1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		placement->num_busy_placement = 0;
106 		return;
107 	}
108 
109 	/* Object isn't an AMDGPU object so ignore */
110 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 		placement->placement = &placements;
112 		placement->busy_placement = &placements;
113 		placement->num_placement = 1;
114 		placement->num_busy_placement = 1;
115 		return;
116 	}
117 
118 	abo = ttm_to_amdgpu_bo(bo);
119 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 		placement->num_placement = 0;
121 		placement->num_busy_placement = 0;
122 		return;
123 	}
124 
125 	switch (bo->resource->mem_type) {
126 	case AMDGPU_PL_GDS:
127 	case AMDGPU_PL_GWS:
128 	case AMDGPU_PL_OA:
129 	case AMDGPU_PL_DOORBELL:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned int window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned int offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct amdgpu_job *job;
193 	void *cpu_addr;
194 	uint64_t flags;
195 	unsigned int i;
196 	int r;
197 
198 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200 
201 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 		return -EINVAL;
203 
204 	/* Map only what can't be accessed directly */
205 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 			mm_cur->start;
208 		return 0;
209 	}
210 
211 
212 	/*
213 	 * If start begins at an offset inside the page, then adjust the size
214 	 * and addr accordingly
215 	 */
216 	offset = mm_cur->start & ~PAGE_MASK;
217 
218 	num_pages = PFN_UP(*size + offset);
219 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220 
221 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222 
223 	*addr = adev->gmc.gart_start;
224 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 		AMDGPU_GPU_PAGE_SIZE;
226 	*addr += offset;
227 
228 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230 
231 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 				     AMDGPU_FENCE_OWNER_UNDEFINED,
233 				     num_dw * 4 + num_bytes,
234 				     AMDGPU_IB_POOL_DELAYED, &job);
235 	if (r)
236 		return r;
237 
238 	src_addr = num_dw * 4;
239 	src_addr += job->ibs[0].gpu_addr;
240 
241 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 				dst_addr, num_bytes, false);
245 
246 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 	WARN_ON(job->ibs[0].length_dw > num_dw);
248 
249 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 	if (tmz)
251 		flags |= AMDGPU_PTE_TMZ;
252 
253 	cpu_addr = &job->ibs[0].ptr[num_dw];
254 
255 	if (mem->mem_type == TTM_PL_TT) {
256 		dma_addr_t *dma_addr;
257 
258 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 	} else {
261 		dma_addr_t dma_address;
262 
263 		dma_address = mm_cur->start;
264 		dma_address += adev->vm_manager.vram_base_offset;
265 
266 		for (i = 0; i < num_pages; ++i) {
267 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 					flags, cpu_addr);
269 			dma_address += PAGE_SIZE;
270 		}
271 	}
272 
273 	dma_fence_put(amdgpu_job_submit(job));
274 	return 0;
275 }
276 
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 			       const struct amdgpu_copy_mem *src,
294 			       const struct amdgpu_copy_mem *dst,
295 			       uint64_t size, bool tmz,
296 			       struct dma_resv *resv,
297 			       struct dma_fence **f)
298 {
299 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 	struct amdgpu_res_cursor src_mm, dst_mm;
301 	struct dma_fence *fence = NULL;
302 	int r = 0;
303 
304 	if (!adev->mman.buffer_funcs_enabled) {
305 		DRM_ERROR("Trying to move memory with ring turned off.\n");
306 		return -EINVAL;
307 	}
308 
309 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311 
312 	mutex_lock(&adev->mman.gtt_window_lock);
313 	while (src_mm.remaining) {
314 		uint64_t from, to, cur_size;
315 		struct dma_fence *next;
316 
317 		/* Never copy more than 256MiB at once to avoid a timeout */
318 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319 
320 		/* Map src to window 0 and dst to window 1. */
321 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 					  0, ring, tmz, &cur_size, &from);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 					  1, ring, tmz, &cur_size, &to);
328 		if (r)
329 			goto error;
330 
331 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 				       resv, &next, false, true, tmz);
333 		if (r)
334 			goto error;
335 
336 		dma_fence_put(fence);
337 		fence = next;
338 
339 		amdgpu_res_next(&src_mm, cur_size);
340 		amdgpu_res_next(&dst_mm, cur_size);
341 	}
342 error:
343 	mutex_unlock(&adev->mman.gtt_window_lock);
344 	if (f)
345 		*f = dma_fence_get(fence);
346 	dma_fence_put(fence);
347 	return r;
348 }
349 
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 			    bool evict,
358 			    struct ttm_resource *new_mem,
359 			    struct ttm_resource *old_mem)
360 {
361 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 	struct amdgpu_copy_mem src, dst;
364 	struct dma_fence *fence = NULL;
365 	int r;
366 
367 	src.bo = bo;
368 	dst.bo = bo;
369 	src.mem = old_mem;
370 	dst.mem = new_mem;
371 	src.offset = 0;
372 	dst.offset = 0;
373 
374 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 				       new_mem->size,
376 				       amdgpu_bo_encrypted(abo),
377 				       bo->base.resv, &fence);
378 	if (r)
379 		goto error;
380 
381 	/* clear the space being freed */
382 	if (old_mem->mem_type == TTM_PL_VRAM &&
383 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 		struct dma_fence *wipe_fence = NULL;
385 
386 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 					false);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /*
412  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413  *
414  * Called by amdgpu_bo_move()
415  */
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 			       struct ttm_resource *mem)
418 {
419 	u64 mem_size = (u64)mem->size;
420 	struct amdgpu_res_cursor cursor;
421 	u64 end;
422 
423 	if (mem->mem_type == TTM_PL_SYSTEM ||
424 	    mem->mem_type == TTM_PL_TT)
425 		return true;
426 	if (mem->mem_type != TTM_PL_VRAM)
427 		return false;
428 
429 	amdgpu_res_first(mem, 0, mem_size, &cursor);
430 	end = cursor.start + cursor.size;
431 	while (cursor.remaining) {
432 		amdgpu_res_next(&cursor, cursor.size);
433 
434 		if (!cursor.remaining)
435 			break;
436 
437 		/* ttm_resource_ioremap only supports contiguous memory */
438 		if (end != cursor.start)
439 			return false;
440 
441 		end = cursor.start + cursor.size;
442 	}
443 
444 	return end <= adev->gmc.visible_vram_size;
445 }
446 
447 /*
448  * amdgpu_bo_move - Move a buffer object to a new memory location
449  *
450  * Called by ttm_bo_handle_move_mem()
451  */
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 			  struct ttm_operation_ctx *ctx,
454 			  struct ttm_resource *new_mem,
455 			  struct ttm_place *hop)
456 {
457 	struct amdgpu_device *adev;
458 	struct amdgpu_bo *abo;
459 	struct ttm_resource *old_mem = bo->resource;
460 	int r;
461 
462 	if (new_mem->mem_type == TTM_PL_TT ||
463 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465 		if (r)
466 			return r;
467 	}
468 
469 	abo = ttm_to_amdgpu_bo(bo);
470 	adev = amdgpu_ttm_adev(bo->bdev);
471 
472 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473 			 bo->ttm == NULL)) {
474 		ttm_bo_move_null(bo, new_mem);
475 		goto out;
476 	}
477 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 	    (new_mem->mem_type == TTM_PL_TT ||
479 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 		ttm_bo_move_null(bo, new_mem);
481 		goto out;
482 	}
483 	if ((old_mem->mem_type == TTM_PL_TT ||
484 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 	    new_mem->mem_type == TTM_PL_SYSTEM) {
486 		r = ttm_bo_wait_ctx(bo, ctx);
487 		if (r)
488 			return r;
489 
490 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491 		ttm_resource_free(bo, &bo->resource);
492 		ttm_bo_assign_mem(bo, new_mem);
493 		goto out;
494 	}
495 
496 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 	    old_mem->mem_type == AMDGPU_PL_GWS ||
498 	    old_mem->mem_type == AMDGPU_PL_OA ||
499 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
500 	    new_mem->mem_type == AMDGPU_PL_GDS ||
501 	    new_mem->mem_type == AMDGPU_PL_GWS ||
502 	    new_mem->mem_type == AMDGPU_PL_OA ||
503 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
504 		/* Nothing to save here */
505 		ttm_bo_move_null(bo, new_mem);
506 		goto out;
507 	}
508 
509 	if (bo->type == ttm_bo_type_device &&
510 	    new_mem->mem_type == TTM_PL_VRAM &&
511 	    old_mem->mem_type != TTM_PL_VRAM) {
512 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513 		 * accesses the BO after it's moved.
