHIFT);
756 
757 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
758 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
759 		(offset >> PAGE_SHIFT);
760 }
761 
762 /*
763  * TTM backend functions.
764  */
765 struct amdgpu_ttm_tt {
766 	struct ttm_dma_tt	ttm;
767 	u64			offset;
768 	uint64_t		userptr;
769 	struct task_struct	*usertask;
770 	uint32_t		userflags;
771 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
772 	struct hmm_range	*range;
773 #endif
774 };
775 
776 /**
777  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
778  * memory and start HMM tracking CPU page table update
779  *
780  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
781  * once afterwards to stop HMM tracking
782  */
783 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
784 
785 #define MAX_RETRY_HMM_RANGE_FAULT	16
786 
787 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
788 {
789 	struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
790 	struct ttm_tt *ttm = bo->tbo.ttm;
791 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
792 	struct mm_struct *mm = gtt->usertask->mm;
793 	unsigned long start = gtt->userptr;
794 	struct vm_area_struct *vma;
795 	struct hmm_range *range;
796 	unsigned long i;
797 	uint64_t *pfns;
798 	int retry = 0;
799 	int r = 0;
800 
801 	if (!mm) /* Happens during process shutdown */
802 		return -ESRCH;
803 
804 	if (unlikely(!mirror)) {
805 		DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
806 		r = -EFAULT;
807 		goto out;
808 	}
809 
810 	vma = find_vma(mm, start);
811 	if (unlikely(!vma || start < vma->vm_start)) {
812 		r = -EFAULT;
813 		goto out;
814 	}
815 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
816 		vma->vm_file)) {
817 		r = -EPERM;
818 		goto out;
819 	}
820 
821 	range = kzalloc(sizeof(*range), GFP_KERNEL);
822 	if (unlikely(!range)) {
823 		r = -ENOMEM;
824 		goto out;
825 	}
826 
827 	pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
828 	if (unlikely(!pfns)) {
829 		r = -ENOMEM;
830 		goto out_free_ranges;
831 	}
832 
833 	amdgpu_hmm_init_range(range);
834 	range->default_flags = range->flags[HMM_PFN_VALID];
835 	range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
836 				0 : range->flags[HMM_PFN_WRITE];
837 	range->pfn_flags_mask = 0;
838 	range->pfns = pfns;
839 	hmm_range_register(range, mirror, start,
840 			   start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT);
841 
842 retry:
843 	/*
844 	 * Just wait for range to be valid, safe to ignore return value as we
845 	 * will use the return value of hmm_range_fault() below under the
846 	 * mmap_sem to ascertain the validity of the range.
847 	 */
848 	hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
849 
850 	down_read(&mm->mmap_sem);
851 
852 	r = hmm_range_fault(range, true);
853 	if (unlikely(r < 0)) {
854 		if (likely(r == -EAGAIN)) {
855 			/*
856 			 * return -EAGAIN, mmap_sem is dropped
857 			 */
858 			if (retry++ < MAX_RETRY_HMM_RANGE_FAULT)
859 				goto retry;
860 			else
861 				pr_err("Retry hmm fault too many times\n");
862 		}
863 
864 		goto out_up_read;
865 	}
866 
867 	up_read(&mm->mmap_sem);
868 
869 	for (i = 0; i < ttm->num_pages; i++) {
870 		pages[i] = hmm_device_entry_to_page(range, pfns[i]);
871 		if (unlikely(!pages[i])) {
872 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
873 			       i, pfns[i]);
874 			r = -ENOMEM;
875 
876 			goto out_free_pfns;
877 		}
878 	}
879 
880 	gtt->range = range;
881 
882 	return 0;
883 
884 out_up_read:
885 	if (likely(r != -EAGAIN))
886 		up_read(&mm->mmap_sem);
887 out_free_pfns:
888 	hmm_range_unregister(range);
889 	kvfree(pfns);
890 out_free_ranges:
891 	kfree(range);
892 out:
893 	return r;
894 }
895 
896 /**
897  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
898  * Check if the pages backing this ttm range have been invalidated
899  *
900  * Returns: true if pages are still valid
901  */
902 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
903 {
904 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
905 	bool r = false;
906 
907 	if (!gtt || !gtt->userptr)
908 		return false;
909 
910 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
911 		gtt->userptr, ttm->num_pages);
912 
913 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
914 		"No user pages to check\n");
915 
916 	if (gtt->range) {
917 		r = hmm_range_valid(gtt->range);
918 		hmm_range_unregister(gtt->range);
919 
920 		kvfree(gtt->range->pfns);
921 		kfree(gtt->range);
922 		gtt->range = NULL;
923 	}
924 
925 	return r;
926 }
927 #endif
928 
929 /**
930  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
931  *
932  * Called by amdgpu_cs_list_validate(). This creates the page list
933  * that backs user memory and will ultimately be mapped into the device
934  * address space.
935  */
936 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
937 {
938 	unsigned long i;
939 
940 	for (i = 0; i < ttm->num_pages; ++i)
941 		ttm->pages[i] = pages ? pages[i] : NULL;
942 }
943 
944 /**
945  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
946  *
947  * Called by amdgpu_ttm_backend_bind()
948  **/
949 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
950 {
951 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
952 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
953 	unsigned nents;
954 	int r;
955 
956 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
957 	enum dma_data_direction direction = write ?
958 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
959 
960 	/* Allocate an SG array and squash pages into it */
961 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
962 				      ttm->num_pages << PAGE_SHIFT,
963 				      GFP_KERNEL);
964 	if (r)
965 		goto release_sg;
966 
967 	/* Map SG to device */
968 	r = -ENOMEM;
969 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
970 	if (nents != ttm->sg->nents)
971 		goto release_sg;
972 
973 	/* convert SG to linear array of pages and dma addresses */
974 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
975 					 gtt->ttm.dma_address, ttm->num_pages);
976 
977 	return 0;
978 
979 release_sg:
980 	kfree(ttm->sg);
981 	return r;
982 }
983 
984 /**
985  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
986  */
987 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
988 {
989 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
990 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
991 
992 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
993 	enum dma_data_direction direction = write ?
