1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 43 #include <drm/ttm/ttm_bo_api.h> 44 #include <drm/ttm/ttm_bo_driver.h> 45 #include <drm/ttm/ttm_placement.h> 46 #include <drm/ttm/ttm_module.h> 47 #include <drm/ttm/ttm_page_alloc.h> 48 49 #include <drm/drm_debugfs.h> 50 #include <drm/amdgpu_drm.h> 51 52 #include "amdgpu.h" 53 #include "amdgpu_object.h" 54 #include "amdgpu_trace.h" 55 #include "amdgpu_amdkfd.h" 56 #include "amdgpu_sdma.h" 57 #include "amdgpu_ras.h" 58 #include "bif/bif_4_1_d.h" 59 60 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 61 struct ttm_mem_reg *mem, unsigned num_pages, 62 uint64_t offset, unsigned window, 63 struct amdgpu_ring *ring, 64 uint64_t *addr); 65 66 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 67 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 68 69 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 70 { 71 return 0; 72 } 73 74 /** 75 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 76 * memory request. 77 * 78 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 79 * @type: The type of memory requested 80 * @man: The memory type manager for each domain 81 * 82 * This is called by ttm_bo_init_mm() when a buffer object is being 83 * initialized. 84 */ 85 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 86 struct ttm_mem_type_manager *man) 87 { 88 struct amdgpu_device *adev; 89 90 adev = amdgpu_ttm_adev(bdev); 91 92 switch (type) { 93 case TTM_PL_SYSTEM: 94 /* System memory */ 95 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 96 man->available_caching = TTM_PL_MASK_CACHING; 97 man->default_caching = TTM_PL_FLAG_CACHED; 98 break; 99 case TTM_PL_TT: 100 /* GTT memory */ 101 man->func = &amdgpu_gtt_mgr_func; 102 man->gpu_offset = adev->gmc.gart_start; 103 man->available_caching = TTM_PL_MASK_CACHING; 104 man->default_caching = TTM_PL_FLAG_CACHED; 105 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 106 break; 107 case TTM_PL_VRAM: 108 /* "On-card" video ram */ 109 man->func = &amdgpu_vram_mgr_func; 110 man->gpu_offset = adev->gmc.vram_start; 111 man->flags = TTM_MEMTYPE_FLAG_FIXED | 112 TTM_MEMTYPE_FLAG_MAPPABLE; 113 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 114 man->default_caching = TTM_PL_FLAG_WC; 115 break; 116 case AMDGPU_PL_GDS: 117 case AMDGPU_PL_GWS: 118 case AMDGPU_PL_OA: 119 /* On-chip GDS memory*/ 120 man->func = &ttm_bo_manager_func; 121 man->gpu_offset = 0; 122 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 123 man->available_caching = TTM_PL_FLAG_UNCACHED; 124 man->default_caching = TTM_PL_FLAG_UNCACHED; 125 break; 126 default: 127 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 128 return -EINVAL; 129 } 130 return 0; 131 } 132 133 /** 134 * amdgpu_evict_flags - Compute placement flags 135 * 136 * @bo: The buffer object to evict 137 * @placement: Possible destination(s) for evicted BO 138 * 139 * Fill in placement data when ttm_bo_evict() is called 140 */ 141 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 142 struct ttm_placement *placement) 143 { 144 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 145 struct amdgpu_bo *abo; 146 static const struct ttm_place placements = { 147 .fpfn = 0, 148 .lpfn = 0, 149 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 150 }; 151 152 /* Don't handle scatter gather BOs */ 153 if (bo->type == ttm_bo_type_sg) { 154 placement->num_placement = 0; 155 placement->num_busy_placement = 0; 156 return; 157 } 158 159 /* Object isn't an AMDGPU object so ignore */ 160 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 161 placement->placement = &placements; 162 placement->busy_placement = &placements; 163 placement->num_placement = 1; 164 placement->num_busy_placement = 1; 165 return; 166 } 167 168 abo = ttm_to_amdgpu_bo(bo); 169 switch (bo->mem.mem_type) { 170 case AMDGPU_PL_GDS: 171 case AMDGPU_PL_GWS: 172 case AMDGPU_PL_OA: 173 placement->num_placement = 0; 174 placement->num_busy_placement = 0; 175 return; 176 177 case TTM_PL_VRAM: 178 if (!adev->mman.buffer_funcs_enabled) { 179 /* Move to system memory */ 180 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 181 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 182 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 183 amdgpu_bo_in_cpu_visible_vram(abo)) { 184 185 /* Try evicting to the CPU inaccessible part of VRAM 186 * first, but only set GTT as busy placement, so this 187 * BO will be evicted to GTT rather than causing other 188 * BOs to be evicted from VRAM 189 */ 190 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 191 AMDGPU_GEM_DOMAIN_GTT); 192 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 193 abo->placements[0].lpfn = 0; 194 abo->placement.busy_placement = &abo->placements[1]; 195 abo->placement.num_busy_placement = 1; 196 } else { 197 /* Move to GTT memory */ 198 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 199 } 200 break; 201 case TTM_PL_TT: 202 default: 203 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 204 break; 205 } 206 *placement = abo->placement; 207 } 208 209 /** 210 * amdgpu_verify_access - Verify access for a mmap call 211 * 212 * @bo: The buffer object to map 213 * @filp: The file pointer from the process performing the mmap 214 * 215 * This is called by ttm_bo_mmap() to verify whether a process 216 * has the right to mmap a BO to their process space. 217 */ 218 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 219 { 220 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 221 222 /* 223 * Don't verify access for KFD BOs. They don't have a GEM 224 * object associated with them. 225 */ 226 if (abo->kfd_bo) 227 return 0; 228 229 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 230 return -EPERM; 231 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 232 filp->private_data); 233 } 234 235 /** 236 * amdgpu_move_null - Register memory for a buffer object 237 * 238 * @bo: The bo to assign the memory to 239 * @new_mem: The memory to be assigned. 240 * 241 * Assign the memory from new_mem to the memory of the buffer object bo. 242 */ 243 static void amdgpu_move_null(struct ttm_buffer_object *bo, 244 struct ttm_mem_reg *new_mem) 245 { 246 struct ttm_mem_reg *old_mem = &bo->mem; 247 248 BUG_ON(old_mem->mm_node != NULL); 249 *old_mem = *new_mem; 250 new_mem->mm_node = NULL; 251 } 252 253 /** 254 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 255 * 256 * @bo: The bo to assign the memory to. 257 * @mm_node: Memory manager node for drm allocator. 258 * @mem: The region where the bo resides. 259 * 260 */ 261 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 262 struct drm_mm_node *mm_node, 263 struct ttm_mem_reg *mem) 264 { 265 uint64_t addr = 0; 266 267 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 268 addr = mm_node->start << PAGE_SHIFT; 269 addr += bo->bdev->man[mem->mem_type].gpu_offset; 270 } 271 return addr; 272 } 273 274 /** 275 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 276 * @offset. It also modifies the offset to be within the drm_mm_node returned 277 * 278 * @mem: The region where the bo resides. 279 * @offset: The offset that drm_mm_node is used for finding. 280 * 281 */ 282 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 283 unsigned long *offset) 284 { 285 struct drm_mm_node *mm_node = mem->mm_node; 286 287 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 288 *offset -= (mm_node->size << PAGE_SHIFT); 289 ++mm_node; 290 } 291 return mm_node; 292 } 293 294 /** 295 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 296 * 297 * The function copies @size bytes from {src->mem + src->offset} to 298 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 299 * move and different for a BO to BO copy. 300 * 301 * @f: Returns the last fence if multiple jobs are submitted. 302 */ 303 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 304 struct amdgpu_copy_mem *src, 305 struct amdgpu_copy_mem *dst, 306 uint64_t size, 307 struct dma_resv *resv, 308 struct dma_fence **f) 309 { 310 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 311 struct drm_mm_node *src_mm, *dst_mm; 312 uint64_t src_node_start, dst_node_start, src_node_size, 313 dst_node_size, src_page_offset, dst_page_offset; 314 struct dma_fence *fence = NULL; 315 int r = 0; 316 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 317 AMDGPU_GPU_PAGE_SIZE); 318 319 if (!adev->mman.buffer_funcs_enabled) { 320 DRM_ERROR("Trying to move memory with ring turned off.