514 		 */
515 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 	}
517 
518 	if (adev->mman.buffer_funcs_enabled) {
519 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520 		      new_mem->mem_type == TTM_PL_VRAM) ||
521 		     (old_mem->mem_type == TTM_PL_VRAM &&
522 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
523 			hop->fpfn = 0;
524 			hop->lpfn = 0;
525 			hop->mem_type = TTM_PL_TT;
526 			hop->flags = TTM_PL_FLAG_TEMPORARY;
527 			return -EMULTIHOP;
528 		}
529 
530 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 	} else {
532 		r = -ENODEV;
533 	}
534 
535 	if (r) {
536 		/* Check that all memory is CPU accessible */
537 		if (!amdgpu_mem_visible(adev, old_mem) ||
538 		    !amdgpu_mem_visible(adev, new_mem)) {
539 			pr_err("Move buffer fallback to memcpy unavailable\n");
540 			return r;
541 		}
542 
543 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544 		if (r)
545 			return r;
546 	}
547 
548 out:
549 	/* update statistics */
550 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
551 	amdgpu_bo_move_notify(bo, evict, new_mem);
552 	return 0;
553 }
554 
555 /*
556  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
557  *
558  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
559  */
560 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
561 				     struct ttm_resource *mem)
562 {
563 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
564 	size_t bus_size = (size_t)mem->size;
565 
566 	switch (mem->mem_type) {
567 	case TTM_PL_SYSTEM:
568 		/* system memory */
569 		return 0;
570 	case TTM_PL_TT:
571 	case AMDGPU_PL_PREEMPT:
572 		break;
573 	case TTM_PL_VRAM:
574 		mem->bus.offset = mem->start << PAGE_SHIFT;
575 		/* check if it's visible */
576 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
577 			return -EINVAL;
578 
579 		if (adev->mman.aper_base_kaddr &&
580 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
581 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
582 					mem->bus.offset;
583 
584 		mem->bus.offset += adev->gmc.aper_base;
585 		mem->bus.is_iomem = true;
586 		break;
587 	case AMDGPU_PL_DOORBELL:
588 		mem->bus.offset = mem->start << PAGE_SHIFT;
589 		mem->bus.offset += adev->doorbell.base;
590 		mem->bus.is_iomem = true;
591 		mem->bus.caching = ttm_uncached;
592 		break;
593 	default:
594 		return -EINVAL;
595 	}
596 	return 0;
597 }
598 
599 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
600 					   unsigned long page_offset)
601 {
602 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
603 	struct amdgpu_res_cursor cursor;
604 
605 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
606 			 &cursor);
607 
608 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
609 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
610 
611 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
612 }
613 
614 /**
615  * amdgpu_ttm_domain_start - Returns GPU start address
616  * @adev: amdgpu device object
617  * @type: type of the memory
618  *
619  * Returns:
620  * GPU start address of a memory domain
621  */
622 
623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
624 {
625 	switch (type) {
626 	case TTM_PL_TT:
627 		return adev->gmc.gart_start;
628 	case TTM_PL_VRAM:
629 		return adev->gmc.vram_start;
630 	}
631 
632 	return 0;
633 }
634 
635 /*
636  * TTM backend functions.
637  */
638 struct amdgpu_ttm_tt {
639 	struct ttm_tt	ttm;
640 	struct drm_gem_object	*gobj;
641 	u64			offset;
642 	uint64_t		userptr;
643 	struct task_struct	*usertask;
644 	uint32_t		userflags;
645 	bool			bound;
646 	int32_t			pool_id;
647 };
648 
649 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
650 
651 #ifdef CONFIG_DRM_AMDGPU_USERPTR
652 /*
653  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
654  * memory and start HMM tracking CPU page table update
655  *
656  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
657  * once afterwards to stop HMM tracking
658  */
659 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
660 				 struct hmm_range **range)
661 {
662 	struct ttm_tt *ttm = bo->tbo.ttm;
663 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
664 	unsigned long start = gtt->userptr;
665 	struct vm_area_struct *vma;
666 	struct mm_struct *mm;
667 	bool readonly;
668 	int r = 0;
669 
670 	/* Make sure get_user_pages_done() can cleanup gracefully */
671 	*range = NULL;
672 
673 	mm = bo->notifier.mm;
674 	if (unlikely(!mm)) {
675 		DRM_DEBUG_DRIVER("BO is not registered?\n");
676 		return -EFAULT;
677 	}
678 
679 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
680 		return -ESRCH;
681 
682 	mmap_read_lock(mm);
683 	vma = vma_lookup(mm, start);
684 	if (unlikely(!vma)) {
685 		r = -EFAULT;
686 		goto out_unlock;
687 	}
688 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
689 		vma->vm_file)) {
690 		r = -EPERM;
691 		goto out_unlock;
692 	}
693 
694 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
695 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
696 				       readonly, NULL, pages, range);
697 out_unlock:
698 	mmap_read_unlock(mm);
699 	if (r)
700 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
701 
702 	mmput(mm);
703 
704 	return r;
705 }
706 
707 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
708  */
709 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
710 				      struct hmm_range *range)
711 {
712 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
713 
714 	if (gtt && gtt->userptr && range)
715 		amdgpu_hmm_range_get_pages_done(range);
716 }
717 
718 /*
719  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
720  * Check if the pages backing this ttm range have been invalidated
721  *
722  * Returns: true if pages are still valid
723  */
724 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
725 				       struct hmm_range *range)
726 {
727 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
728 
729 	if (!gtt || !gtt->userptr || !range)
730 		return false;
731 
732 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
733 		gtt->userptr, ttm->num_pages);
734 
735 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
736 
737 	return !amdgpu_hmm_range_get_pages_done(range);
738 }
739 #endif
740 
741 /*
742  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
743  *
744  * Called by amdgpu_cs_list_validate(). This creates the page list
745  * that backs user memory and will ultimately be mapped into the device
746  * address space.
747  */
748 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
749 {
750 	unsigned long i;
751 
752 	for (i = 0; i < ttm->num_pages; ++i)
753 		ttm->pages[i] = pages ? pages[i] : NULL;
754 }
755 
756 /*
757  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
758  *
759  * Called by amdgpu_ttm_backend_bind()
760  **/
761 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
762 				     struct ttm_tt *ttm)
763 {
764 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
765 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
766 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
767 	enum dma_data_direction direction = write ?
768 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
769 	int r;
770 
771 	/* Allocate an SG array and squash pages into it */
772 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
773 				      (u64)ttm->num_pages << PAGE_SHIFT,
774 				      GFP_KERNEL);
775 	if (r)
776 		goto release_sg;
777 
778 	/* Map SG to device */
779 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
780 	if (r)
781 		goto release_sg;
782 
783 	/* convert SG to linear array of pages and dma addresses */
784 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
785 				       ttm->num_pages);
786 
787 	return 0;
788 
789 release_sg:
790 	kfree(ttm->sg);
791 	ttm->sg = NULL;
792 	return r;
793 }
794 
795 /*
796  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
797  */
798 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
799 					struct ttm_tt *ttm)
800 {
801 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
802 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
803 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
804 	enum dma_data_direction direction = write ?