994 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
995 
996 	/* double check that we don't free the table twice */
997 	if (!ttm->sg->sgl)
998 		return;
999 
1000 	/* unmap the pages mapped to the device */
1001 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1002 
1003 	sg_free_table(ttm->sg);
1004 
1005 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1006 	if (gtt->range &&
1007 	    ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
1008 						      gtt->range->pfns[0]))
1009 		WARN_ONCE(1, "Missing get_user_page_done\n");
1010 #endif
1011 }
1012 
1013 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1014 				struct ttm_buffer_object *tbo,
1015 				uint64_t flags)
1016 {
1017 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1018 	struct ttm_tt *ttm = tbo->ttm;
1019 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1020 	int r;
1021 
1022 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1023 		uint64_t page_idx = 1;
1024 
1025 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1026 				ttm->pages, gtt->ttm.dma_address, flags);
1027 		if (r)
1028 			goto gart_bind_fail;
1029 
1030 		/* Patch mtype of the second part BO */
1031 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1032 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1033 
1034 		r = amdgpu_gart_bind(adev,
1035 				gtt->offset + (page_idx << PAGE_SHIFT),
1036 				ttm->num_pages - page_idx,
1037 				&ttm->pages[page_idx],
1038 				&(gtt->ttm.dma_address[page_idx]), flags);
1039 	} else {
1040 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1041 				     ttm->pages, gtt->ttm.dma_address, flags);
1042 	}
1043 
1044 gart_bind_fail:
1045 	if (r)
1046 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1047 			  ttm->num_pages, gtt->offset);
1048 
1049 	return r;
1050 }
1051 
1052 /**
1053  * amdgpu_ttm_backend_bind - Bind GTT memory
1054  *
1055  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1056  * This handles binding GTT memory to the device address space.
1057  */
1058 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1059 				   struct ttm_mem_reg *bo_mem)
1060 {
1061 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1062 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1063 	uint64_t flags;
1064 	int r = 0;
1065 
1066 	if (gtt->userptr) {
1067 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1068 		if (r) {
1069 			DRM_ERROR("failed to pin userptr\n");
1070 			return r;
1071 		}
1072 	}
1073 	if (!ttm->num_pages) {
1074 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1075 		     ttm->num_pages, bo_mem, ttm);
1076 	}
1077 
1078 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1079 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1080 	    bo_mem->mem_type == AMDGPU_PL_OA)
1081 		return -EINVAL;
1082 
1083 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1084 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1085 		return 0;
1086 	}
1087 
1088 	/* compute PTE flags relevant to this BO memory */
1089 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1090 
1091 	/* bind pages into GART page tables */
1092 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1093 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1094 		ttm->pages, gtt->ttm.dma_address, flags);
1095 
1096 	if (r)
1097 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1098 			  ttm->num_pages, gtt->offset);
1099 	return r;
1100 }
1101 
1102 /**
1103  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1104  */
1105 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1106 {
1107 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1108 	struct ttm_operation_ctx ctx = { false, false };
1109 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1110 	struct ttm_mem_reg tmp;
1111 	struct ttm_placement placement;
1112 	struct ttm_place placements;
1113 	uint64_t addr, flags;
1114 	int r;
1115 
1116 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1117 		return 0;
1118 
1119 	addr = amdgpu_gmc_agp_addr(bo);
1120 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1121 		bo->mem.start = addr >> PAGE_SHIFT;
1122 	} else {
1123 
1124 		/* allocate GART space */
1125 		tmp = bo->mem;
1126 		tmp.mm_node = NULL;
1127 		placement.num_placement = 1;
1128 		placement.placement = &placements;
1129 		placement.num_busy_placement = 1;
1130 		placement.busy_placement = &placements;
1131 		placements.fpfn = 0;
1132 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1133 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1134 			TTM_PL_FLAG_TT;
1135 
1136 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1137 		if (unlikely(r))
1138 			return r;
1139 
1140 		/* compute PTE flags for this buffer object */
1141 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1142 
1143 		/* Bind pages */
1144 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1145 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1146 		if (unlikely(r)) {
1147 			ttm_bo_mem_put(bo, &tmp);
1148 			return r;
1149 		}
1150 
1151 		ttm_bo_mem_put(bo, &bo->mem);
1152 		bo->mem = tmp;
1153 	}
1154 
1155 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1156 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1157 
1158 	return 0;
1159 }
1160 
1161 /**
1162  * amdgpu_ttm_recover_gart - Rebind GTT pages
1163  *
1164  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1165  * rebind GTT pages during a GPU reset.
1166  */
1167 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1168 {
1169 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1170 	uint64_t flags;
1171 	int r;
1172 
1173 	if (!tbo->ttm)
1174 		return 0;
1175 
1176 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1177 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1178 
1179 	return r;
1180 }
1181 
1182 /**
1183  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1184  *
1185  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1186  * ttm_tt_destroy().
1187  */
1188 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1189 {
1190 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1191 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1192 	int r;
1193 
1194 	/* if the pages have userptr pinning then clear that first */
1195 	if (gtt->userptr)
1196 		amdgpu_ttm_tt_unpin_userptr(ttm);
1197 
1198 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1199 		return 0;
1200 
1201 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1202 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1203 	if (r)
1204 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1205 			  gtt->ttm.ttm.num_pages, gtt->offset);
1206 	return r;
1207 }
1208 
1209 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1210 {
1211 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1212 
1213 	if (gtt->usertask)
1214 		put_task_struct(gtt->usertask);
1215 
1216 	ttm_dma_tt_fini(&gtt->ttm);
1217 	kfree(gtt);
1218 }
1219 
1220 static struct ttm_backend_func amdgpu_backend_func = {
1221 	.bind = &amdgpu_ttm_backend_bind,
1222 	.unbind = &amdgpu_ttm_backend_unbind,
1223 	.destroy = &amdgpu_ttm_backend_destroy,
1224 };
1225 
1226 /**
1227  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1228  *
1229  * @bo: The buffer object to create a GTT ttm_tt object around
1230  *
1231  * Called by ttm_tt_create().