\n"); 321 return -EINVAL; 322 } 323 324 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 325 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 326 src->offset; 327 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 328 src_page_offset = src_node_start & (PAGE_SIZE - 1); 329 330 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 331 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 332 dst->offset; 333 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 334 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 335 336 mutex_lock(&adev->mman.gtt_window_lock); 337 338 while (size) { 339 unsigned long cur_size; 340 uint64_t from = src_node_start, to = dst_node_start; 341 struct dma_fence *next; 342 343 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 344 * begins at an offset, then adjust the size accordingly 345 */ 346 cur_size = min3(min(src_node_size, dst_node_size), size, 347 GTT_MAX_BYTES); 348 if (cur_size + src_page_offset > GTT_MAX_BYTES || 349 cur_size + dst_page_offset > GTT_MAX_BYTES) 350 cur_size -= max(src_page_offset, dst_page_offset); 351 352 /* Map only what needs to be accessed. Map src to window 0 and 353 * dst to window 1 354 */ 355 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 356 r = amdgpu_map_buffer(src->bo, src->mem, 357 PFN_UP(cur_size + src_page_offset), 358 src_node_start, 0, ring, 359 &from); 360 if (r) 361 goto error; 362 /* Adjust the offset because amdgpu_map_buffer returns 363 * start of mapped page 364 */ 365 from += src_page_offset; 366 } 367 368 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 369 r = amdgpu_map_buffer(dst->bo, dst->mem, 370 PFN_UP(cur_size + dst_page_offset), 371 dst_node_start, 1, ring, 372 &to); 373 if (r) 374 goto error; 375 to += dst_page_offset; 376 } 377 378 r = amdgpu_copy_buffer(ring, from, to, cur_size, 379 resv, &next, false, true); 380 if (r) 381 goto error; 382 383 dma_fence_put(fence); 384 fence = next; 385 386 size -= cur_size; 387 if (!size) 388 break; 389 390 src_node_size -= cur_size; 391 if (!src_node_size) { 392 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 393 src->mem); 394 src_node_size = (src_mm->size << PAGE_SHIFT); 395 src_page_offset = 0; 396 } else { 397 src_node_start += cur_size; 398 src_page_offset = src_node_start & (PAGE_SIZE - 1); 399 } 400 dst_node_size -= cur_size; 401 if (!dst_node_size) { 402 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 403 dst->mem); 404 dst_node_size = (dst_mm->size << PAGE_SHIFT); 405 dst_page_offset = 0; 406 } else { 407 dst_node_start += cur_size; 408 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 409 } 410 } 411 error: 412 mutex_unlock(&adev->mman.gtt_window_lock); 413 if (f) 414 *f = dma_fence_get(fence); 415 dma_fence_put(fence); 416 return r; 417 } 418 419 /** 420 * amdgpu_move_blit - Copy an entire buffer to another buffer 421 * 422 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 423 * help move buffers to and from VRAM. 424 */ 425 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 426 bool evict, bool no_wait_gpu, 427 struct ttm_mem_reg *new_mem, 428 struct ttm_mem_reg *old_mem) 429 { 430 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 431 struct amdgpu_copy_mem src, dst; 432 struct dma_fence *fence = NULL; 433 int r; 434 435 src.bo = bo; 436 dst.bo = bo; 437 src.mem = old_mem; 438 dst.mem = new_mem; 439 src.offset = 0; 440 dst.offset = 0; 441 442 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 443 new_mem->num_pages << PAGE_SHIFT, 444 bo->base.resv, &fence); 445 if (r) 446 goto error; 447 448 /* clear the space being freed */ 449 if (old_mem->mem_type == TTM_PL_VRAM && 450 (ttm_to_amdgpu_bo(bo)->flags & 451 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 452 struct dma_fence *wipe_fence = NULL; 453 454 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 455 NULL, &wipe_fence); 456 if (r) { 457 goto error; 458 } else if (wipe_fence) { 459 dma_fence_put(fence); 460 fence = wipe_fence; 461 } 462 } 463 464 /* Always block for VM page tables before committing the new location */ 465 if (bo->type == ttm_bo_type_kernel) 466 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 467 else 468 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 469 dma_fence_put(fence); 470 return r; 471 472 error: 473 if (fence) 474 dma_fence_wait(fence, false); 475 dma_fence_put(fence); 476 return r; 477 } 478 479 /** 480 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 481 * 482 * Called by amdgpu_bo_move(). 483 */ 484 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 485 struct ttm_operation_ctx *ctx, 486 struct ttm_mem_reg *new_mem) 487 { 488 struct amdgpu_device *adev; 489 struct ttm_mem_reg *old_mem = &bo->mem; 490 struct ttm_mem_reg tmp_mem; 491 struct ttm_place placements; 492 struct ttm_placement placement; 493 int r; 494 495 adev = amdgpu_ttm_adev(bo->bdev); 496 497 /* create space/pages for new_mem in GTT space */ 498 tmp_mem = *new_mem; 499 tmp_mem.mm_node = NULL; 500 placement.num_placement = 1; 501 placement.placement = &placements; 502 placement.num_busy_placement = 1; 503 placement.busy_placement = &placements; 504 placements.fpfn = 0; 505 placements.lpfn = 0; 506 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 507 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 508 if (unlikely(r)) { 509 pr_err("Failed to find GTT space for blit from VRAM\n"); 510 return r; 511 } 512 513 /* set caching flags */ 514 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 515 if (unlikely(r)) { 516 goto out_cleanup; 517 } 518 519 /* Bind the memory to the GTT space */ 520 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 521 if (unlikely(r)) { 522 goto out_cleanup; 523 } 524 525 /* blit VRAM to GTT */ 526 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 527 if (unlikely(r)) { 528 goto out_cleanup; 529 } 530 531 /* move BO (in tmp_mem) to new_mem */ 532 r = ttm_bo_move_ttm(bo, ctx, new_mem); 533 out_cleanup: 534 ttm_bo_mem_put(bo, &tmp_mem); 535 return r; 536 } 537 538 /** 539 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 540 * 541 * Called by amdgpu_bo_move(). 542 */ 543 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 544 struct ttm_operation_ctx *ctx, 545 struct ttm_mem_reg *new_mem) 546 { 547 struct amdgpu_device *adev; 548 struct ttm_mem_reg *old_mem = &bo->mem; 549 struct ttm_mem_reg tmp_mem; 550 struct ttm_placement placement; 551 struct ttm_place placements; 552 int r; 553 554 adev = amdgpu_ttm_adev(bo->bdev); 555 556 /* make space in GTT for old_mem buffer */ 557 tmp_mem = *new_mem; 558 tmp_mem.mm_node = NULL; 559 placement.num_placement = 1; 560 placement.placement = &placements; 561 placement.num_busy_placement = 1; 562 placement.busy_placement = &placements; 563 placements.fpfn = 0; 564 placements.lpfn = 0; 565 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 566 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 567 if (unlikely(r)) { 568 pr_err("Failed to find GTT space for blit to VRAM\n"); 569 return r; 570 } 571 572 /* move/bind old memory to GTT space */ 573 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 574 if (unlikely(r)) { 575 goto out_cleanup; 576 } 577 578 /* copy to VRAM */ 579 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 580 if (unlikely(r)) { 581 goto out_cleanup; 582 } 583 out_cleanup: 584 ttm_bo_mem_put(bo, &tmp_mem); 585 return r; 586 } 587 588 /** 589 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 590 * 591 * Called by amdgpu_bo_move() 592 */ 593 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 594 struct ttm_mem_reg *mem) 595 { 596 struct drm_mm_node *nodes = mem->mm_node; 597 598 if (mem->mem_type == TTM_PL_SYSTEM || 599 mem->mem_type == TTM_PL_TT) 600 return true; 601 if (mem->mem_type != TTM_PL_VRAM) 602 return false; 603 604 /* ttm_mem_reg_ioremap only supports contiguous memory */ 605 if (nodes->size != mem->num_pages) 606 return false; 607 608 return ((nodes->start + nodes->size) << PAGE_SHIFT) 609 <= adev->gmc.visible_vram_size; 610 } 611 612 /** 613 * amdgpu_bo_move - Move a buffer object to a new memory location 614 * 615 * Called by ttm_bo_handle_move_mem() 616 */ 617 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 618 struct ttm_operation_ctx *ctx, 619 struct ttm_mem_reg *new_mem) 620 { 621 struct amdgpu_device *adev; 622 struct amdgpu_bo *abo; 623 struct ttm_mem_reg *old_mem = &bo->mem; 624 int r; 625 626 /* Can't move a pinned BO */ 627 abo = ttm_to_amdgpu_bo(bo); 628 if (WARN_ON_ONCE(abo->pin_count > 0)) 629 return -EINVAL; 630 631 adev = amdgpu_ttm_adev(bo->bdev); 632 633 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 634 amdgpu_move_null(bo, new_mem); 635 return 0; 636 } 637 if ((old_mem->mem_type == TTM_PL_TT && 638 new_mem->mem_type == TTM_PL_SYSTEM) || 639 (old_mem->mem_type == TTM_PL_SYSTEM && 640 new_mem->mem_type == TTM_PL_TT)) { 641 /* bind is enough */ 642 amdgpu_move_null(bo, new_mem); 643 return 0; 644 } 645 if (old_mem->mem_type == AMDGPU_PL_GDS || 646 old_mem->mem_type == AMDGPU_PL_GWS || 647 old_mem->mem_type == AMDGPU_PL_OA || 648 new_mem->mem_type == AMDGPU_PL_GDS || 649 new_mem->mem_type == AMDGPU_PL_GWS || 650 new_mem->mem_type == AMDGPU_PL_OA) { 651 /* Nothing to save here */ 652 amdgpu_move_null(bo, new_mem); 653 return 0; 654 } 655 656 if (!adev->mman.buffer_funcs_enabled) { 657 r = -ENODEV; 658 goto memcpy; 659 } 660 661 if (old_mem->mem_type == TTM_PL_VRAM && 662 new_mem->mem_type == TTM_PL_SYSTEM) { 663 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 664 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 665 new_mem->mem_type == TTM_PL_VRAM) { 666 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 667 } else { 668 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 669 new_mem, old_mem); 670 } 671 672 if (r) { 673 memcpy: 674 /* Check that all memory is CPU accessible */ 675 if (!amdgpu_mem_visible(adev, old_mem) || 676 !amdgpu_mem_visible(adev, new_mem)) { 677 pr_err("Move buffer fallback to memcpy unavailable\n"); 678 return r; 679 } 680 681 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 682 if (r) 683 return r; 684 } 685 686 if (bo->type == ttm_bo_type_device && 687 new_mem->mem_type == TTM_PL_VRAM && 688 old_mem->mem_type != TTM_PL_VRAM) { 689 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 690 * accesses the BO after it's moved. 