805 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
806 
807 	/* double check that we don't free the table twice */
808 	if (!ttm->sg || !ttm->sg->sgl)
809 		return;
810 
811 	/* unmap the pages mapped to the device */
812 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
813 	sg_free_table(ttm->sg);
814 }
815 
816 /*
817  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
818  * MQDn+CtrlStackn where n is the number of XCCs per partition.
819  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
820  * and uses memory type default, UC. The rest of pages_per_xcc are
821  * Ctrl stack and modify their memory type to NC.
822  */
823 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
824 				struct ttm_tt *ttm, uint64_t flags)
825 {
826 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
827 	uint64_t total_pages = ttm->num_pages;
828 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
829 	uint64_t page_idx, pages_per_xcc;
830 	int i;
831 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
832 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
833 
834 	pages_per_xcc = total_pages;
835 	do_div(pages_per_xcc, num_xcc);
836 
837 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
838 		/* MQD page: use default flags */
839 		amdgpu_gart_bind(adev,
840 				gtt->offset + (page_idx << PAGE_SHIFT),
841 				1, &gtt->ttm.dma_address[page_idx], flags);
842 		/*
843 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
844 		 * the second page of the BO onward.
845 		 */
846 		amdgpu_gart_bind(adev,
847 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
848 				pages_per_xcc - 1,
849 				&gtt->ttm.dma_address[page_idx + 1],
850 				ctrl_flags);
851 	}
852 }
853 
854 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
855 				 struct ttm_buffer_object *tbo,
856 				 uint64_t flags)
857 {
858 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
859 	struct ttm_tt *ttm = tbo->ttm;
860 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
861 
862 	if (amdgpu_bo_encrypted(abo))
863 		flags |= AMDGPU_PTE_TMZ;
864 
865 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
866 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
867 	} else {
868 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
869 				 gtt->ttm.dma_address, flags);
870 	}
871 }
872 
873 /*
874  * amdgpu_ttm_backend_bind - Bind GTT memory
875  *
876  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
877  * This handles binding GTT memory to the device address space.
878  */
879 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
880 				   struct ttm_tt *ttm,
881 				   struct ttm_resource *bo_mem)
882 {
883 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
884 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
885 	uint64_t flags;
886 	int r;
887 
888 	if (!bo_mem)
889 		return -EINVAL;
890 
891 	if (gtt->bound)
892 		return 0;
893 
894 	if (gtt->userptr) {
895 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
896 		if (r) {
897 			DRM_ERROR("failed to pin userptr\n");
898 			return r;
899 		}
900 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
901 		if (!ttm->sg) {
902 			struct dma_buf_attachment *attach;
903 			struct sg_table *sgt;
904 
905 			attach = gtt->gobj->import_attach;
906 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
907 			if (IS_ERR(sgt))
908 				return PTR_ERR(sgt);
909 
910 			ttm->sg = sgt;
911 		}
912 
913 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
914 					       ttm->num_pages);
915 	}
916 
917 	if (!ttm->num_pages) {
918 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
919 		     ttm->num_pages, bo_mem, ttm);
920 	}
921 
922 	if (bo_mem->mem_type != TTM_PL_TT ||
923 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
924 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
925 		return 0;
926 	}
927 
928 	/* compute PTE flags relevant to this BO memory */
929 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
930 
931 	/* bind pages into GART page tables */
932 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
933 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
934 			 gtt->ttm.dma_address, flags);
935 	gtt->bound = true;
936 	return 0;
937 }
938 
939 /*
940  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
941  * through AGP or GART aperture.
942  *
943  * If bo is accessible through AGP aperture, then use AGP aperture
944  * to access bo; otherwise allocate logical space in GART aperture
945  * and map bo to GART aperture.
946  */
947 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
948 {
949 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
950 	struct ttm_operation_ctx ctx = { false, false };
951 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
952 	struct ttm_placement placement;
953 	struct ttm_place placements;
954 	struct ttm_resource *tmp;
955 	uint64_t addr, flags;
956 	int r;
957 
958 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
959 		return 0;
960 
961 	addr = amdgpu_gmc_agp_addr(bo);
962 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
963 		bo->resource->start = addr >> PAGE_SHIFT;
964 		return 0;
965 	}
966 
967 	/* allocate GART space */
968 	placement.num_placement = 1;
969 	placement.placement = &placements;
970 	placement.num_busy_placement = 1;
971 	placement.busy_placement = &placements;
972 	placements.fpfn = 0;
973 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
974 	placements.mem_type = TTM_PL_TT;
975 	placements.flags = bo->resource->placement;
976 
977 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
978 	if (unlikely(r))
979 		return r;
980 
981 	/* compute PTE flags for this buffer object */
982 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
983 
984 	/* Bind pages */
985 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
986 	amdgpu_ttm_gart_bind(adev, bo, flags);
987 	amdgpu_gart_invalidate_tlb(adev);
988 	ttm_resource_free(bo, &bo->resource);
989 	ttm_bo_assign_mem(bo, tmp);
990 
991 	return 0;
992 }
993 
994 /*
995  * amdgpu_ttm_recover_gart - Rebind GTT pages
996  *
997  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
998  * rebind GTT pages during a GPU reset.
999  */
1000 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1001 {
1002 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1003 	uint64_t flags;
1004 
1005 	if (!tbo->ttm)
1006 		return;
1007 
1008 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1009 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1010 }
1011 
1012 /*
1013  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1014  *
1015  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1016  * ttm_tt_destroy().
1017  */
1018 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1019 				      struct ttm_tt *ttm)
1020 {
1021 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1022 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1023 
1024 	/* if the pages have userptr pinning then clear that first */
1025 	if (gtt->userptr) {
1026 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1027 	} else if (ttm->sg && gtt->gobj->import_attach) {
1028 		struct dma_buf_attachment *attach;
1029 
1030 		attach = gtt->gobj->import_attach;
1031 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1032 		ttm->sg = NULL;
1033 	}
1034 
1035 	if (!gtt->bound)
1036 		return;
1037 
1038 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1039 		return;
1040 
1041 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1042 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1043 	gtt->bound = false;
1044 }
1045 
1046 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1047 				       struct ttm_tt *ttm)
1048 {
1049 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1050 
1051 	if (gtt->usertask)
1052 		put_task_struct(gtt->usertask);
1053 
1054 	ttm_tt_fini(&gtt->ttm);
1055 	kfree(gtt);
1056 }
1057 
1058 /**
1059  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1060  *
1061  * @bo: The buffer object to create a GTT ttm_tt object around
1062  * @page_flags: Page flags to be added to the ttm_tt object
1063  *
1064  * Called by ttm_tt_create().
1065  */
1066 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1067 					   uint32_t page_flags)
1068 {
1069 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1070 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1071 	struct amdgpu_ttm_tt *gtt;
1072 	enum ttm_caching caching;
1073 
1074 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1075 	if (!gtt)
1076 		return NULL;
1077 
1078 	gtt->gobj = &bo->base;
1079 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1080 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1081 	else
1082 		gtt->pool_id = abo->xcp_id;
1083 
1084 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1085 		caching = ttm_write_combined;
1086 	else
1087 		caching = ttm_cached;
1088 
1089 	/* allocate space for the uninitialized page entries */
1090 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1091 		kfree(gtt);
1092 		return NULL;
1093 	}
1094 	return &gtt->ttm;
1095 }
1096 
1097 /*
1098  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1099  *
1100  * Map the pages of a ttm_tt object to an address space visible
1101  * to the underlying device.