1232  */
1233 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1234 					   uint32_t page_flags)
1235 {
1236 	struct amdgpu_device *adev;
1237 	struct amdgpu_ttm_tt *gtt;
1238 
1239 	adev = amdgpu_ttm_adev(bo->bdev);
1240 
1241 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1242 	if (gtt == NULL) {
1243 		return NULL;
1244 	}
1245 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1246 
1247 	/* allocate space for the uninitialized page entries */
1248 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1249 		kfree(gtt);
1250 		return NULL;
1251 	}
1252 	return &gtt->ttm.ttm;
1253 }
1254 
1255 /**
1256  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1257  *
1258  * Map the pages of a ttm_tt object to an address space visible
1259  * to the underlying device.
1260  */
1261 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1262 			struct ttm_operation_ctx *ctx)
1263 {
1264 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1265 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1266 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1267 
1268 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1269 	if (gtt && gtt->userptr) {
1270 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1271 		if (!ttm->sg)
1272 			return -ENOMEM;
1273 
1274 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1275 		ttm->state = tt_unbound;
1276 		return 0;
1277 	}
1278 
1279 	if (slave && ttm->sg) {
1280 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1281 						 gtt->ttm.dma_address,
1282 						 ttm->num_pages);
1283 		ttm->state = tt_unbound;
1284 		return 0;
1285 	}
1286 
1287 #ifdef CONFIG_SWIOTLB
1288 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1289 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1290 	}
1291 #endif
1292 
1293 	/* fall back to generic helper to populate the page array
1294 	 * and map them to the device */
1295 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1296 }
1297 
1298 /**
1299  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1300  *
1301  * Unmaps pages of a ttm_tt object from the device address space and
1302  * unpopulates the page array backing it.
1303  */
1304 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1305 {
1306 	struct amdgpu_device *adev;
1307 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1308 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1309 
1310 	if (gtt && gtt->userptr) {
1311 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1312 		kfree(ttm->sg);
1313 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1314 		return;
1315 	}
1316 
1317 	if (slave)
1318 		return;
1319 
1320 	adev = amdgpu_ttm_adev(ttm->bdev);
1321 
1322 #ifdef CONFIG_SWIOTLB
1323 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1324 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1325 		return;
1326 	}
1327 #endif
1328 
1329 	/* fall back to generic helper to unmap and unpopulate array */
1330 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1331 }
1332 
1333 /**
1334  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1335  * task
1336  *
1337  * @ttm: The ttm_tt object to bind this userptr object to
1338  * @addr:  The address in the current tasks VM space to use
1339  * @flags: Requirements of userptr object.
1340  *
1341  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1342  * to current task
1343  */
1344 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1345 			      uint32_t flags)
1346 {
1347 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1348 
1349 	if (gtt == NULL)
1350 		return -EINVAL;
1351 
1352 	gtt->userptr = addr;
1353 	gtt->userflags = flags;
1354 
1355 	if (gtt->usertask)
1356 		put_task_struct(gtt->usertask);
1357 	gtt->usertask = current->group_leader;
1358 	get_task_struct(gtt->usertask);
1359 
1360 	return 0;
1361 }
1362 
1363 /**
1364  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1365  */
1366 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1367 {
1368 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1369 
1370 	if (gtt == NULL)
1371 		return NULL;
1372 
1373 	if (gtt->usertask == NULL)
1374 		return NULL;
1375 
1376 	return gtt->usertask->mm;
1377 }
1378 
1379 /**
1380  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1381  * address range for the current task.
1382  *
1383  */
1384 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1385 				  unsigned long end)
1386 {
1387 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1388 	unsigned long size;
1389 
1390 	if (gtt == NULL || !gtt->userptr)
1391 		return false;
1392 
1393 	/* Return false if no part of the ttm_tt object lies within
1394 	 * the range
1395 	 */
1396 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1397 	if (gtt->userptr > end || gtt->userptr + size <= start)
1398 		return false;
1399 
1400 	return true;
1401 }
1402 
1403 /**
1404  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1405  */
1406 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1407 {
1408 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1409 
1410 	if (gtt == NULL || !gtt->userptr)
1411 		return false;
1412 
1413 	return true;
1414 }
1415 
1416 /**
1417  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1418  */
1419 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1420 {
1421 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1422 
1423 	if (gtt == NULL)
1424 		return false;
1425 
1426 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1427 }
1428 
1429 /**
1430  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1431  *
1432  * @ttm: The ttm_tt object to compute the flags for
1433  * @mem: The memory registry backing this ttm_tt object
1434  *
1435  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1436  */
1437 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1438 {
1439 	uint64_t flags = 0;
1440 
1441 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1442 		flags |= AMDGPU_PTE_VALID;
1443 
1444 	if (mem && mem->mem_type == TTM_PL_TT) {
1445 		flags |= AMDGPU_PTE_SYSTEM;
1446 
1447 		if (ttm->caching_state == tt_cached)
1448 			flags |= AMDGPU_PTE_SNOOPED;
1449 	}
1450 
1451 	return flags;
1452 }
1453 
1454 /**
1455  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1456  *
1457  * @ttm: The ttm_tt object to compute the flags for
1458  * @mem: The memory registry backing this ttm_tt object
1459 
1460  * Figure out the flags to use for a VM PTE (Page Table Entry).
1461  */
1462 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1463 				 struct ttm_mem_reg *mem)
1464 {
1465 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1466 
1467 	flags |= adev->gart.gart_pte_flags;
1468 	flags |= AMDGPU_PTE_READABLE;
1469 
1470 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1471 		flags |= AMDGPU_PTE_WRITEABLE;
1472 
1473 	return flags;
1474 }
1475 
1476 /**
1477  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1478  * object.
1479  *
1480  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1481  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1482  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1483  * used to clean out a memory space.
1484  */
1485 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1486 					    const struct ttm_place *place)
1487 {
1488 	unsigned long num_pages = bo->mem.num_pages;
1489 	struct drm_mm_node *node = bo->mem.mm_node;
1490 	struct dma_resv_list *flist;
1491 	struct dma_fence *f;
1492 	int i;
1493 
1494 	/* Don't evict VM page tables while they are busy, otherwise we can't
1495 	 * cleanly handle page faults.