691 */ 692 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 693 } 694 695 /* update statistics */ 696 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 697 return 0; 698 } 699 700 /** 701 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 702 * 703 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 704 */ 705 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 706 { 707 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 708 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 709 struct drm_mm_node *mm_node = mem->mm_node; 710 711 mem->bus.addr = NULL; 712 mem->bus.offset = 0; 713 mem->bus.size = mem->num_pages << PAGE_SHIFT; 714 mem->bus.base = 0; 715 mem->bus.is_iomem = false; 716 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 717 return -EINVAL; 718 switch (mem->mem_type) { 719 case TTM_PL_SYSTEM: 720 /* system memory */ 721 return 0; 722 case TTM_PL_TT: 723 break; 724 case TTM_PL_VRAM: 725 mem->bus.offset = mem->start << PAGE_SHIFT; 726 /* check if it's visible */ 727 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 728 return -EINVAL; 729 /* Only physically contiguous buffers apply. In a contiguous 730 * buffer, size of the first mm_node would match the number of 731 * pages in ttm_mem_reg. 732 */ 733 if (adev->mman.aper_base_kaddr && 734 (mm_node->size == mem->num_pages)) 735 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 736 mem->bus.offset; 737 738 mem->bus.base = adev->gmc.aper_base; 739 mem->bus.is_iomem = true; 740 break; 741 default: 742 return -EINVAL; 743 } 744 return 0; 745 } 746 747 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 748 { 749 } 750 751 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 752 unsigned long page_offset) 753 { 754 struct drm_mm_node *mm; 755 unsigned long offset = (page_offset << PAGE_SHIFT); 756 757 mm = amdgpu_find_mm_node(&bo->mem, &offset); 758 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 759 (offset >> PAGE_SHIFT); 760 } 761 762 /* 763 * TTM backend functions. 764 */ 765 struct amdgpu_ttm_tt { 766 struct ttm_dma_tt ttm; 767 u64 offset; 768 uint64_t userptr; 769 struct task_struct *usertask; 770 uint32_t userflags; 771 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 772 struct hmm_range *range; 773 #endif 774 }; 775 776 /** 777 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 778 * memory and start HMM tracking CPU page table update 779 * 780 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 781 * once afterwards to stop HMM tracking 782 */ 783 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 784 785 #define MAX_RETRY_HMM_RANGE_FAULT 16 786 787 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 788 { 789 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL; 790 struct ttm_tt *ttm = bo->tbo.ttm; 791 struct amdgpu_ttm_tt *gtt = (void *)ttm; 792 struct mm_struct *mm = gtt->usertask->mm; 793 unsigned long start = gtt->userptr; 794 struct vm_area_struct *vma; 795 struct hmm_range *range; 796 unsigned long i; 797 uint64_t *pfns; 798 int retry = 0; 799 int r = 0; 800 801 if (!mm) /* Happens during process shutdown */ 802 return -ESRCH; 803 804 if (unlikely(!mirror)) { 805 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n"); 806 r = -EFAULT; 807 goto out; 808 } 809 810 vma = find_vma(mm, start); 811 if (unlikely(!vma || start < vma->vm_start)) { 812 r = -EFAULT; 813 goto out; 814 } 815 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 816 vma->vm_file)) { 817 r = -EPERM; 818 goto out; 819 } 820 821 range = kzalloc(sizeof(*range), GFP_KERNEL); 822 if (unlikely(!range)) { 823 r = -ENOMEM; 824 goto out; 825 } 826 827 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL); 828 if (unlikely(!pfns)) { 829 r = -ENOMEM; 830 goto out_free_ranges; 831 } 832 833 amdgpu_hmm_init_range(range); 834 range->default_flags = range->flags[HMM_PFN_VALID]; 835 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ? 836 0 : range->flags[HMM_PFN_WRITE]; 837 range->pfn_flags_mask = 0; 838 range->pfns = pfns; 839 hmm_range_register(range, mirror, start, 840 start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT); 841 842 retry: 843 /* 844 * Just wait for range to be valid, safe to ignore return value as we 845 * will use the return value of hmm_range_fault() below under the 846 * mmap_sem to ascertain the validity of the range. 847 */ 848 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT); 849 850 down_read(&mm->mmap_sem); 851 852 r = hmm_range_fault(range, true); 853 if (unlikely(r < 0)) { 854 if (likely(r == -EAGAIN)) { 855 /* 856 * return -EAGAIN, mmap_sem is dropped 857 */ 858 if (retry++ < MAX_RETRY_HMM_RANGE_FAULT) 859 goto retry; 860 else 861 pr_err("Retry hmm fault too many times\n"); 862 } 863 864 goto out_up_read; 865 } 866 867 up_read(&mm->mmap_sem); 868 869 for (i = 0; i < ttm->num_pages; i++) { 870 pages[i] = hmm_device_entry_to_page(range, pfns[i]); 871 if (unlikely(!pages[i])) { 872 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 873 i, pfns[i]); 874 r = -ENOMEM; 875 876 goto out_free_pfns; 877 } 878 } 879 880 gtt->range = range; 881 882 return 0; 883 884 out_up_read: 885 if (likely(r != -EAGAIN)) 886 up_read(&mm->mmap_sem); 887 out_free_pfns: 888 hmm_range_unregister(range); 889 kvfree(pfns); 890 out_free_ranges: 891 kfree(range); 892 out: 893 return r; 894 } 895 896 /** 897 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 898 * Check if the pages backing this ttm range have been invalidated 899 * 900 * Returns: true if pages are still valid 901 */ 902 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 903 { 904 struct amdgpu_ttm_tt *gtt = (void *)ttm; 905 bool r = false; 906 907 if (!gtt || !gtt->userptr) 908 return false; 909 910 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 911 gtt->userptr, ttm->num_pages); 912 913 WARN_ONCE(!gtt->range || !gtt->range->pfns, 914 "No user pages to check\n"); 915 916 if (gtt->range) { 917 r = hmm_range_valid(gtt->range); 918 hmm_range_unregister(gtt->range); 919 920 kvfree(gtt->range->pfns); 921 kfree(gtt->range); 922 gtt->range = NULL; 923 } 924 925 return r; 926 } 927 #endif 928 929 /** 930 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 931 * 932 * Called by amdgpu_cs_list_validate(). This creates the page list 933 * that backs user memory and will ultimately be mapped into the device 934 * address space. 935 */ 936 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 937 { 938 unsigned long i; 939 940 for (i = 0; i < ttm->num_pages; ++i) 941 ttm->pages[i] = pages ? pages[i] : NULL; 942 } 943 944 /** 945 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 946 * 947 * Called by amdgpu_ttm_backend_bind() 948 **/ 949 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 950 { 951 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 952 struct amdgpu_ttm_tt *gtt = (void *)ttm; 953 unsigned nents; 954 int r; 955 956 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 957 enum dma_data_direction direction = write ? 958 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 959 960 /* Allocate an SG array and squash pages into it */ 961 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 962 ttm->num_pages << PAGE_SHIFT, 963 GFP_KERNEL); 964 if (r) 965 goto release_sg; 966 967 /* Map SG to device */ 968 r = -ENOMEM; 969 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 970 if (nents != ttm->sg->nents) 971 goto release_sg; 972 973 /* convert SG to linear array of pages and dma addresses */ 974 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 975 gtt->ttm.dma_address, ttm->num_pages); 976 977 return 0; 978 979 release_sg: 980 kfree(ttm->sg); 981 return r; 982 } 983 984 /** 985 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 986 */ 987 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 988 { 989 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 990 struct amdgpu_ttm_tt *gtt = (void *)ttm; 991 992 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 993 enum dma_data_direction direction = write ? 