1102  */
1103 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1104 				  struct ttm_tt *ttm,
1105 				  struct ttm_operation_ctx *ctx)
1106 {
1107 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1108 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1109 	struct ttm_pool *pool;
1110 	pgoff_t i;
1111 	int ret;
1112 
1113 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1114 	if (gtt->userptr) {
1115 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1116 		if (!ttm->sg)
1117 			return -ENOMEM;
1118 		return 0;
1119 	}
1120 
1121 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1122 		return 0;
1123 
1124 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1125 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1126 	else
1127 		pool = &adev->mman.bdev.pool;
1128 	ret = ttm_pool_alloc(pool, ttm, ctx);
1129 	if (ret)
1130 		return ret;
1131 
1132 	for (i = 0; i < ttm->num_pages; ++i)
1133 		ttm->pages[i]->mapping = bdev->dev_mapping;
1134 
1135 	return 0;
1136 }
1137 
1138 /*
1139  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1140  *
1141  * Unmaps pages of a ttm_tt object from the device address space and
1142  * unpopulates the page array backing it.
1143  */
1144 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1145 				     struct ttm_tt *ttm)
1146 {
1147 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1148 	struct amdgpu_device *adev;
1149 	struct ttm_pool *pool;
1150 	pgoff_t i;
1151 
1152 	amdgpu_ttm_backend_unbind(bdev, ttm);
1153 
1154 	if (gtt->userptr) {
1155 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1156 		kfree(ttm->sg);
1157 		ttm->sg = NULL;
1158 		return;
1159 	}
1160 
1161 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1162 		return;
1163 
1164 	for (i = 0; i < ttm->num_pages; ++i)
1165 		ttm->pages[i]->mapping = NULL;
1166 
1167 	adev = amdgpu_ttm_adev(bdev);
1168 
1169 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1170 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1171 	else
1172 		pool = &adev->mman.bdev.pool;
1173 
1174 	return ttm_pool_free(pool, ttm);
1175 }
1176 
1177 /**
1178  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1179  * task
1180  *
1181  * @tbo: The ttm_buffer_object that contains the userptr
1182  * @user_addr:  The returned value
1183  */
1184 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1185 			      uint64_t *user_addr)
1186 {
1187 	struct amdgpu_ttm_tt *gtt;
1188 
1189 	if (!tbo->ttm)
1190 		return -EINVAL;
1191 
1192 	gtt = (void *)tbo->ttm;
1193 	*user_addr = gtt->userptr;
1194 	return 0;
1195 }
1196 
1197 /**
1198  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1199  * task
1200  *
1201  * @bo: The ttm_buffer_object to bind this userptr to
1202  * @addr:  The address in the current tasks VM space to use
1203  * @flags: Requirements of userptr object.
1204  *
1205  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1206  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1207  * initialize GPU VM for a KFD process.
1208  */
1209 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1210 			      uint64_t addr, uint32_t flags)
1211 {
1212 	struct amdgpu_ttm_tt *gtt;
1213 
1214 	if (!bo->ttm) {
1215 		/* TODO: We want a separate TTM object type for userptrs */
1216 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1217 		if (bo->ttm == NULL)
1218 			return -ENOMEM;
1219 	}
1220 
1221 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1222 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1223 
1224 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1225 	gtt->userptr = addr;
1226 	gtt->userflags = flags;
1227 
1228 	if (gtt->usertask)
1229 		put_task_struct(gtt->usertask);
1230 	gtt->usertask = current->group_leader;
1231 	get_task_struct(gtt->usertask);
1232 
1233 	return 0;
1234 }
1235 
1236 /*
1237  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1238  */
1239 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1240 {
1241 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1242 
1243 	if (gtt == NULL)
1244 		return NULL;
1245 
1246 	if (gtt->usertask == NULL)
1247 		return NULL;
1248 
1249 	return gtt->usertask->mm;
1250 }
1251 
1252 /*
1253  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1254  * address range for the current task.
1255  *
1256  */
1257 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1258 				  unsigned long end, unsigned long *userptr)
1259 {
1260 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1261 	unsigned long size;
1262 
1263 	if (gtt == NULL || !gtt->userptr)
1264 		return false;
1265 
1266 	/* Return false if no part of the ttm_tt object lies within
1267 	 * the range
1268 	 */
1269 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1270 	if (gtt->userptr > end || gtt->userptr + size <= start)
1271 		return false;
1272 
1273 	if (userptr)
1274 		*userptr = gtt->userptr;
1275 	return true;
1276 }
1277 
1278 /*
1279  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1280  */
1281 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1282 {
1283 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1284 
1285 	if (gtt == NULL || !gtt->userptr)
1286 		return false;
1287 
1288 	return true;
1289 }
1290 
1291 /*
1292  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1293  */
1294 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1295 {
1296 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1297 
1298 	if (gtt == NULL)
1299 		return false;
1300 
1301 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1302 }
1303 
1304 /**
1305  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1306  *
1307  * @ttm: The ttm_tt object to compute the flags for
1308  * @mem: The memory registry backing this ttm_tt object
1309  *
1310  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1311  */
1312 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1313 {
1314 	uint64_t flags = 0;
1315 
1316 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1317 		flags |= AMDGPU_PTE_VALID;
1318 
1319 	if (mem && (mem->mem_type == TTM_PL_TT ||
1320 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1321 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1322 		flags |= AMDGPU_PTE_SYSTEM;
1323 
1324 		if (ttm->caching == ttm_cached)
1325 			flags |= AMDGPU_PTE_SNOOPED;
1326 	}
1327 
1328 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1329 			mem->bus.caching == ttm_cached)
1330 		flags |= AMDGPU_PTE_SNOOPED;
1331 
1332 	return flags;
1333 }
1334 
1335 /**
1336  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1337  *
1338  * @adev: amdgpu_device pointer
1339  * @ttm: The ttm_tt object to compute the flags for
1340  * @mem: The memory registry backing this ttm_tt object
1341  *
1342  * Figure out the flags to use for a VM PTE (Page Table Entry).
1343  */
1344 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1345 				 struct ttm_resource *mem)
1346 {
1347 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1348 
1349 	flags |= adev->gart.gart_pte_flags;
1350 	flags |= AMDGPU_PTE_READABLE;
1351 
1352 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1353 		flags |= AMDGPU_PTE_WRITEABLE;
1354 
1355 	return flags;
1356 }
1357 
1358 /*
1359  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1360  * object.
1361  *
1362  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1363  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1364  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1365  * used to clean out a memory space.
1366  */
1367 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1368 					    const struct ttm_place *place)
1369 {
1370 	struct dma_resv_iter resv_cursor;
1371 	struct dma_fence *f;
1372 
1373 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1374 		return ttm_bo_eviction_valuable(bo, place);
1375 
1376 	/* Swapout? */
1377 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1378 		return true;
1379 
1380 	if (bo->type == ttm_bo_type_kernel &&
1381 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1382 		return false;
1383 
1384 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1385 	 * If true, then return false as any KFD process needs all its BOs to
1386 	 * be resident to run successfully
1387 	 */
1388 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1389 				DMA_RESV_USAGE_BOOKKEEP, f) {
1390 		if (amdkfd_fence_check_mm(f, current->mm))
1391 			return false;
1392 	}
1393 
1394 	/* Preemptible BOs don't own system resources managed by the
1395 	 * driver (pages, VRAM, GART space). They point to resources
1396 	 * owned by someone else (e.g. pageable memory in user mode
1397 	 * or a DMABuf). They are used in a preemptible context so we
1398 	 * can guarantee no deadlocks and good QoS in case of MMU
1399 	 * notifiers or DMABuf move notifiers from the resource owner.