1496 	 */
1497 	if (bo->type == ttm_bo_type_kernel &&
1498 	    !dma_resv_test_signaled_rcu(bo->base.resv, true))
1499 		return false;
1500 
1501 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1502 	 * If true, then return false as any KFD process needs all its BOs to
1503 	 * be resident to run successfully
1504 	 */
1505 	flist = dma_resv_get_list(bo->base.resv);
1506 	if (flist) {
1507 		for (i = 0; i < flist->shared_count; ++i) {
1508 			f = rcu_dereference_protected(flist->shared[i],
1509 				dma_resv_held(bo->base.resv));
1510 			if (amdkfd_fence_check_mm(f, current->mm))
1511 				return false;
1512 		}
1513 	}
1514 
1515 	switch (bo->mem.mem_type) {
1516 	case TTM_PL_TT:
1517 		return true;
1518 
1519 	case TTM_PL_VRAM:
1520 		/* Check each drm MM node individually */
1521 		while (num_pages) {
1522 			if (place->fpfn < (node->start + node->size) &&
1523 			    !(place->lpfn && place->lpfn <= node->start))
1524 				return true;
1525 
1526 			num_pages -= node->size;
1527 			++node;
1528 		}
1529 		return false;
1530 
1531 	default:
1532 		break;
1533 	}
1534 
1535 	return ttm_bo_eviction_valuable(bo, place);
1536 }
1537 
1538 /**
1539  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1540  *
1541  * @bo:  The buffer object to read/write
1542  * @offset:  Offset into buffer object
1543  * @buf:  Secondary buffer to write/read from
1544  * @len: Length in bytes of access
1545  * @write:  true if writing
1546  *
1547  * This is used to access VRAM that backs a buffer object via MMIO
1548  * access for debugging purposes.
1549  */
1550 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1551 				    unsigned long offset,
1552 				    void *buf, int len, int write)
1553 {
1554 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1555 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1556 	struct drm_mm_node *nodes;
1557 	uint32_t value = 0;
1558 	int ret = 0;
1559 	uint64_t pos;
1560 	unsigned long flags;
1561 
1562 	if (bo->mem.mem_type != TTM_PL_VRAM)
1563 		return -EIO;
1564 
1565 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1566 	pos = (nodes->start << PAGE_SHIFT) + offset;
1567 
1568 	while (len && pos < adev->gmc.mc_vram_size) {
1569 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1570 		uint32_t bytes = 4 - (pos & 3);
1571 		uint32_t shift = (pos & 3) * 8;
1572 		uint32_t mask = 0xffffffff << shift;
1573 
1574 		if (len < bytes) {
1575 			mask &= 0xffffffff >> (bytes - len) * 8;
1576 			bytes = len;
1577 		}
1578 
1579 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1580 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1581 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1582 		if (!write || mask != 0xffffffff)
1583 			value = RREG32_NO_KIQ(mmMM_DATA);
1584 		if (write) {
1585 			value &= ~mask;
1586 			value |= (*(uint32_t *)buf << shift) & mask;
1587 			WREG32_NO_KIQ(mmMM_DATA, value);
1588 		}
1589 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1590 		if (!write) {
1591 			value = (value & mask) >> shift;
1592 			memcpy(buf, &value, bytes);
1593 		}
1594 
1595 		ret += bytes;
1596 		buf = (uint8_t *)buf + bytes;
1597 		pos += bytes;
1598 		len -= bytes;
1599 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1600 			++nodes;
1601 			pos = (nodes->start << PAGE_SHIFT);
1602 		}
1603 	}
1604 
1605 	return ret;
1606 }
1607 
1608 static struct ttm_bo_driver amdgpu_bo_driver = {
1609 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1610 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1611 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1612 	.invalidate_caches = &amdgpu_invalidate_caches,
1613 	.init_mem_type = &amdgpu_init_mem_type,
1614 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1615 	.evict_flags = &amdgpu_evict_flags,
1616 	.move = &amdgpu_bo_move,
1617 	.verify_access = &amdgpu_verify_access,
1618 	.move_notify = &amdgpu_bo_move_notify,
1619 	.release_notify = &amdgpu_bo_release_notify,
1620 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1621 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1622 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1623 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1624 	.access_memory = &amdgpu_ttm_access_memory,
1625 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1626 };
1627 
1628 /*
1629  * Firmware Reservation functions
1630  */
1631 /**
1632  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1633  *
1634  * @adev: amdgpu_device pointer
1635  *
1636  * free fw reserved vram if it has been reserved.
1637  */
1638 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1639 {
1640 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1641 		NULL, &adev->fw_vram_usage.va);
1642 }
1643 
1644 /**
1645  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1646  *
1647  * @adev: amdgpu_device pointer
1648  *
1649  * create bo vram reservation from fw.
1650  */
1651 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1652 {
1653 	uint64_t vram_size = adev->gmc.visible_vram_size;
1654 
1655 	adev->fw_vram_usage.va = NULL;
1656 	adev->fw_vram_usage.reserved_bo = NULL;
1657 
1658 	if (adev->fw_vram_usage.size == 0 ||
1659 	    adev->fw_vram_usage.size > vram_size)
1660 		return 0;
1661 
1662 	return amdgpu_bo_create_kernel_at(adev,
1663 					  adev->fw_vram_usage.start_offset,
1664 					  adev->fw_vram_usage.size,
1665 					  AMDGPU_GEM_DOMAIN_VRAM,
1666 					  &adev->fw_vram_usage.reserved_bo,
1667 					  &adev->fw_vram_usage.va);
1668 }
1669 
1670 /*
1671  * Memoy training reservation functions
1672  */
1673 
1674 /**
1675  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1676  *
1677  * @adev: amdgpu_device pointer
1678  *
1679  * free memory training reserved vram if it has been reserved.
1680  */
1681 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1682 {
1683 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1684 
1685 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1686 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1687 	ctx->c2p_bo = NULL;
1688 
1689 	amdgpu_bo_free_kernel(&ctx->p2c_bo, NULL, NULL);
1690 	ctx->p2c_bo = NULL;
1691 
1692 	return 0;
1693 }
1694 
1695 /**
1696  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1697  *
1698  * @adev: amdgpu_device pointer
1699  *
1700  * create bo vram reservation from memory training.