994 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 995 996 /* double check that we don't free the table twice */ 997 if (!ttm->sg->sgl) 998 return; 999 1000 /* unmap the pages mapped to the device */ 1001 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 1002 1003 sg_free_table(ttm->sg); 1004 1005 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1006 if (gtt->range && 1007 ttm->pages[0] == hmm_device_entry_to_page(gtt->range, 1008 gtt->range->pfns[0])) 1009 WARN_ONCE(1, "Missing get_user_page_done\n"); 1010 #endif 1011 } 1012 1013 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1014 struct ttm_buffer_object *tbo, 1015 uint64_t flags) 1016 { 1017 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1018 struct ttm_tt *ttm = tbo->ttm; 1019 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1020 int r; 1021 1022 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1023 uint64_t page_idx = 1; 1024 1025 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1026 ttm->pages, gtt->ttm.dma_address, flags); 1027 if (r) 1028 goto gart_bind_fail; 1029 1030 /* Patch mtype of the second part BO */ 1031 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1032 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1033 1034 r = amdgpu_gart_bind(adev, 1035 gtt->offset + (page_idx << PAGE_SHIFT), 1036 ttm->num_pages - page_idx, 1037 &ttm->pages[page_idx], 1038 &(gtt->ttm.dma_address[page_idx]), flags); 1039 } else { 1040 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1041 ttm->pages, gtt->ttm.dma_address, flags); 1042 } 1043 1044 gart_bind_fail: 1045 if (r) 1046 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1047 ttm->num_pages, gtt->offset); 1048 1049 return r; 1050 } 1051 1052 /** 1053 * amdgpu_ttm_backend_bind - Bind GTT memory 1054 * 1055 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1056 * This handles binding GTT memory to the device address space. 1057 */ 1058 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1059 struct ttm_mem_reg *bo_mem) 1060 { 1061 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1062 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1063 uint64_t flags; 1064 int r = 0; 1065 1066 if (gtt->userptr) { 1067 r = amdgpu_ttm_tt_pin_userptr(ttm); 1068 if (r) { 1069 DRM_ERROR("failed to pin userptr\n"); 1070 return r; 1071 } 1072 } 1073 if (!ttm->num_pages) { 1074 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1075 ttm->num_pages, bo_mem, ttm); 1076 } 1077 1078 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1079 bo_mem->mem_type == AMDGPU_PL_GWS || 1080 bo_mem->mem_type == AMDGPU_PL_OA) 1081 return -EINVAL; 1082 1083 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1084 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1085 return 0; 1086 } 1087 1088 /* compute PTE flags relevant to this BO memory */ 1089 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1090 1091 /* bind pages into GART page tables */ 1092 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1093 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1094 ttm->pages, gtt->ttm.dma_address, flags); 1095 1096 if (r) 1097 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1098 ttm->num_pages, gtt->offset); 1099 return r; 1100 } 1101 1102 /** 1103 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1104 */ 1105 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1106 { 1107 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1108 struct ttm_operation_ctx ctx = { false, false }; 1109 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1110 struct ttm_mem_reg tmp; 1111 struct ttm_placement placement; 1112 struct ttm_place placements; 1113 uint64_t addr, flags; 1114 int r; 1115 1116 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1117 return 0; 1118 1119 addr = amdgpu_gmc_agp_addr(bo); 1120 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1121 bo->mem.start = addr >> PAGE_SHIFT; 1122 } else { 1123 1124 /* allocate GART space */ 1125 tmp = bo->mem; 1126 tmp.mm_node = NULL; 1127 placement.num_placement = 1; 1128 placement.placement = &placements; 1129 placement.num_busy_placement = 1; 1130 placement.busy_placement = &placements; 1131 placements.fpfn = 0; 1132 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1133 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1134 TTM_PL_FLAG_TT; 1135 1136 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1137 if (unlikely(r)) 1138 return r; 1139 1140 /* compute PTE flags for this buffer object */ 1141 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1142 1143 /* Bind pages */ 1144 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1145 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1146 if (unlikely(r)) { 1147 ttm_bo_mem_put(bo, &tmp); 1148 return r; 1149 } 1150 1151 ttm_bo_mem_put(bo, &bo->mem); 1152 bo->mem = tmp; 1153 } 1154 1155 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1156 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1157 1158 return 0; 1159 } 1160 1161 /** 1162 * amdgpu_ttm_recover_gart - Rebind GTT pages 1163 * 1164 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1165 * rebind GTT pages during a GPU reset. 1166 */ 1167 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1168 { 1169 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1170 uint64_t flags; 1171 int r; 1172 1173 if (!tbo->ttm) 1174 return 0; 1175 1176 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1177 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1178 1179 return r; 1180 } 1181 1182 /** 1183 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1184 * 1185 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1186 * ttm_tt_destroy(). 1187 */ 1188 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1189 { 1190 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1191 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1192 int r; 1193 1194 /* if the pages have userptr pinning then clear that first */ 1195 if (gtt->userptr) 1196 amdgpu_ttm_tt_unpin_userptr(ttm); 1197 1198 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1199 return 0; 1200 1201 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1202 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1203 if (r) 1204 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1205 gtt->ttm.ttm.num_pages, gtt->offset); 1206 return r; 1207 } 1208 1209 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1210 { 1211 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1212 1213 if (gtt->usertask) 1214 put_task_struct(gtt->usertask); 1215 1216 ttm_dma_tt_fini(>t->ttm); 1217 kfree(gtt); 1218 } 1219 1220 static struct ttm_backend_func amdgpu_backend_func = { 1221 .bind = &amdgpu_ttm_backend_bind, 1222 .unbind = &amdgpu_ttm_backend_unbind, 1223 .destroy = &amdgpu_ttm_backend_destroy, 1224 }; 1225 1226 /** 1227 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1228 * 1229 * @bo: The buffer object to create a GTT ttm_tt object around 1230 * 1231 * Called by ttm_tt_create(). 1232 */ 1233 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1234 uint32_t page_flags) 1235 { 1236 struct amdgpu_device *adev; 1237 struct amdgpu_ttm_tt *gtt; 1238 1239 adev = amdgpu_ttm_adev(bo->bdev); 1240 1241 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1242 if (gtt == NULL) { 1243 return NULL; 1244 } 1245 gtt->ttm.ttm.func = &amdgpu_backend_func; 1246 1247 /* allocate space for the uninitialized page entries */ 1248 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1249 kfree(gtt); 1250 return NULL; 1251 } 1252 return >t->ttm.ttm; 1253 } 1254 1255 /** 1256 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1257 * 1258 * Map the pages of a ttm_tt object to an address space visible 1259 * to the underlying device. 1260 */ 1261 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1262 struct ttm_operation_ctx *ctx) 1263 { 1264 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1265 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1266 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1267 1268 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1269 if (gtt && gtt->userptr) { 1270 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1271 if (!ttm->sg) 1272 return -ENOMEM; 1273 1274 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1275 ttm->state = tt_unbound; 1276 return 0; 1277 } 1278 1279 if (slave && ttm->sg) { 1280 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1281 gtt->ttm.dma_address, 1282 ttm->num_pages); 1283 ttm->state = tt_unbound; 1284 return 0; 1285 } 1286 1287 #ifdef CONFIG_SWIOTLB 1288 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1289 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1290 } 1291 #endif 1292 1293 /* fall back to generic helper to populate the page array 1294 * and map them to the device */ 1295 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1296 } 1297 1298 /** 1299 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1300 * 1301 * Unmaps pages of a ttm_tt object from the device address space and 1302 * unpopulates the page array backing it. 1303 */ 1304 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1305 { 1306 struct amdgpu_device *adev; 1307 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1308 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1309 1310 if (gtt && gtt->userptr) { 1311 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1312 kfree(ttm->sg); 1313 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1314 return; 1315 } 1316 1317 if (slave) 1318 return; 1319 1320 adev = amdgpu_ttm_adev(ttm->bdev); 1321 1322 #ifdef CONFIG_SWIOTLB 1323 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1324 ttm_dma_unpopulate(>t->ttm, adev->dev); 1325 return; 1326 } 1327 #endif 1328 1329 /* fall back to generic helper to unmap and unpopulate array */ 1330 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1331 } 1332 1333 /** 1334 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1335 * task 1336 * 1337 * @ttm: The ttm_tt object to bind this userptr object to 1338 * @addr: The address in the current tasks VM space to use 1339 * @flags: Requirements of userptr object. 