1400 	 */
1401 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1402 		return false;
1403 
1404 	if (bo->resource->mem_type == TTM_PL_TT &&
1405 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1406 		return false;
1407 
1408 	return ttm_bo_eviction_valuable(bo, place);
1409 }
1410 
1411 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1412 				      void *buf, size_t size, bool write)
1413 {
1414 	while (size) {
1415 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1416 		uint64_t bytes = 4 - (pos & 0x3);
1417 		uint32_t shift = (pos & 0x3) * 8;
1418 		uint32_t mask = 0xffffffff << shift;
1419 		uint32_t value = 0;
1420 
1421 		if (size < bytes) {
1422 			mask &= 0xffffffff >> (bytes - size) * 8;
1423 			bytes = size;
1424 		}
1425 
1426 		if (mask != 0xffffffff) {
1427 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1428 			if (write) {
1429 				value &= ~mask;
1430 				value |= (*(uint32_t *)buf << shift) & mask;
1431 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1432 			} else {
1433 				value = (value & mask) >> shift;
1434 				memcpy(buf, &value, bytes);
1435 			}
1436 		} else {
1437 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1438 		}
1439 
1440 		pos += bytes;
1441 		buf += bytes;
1442 		size -= bytes;
1443 	}
1444 }
1445 
1446 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1447 					unsigned long offset, void *buf,
1448 					int len, int write)
1449 {
1450 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1451 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1452 	struct amdgpu_res_cursor src_mm;
1453 	struct amdgpu_job *job;
1454 	struct dma_fence *fence;
1455 	uint64_t src_addr, dst_addr;
1456 	unsigned int num_dw;
1457 	int r, idx;
1458 
1459 	if (len != PAGE_SIZE)
1460 		return -EINVAL;
1461 
1462 	if (!adev->mman.sdma_access_ptr)
1463 		return -EACCES;
1464 
1465 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1466 		return -ENODEV;
1467 
1468 	if (write)
1469 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1470 
1471 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1472 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1473 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1474 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1475 				     &job);
1476 	if (r)
1477 		goto out;
1478 
1479 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1480 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1481 		src_mm.start;
1482 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1483 	if (write)
1484 		swap(src_addr, dst_addr);
1485 
1486 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1487 				PAGE_SIZE, false);
1488 
1489 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1490 	WARN_ON(job->ibs[0].length_dw > num_dw);
1491 
1492 	fence = amdgpu_job_submit(job);
1493 
1494 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1495 		r = -ETIMEDOUT;
1496 	dma_fence_put(fence);
1497 
1498 	if (!(r || write))
1499 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1500 out:
1501 	drm_dev_exit(idx);
1502 	return r;
1503 }
1504 
1505 /**
1506  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1507  *
1508  * @bo:  The buffer object to read/write
1509  * @offset:  Offset into buffer object
1510  * @buf:  Secondary buffer to write/read from
1511  * @len: Length in bytes of access
1512  * @write:  true if writing
1513  *
1514  * This is used to access VRAM that backs a buffer object via MMIO
1515  * access for debugging purposes.
1516  */
1517 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1518 				    unsigned long offset, void *buf, int len,
1519 				    int write)
1520 {
1521 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1522 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1523 	struct amdgpu_res_cursor cursor;
1524 	int ret = 0;
1525 
1526 	if (bo->resource->mem_type != TTM_PL_VRAM)
1527 		return -EIO;
1528 
1529 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1530 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1531 		return len;
1532 
1533 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1534 	while (cursor.remaining) {
1535 		size_t count, size = cursor.size;
1536 		loff_t pos = cursor.start;
1537 
1538 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1539 		size -= count;
1540 		if (size) {
1541 			/* using MM to access rest vram and handle un-aligned address */
1542 			pos += count;
1543 			buf += count;
1544 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1545 		}
1546 
1547 		ret += cursor.size;
1548 		buf += cursor.size;
1549 		amdgpu_res_next(&cursor, cursor.size);
1550 	}
1551 
1552 	return ret;
1553 }
1554 
1555 static void
1556 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1557 {
1558 	amdgpu_bo_move_notify(bo, false, NULL);
1559 }
1560 
1561 static struct ttm_device_funcs amdgpu_bo_driver = {
1562 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1563 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1564 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1565 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1566 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1567 	.evict_flags = &amdgpu_evict_flags,
1568 	.move = &amdgpu_bo_move,
1569 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1570 	.release_notify = &amdgpu_bo_release_notify,
1571 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1572 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1573 	.access_memory = &amdgpu_ttm_access_memory,
1574 };
1575 
1576 /*
1577  * Firmware Reservation functions
1578  */
1579 /**
1580  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1581  *
1582  * @adev: amdgpu_device pointer
1583  *
1584  * free fw reserved vram if it has been reserved.
1585  */
1586 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1587 {
1588 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1589 		NULL, &adev->mman.fw_vram_usage_va);
1590 }
1591 
1592 /*
1593  * Driver Reservation functions
1594  */
1595 /**
1596  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1597  *
1598  * @adev: amdgpu_device pointer
1599  *
1600  * free drv reserved vram if it has been reserved.
1601  */
1602 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1603 {
1604 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1605 						  NULL,
1606 						  &adev->mman.drv_vram_usage_va);
1607 }
1608 
1609 /**
1610  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1611  *
1612  * @adev: amdgpu_device pointer
1613  *
1614  * create bo vram reservation from fw.
1615  */
1616 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1617 {
1618 	uint64_t vram_size = adev->gmc.visible_vram_size;
1619 
1620 	adev->mman.fw_vram_usage_va = NULL;
1621 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1622 
1623 	if (adev->mman.fw_vram_usage_size == 0 ||
1624 	    adev->mman.fw_vram_usage_size > vram_size)
1625 		return 0;
1626 
1627 	return amdgpu_bo_create_kernel_at(adev,
1628 					  adev->mman.fw_vram_usage_start_offset,
1629 					  adev->mman.fw_vram_usage_size,
1630 					  &adev->mman.fw_vram_usage_reserved_bo,
1631 					  &adev->mman.fw_vram_usage_va);
1632 }
1633 
1634 /**
1635  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1636  *
1637  * @adev: amdgpu_device pointer
1638  *
1639  * create bo vram reservation from drv.
1640  */
1641 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1642 {
1643 	u64 vram_size = adev->gmc.visible_vram_size;
1644 
1645 	adev->mman.drv_vram_usage_va = NULL;
1646 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1647 
1648 	if (adev->mman.drv_vram_usage_size == 0 ||
1649 	    adev->mman.drv_vram_usage_size > vram_size)
1650 		return 0;
1651 
1652 	return amdgpu_bo_create_kernel_at(adev,
1653 					  adev->mman.drv_vram_usage_start_offset,
1654 					  adev->mman.drv_vram_usage_size,
1655 					  &adev->mman.drv_vram_usage_reserved_bo,
1656 					  &adev->mman.drv_vram_usage_va);
1657 }
1658 
1659 /*
1660  * Memoy training reservation functions
1661  */
1662 
1663 /**
1664  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1665  *
1666  * @adev: amdgpu_device pointer
1667  *
1668  * free memory training reserved vram if it has been reserved.
1669  */
1670 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1671 {
1672 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1673 
1674 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1675 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1676 	ctx->c2p_bo = NULL;
1677 
1678 	return 0;
1679 }
1680 
1681 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1682 						uint32_t reserve_size)
1683 {
1684 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1685 
1686 	memset(ctx, 0, sizeof(*ctx));
1687 
1688 	ctx->c2p_train_data_offset =
1689 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1690 	ctx->p2c_train_data_offset =
1691 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1692 	ctx->train_data_size =
1693 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1694 
1695 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1696 			ctx->train_data_size,
1697 			ctx->p2c_train_data_offset,
1698 			ctx->c2p_train_data_offset);
1699 }
1700 
1701 /*
1702  * reserve TMR memory at the top of VRAM which holds
1703  * IP Discovery data and is protected by PSP.