1701  */
1702 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1703 {
1704 	int ret;
1705 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1706 
1707 	memset(ctx, 0, sizeof(*ctx));
1708 	if (!adev->fw_vram_usage.mem_train_support) {
1709 		DRM_DEBUG("memory training does not support!\n");
1710 		return 0;
1711 	}
1712 
1713 	ctx->c2p_train_data_offset = adev->fw_vram_usage.mem_train_fb_loc;
1714 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1715 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1716 
1717 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1718 		  ctx->train_data_size,
1719 		  ctx->p2c_train_data_offset,
1720 		  ctx->c2p_train_data_offset);
1721 
1722 	ret = amdgpu_bo_create_kernel_at(adev,
1723 					 ctx->p2c_train_data_offset,
1724 					 ctx->train_data_size,
1725 					 AMDGPU_GEM_DOMAIN_VRAM,
1726 					 &ctx->p2c_bo,
1727 					 NULL);
1728 	if (ret) {
1729 		DRM_ERROR("alloc p2c_bo failed(%d)!\n", ret);
1730 		goto Err_out;
1731 	}
1732 
1733 	ret = amdgpu_bo_create_kernel_at(adev,
1734 					 ctx->c2p_train_data_offset,
1735 					 ctx->train_data_size,
1736 					 AMDGPU_GEM_DOMAIN_VRAM,
1737 					 &ctx->c2p_bo,
1738 					 NULL);
1739 	if (ret) {
1740 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1741 		goto Err_out;
1742 	}
1743 
1744 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1745 	return 0;
1746 
1747 Err_out:
1748 	amdgpu_ttm_training_reserve_vram_fini(adev);
1749 	return ret;
1750 }
1751 
1752 /**
1753  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1754  * gtt/vram related fields.
1755  *
1756  * This initializes all of the memory space pools that the TTM layer
1757  * will need such as the GTT space (system memory mapped to the device),
1758  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1759  * can be mapped per VMID.
1760  */
1761 int amdgpu_ttm_init(struct amdgpu_device *adev)
1762 {
1763 	uint64_t gtt_size;
1764 	int r;
1765 	u64 vis_vram_limit;
1766 	void *stolen_vga_buf;
1767 
1768 	mutex_init(&adev->mman.gtt_window_lock);
1769 
1770 	/* No others user of address space so set it to 0 */
1771 	r = ttm_bo_device_init(&adev->mman.bdev,
1772 			       &amdgpu_bo_driver,
1773 			       adev->ddev->anon_inode->i_mapping,
1774 			       dma_addressing_limited(adev->dev));
1775 	if (r) {
1776 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1777 		return r;
1778 	}
1779 	adev->mman.initialized = true;
1780 
1781 	/* We opt to avoid OOM on system pages allocations */
1782 	adev->mman.bdev.no_retry = true;
1783 
1784 	/* Initialize VRAM pool with all of VRAM divided into pages */
1785 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1786 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1787 	if (r) {
1788 		DRM_ERROR("Failed initializing VRAM heap.\n");
1789 		return r;
1790 	}
1791 
1792 	/* Reduce size of CPU-visible VRAM if requested */
1793 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1794 	if (amdgpu_vis_vram_limit > 0 &&
1795 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1796 		adev->gmc.visible_vram_size = vis_vram_limit;
1797 
1798 	/* Change the size here instead of the init above so only lpfn is affected */
1799 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1800 #ifdef CONFIG_64BIT
1801 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1802 						adev->gmc.visible_vram_size);
1803 #endif
1804 
1805 	/*
1806 	 * retired pages will be loaded from eeprom and reserved here,
1807 	 * it should be called after ttm init since new bo may be created,
1808 	 * recovery_init may fail, but it can free all resources allocated by
1809 	 * itself and its failure should not stop amdgpu init process.
1810 	 *
1811 	 * Note: theoretically, this should be called before all vram allocations
1812 	 * to protect retired page from abusing
1813 	 */
1814 	amdgpu_ras_recovery_init(adev);
1815 
1816 	/*
1817 	 *The reserved vram for firmware must be pinned to the specified
1818 	 *place on the VRAM, so reserve it early.
1819 	 */
1820 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1821 	if (r) {
1822 		return r;
1823 	}
1824 
1825 	/*
1826 	 *The reserved vram for memory training must be pinned to the specified
1827 	 *place on the VRAM, so reserve it early.
1828 	 */
1829 	r = amdgpu_ttm_training_reserve_vram_init(adev);
1830 	if (r)
1831 		return r;
1832 
1833 	/* allocate memory as required for VGA
1834 	 * This is used for VGA emulation and pre-OS scanout buffers to
1835 	 * avoid display artifacts while transitioning between pre-OS
1836 	 * and driver.  */
1837 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1838 				    AMDGPU_GEM_DOMAIN_VRAM,
1839 				    &adev->stolen_vga_memory,
1840 				    NULL, &stolen_vga_buf);
1841 	if (r)
1842 		return r;
1843 
1844 	/*
1845 	 * reserve one TMR (64K) memory at the top of VRAM which holds
1846 	 * IP Discovery data and is protected by PSP.