1340 * 1341 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1342 * to current task 1343 */ 1344 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1345 uint32_t flags) 1346 { 1347 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1348 1349 if (gtt == NULL) 1350 return -EINVAL; 1351 1352 gtt->userptr = addr; 1353 gtt->userflags = flags; 1354 1355 if (gtt->usertask) 1356 put_task_struct(gtt->usertask); 1357 gtt->usertask = current->group_leader; 1358 get_task_struct(gtt->usertask); 1359 1360 return 0; 1361 } 1362 1363 /** 1364 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1365 */ 1366 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1367 { 1368 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1369 1370 if (gtt == NULL) 1371 return NULL; 1372 1373 if (gtt->usertask == NULL) 1374 return NULL; 1375 1376 return gtt->usertask->mm; 1377 } 1378 1379 /** 1380 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1381 * address range for the current task. 1382 * 1383 */ 1384 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1385 unsigned long end) 1386 { 1387 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1388 unsigned long size; 1389 1390 if (gtt == NULL || !gtt->userptr) 1391 return false; 1392 1393 /* Return false if no part of the ttm_tt object lies within 1394 * the range 1395 */ 1396 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1397 if (gtt->userptr > end || gtt->userptr + size <= start) 1398 return false; 1399 1400 return true; 1401 } 1402 1403 /** 1404 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1405 */ 1406 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1407 { 1408 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1409 1410 if (gtt == NULL || !gtt->userptr) 1411 return false; 1412 1413 return true; 1414 } 1415 1416 /** 1417 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1418 */ 1419 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1420 { 1421 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1422 1423 if (gtt == NULL) 1424 return false; 1425 1426 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1427 } 1428 1429 /** 1430 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1431 * 1432 * @ttm: The ttm_tt object to compute the flags for 1433 * @mem: The memory registry backing this ttm_tt object 1434 * 1435 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1436 */ 1437 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1438 { 1439 uint64_t flags = 0; 1440 1441 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1442 flags |= AMDGPU_PTE_VALID; 1443 1444 if (mem && mem->mem_type == TTM_PL_TT) { 1445 flags |= AMDGPU_PTE_SYSTEM; 1446 1447 if (ttm->caching_state == tt_cached) 1448 flags |= AMDGPU_PTE_SNOOPED; 1449 } 1450 1451 return flags; 1452 } 1453 1454 /** 1455 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1456 * 1457 * @ttm: The ttm_tt object to compute the flags for 1458 * @mem: The memory registry backing this ttm_tt object 1459 1460 * Figure out the flags to use for a VM PTE (Page Table Entry). 1461 */ 1462 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1463 struct ttm_mem_reg *mem) 1464 { 1465 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1466 1467 flags |= adev->gart.gart_pte_flags; 1468 flags |= AMDGPU_PTE_READABLE; 1469 1470 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1471 flags |= AMDGPU_PTE_WRITEABLE; 1472 1473 return flags; 1474 } 1475 1476 /** 1477 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1478 * object. 1479 * 1480 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1481 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1482 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1483 * used to clean out a memory space. 1484 */ 1485 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1486 const struct ttm_place *place) 1487 { 1488 unsigned long num_pages = bo->mem.num_pages; 1489 struct drm_mm_node *node = bo->mem.mm_node; 1490 struct dma_resv_list *flist; 1491 struct dma_fence *f; 1492 int i; 1493 1494 /* Don't evict VM page tables while they are busy, otherwise we can't 1495 * cleanly handle page faults. 1496 */ 1497 if (bo->type == ttm_bo_type_kernel && 1498 !dma_resv_test_signaled_rcu(bo->base.resv, true)) 1499 return false; 1500 1501 /* If bo is a KFD BO, check if the bo belongs to the current process. 1502 * If true, then return false as any KFD process needs all its BOs to 1503 * be resident to run successfully 1504 */ 1505 flist = dma_resv_get_list(bo->base.resv); 1506 if (flist) { 1507 for (i = 0; i < flist->shared_count; ++i) { 1508 f = rcu_dereference_protected(flist->shared[i], 1509 dma_resv_held(bo->base.resv)); 1510 if (amdkfd_fence_check_mm(f, current->mm)) 1511 return false; 1512 } 1513 } 1514 1515 switch (bo->mem.mem_type) { 1516 case TTM_PL_TT: 1517 return true; 1518 1519 case TTM_PL_VRAM: 1520 /* Check each drm MM node individually */ 1521 while (num_pages) { 1522 if (place->fpfn < (node->start + node->size) && 1523 !(place->lpfn && place->lpfn <= node->start)) 1524 return true; 1525 1526 num_pages -= node->size; 1527 ++node; 1528 } 1529 return false; 1530 1531 default: 1532 break; 1533 } 1534 1535 return ttm_bo_eviction_valuable(bo, place); 1536 } 1537 1538 /** 1539 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1540 * 1541 * @bo: The buffer object to read/write 1542 * @offset: Offset into buffer object 1543 * @buf: Secondary buffer to write/read from 1544 * @len: Length in bytes of access 1545 * @write: true if writing 1546 * 1547 * This is used to access VRAM that backs a buffer object via MMIO 1548 * access for debugging purposes. 1549 */ 1550 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1551 unsigned long offset, 1552 void *buf, int len, int write) 1553 { 1554 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1555 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1556 struct drm_mm_node *nodes; 1557 uint32_t value = 0; 1558 int ret = 0; 1559 uint64_t pos; 1560 unsigned long flags; 1561 1562 if (bo->mem.mem_type != TTM_PL_VRAM) 1563 return -EIO; 1564 1565 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1566 pos = (nodes->start << PAGE_SHIFT) + offset; 1567 1568 while (len && pos < adev->gmc.mc_vram_size) { 1569 uint64_t aligned_pos = pos & ~(uint64_t)3; 1570 uint32_t bytes = 4 - (pos & 3); 1571 uint32_t shift = (pos & 3) * 8; 1572 uint32_t mask = 0xffffffff << shift; 1573 1574 if (len < bytes) { 1575 mask &= 0xffffffff >> (bytes - len) * 8; 1576 bytes = len; 1577 } 1578 1579 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1580 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1581 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1582 if (!write || mask != 0xffffffff) 1583 value = RREG32_NO_KIQ(mmMM_DATA); 1584 if (write) { 1585 value &= ~mask; 1586 value |= (*(uint32_t *)buf << shift) & mask; 1587 WREG32_NO_KIQ(mmMM_DATA, value); 1588 } 1589 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1590 if (!write) { 1591 value = (value & mask) >> shift; 1592 memcpy(buf, &value, bytes); 1593 } 1594 1595 ret += bytes; 1596 buf = (uint8_t *)buf + bytes; 1597 pos += bytes; 1598 len -= bytes; 1599 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1600 ++nodes; 1601 pos = (nodes->start << PAGE_SHIFT); 1602 } 1603 } 1604 1605 return ret; 1606 } 1607 1608 static struct ttm_bo_driver amdgpu_bo_driver = { 1609 .ttm_tt_create = &amdgpu_ttm_tt_create, 1610 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1611 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1612 .invalidate_caches = &amdgpu_invalidate_caches, 1613 .init_mem_type = &amdgpu_init_mem_type, 1614 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1615 .evict_flags = &amdgpu_evict_flags, 1616 .move = &amdgpu_bo_move, 1617 .verify_access = &amdgpu_verify_access, 1618 .move_notify = &amdgpu_bo_move_notify, 1619 .release_notify = &amdgpu_bo_release_notify, 1620 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1621 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1622 .io_mem_free = &amdgpu_ttm_io_mem_free, 1623 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1624 .access_memory = &amdgpu_ttm_access_memory, 1625 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1626 }; 1627 1628 /* 1629 * Firmware Reservation functions 1630 */ 1631 /** 1632 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1633 * 1634 * @adev: amdgpu_device pointer 1635 * 1636 * free fw reserved vram if it has been reserved. 