1704  */
1705 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1706 {
1707 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1708 	bool mem_train_support = false;
1709 	uint32_t reserve_size = 0;
1710 	int ret;
1711 
1712 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1713 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1714 			mem_train_support = true;
1715 		else
1716 			DRM_DEBUG("memory training does not support!\n");
1717 	}
1718 
1719 	/*
1720 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1721 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1722 	 *
1723 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1724 	 * discovery data and G6 memory training data respectively
1725 	 */
1726 	if (adev->bios)
1727 		reserve_size =
1728 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1729 
1730 	if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1731 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732 	else if (!reserve_size)
1733 		reserve_size = DISCOVERY_TMR_OFFSET;
1734 
1735 	if (mem_train_support) {
1736 		/* reserve vram for mem train according to TMR location */
1737 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738 		ret = amdgpu_bo_create_kernel_at(adev,
1739 						 ctx->c2p_train_data_offset,
1740 						 ctx->train_data_size,
1741 						 &ctx->c2p_bo,
1742 						 NULL);
1743 		if (ret) {
1744 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745 			amdgpu_ttm_training_reserve_vram_fini(adev);
1746 			return ret;
1747 		}
1748 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749 	}
1750 
1751 	if (!adev->gmc.is_app_apu) {
1752 		ret = amdgpu_bo_create_kernel_at(
1753 			adev, adev->gmc.real_vram_size - reserve_size,
1754 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755 		if (ret) {
1756 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758 					      NULL, NULL);
1759 			return ret;
1760 		}
1761 	} else {
1762 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769 {
1770 	int i;
1771 
1772 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773 		return 0;
1774 
1775 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776 				       sizeof(*adev->mman.ttm_pools),
1777 				       GFP_KERNEL);
1778 	if (!adev->mman.ttm_pools)
1779 		return -ENOMEM;
1780 
1781 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783 			      adev->gmc.mem_partitions[i].numa.node,
1784 			      false, false);
1785 	}
1786 	return 0;
1787 }
1788 
1789 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790 {
1791 	int i;
1792 
1793 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794 		return;
1795 
1796 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798 
1799 	kfree(adev->mman.ttm_pools);
1800 	adev->mman.ttm_pools = NULL;
1801 }
1802 
1803 /*
1804  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805  * gtt/vram related fields.
1806  *
1807  * This initializes all of the memory space pools that the TTM layer
1808  * will need such as the GTT space (system memory mapped to the device),
1809  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810  * can be mapped per VMID.
1811  */
1812 int amdgpu_ttm_init(struct amdgpu_device *adev)
1813 {
1814 	uint64_t gtt_size;
1815 	int r;
1816 
1817 	mutex_init(&adev->mman.gtt_window_lock);
1818 
1819 	/* No others user of address space so set it to 0 */
1820 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821 			       adev_to_drm(adev)->anon_inode->i_mapping,
1822 			       adev_to_drm(adev)->vma_offset_manager,
1823 			       adev->need_swiotlb,
1824 			       dma_addressing_limited(adev->dev));
1825 	if (r) {
1826 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827 		return r;
1828 	}
1829 
1830 	r = amdgpu_ttm_pools_init(adev);
1831 	if (r) {
1832 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833 		return r;
1834 	}
1835 	adev->mman.initialized = true;
1836 
1837 	/* Initialize VRAM pool with all of VRAM divided into pages */
1838 	r = amdgpu_vram_mgr_init(adev);
1839 	if (r) {
1840 		DRM_ERROR("Failed initializing VRAM heap.\n");
1841 		return r;
1842 	}
1843 
1844 	/* Change the size here instead of the init above so only lpfn is affected */
1845 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846 #ifdef CONFIG_64BIT
1847 #ifdef CONFIG_X86
1848 	if (adev->gmc.xgmi.connected_to_cpu)
1849 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850 				adev->gmc.visible_vram_size);
1851 
1852 	else if (adev->gmc.is_app_apu)
1853 		DRM_DEBUG_DRIVER(
1854 			"No need to ioremap when real vram size is 0\n");
1855 	else
1856 #endif
1857 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858 				adev->gmc.visible_vram_size);
1859 #endif
1860 
1861 	/*
1862 	 *The reserved vram for firmware must be pinned to the specified
1863 	 *place on the VRAM, so reserve it early.
1864 	 */
1865 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866 	if (r)
1867 		return r;
1868 
1869 	/*
1870 	 *The reserved vram for driver must be pinned to the specified
1871 	 *place on the VRAM, so reserve it early.
1872 	 */
1873 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874 	if (r)
1875 		return r;
1876 
1877 	/*
1878 	 * only NAVI10 and onwards ASIC support for IP discovery.
1879 	 * If IP discovery enabled, a block of memory should be
1880 	 * reserved for IP discovey.
1881 	 */
1882 	if (adev->mman.discovery_bin) {
1883 		r = amdgpu_ttm_reserve_tmr(adev);
1884 		if (r)
1885 			return r;
1886 	}
1887 
1888 	/* allocate memory as required for VGA
1889 	 * This is used for VGA emulation and pre-OS scanout buffers to
1890 	 * avoid display artifacts while transitioning between pre-OS
1891 	 * and driver.
1892 	 */
1893 	if (!adev->gmc.is_app_apu) {
1894 		r = amdgpu_bo_create_kernel_at(adev, 0,
1895 					       adev->mman.stolen_vga_size,
1896 					       &adev->mman.stolen_vga_memory,
1897 					       NULL);
1898 		if (r)
1899 			return r;
1900 
1901 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902 					       adev->mman.stolen_extended_size,
1903 					       &adev->mman.stolen_extended_memory,
1904 					       NULL);
1905 
1906 		if (r)
1907 			return r;
1908 
1909 		r = amdgpu_bo_create_kernel_at(adev,
1910 					       adev->mman.stolen_reserved_offset,
1911 					       adev->mman.stolen_reserved_size,
1912 					       &adev->mman.stolen_reserved_memory,
1913 					       NULL);
1914 		if (r)
1915 			return r;
1916 	} else {
1917 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918 	}
1919 
1920 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922 
1923 	/* Compute GTT size, either based on TTM limit
1924 	 * or whatever the user passed on module init.
1925 	 */
1926 	if (amdgpu_gtt_size == -1)
1927 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1928 	else
1929 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930 
1931 	/* Initialize GTT memory pool */
1932 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933 	if (r) {
1934 		DRM_ERROR("Failed initializing GTT heap.\n");
1935 		return r;
1936 	}
1937 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938 		 (unsigned int)(gtt_size / (1024 * 1024)));
1939 
1940 	/* Initiailize doorbell pool on PCI BAR */
1941 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942 	if (r) {
1943 		DRM_ERROR("Failed initializing doorbell heap.\n");
1944 		return r;
1945 	}
1946 
1947 	/* Create a boorbell page for kernel usages */
1948 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949 	if (r) {
1950 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951 		return r;
1952 	}
1953 
1954 	/* Initialize preemptible memory pool */
1955 	r = amdgpu_preempt_mgr_init(adev);
1956 	if (r) {
1957 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958 		return r;
1959 	}
1960 
1961 	/* Initialize various on-chip memory pools */
1962 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1963 	if (r) {
1964 		DRM_ERROR("Failed initializing GDS heap.\n");
1965 		return r;
1966 	}
1967 
1968 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1969 	if (r) {
1970 		DRM_ERROR("Failed initializing gws heap.\n");
1971 		return r;
1972 	}
1973 
1974 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1975 	if (r) {
1976 		DRM_ERROR("Failed initializing oa heap.\n");
1977 		return r;
1978 	}
1979 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980 				AMDGPU_GEM_DOMAIN_GTT,
1981 				&adev->mman.sdma_access_bo, NULL,
1982 				&adev->mman.sdma_access_ptr))
1983 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984 
1985 	return 0;
1986 }
1987 
1988 /*
1989  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990  */
1991 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992 {
1993 	int idx;
1994 
1995 	if (!adev->mman.initialized)
1996 		return;
1997 
1998 	amdgpu_ttm_pools_fini(adev);
1999 
2000 	amdgpu_ttm_training_reserve_vram_fini(adev);
2001 	/* return the stolen vga memory back to VRAM */
2002 	if (!adev->gmc.is_app_apu) {
2003 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005 		/* return the FW reserved memory back to VRAM */
2006 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007 				      NULL);
2008 		if (adev->mman.stolen_reserved_size)
2009 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010 					      NULL, NULL);
2011 	}
2012 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013 					&adev->mman.sdma_access_ptr);
2014 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2015 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2016 
2017 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018 
2019 		if (adev->mman.aper_base_kaddr)
2020 			iounmap(adev->mman.aper_base_kaddr);
2021 		adev->mman.aper_base_kaddr = NULL;
2022 
2023 		drm_dev_exit(idx);
2024 	}
2025 
2026 	amdgpu_vram_mgr_fini(adev);
2027 	amdgpu_gtt_mgr_fini(adev);
2028 	amdgpu_preempt_mgr_fini(adev);
2029 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032 	ttm_device_fini(&adev->mman.bdev);
2033 	adev->mman.initialized = false;
2034 	DRM_INFO("amdgpu: ttm finalized\n");
2035 }
2036 
2037 /**
2038  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039  *
2040  * @adev: amdgpu_device pointer
2041  * @enable: true when we can use buffer functions.