1847 	 */
1848 	r = amdgpu_bo_create_kernel_at(adev,
1849 				       adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1850 				       DISCOVERY_TMR_SIZE,
1851 				       AMDGPU_GEM_DOMAIN_VRAM,
1852 				       &adev->discovery_memory,
1853 				       NULL);
1854 	if (r)
1855 		return r;
1856 
1857 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1858 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1859 
1860 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1861 	 * or whatever the user passed on module init */
1862 	if (amdgpu_gtt_size == -1) {
1863 		struct sysinfo si;
1864 
1865 		si_meminfo(&si);
1866 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1867 			       adev->gmc.mc_vram_size),
1868 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1869 	}
1870 	else
1871 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1872 
1873 	/* Initialize GTT memory pool */
1874 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1875 	if (r) {
1876 		DRM_ERROR("Failed initializing GTT heap.\n");
1877 		return r;
1878 	}
1879 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1880 		 (unsigned)(gtt_size / (1024 * 1024)));
1881 
1882 	/* Initialize various on-chip memory pools */
1883 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1884 			   adev->gds.gds_size);
1885 	if (r) {
1886 		DRM_ERROR("Failed initializing GDS heap.\n");
1887 		return r;
1888 	}
1889 
1890 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1891 			   adev->gds.gws_size);
1892 	if (r) {
1893 		DRM_ERROR("Failed initializing gws heap.\n");
1894 		return r;
1895 	}
1896 
1897 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1898 			   adev->gds.oa_size);
1899 	if (r) {
1900 		DRM_ERROR("Failed initializing oa heap.\n");
1901 		return r;
1902 	}
1903 
1904 	/* Register debugfs entries for amdgpu_ttm */
1905 	r = amdgpu_ttm_debugfs_init(adev);
1906 	if (r) {
1907 		DRM_ERROR("Failed to init debugfs\n");
1908 		return r;
1909 	}
1910 	return 0;
1911 }
1912 
1913 /**
1914  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1915  */
1916 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1917 {
1918 	void *stolen_vga_buf;
1919 	/* return the VGA stolen memory (if any) back to VRAM */
1920 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1921 
1922 	/* return the IP Discovery TMR memory back to VRAM */
1923 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1924 }
1925 
1926 /**
1927  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1928  */
1929 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1930 {
1931 	if (!adev->mman.initialized)
1932 		return;
1933 
1934 	amdgpu_ttm_debugfs_fini(adev);
1935 	amdgpu_ttm_training_reserve_vram_fini(adev);
1936 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1937 	if (adev->mman.aper_base_kaddr)
1938 		iounmap(adev->mman.aper_base_kaddr);
1939 	adev->mman.aper_base_kaddr = NULL;
1940 
1941 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1942 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1943 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1944 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1945 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1946 	ttm_bo_device_release(&adev->mman.bdev);
1947 	adev->mman.initialized = false;
1948 	DRM_INFO("amdgpu: ttm finalized\n");
1949 }
1950 
1951 /**
1952  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1953  *
1954  * @adev: amdgpu_device pointer
1955  * @enable: true when we can use buffer functions.
1956  *
1957  * Enable/disable use of buffer functions during suspend/resume. This should
1958  * only be called at bootup or when userspace isn't running.
1959  */
1960 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1961 {
1962 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1963 	uint64_t size;
1964 	int r;
1965 
1966 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1967 	    adev->mman.buffer_funcs_enabled == enable)
1968 		return;
1969 
1970 	if (enable) {
1971 		struct amdgpu_ring *ring;
1972 		struct drm_sched_rq *rq;
1973 
1974 		ring = adev->mman.buffer_funcs_ring;
1975 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1976 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1977 		if (r) {
1978 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1979 				  r);
1980 			return;
1981 		}
1982 	} else {
1983 		drm_sched_entity_destroy(&adev->mman.entity);
1984 		dma_fence_put(man->move);
1985 		man->move = NULL;
1986 	}
1987 
1988 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1989 	if (enable)
1990 		size = adev->gmc.real_vram_size;
1991 	else
1992 		size = adev->gmc.visible_vram_size;
1993 	man->size = size >> PAGE_SHIFT;
1994 	adev->mman.buffer_funcs_enabled = enable;
1995 }
1996 
1997 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1998 {
1999 	struct drm_file *file_priv = filp->private_data;
2000 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2001 
2002 	if (adev == NULL)
2003 		return -EINVAL;
2004 
2005 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2006 }
2007 
2008 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2009 			     struct ttm_mem_reg *mem, unsigned num_pages,
2010 			     uint64_t offset, unsigned window,
2011 			     struct amdgpu_ring *ring,
2012 			     uint64_t *addr)
2013 {
2014 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2015 	struct amdgpu_device *adev = ring->adev;
2016 	struct ttm_tt *ttm = bo->ttm;
2017 	struct amdgpu_job *job;
2018 	unsigned num_dw, num_bytes;
2019 	dma_addr_t *dma_address;
2020 	struct dma_fence *fence;
2021 	uint64_t src_addr, dst_addr;
2022 	uint64_t flags;
2023 	int r;
2024 
2025 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2026 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2027 
2028 	*addr = adev->gmc.gart_start;
2029 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2030 		AMDGPU_GPU_PAGE_SIZE;
2031 
2032 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2033 	num_bytes = num_pages * 8;
2034 
2035 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2036 	if (r)
2037 		return r;
2038 
2039 	src_addr = num_dw * 4;
2040 	src_addr += job->ibs[0].gpu_addr;
2041 
2042 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2043 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2044 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2045 				dst_addr, num_bytes);
2046 
2047 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2048 	WARN_ON(job->ibs[0].length_dw > num_dw);
2049 
2050 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2051 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2052 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2053 			    &job->ibs[0].ptr[num_dw]);
2054 	if (r)
2055 		goto error_free;
2056 
2057 	r = amdgpu_job_submit(job, &adev->mman.entity,
2058 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2059 	if (r)
2060 		goto error_free;
2061 
2062 	dma_fence_put(fence);
2063 
2064 	return r;
2065 
2066 error_free:
2067 	amdgpu_job_free(job);