1637 */ 1638 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1639 { 1640 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1641 NULL, &adev->fw_vram_usage.va); 1642 } 1643 1644 /** 1645 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1646 * 1647 * @adev: amdgpu_device pointer 1648 * 1649 * create bo vram reservation from fw. 1650 */ 1651 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1652 { 1653 uint64_t vram_size = adev->gmc.visible_vram_size; 1654 1655 adev->fw_vram_usage.va = NULL; 1656 adev->fw_vram_usage.reserved_bo = NULL; 1657 1658 if (adev->fw_vram_usage.size == 0 || 1659 adev->fw_vram_usage.size > vram_size) 1660 return 0; 1661 1662 return amdgpu_bo_create_kernel_at(adev, 1663 adev->fw_vram_usage.start_offset, 1664 adev->fw_vram_usage.size, 1665 AMDGPU_GEM_DOMAIN_VRAM, 1666 &adev->fw_vram_usage.reserved_bo, 1667 &adev->fw_vram_usage.va); 1668 } 1669 1670 /* 1671 * Memoy training reservation functions 1672 */ 1673 1674 /** 1675 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1676 * 1677 * @adev: amdgpu_device pointer 1678 * 1679 * free memory training reserved vram if it has been reserved. 1680 */ 1681 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1682 { 1683 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1684 1685 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1686 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1687 ctx->c2p_bo = NULL; 1688 1689 amdgpu_bo_free_kernel(&ctx->p2c_bo, NULL, NULL); 1690 ctx->p2c_bo = NULL; 1691 1692 return 0; 1693 } 1694 1695 /** 1696 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training 1697 * 1698 * @adev: amdgpu_device pointer 1699 * 1700 * create bo vram reservation from memory training. 1701 */ 1702 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev) 1703 { 1704 int ret; 1705 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1706 1707 memset(ctx, 0, sizeof(*ctx)); 1708 if (!adev->fw_vram_usage.mem_train_support) { 1709 DRM_DEBUG("memory training does not support!\n"); 1710 return 0; 1711 } 1712 1713 ctx->c2p_train_data_offset = adev->fw_vram_usage.mem_train_fb_loc; 1714 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1715 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1716 1717 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1718 ctx->train_data_size, 1719 ctx->p2c_train_data_offset, 1720 ctx->c2p_train_data_offset); 1721 1722 ret = amdgpu_bo_create_kernel_at(adev, 1723 ctx->p2c_train_data_offset, 1724 ctx->train_data_size, 1725 AMDGPU_GEM_DOMAIN_VRAM, 1726 &ctx->p2c_bo, 1727 NULL); 1728 if (ret) { 1729 DRM_ERROR("alloc p2c_bo failed(%d)!\n", ret); 1730 goto Err_out; 1731 } 1732 1733 ret = amdgpu_bo_create_kernel_at(adev, 1734 ctx->c2p_train_data_offset, 1735 ctx->train_data_size, 1736 AMDGPU_GEM_DOMAIN_VRAM, 1737 &ctx->c2p_bo, 1738 NULL); 1739 if (ret) { 1740 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1741 goto Err_out; 1742 } 1743 1744 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1745 return 0; 1746 1747 Err_out: 1748 amdgpu_ttm_training_reserve_vram_fini(adev); 1749 return ret; 1750 } 1751 1752 /** 1753 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1754 * gtt/vram related fields. 1755 * 1756 * This initializes all of the memory space pools that the TTM layer 1757 * will need such as the GTT space (system memory mapped to the device), 1758 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1759 * can be mapped per VMID. 1760 */ 1761 int amdgpu_ttm_init(struct amdgpu_device *adev) 1762 { 1763 uint64_t gtt_size; 1764 int r; 1765 u64 vis_vram_limit; 1766 void *stolen_vga_buf; 1767 1768 mutex_init(&adev->mman.gtt_window_lock); 1769 1770 /* No others user of address space so set it to 0 */ 1771 r = ttm_bo_device_init(&adev->mman.bdev, 1772 &amdgpu_bo_driver, 1773 adev->ddev->anon_inode->i_mapping, 1774 dma_addressing_limited(adev->dev)); 1775 if (r) { 1776 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1777 return r; 1778 } 1779 adev->mman.initialized = true; 1780 1781 /* We opt to avoid OOM on system pages allocations */ 1782 adev->mman.bdev.no_retry = true; 1783 1784 /* Initialize VRAM pool with all of VRAM divided into pages */ 1785 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1786 adev->gmc.real_vram_size >> PAGE_SHIFT); 1787 if (r) { 1788 DRM_ERROR("Failed initializing VRAM heap.\n"); 1789 return r; 1790 } 1791 1792 /* Reduce size of CPU-visible VRAM if requested */ 1793 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1794 if (amdgpu_vis_vram_limit > 0 && 1795 vis_vram_limit <= adev->gmc.visible_vram_size) 1796 adev->gmc.visible_vram_size = vis_vram_limit; 1797 1798 /* Change the size here instead of the init above so only lpfn is affected */ 1799 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1800 #ifdef CONFIG_64BIT 1801 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1802 adev->gmc.visible_vram_size); 1803 #endif 1804 1805 /* 1806 * retired pages will be loaded from eeprom and reserved here, 1807 * it should be called after ttm init since new bo may be created, 1808 * recovery_init may fail, but it can free all resources allocated by 1809 * itself and its failure should not stop amdgpu init process. 1810 * 1811 * Note: theoretically, this should be called before all vram allocations 1812 * to protect retired page from abusing 1813 */ 1814 amdgpu_ras_recovery_init(adev); 1815 1816 /* 1817 *The reserved vram for firmware must be pinned to the specified 1818 *place on the VRAM, so reserve it early. 1819 */ 1820 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1821 if (r) { 1822 return r; 1823 } 1824 1825 /* 1826 *The reserved vram for memory training must be pinned to the specified 1827 *place on the VRAM, so reserve it early. 1828 */ 1829 r = amdgpu_ttm_training_reserve_vram_init(adev); 1830 if (r) 1831 return r; 1832 1833 /* allocate memory as required for VGA 1834 * This is used for VGA emulation and pre-OS scanout buffers to 1835 * avoid display artifacts while transitioning between pre-OS 1836 * and driver. */ 1837 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1838 AMDGPU_GEM_DOMAIN_VRAM, 1839 &adev->stolen_vga_memory, 1840 NULL, &stolen_vga_buf); 1841 if (r) 1842 return r; 1843 1844 /* 1845 * reserve one TMR (64K) memory at the top of VRAM which holds 1846 * IP Discovery data and is protected by PSP. 1847 */ 1848 r = amdgpu_bo_create_kernel_at(adev, 1849 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE, 1850 DISCOVERY_TMR_SIZE, 1851 AMDGPU_GEM_DOMAIN_VRAM, 1852 &adev->discovery_memory, 1853 NULL); 1854 if (r) 1855 return r; 1856 1857 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1858 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1859 1860 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1861 * or whatever the user passed on module init */ 1862 if (amdgpu_gtt_size == -1) { 1863 struct sysinfo si; 1864 1865 si_meminfo(&si); 1866 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1867 adev->gmc.mc_vram_size), 1868 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1869 } 1870 else 1871 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1872 1873 /* Initialize GTT memory pool */ 1874 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1875 if (r) { 1876 DRM_ERROR("Failed initializing GTT heap.\n"); 1877 return r; 1878 } 1879 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1880 (unsigned)(gtt_size / (1024 * 1024))); 1881 1882 /* Initialize various on-chip memory pools */ 1883 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1884 adev->gds.gds_size); 1885 if (r) { 1886 DRM_ERROR("Failed initializing GDS heap.\n"); 1887 return r; 1888 } 1889 1890 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1891 adev->gds.gws_size); 1892 if (r) { 1893 DRM_ERROR("Failed initializing gws heap.\n"); 1894 return r; 1895 } 1896 1897 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1898 adev->gds.oa_size); 1899 if (r) { 1900 DRM_ERROR("Failed initializing oa heap.