2042  *
2043  * Enable/disable use of buffer functions during suspend/resume. This should
2044  * only be called at bootup or when userspace isn't running.
2045  */
2046 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047 {
2048 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049 	uint64_t size;
2050 	int r;
2051 
2052 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054 		return;
2055 
2056 	if (enable) {
2057 		struct amdgpu_ring *ring;
2058 		struct drm_gpu_scheduler *sched;
2059 
2060 		ring = adev->mman.buffer_funcs_ring;
2061 		sched = &ring->sched;
2062 		r = drm_sched_entity_init(&adev->mman.high_pr,
2063 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2064 					  1, NULL);
2065 		if (r) {
2066 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067 				  r);
2068 			return;
2069 		}
2070 
2071 		r = drm_sched_entity_init(&adev->mman.low_pr,
2072 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2073 					  1, NULL);
2074 		if (r) {
2075 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076 				  r);
2077 			goto error_free_entity;
2078 		}
2079 	} else {
2080 		drm_sched_entity_destroy(&adev->mman.high_pr);
2081 		drm_sched_entity_destroy(&adev->mman.low_pr);
2082 		dma_fence_put(man->move);
2083 		man->move = NULL;
2084 	}
2085 
2086 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087 	if (enable)
2088 		size = adev->gmc.real_vram_size;
2089 	else
2090 		size = adev->gmc.visible_vram_size;
2091 	man->size = size;
2092 	adev->mman.buffer_funcs_enabled = enable;
2093 
2094 	return;
2095 
2096 error_free_entity:
2097 	drm_sched_entity_destroy(&adev->mman.high_pr);
2098 }
2099 
2100 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101 				  bool direct_submit,
2102 				  unsigned int num_dw,
2103 				  struct dma_resv *resv,
2104 				  bool vm_needs_flush,
2105 				  struct amdgpu_job **job,
2106 				  bool delayed)
2107 {
2108 	enum amdgpu_ib_pool_type pool = direct_submit ?
2109 		AMDGPU_IB_POOL_DIRECT :
2110 		AMDGPU_IB_POOL_DELAYED;
2111 	int r;
2112 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113 						    &adev->mman.high_pr;
2114 	r = amdgpu_job_alloc_with_ib(adev, entity,
2115 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2116 				     num_dw * 4, pool, job);
2117 	if (r)
2118 		return r;
2119 
2120 	if (vm_needs_flush) {
2121 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122 							adev->gmc.pdb0_bo :
2123 							adev->gart.bo);
2124 		(*job)->vm_needs_flush = true;
2125 	}
2126 	if (!resv)
2127 		return 0;
2128 
2129 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130 						   DMA_RESV_USAGE_BOOKKEEP);
2131 }
2132 
2133 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134 		       uint64_t dst_offset, uint32_t byte_count,
2135 		       struct dma_resv *resv,
2136 		       struct dma_fence **fence, bool direct_submit,
2137 		       bool vm_needs_flush, bool tmz)
2138 {
2139 	struct amdgpu_device *adev = ring->adev;
2140 	unsigned int num_loops, num_dw;
2141 	struct amdgpu_job *job;
2142 	uint32_t max_bytes;
2143 	unsigned int i;
2144 	int r;
2145 
2146 	if (!direct_submit && !ring->sched.ready) {
2147 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2148 		return -EINVAL;
2149 	}
2150 
2151 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155 				   resv, vm_needs_flush, &job, false);
2156 	if (r)
2157 		return r;
2158 
2159 	for (i = 0; i < num_loops; i++) {
2160 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161 
2162 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163 					dst_offset, cur_size_in_bytes, tmz);
2164 
2165 		src_offset += cur_size_in_bytes;
2166 		dst_offset += cur_size_in_bytes;
2167 		byte_count -= cur_size_in_bytes;
2168 	}
2169 
2170 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171 	WARN_ON(job->ibs[0].length_dw > num_dw);
2172 	if (direct_submit)
2173 		r = amdgpu_job_submit_direct(job, ring, fence);
2174 	else
2175 		*fence = amdgpu_job_submit(job);
2176 	if (r)
2177 		goto error_free;
2178 
2179 	return r;
2180 
2181 error_free:
2182 	amdgpu_job_free(job);
2183 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184 	return r;
2185 }
2186 
2187 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188 			       uint64_t dst_addr, uint32_t byte_count,
2189 			       struct dma_resv *resv,
2190 			       struct dma_fence **fence,
2191 			       bool vm_needs_flush, bool delayed)
2192 {
2193 	struct amdgpu_device *adev = ring->adev;
2194 	unsigned int num_loops, num_dw;
2195 	struct amdgpu_job *job;
2196 	uint32_t max_bytes;
2197 	unsigned int i;
2198 	int r;
2199 
2200 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204 				   &job, delayed);
2205 	if (r)
2206 		return r;
2207 
2208 	for (i = 0; i < num_loops; i++) {
2209 		uint32_t cur_size = min(byte_count, max_bytes);
2210 
2211 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212 					cur_size);
2213 
2214 		dst_addr += cur_size;
2215 		byte_count -= cur_size;
2216 	}
2217 
2218 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219 	WARN_ON(job->ibs[0].length_dw > num_dw);
2220 	*fence = amdgpu_job_submit(job);
2221 	return 0;
2222 }
2223 
2224 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225 			uint32_t src_data,
2226 			struct dma_resv *resv,
2227 			struct dma_fence **f,
2228 			bool delayed)
2229 {
2230 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2231 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232 	struct dma_fence *fence = NULL;
2233 	struct amdgpu_res_cursor dst;
2234 	int r;
2235 
2236 	if (!adev->mman.buffer_funcs_enabled) {
2237 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238 		return -EINVAL;
2239 	}
2240 
2241 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2242 
2243 	mutex_lock(&adev->mman.gtt_window_lock);
2244 	while (dst.remaining) {
2245 		struct dma_fence *next;
2246 		uint64_t cur_size, to;
2247 
2248 		/* Never fill more than 256MiB at once to avoid timeouts */
2249 		cur_size = min(dst.size, 256ULL << 20);
2250 
2251 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252 					  1, ring, false, &cur_size, &to);
2253 		if (r)
2254 			goto error;
2255 
2256 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257 					&next, true, delayed);
2258 		if (r)
2259 			goto error;
2260 
2261 		dma_fence_put(fence);
2262 		fence = next;
2263 
2264 		amdgpu_res_next(&dst, cur_size);
2265 	}
2266 error:
2267 	mutex_unlock(&adev->mman.gtt_window_lock);
2268 	if (f)
2269 		*f = dma_fence_get(fence);
2270 	dma_fence_put(fence);
2271 	return r;
2272 }
2273 
2274 /**
2275  * amdgpu_ttm_evict_resources - evict memory buffers
2276  * @adev: amdgpu device object
2277  * @mem_type: evicted BO's memory type
2278  *
2279  * Evicts all @mem_type buffers on the lru list of the memory type.