2068 	return r;
2069 }
2070 
2071 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2072 		       uint64_t dst_offset, uint32_t byte_count,
2073 		       struct dma_resv *resv,
2074 		       struct dma_fence **fence, bool direct_submit,
2075 		       bool vm_needs_flush)
2076 {
2077 	struct amdgpu_device *adev = ring->adev;
2078 	struct amdgpu_job *job;
2079 
2080 	uint32_t max_bytes;
2081 	unsigned num_loops, num_dw;
2082 	unsigned i;
2083 	int r;
2084 
2085 	if (direct_submit && !ring->sched.ready) {
2086 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2087 		return -EINVAL;
2088 	}
2089 
2090 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2091 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2092 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2093 
2094 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2095 	if (r)
2096 		return r;
2097 
2098 	if (vm_needs_flush) {
2099 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2100 		job->vm_needs_flush = true;
2101 	}
2102 	if (resv) {
2103 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2104 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2105 				     false);
2106 		if (r) {
2107 			DRM_ERROR("sync failed (%d).\n", r);
2108 			goto error_free;
2109 		}
2110 	}
2111 
2112 	for (i = 0; i < num_loops; i++) {
2113 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2114 
2115 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2116 					dst_offset, cur_size_in_bytes);
2117 
2118 		src_offset += cur_size_in_bytes;
2119 		dst_offset += cur_size_in_bytes;
2120 		byte_count -= cur_size_in_bytes;
2121 	}
2122 
2123 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2124 	WARN_ON(job->ibs[0].length_dw > num_dw);
2125 	if (direct_submit)
2126 		r = amdgpu_job_submit_direct(job, ring, fence);
2127 	else
2128 		r = amdgpu_job_submit(job, &adev->mman.entity,
2129 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2130 	if (r)
2131 		goto error_free;
2132 
2133 	return r;
2134 
2135 error_free:
2136 	amdgpu_job_free(job);
2137 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2138 	return r;
2139 }
2140 
2141 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2142 		       uint32_t src_data,
2143 		       struct dma_resv *resv,
2144 		       struct dma_fence **fence)
2145 {
2146 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2147 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2148 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2149 
2150 	struct drm_mm_node *mm_node;
2151 	unsigned long num_pages;
2152 	unsigned int num_loops, num_dw;
2153 
2154 	struct amdgpu_job *job;
2155 	int r;
2156 
2157 	if (!adev->mman.buffer_funcs_enabled) {
2158 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2159 		return -EINVAL;
2160 	}
2161 
2162 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2163 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2164 		if (r)
2165 			return r;
2166 	}
2167 
2168 	num_pages = bo->tbo.num_pages;
2169 	mm_node = bo->tbo.mem.mm_node;
2170 	num_loops = 0;
2171 	while (num_pages) {
2172 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2173 
2174 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2175 		num_pages -= mm_node->size;
2176 		++mm_node;
2177 	}
2178 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2179 
2180 	/* for IB padding */
2181 	num_dw += 64;
2182 
2183 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2184 	if (r)
2185 		return r;
2186 
2187 	if (resv) {
2188 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2189 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2190 		if (r) {
2191 			DRM_ERROR("sync failed (%d).\n", r);
2192 			goto error_free;
2193 		}
2194 	}
2195 
2196 	num_pages = bo->tbo.num_pages;
2197 	mm_node = bo->tbo.mem.mm_node;
2198 
2199 	while (num_pages) {
2200 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2201 		uint64_t dst_addr;
2202 
2203 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2204 		while (byte_count) {
2205 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2206 							   max_bytes);
2207 
2208 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2209 						dst_addr, cur_size_in_bytes);
2210 
2211 			dst_addr += cur_size_in_bytes;
2212 			byte_count -= cur_size_in_bytes;
2213 		}
2214 
2215 		num_pages -= mm_node->size;
2216 		++mm_node;
2217 	}
2218 
2219 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2220 	WARN_ON(job->ibs[0].length_dw > num_dw);
2221 	r = amdgpu_job_submit(job, &adev->mman.entity,
2222 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2223 	if (r)
2224 		goto error_free;
2225 
2226 	return 0;
2227 
2228 error_free:
2229 	amdgpu_job_free(job);
2230 	return r;
2231 }
2232 
2233 #if defined(CONFIG_DEBUG_FS)
2234 
2235 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2236 {
2237 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2238 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2239 	struct drm_device *dev = node->minor->dev;
2240 	struct amdgpu_device *adev = dev->dev_private;
2241 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2242 	struct drm_printer p = drm_seq_file_printer(m);
2243 
2244 	man->func->debug(man, &p);
2245 	return 0;
2246 }
2247 
2248 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2249 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2250 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2251 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2252 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2253 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2254 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2255 #ifdef CONFIG_SWIOTLB
2256 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2257 #endif
2258 };
2259 
2260 /**
2261  * amdgpu_ttm_vram_read - Linear read access to VRAM
2262  *
2263  * Accesses VRAM via MMIO for debugging purposes.
2264  */
2265 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2266 				    size_t size, loff_t *pos)
2267 {
2268 	struct amdgpu_device *adev = file_inode(f)->i_private;
2269 	ssize_t result = 0;
2270 	int r;
2271 
2272 	if (size & 0x3 || *pos & 0x3)
2273 		return -EINVAL;
2274 
2275 	if (*pos >= adev->gmc.mc_vram_size)
2276 		return -ENXIO;
2277 
2278 	while (size) {
2279 		unsigned long flags;
2280 		uint32_t value;
2281 
2282 		if (*pos >= adev->gmc.mc_vram_size)
2283 			return result;
2284 
2285 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2286 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2287 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2288 		value = RREG32_NO_KIQ(mmMM_DATA);
2289 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2290 
2291 		r = put_user(value, (uint32_t *)buf);
2292 		if (r)
2293 			return r;
2294 
2295 		result += 4;
2296 		buf += 4;
2297 		*pos += 4;
2298 		size -= 4;
2299 	}
2300 
2301 	return result;
2302 }
2303 
2304 /**
2305  * amdgpu_ttm_vram_write - Linear write access to VRAM
2306  *
2307  * Accesses VRAM via MMIO for debugging purposes.