\n"); 1901 return r; 1902 } 1903 1904 /* Register debugfs entries for amdgpu_ttm */ 1905 r = amdgpu_ttm_debugfs_init(adev); 1906 if (r) { 1907 DRM_ERROR("Failed to init debugfs\n"); 1908 return r; 1909 } 1910 return 0; 1911 } 1912 1913 /** 1914 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1915 */ 1916 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1917 { 1918 void *stolen_vga_buf; 1919 /* return the VGA stolen memory (if any) back to VRAM */ 1920 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); 1921 1922 /* return the IP Discovery TMR memory back to VRAM */ 1923 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); 1924 } 1925 1926 /** 1927 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1928 */ 1929 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1930 { 1931 if (!adev->mman.initialized) 1932 return; 1933 1934 amdgpu_ttm_debugfs_fini(adev); 1935 amdgpu_ttm_training_reserve_vram_fini(adev); 1936 amdgpu_ttm_fw_reserve_vram_fini(adev); 1937 if (adev->mman.aper_base_kaddr) 1938 iounmap(adev->mman.aper_base_kaddr); 1939 adev->mman.aper_base_kaddr = NULL; 1940 1941 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1942 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1943 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1944 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1945 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1946 ttm_bo_device_release(&adev->mman.bdev); 1947 adev->mman.initialized = false; 1948 DRM_INFO("amdgpu: ttm finalized\n"); 1949 } 1950 1951 /** 1952 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1953 * 1954 * @adev: amdgpu_device pointer 1955 * @enable: true when we can use buffer functions. 1956 * 1957 * Enable/disable use of buffer functions during suspend/resume. This should 1958 * only be called at bootup or when userspace isn't running. 1959 */ 1960 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1961 { 1962 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1963 uint64_t size; 1964 int r; 1965 1966 if (!adev->mman.initialized || adev->in_gpu_reset || 1967 adev->mman.buffer_funcs_enabled == enable) 1968 return; 1969 1970 if (enable) { 1971 struct amdgpu_ring *ring; 1972 struct drm_sched_rq *rq; 1973 1974 ring = adev->mman.buffer_funcs_ring; 1975 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1976 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1977 if (r) { 1978 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1979 r); 1980 return; 1981 } 1982 } else { 1983 drm_sched_entity_destroy(&adev->mman.entity); 1984 dma_fence_put(man->move); 1985 man->move = NULL; 1986 } 1987 1988 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1989 if (enable) 1990 size = adev->gmc.real_vram_size; 1991 else 1992 size = adev->gmc.visible_vram_size; 1993 man->size = size >> PAGE_SHIFT; 1994 adev->mman.buffer_funcs_enabled = enable; 1995 } 1996 1997 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1998 { 1999 struct drm_file *file_priv = filp->private_data; 2000 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 2001 2002 if (adev == NULL) 2003 return -EINVAL; 2004 2005 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2006 } 2007 2008 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 2009 struct ttm_mem_reg *mem, unsigned num_pages, 2010 uint64_t offset, unsigned window, 2011 struct amdgpu_ring *ring, 2012 uint64_t *addr) 2013 { 2014 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 2015 struct amdgpu_device *adev = ring->adev; 2016 struct ttm_tt *ttm = bo->ttm; 2017 struct amdgpu_job *job; 2018 unsigned num_dw, num_bytes; 2019 dma_addr_t *dma_address; 2020 struct dma_fence *fence; 2021 uint64_t src_addr, dst_addr; 2022 uint64_t flags; 2023 int r; 2024 2025 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 2026 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 2027 2028 *addr = adev->gmc.gart_start; 2029 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 2030 AMDGPU_GPU_PAGE_SIZE; 2031 2032 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 2033 num_bytes = num_pages * 8; 2034 2035 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 2036 if (r) 2037 return r; 2038 2039 src_addr = num_dw * 4; 2040 src_addr += job->ibs[0].gpu_addr; 2041 2042 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 2043 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 2044 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 2045 dst_addr, num_bytes); 2046 2047 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2048 WARN_ON(job->ibs[0].length_dw > num_dw); 2049 2050 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2051 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2052 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2053 &job->ibs[0].ptr[num_dw]); 2054 if (r) 2055 goto error_free; 2056 2057 r = amdgpu_job_submit(job, &adev->mman.entity, 2058 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2059 if (r) 2060 goto error_free; 2061 2062 dma_fence_put(fence); 2063 2064 return r; 2065 2066 error_free: 2067 amdgpu_job_free(job); 2068 return r; 2069 } 2070 2071 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2072 uint64_t dst_offset, uint32_t byte_count, 2073 struct dma_resv *resv, 2074 struct dma_fence **fence, bool direct_submit, 2075 bool vm_needs_flush) 2076 { 2077 struct amdgpu_device *adev = ring->adev; 2078 struct amdgpu_job *job; 2079 2080 uint32_t max_bytes; 2081 unsigned num_loops, num_dw; 2082 unsigned i; 2083 int r; 2084 2085 if (direct_submit && !ring->sched.ready) { 2086 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2087 return -EINVAL; 2088 } 2089 2090 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2091 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2092 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2093 2094 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2095 if (r) 2096 return r; 2097 2098 if (vm_needs_flush) { 2099 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2100 job->vm_needs_flush = true; 2101 } 2102 if (resv) { 2103 r = amdgpu_sync_resv(adev, &job->sync, resv, 2104 AMDGPU_FENCE_OWNER_UNDEFINED, 2105 false); 2106 if (r) { 2107 DRM_ERROR("sync failed (%d).\n", r); 2108 goto error_free; 2109 } 2110 } 2111 2112 for (i = 0; i < num_loops; i++) { 2113 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2114 2115 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2116 dst_offset, cur_size_in_bytes); 2117 2118 src_offset += cur_size_in_bytes; 2119 dst_offset += cur_size_in_bytes; 2120 byte_count -= cur_size_in_bytes; 2121 } 2122 2123 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2124 WARN_ON(job->ibs[0].length_dw > num_dw); 2125 if (direct_submit) 2126 r = amdgpu_job_submit_direct(job, ring, fence); 2127 else 2128 r = amdgpu_job_submit(job, &adev->mman.entity, 2129 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2130 if (r) 2131 goto error_free; 2132 2133 return r; 2134 2135 error_free: 2136 amdgpu_job_free(job); 2137 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2138 return r; 2139 } 2140 2141 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2142 uint32_t src_data, 2143 struct dma_resv *resv, 2144 struct dma_fence **fence) 2145 { 2146 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2147 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2148 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2149 2150 struct drm_mm_node *mm_node; 2151 unsigned long num_pages; 2152 unsigned int num_loops, num_dw; 2153 2154 struct amdgpu_job *job; 2155 int r; 2156 2157 if (!adev->mman.buffer_funcs_enabled) { 2158 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2159 return -EINVAL; 2160 } 2161 2162 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2163 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2164 if (r) 2165 return r; 2166 } 2167 2168 num_pages = bo->tbo.num_pages; 2169 mm_node = bo->tbo.mem.mm_node; 2170 num_loops = 0; 2171 while (num_pages) { 2172 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2173 2174 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2175 num_pages -= mm_node->size; 2176 ++mm_node; 2177 } 2178 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2179 2180 /* for IB padding */ 2181 num_dw += 64; 2182 2183 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2184 if (r) 2185 return r; 2186 2187 if (resv) { 2188 r = amdgpu_sync_resv(adev, &job->sync, resv, 2189 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2190 if (r) { 2191 DRM_ERROR("sync failed (%d).\n", r); 2192 goto error_free; 2193 } 2194 } 2195 2196 num_pages = bo->tbo.num_pages; 2197 mm_node = bo->tbo.mem.mm_node; 2198 2199 while (num_pages) { 2200 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2201 uint64_t dst_addr; 2202 2203 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2204 while (byte_count) { 2205 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2206 max_bytes); 2207 2208 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2209 dst_addr, cur_size_in_bytes); 2210 2211 dst_addr += cur_size_in_bytes; 2212 byte_count -= cur_size_in_bytes; 2213 } 2214 2215 num_pages -= mm_node->size; 2216 ++mm_node; 2217 } 2218 2219 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2220 WARN_ON(job->ibs[0].length_dw > num_dw); 2221 r = amdgpu_job_submit(job, &adev->mman.entity, 2222 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2223 if (r) 2224 goto error_free; 2225 2226 return 0; 2227 2228 error_free: 2229 amdgpu_job_free(job); 2230 return r; 2231 } 2232 2233 #if defined(CONFIG_DEBUG_FS) 2234 2235 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2236 { 2237 struct drm_info_node *node = (struct drm_info_node *)m->private; 2238 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2239 struct drm_device *dev = node->minor->dev; 2240 struct amdgpu_device *adev = dev->dev_private; 2241 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2242 struct drm_printer p = drm_seq_file_printer(m); 2243 2244 man->func->debug(man, &p); 2245 return 0; 2246 } 2247 2248 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2249 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2250 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2251 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2252 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2253 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2254 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2255 #ifdef CONFIG_SWIOTLB 2256 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2257 #endif 2258 }; 2259 2260 /** 2261 * amdgpu_ttm_vram_read - Linear read access to VRAM 2262 * 2263 * Accesses VRAM via MMIO for debugging purposes. 