2280  *
2281  * Returns:
2282  * 0 for success or a negative error code on failure.
2283  */
2284 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285 {
2286 	struct ttm_resource_manager *man;
2287 
2288 	switch (mem_type) {
2289 	case TTM_PL_VRAM:
2290 	case TTM_PL_TT:
2291 	case AMDGPU_PL_GWS:
2292 	case AMDGPU_PL_GDS:
2293 	case AMDGPU_PL_OA:
2294 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295 		break;
2296 	default:
2297 		DRM_ERROR("Trying to evict invalid memory type\n");
2298 		return -EINVAL;
2299 	}
2300 
2301 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2302 }
2303 
2304 #if defined(CONFIG_DEBUG_FS)
2305 
2306 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307 {
2308 	struct amdgpu_device *adev = m->private;
2309 
2310 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2311 }
2312 
2313 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2314 
2315 /*
2316  * amdgpu_ttm_vram_read - Linear read access to VRAM
2317  *
2318  * Accesses VRAM via MMIO for debugging purposes.
2319  */
2320 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321 				    size_t size, loff_t *pos)
2322 {
2323 	struct amdgpu_device *adev = file_inode(f)->i_private;
2324 	ssize_t result = 0;
2325 
2326 	if (size & 0x3 || *pos & 0x3)
2327 		return -EINVAL;
2328 
2329 	if (*pos >= adev->gmc.mc_vram_size)
2330 		return -ENXIO;
2331 
2332 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333 	while (size) {
2334 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336 
2337 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338 		if (copy_to_user(buf, value, bytes))
2339 			return -EFAULT;
2340 
2341 		result += bytes;
2342 		buf += bytes;
2343 		*pos += bytes;
2344 		size -= bytes;
2345 	}
2346 
2347 	return result;
2348 }
2349 
2350 /*
2351  * amdgpu_ttm_vram_write - Linear write access to VRAM
2352  *
2353  * Accesses VRAM via MMIO for debugging purposes.
2354  */
2355 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356 				    size_t size, loff_t *pos)
2357 {
2358 	struct amdgpu_device *adev = file_inode(f)->i_private;
2359 	ssize_t result = 0;
2360 	int r;
2361 
2362 	if (size & 0x3 || *pos & 0x3)
2363 		return -EINVAL;
2364 
2365 	if (*pos >= adev->gmc.mc_vram_size)
2366 		return -ENXIO;
2367 
2368 	while (size) {
2369 		uint32_t value;
2370 
2371 		if (*pos >= adev->gmc.mc_vram_size)
2372 			return result;
2373 
2374 		r = get_user(value, (uint32_t *)buf);
2375 		if (r)
2376 			return r;
2377 
2378 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2379 
2380 		result += 4;
2381 		buf += 4;
2382 		*pos += 4;
2383 		size -= 4;
2384 	}
2385 
2386 	return result;
2387 }
2388 
2389 static const struct file_operations amdgpu_ttm_vram_fops = {
2390 	.owner = THIS_MODULE,
2391 	.read = amdgpu_ttm_vram_read,
2392 	.write = amdgpu_ttm_vram_write,
2393 	.llseek = default_llseek,
2394 };
2395 
2396 /*
2397  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398  *
2399  * This function is used to read memory that has been mapped to the
2400  * GPU and the known addresses are not physical addresses but instead
2401  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402  */
2403 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404 				 size_t size, loff_t *pos)
2405 {
2406 	struct amdgpu_device *adev = file_inode(f)->i_private;
2407 	struct iommu_domain *dom;
2408 	ssize_t result = 0;
2409 	int r;
2410 
2411 	/* retrieve the IOMMU domain if any for this device */
2412 	dom = iommu_get_domain_for_dev(adev->dev);
2413 
2414 	while (size) {
2415 		phys_addr_t addr = *pos & PAGE_MASK;
2416 		loff_t off = *pos & ~PAGE_MASK;
2417 		size_t bytes = PAGE_SIZE - off;
2418 		unsigned long pfn;
2419 		struct page *p;
2420 		void *ptr;
2421 
2422 		bytes = min(bytes, size);
2423 
2424 		/* Translate the bus address to a physical address.  If
2425 		 * the domain is NULL it means there is no IOMMU active
2426 		 * and the address translation is the identity
2427 		 */
2428 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429 
2430 		pfn = addr >> PAGE_SHIFT;
2431 		if (!pfn_valid(pfn))
2432 			return -EPERM;
2433 
2434 		p = pfn_to_page(pfn);
2435 		if (p->mapping != adev->mman.bdev.dev_mapping)
2436 			return -EPERM;
2437 
2438 		ptr = kmap_local_page(p);
2439 		r = copy_to_user(buf, ptr + off, bytes);
2440 		kunmap_local(ptr);
2441 		if (r)
2442 			return -EFAULT;
2443 
2444 		size -= bytes;
2445 		*pos += bytes;
2446 		result += bytes;
2447 	}
2448 
2449 	return result;
2450 }
2451 
2452 /*
2453  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454  *
2455  * This function is used to write memory that has been mapped to the
2456  * GPU and the known addresses are not physical addresses but instead
2457  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458  */
2459 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460 				 size_t size, loff_t *pos)
2461 {
2462 	struct amdgpu_device *adev = file_inode(f)->i_private;
2463 	struct iommu_domain *dom;
2464 	ssize_t result = 0;
2465 	int r;
2466 
2467 	dom = iommu_get_domain_for_dev(adev->dev);
2468 
2469 	while (size) {
2470 		phys_addr_t addr = *pos & PAGE_MASK;
2471 		loff_t off = *pos & ~PAGE_MASK;
2472 		size_t bytes = PAGE_SIZE - off;
2473 		unsigned long pfn;
2474 		struct page *p;
2475 		void *ptr;
2476 
2477 		bytes = min(bytes, size);
2478 
2479 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480 
2481 		pfn = addr >> PAGE_SHIFT;
2482 		if (!pfn_valid(pfn))
2483 			return -EPERM;
2484 
2485 		p = pfn_to_page(pfn);
2486 		if (p->mapping != adev->mman.bdev.dev_mapping)
2487 			return -EPERM;
2488 
2489 		ptr = kmap_local_page(p);
2490 		r = copy_from_user(ptr + off, buf, bytes);
2491 		kunmap_local(ptr);
2492 		if (r)
2493 			return -EFAULT;
2494 
2495 		size -= bytes;
2496 		*pos += bytes;
2497 		result += bytes;
2498 	}
2499 
2500 	return result;
2501 }
2502 
2503 static const struct file_operations amdgpu_ttm_iomem_fops = {
2504 	.owner = THIS_MODULE,
2505 	.read = amdgpu_iomem_read,
2506 	.write = amdgpu_iomem_write,
2507 	.llseek = default_llseek
2508 };
2509 
2510 #endif
2511 
2512 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513 {
2514 #if defined(CONFIG_DEBUG_FS)
2515 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2516 	struct dentry *root = minor->debugfs_root;
2517 
2518 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521 			    &amdgpu_ttm_iomem_fops);
2522 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523 			    &amdgpu_ttm_page_pool_fops);
2524 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525 							     TTM_PL_VRAM),
2526 					    root, "amdgpu_vram_mm");
2527 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528 							     TTM_PL_TT),
2529 					    root, "amdgpu_gtt_mm");
2530 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531 							     AMDGPU_PL_GDS),
2532 					    root, "amdgpu_gds_mm");
2533 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534 							     AMDGPU_PL_GWS),
2535 					    root, "amdgpu_gws_mm");
2536 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537 							     AMDGPU_PL_OA),
2538 					    root, "amdgpu_oa_mm");
2539 
2540 #endif
2541 }
2542