2308  */
2309 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2310 				    size_t size, loff_t *pos)
2311 {
2312 	struct amdgpu_device *adev = file_inode(f)->i_private;
2313 	ssize_t result = 0;
2314 	int r;
2315 
2316 	if (size & 0x3 || *pos & 0x3)
2317 		return -EINVAL;
2318 
2319 	if (*pos >= adev->gmc.mc_vram_size)
2320 		return -ENXIO;
2321 
2322 	while (size) {
2323 		unsigned long flags;
2324 		uint32_t value;
2325 
2326 		if (*pos >= adev->gmc.mc_vram_size)
2327 			return result;
2328 
2329 		r = get_user(value, (uint32_t *)buf);
2330 		if (r)
2331 			return r;
2332 
2333 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2334 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2335 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2336 		WREG32_NO_KIQ(mmMM_DATA, value);
2337 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2338 
2339 		result += 4;
2340 		buf += 4;
2341 		*pos += 4;
2342 		size -= 4;
2343 	}
2344 
2345 	return result;
2346 }
2347 
2348 static const struct file_operations amdgpu_ttm_vram_fops = {
2349 	.owner = THIS_MODULE,
2350 	.read = amdgpu_ttm_vram_read,
2351 	.write = amdgpu_ttm_vram_write,
2352 	.llseek = default_llseek,
2353 };
2354 
2355 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2356 
2357 /**
2358  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2359  */
2360 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2361 				   size_t size, loff_t *pos)
2362 {
2363 	struct amdgpu_device *adev = file_inode(f)->i_private;
2364 	ssize_t result = 0;
2365 	int r;
2366 
2367 	while (size) {
2368 		loff_t p = *pos / PAGE_SIZE;
2369 		unsigned off = *pos & ~PAGE_MASK;
2370 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2371 		struct page *page;
2372 		void *ptr;
2373 
2374 		if (p >= adev->gart.num_cpu_pages)
2375 			return result;
2376 
2377 		page = adev->gart.pages[p];
2378 		if (page) {
2379 			ptr = kmap(page);
2380 			ptr += off;
2381 
2382 			r = copy_to_user(buf, ptr, cur_size);
2383 			kunmap(adev->gart.pages[p]);
2384 		} else
2385 			r = clear_user(buf, cur_size);
2386 
2387 		if (r)
2388 			return -EFAULT;
2389 
2390 		result += cur_size;
2391 		buf += cur_size;
2392 		*pos += cur_size;
2393 		size -= cur_size;
2394 	}
2395 
2396 	return result;
2397 }
2398 
2399 static const struct file_operations amdgpu_ttm_gtt_fops = {
2400 	.owner = THIS_MODULE,
2401 	.read = amdgpu_ttm_gtt_read,
2402 	.llseek = default_llseek
2403 };
2404 
2405 #endif
2406 
2407 /**
2408  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2409  *
2410  * This function is used to read memory that has been mapped to the
2411  * GPU and the known addresses are not physical addresses but instead
2412  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2413  */
2414 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2415 				 size_t size, loff_t *pos)
2416 {
2417 	struct amdgpu_device *adev = file_inode(f)->i_private;
2418 	struct iommu_domain *dom;
2419 	ssize_t result = 0;
2420 	int r;
2421 
2422 	/* retrieve the IOMMU domain if any for this device */
2423 	dom = iommu_get_domain_for_dev(adev->dev);
2424 
2425 	while (size) {
2426 		phys_addr_t addr = *pos & PAGE_MASK;
2427 		loff_t off = *pos & ~PAGE_MASK;
2428 		size_t bytes = PAGE_SIZE - off;
2429 		unsigned long pfn;
2430 		struct page *p;
2431 		void *ptr;
2432 
2433 		bytes = bytes < size ? bytes : size;
2434 
2435 		/* Translate the bus address to a physical address.  If
2436 		 * the domain is NULL it means there is no IOMMU active
2437 		 * and the address translation is the identity
2438 		 */
2439 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2440 
2441 		pfn = addr >> PAGE_SHIFT;
2442 		if (!pfn_valid(pfn))
2443 			return -EPERM;
2444 
2445 		p = pfn_to_page(pfn);
2446 		if (p->mapping != adev->mman.bdev.dev_mapping)
2447 			return -EPERM;
2448 
2449 		ptr = kmap(p);
2450 		r = copy_to_user(buf, ptr + off, bytes);
2451 		kunmap(p);
2452 		if (r)
2453 			return -EFAULT;
2454 
2455 		size -= bytes;
2456 		*pos += bytes;
2457 		result += bytes;
2458 	}
2459 
2460 	return result;
2461 }
2462 
2463 /**
2464  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2465  *
2466  * This function is used to write memory that has been mapped to the
2467  * GPU and the known addresses are not physical addresses but instead
2468  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2469  */
2470 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2471 				 size_t size, loff_t *pos)
2472 {
2473 	struct amdgpu_device *adev = file_inode(f)->i_private;
2474 	struct iommu_domain *dom;
2475 	ssize_t result = 0;
2476 	int r;
2477 
2478 	dom = iommu_get_domain_for_dev(adev->dev);
2479 
2480 	while (size) {
2481 		phys_addr_t addr = *pos & PAGE_MASK;
2482 		loff_t off = *pos & ~PAGE_MASK;
2483 		size_t bytes = PAGE_SIZE - off;
2484 		unsigned long pfn;
2485 		struct page *p;
2486 		void *ptr;
2487 
2488 		bytes = bytes < size ? bytes : size;
2489 
2490 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2491 
2492 		pfn = addr >> PAGE_SHIFT;
2493 		if (!pfn_valid(pfn))
2494 			return -EPERM;
2495 
2496 		p = pfn_to_page(pfn);
2497 		if (p->mapping != adev->mman.bdev.dev_mapping)
2498 			return -EPERM;
2499 
2500 		ptr = kmap(p);
2501 		r = copy_from_user(ptr + off, buf, bytes);
2502 		kunmap(p);
2503 		if (r)
2504 			return -EFAULT;
2505 
2506 		size -= bytes;
2507 		*pos += bytes;
2508 		result += bytes;
2509 	}
2510 
2511 	return result;
2512 }
2513 
2514 static const struct file_operations amdgpu_ttm_iomem_fops = {
2515 	.owner = THIS_MODULE,
2516 	.read = amdgpu_iomem_read,
2517 	.write = amdgpu_iomem_write,
2518 	.llseek = default_llseek
2519 };
2520 
2521 static const struct {
2522 	char *name;
2523 	const struct file_operations *fops;
2524 	int domain;
2525 } ttm_debugfs_entries[] = {
2526 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2527 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2528 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2529 #endif
2530 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2531 };
2532 
2533 #endif
2534 
2535 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2536 {
2537 #if defined(CONFIG_DEBUG_FS)
2538 	unsigned count;
2539 
2540 	struct drm_minor *minor = adev->ddev->primary;
2541 	struct dentry *ent, *root = minor->debugfs_root;
2542 
2543 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2544 		ent = debugfs_create_file(
2545 				ttm_debugfs_entries[count].name,
2546 				S_IFREG | S_IRUGO, root,
2547 				adev,
2548 				ttm_debugfs_entries[count].fops);
2549 		if (IS_ERR(ent))
2550 			return PTR_ERR(ent);
2551 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2552 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2553 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2554 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2555 		adev->mman.debugfs_entries[count] = ent;
2556 	}
2557 
2558 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2559 
2560 #ifdef CONFIG_SWIOTLB
2561 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2562 		--count;
2563 #endif
2564 
2565 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2566 #else
2567 	return 0;
2568 #endif
2569 }
2570 
2571 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2572 {
2573 #if defined(CONFIG_DEBUG_FS)
2574 	unsigned i;
2575 
2576 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2577 		debugfs_remove(adev->mman.debugfs_entries[i]);
2578 #endif
2579 }
2580