2264 */ 2265 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2266 size_t size, loff_t *pos) 2267 { 2268 struct amdgpu_device *adev = file_inode(f)->i_private; 2269 ssize_t result = 0; 2270 int r; 2271 2272 if (size & 0x3 || *pos & 0x3) 2273 return -EINVAL; 2274 2275 if (*pos >= adev->gmc.mc_vram_size) 2276 return -ENXIO; 2277 2278 while (size) { 2279 unsigned long flags; 2280 uint32_t value; 2281 2282 if (*pos >= adev->gmc.mc_vram_size) 2283 return result; 2284 2285 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2286 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2287 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2288 value = RREG32_NO_KIQ(mmMM_DATA); 2289 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2290 2291 r = put_user(value, (uint32_t *)buf); 2292 if (r) 2293 return r; 2294 2295 result += 4; 2296 buf += 4; 2297 *pos += 4; 2298 size -= 4; 2299 } 2300 2301 return result; 2302 } 2303 2304 /** 2305 * amdgpu_ttm_vram_write - Linear write access to VRAM 2306 * 2307 * Accesses VRAM via MMIO for debugging purposes. 2308 */ 2309 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2310 size_t size, loff_t *pos) 2311 { 2312 struct amdgpu_device *adev = file_inode(f)->i_private; 2313 ssize_t result = 0; 2314 int r; 2315 2316 if (size & 0x3 || *pos & 0x3) 2317 return -EINVAL; 2318 2319 if (*pos >= adev->gmc.mc_vram_size) 2320 return -ENXIO; 2321 2322 while (size) { 2323 unsigned long flags; 2324 uint32_t value; 2325 2326 if (*pos >= adev->gmc.mc_vram_size) 2327 return result; 2328 2329 r = get_user(value, (uint32_t *)buf); 2330 if (r) 2331 return r; 2332 2333 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2334 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2335 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2336 WREG32_NO_KIQ(mmMM_DATA, value); 2337 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2338 2339 result += 4; 2340 buf += 4; 2341 *pos += 4; 2342 size -= 4; 2343 } 2344 2345 return result; 2346 } 2347 2348 static const struct file_operations amdgpu_ttm_vram_fops = { 2349 .owner = THIS_MODULE, 2350 .read = amdgpu_ttm_vram_read, 2351 .write = amdgpu_ttm_vram_write, 2352 .llseek = default_llseek, 2353 }; 2354 2355 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2356 2357 /** 2358 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2359 */ 2360 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2361 size_t size, loff_t *pos) 2362 { 2363 struct amdgpu_device *adev = file_inode(f)->i_private; 2364 ssize_t result = 0; 2365 int r; 2366 2367 while (size) { 2368 loff_t p = *pos / PAGE_SIZE; 2369 unsigned off = *pos & ~PAGE_MASK; 2370 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2371 struct page *page; 2372 void *ptr; 2373 2374 if (p >= adev->gart.num_cpu_pages) 2375 return result; 2376 2377 page = adev->gart.pages[p]; 2378 if (page) { 2379 ptr = kmap(page); 2380 ptr += off; 2381 2382 r = copy_to_user(buf, ptr, cur_size); 2383 kunmap(adev->gart.pages[p]); 2384 } else 2385 r = clear_user(buf, cur_size); 2386 2387 if (r) 2388 return -EFAULT; 2389 2390 result += cur_size; 2391 buf += cur_size; 2392 *pos += cur_size; 2393 size -= cur_size; 2394 } 2395 2396 return result; 2397 } 2398 2399 static const struct file_operations amdgpu_ttm_gtt_fops = { 2400 .owner = THIS_MODULE, 2401 .read = amdgpu_ttm_gtt_read, 2402 .llseek = default_llseek 2403 }; 2404 2405 #endif 2406 2407 /** 2408 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2409 * 2410 * This function is used to read memory that has been mapped to the 2411 * GPU and the known addresses are not physical addresses but instead 2412 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2413 */ 2414 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2415 size_t size, loff_t *pos) 2416 { 2417 struct amdgpu_device *adev = file_inode(f)->i_private; 2418 struct iommu_domain *dom; 2419 ssize_t result = 0; 2420 int r; 2421 2422 /* retrieve the IOMMU domain if any for this device */ 2423 dom = iommu_get_domain_for_dev(adev->dev); 2424 2425 while (size) { 2426 phys_addr_t addr = *pos & PAGE_MASK; 2427 loff_t off = *pos & ~PAGE_MASK; 2428 size_t bytes = PAGE_SIZE - off; 2429 unsigned long pfn; 2430 struct page *p; 2431 void *ptr; 2432 2433 bytes = bytes < size ? bytes : size; 2434 2435 /* Translate the bus address to a physical address. If 2436 * the domain is NULL it means there is no IOMMU active 2437 * and the address translation is the identity 2438 */ 2439 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2440 2441 pfn = addr >> PAGE_SHIFT; 2442 if (!pfn_valid(pfn)) 2443 return -EPERM; 2444 2445 p = pfn_to_page(pfn); 2446 if (p->mapping != adev->mman.bdev.dev_mapping) 2447 return -EPERM; 2448 2449 ptr = kmap(p); 2450 r = copy_to_user(buf, ptr + off, bytes); 2451 kunmap(p); 2452 if (r) 2453 return -EFAULT; 2454 2455 size -= bytes; 2456 *pos += bytes; 2457 result += bytes; 2458 } 2459 2460 return result; 2461 } 2462 2463 /** 2464 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2465 * 2466 * This function is used to write memory that has been mapped to the 2467 * GPU and the known addresses are not physical addresses but instead 2468 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2469 */ 2470 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2471 size_t size, loff_t *pos) 2472 { 2473 struct amdgpu_device *adev = file_inode(f)->i_private; 2474 struct iommu_domain *dom; 2475 ssize_t result = 0; 2476 int r; 2477 2478 dom = iommu_get_domain_for_dev(adev->dev); 2479 2480 while (size) { 2481 phys_addr_t addr = *pos & PAGE_MASK; 2482 loff_t off = *pos & ~PAGE_MASK; 2483 size_t bytes = PAGE_SIZE - off; 2484 unsigned long pfn; 2485 struct page *p; 2486 void *ptr; 2487 2488 bytes = bytes < size ? bytes : size; 2489 2490 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2491 2492 pfn = addr >> PAGE_SHIFT; 2493 if (!pfn_valid(pfn)) 2494 return -EPERM; 2495 2496 p = pfn_to_page(pfn); 2497 if (p->mapping != adev->mman.bdev.dev_mapping) 2498 return -EPERM; 2499 2500 ptr = kmap(p); 2501 r = copy_from_user(ptr + off, buf, bytes); 2502 kunmap(p); 2503 if (r) 2504 return -EFAULT; 2505 2506 size -= bytes; 2507 *pos += bytes; 2508 result += bytes; 2509 } 2510 2511 return result; 2512 } 2513 2514 static const struct file_operations amdgpu_ttm_iomem_fops = { 2515 .owner = THIS_MODULE, 2516 .read = amdgpu_iomem_read, 2517 .write = amdgpu_iomem_write, 2518 .llseek = default_llseek 2519 }; 2520 2521 static const struct { 2522 char *name; 2523 const struct file_operations *fops; 2524 int domain; 2525 } ttm_debugfs_entries[] = { 2526 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2527 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2528 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2529 #endif 2530 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2531 }; 2532 2533 #endif 2534 2535 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2536 { 2537 #if defined(CONFIG_DEBUG_FS) 2538 unsigned count; 2539 2540 struct drm_minor *minor = adev->ddev->primary; 2541 struct dentry *ent, *root = minor->debugfs_root; 2542 2543 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2544 ent = debugfs_create_file( 2545 ttm_debugfs_entries[count].name, 2546 S_IFREG | S_IRUGO, root, 2547 adev, 2548 ttm_debugfs_entries[count].fops); 2549 if (IS_ERR(ent)) 2550 return PTR_ERR(ent); 2551 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2552 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2553 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2554 i_size_write(ent->d_inode, adev->gmc.gart_size); 2555 adev->mman.debugfs_entries[count] = ent; 2556 } 2557 2558 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2559 2560 #ifdef CONFIG_SWIOTLB 2561 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2562 --count; 2563 #endif 2564 2565 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2566 #else 2567 return 0; 2568 #endif 2569 } 2570 2571 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2572 { 2573 #if defined(CONFIG_DEBUG_FS) 2574 unsigned i; 2575 2576 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2577 debugfs_remove(adev->mman.debugfs_entries[i]); 2578 #endif 2579 } 2580