1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_module.h> 50 #include <drm/ttm/ttm_page_alloc.h> 51 52 #include <drm/drm_debugfs.h> 53 #include <drm/amdgpu_drm.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "bif/bif_4_1_d.h" 62 63 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 64 65 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 66 struct ttm_mem_reg *mem, unsigned num_pages, 67 uint64_t offset, unsigned window, 68 struct amdgpu_ring *ring, 69 uint64_t *addr); 70 71 /** 72 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 73 * memory request. 74 * 75 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 76 * @type: The type of memory requested 77 * @man: The memory type manager for each domain 78 * 79 * This is called by ttm_bo_init_mm() when a buffer object is being 80 * initialized. 81 */ 82 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 83 struct ttm_mem_type_manager *man) 84 { 85 struct amdgpu_device *adev; 86 87 adev = amdgpu_ttm_adev(bdev); 88 89 switch (type) { 90 case TTM_PL_SYSTEM: 91 /* System memory */ 92 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 93 man->available_caching = TTM_PL_MASK_CACHING; 94 man->default_caching = TTM_PL_FLAG_CACHED; 95 break; 96 case TTM_PL_TT: 97 /* GTT memory */ 98 man->func = &amdgpu_gtt_mgr_func; 99 man->gpu_offset = adev->gmc.gart_start; 100 man->available_caching = TTM_PL_MASK_CACHING; 101 man->default_caching = TTM_PL_FLAG_CACHED; 102 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 103 break; 104 case TTM_PL_VRAM: 105 /* "On-card" video ram */ 106 man->func = &amdgpu_vram_mgr_func; 107 man->gpu_offset = adev->gmc.vram_start; 108 man->flags = TTM_MEMTYPE_FLAG_FIXED | 109 TTM_MEMTYPE_FLAG_MAPPABLE; 110 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 111 man->default_caching = TTM_PL_FLAG_WC; 112 break; 113 case AMDGPU_PL_GDS: 114 case AMDGPU_PL_GWS: 115 case AMDGPU_PL_OA: 116 /* On-chip GDS memory*/ 117 man->func = &ttm_bo_manager_func; 118 man->gpu_offset = 0; 119 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 120 man->available_caching = TTM_PL_FLAG_UNCACHED; 121 man->default_caching = TTM_PL_FLAG_UNCACHED; 122 break; 123 default: 124 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 125 return -EINVAL; 126 } 127 return 0; 128 } 129 130 /** 131 * amdgpu_evict_flags - Compute placement flags 132 * 133 * @bo: The buffer object to evict 134 * @placement: Possible destination(s) for evicted BO 135 * 136 * Fill in placement data when ttm_bo_evict() is called 137 */ 138 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 139 struct ttm_placement *placement) 140 { 141 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 142 struct amdgpu_bo *abo; 143 static const struct ttm_place placements = { 144 .fpfn = 0, 145 .lpfn = 0, 146 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 147 }; 148 149 /* Don't handle scatter gather BOs */ 150 if (bo->type == ttm_bo_type_sg) { 151 placement->num_placement = 0; 152 placement->num_busy_placement = 0; 153 return; 154 } 155 156 /* Object isn't an AMDGPU object so ignore */ 157 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 158 placement->placement = &placements; 159 placement->busy_placement = &placements; 160 placement->num_placement = 1; 161 placement->num_busy_placement = 1; 162 return; 163 } 164 165 abo = ttm_to_amdgpu_bo(bo); 166 switch (bo->mem.mem_type) { 167 case AMDGPU_PL_GDS: 168 case AMDGPU_PL_GWS: 169 case AMDGPU_PL_OA: 170 placement->num_placement = 0; 171 placement->num_busy_placement = 0; 172 return; 173 174 case TTM_PL_VRAM: 175 if (!adev->mman.buffer_funcs_enabled) { 176 /* Move to system memory */ 177 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 178 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 179 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 180 amdgpu_bo_in_cpu_visible_vram(abo)) { 181 182 /* Try evicting to the CPU inaccessible part of VRAM 183 * first, but only set GTT as busy placement, so this 184 * BO will be evicted to GTT rather than causing other 185 * BOs to be evicted from VRAM 186 */ 187 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 188 AMDGPU_GEM_DOMAIN_GTT); 189 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 190 abo->placements[0].lpfn = 0; 191 abo->placement.busy_placement = &abo->placements[1]; 192 abo->placement.num_busy_placement = 1; 193 } else { 194 /* Move to GTT memory */ 195 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 196 } 197 break; 198 case TTM_PL_TT: 199 default: 200 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 201 break; 202 } 203 *placement = abo->placement; 204 } 205 206 /** 207 * amdgpu_verify_access - Verify access for a mmap call 208 * 209 * @bo: The buffer object to map 210 * @filp: The file pointer from the process performing the mmap 211 * 212 * This is called by ttm_bo_mmap() to verify whether a process 213 * has the right to mmap a BO to their process space. 214 */ 215 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 216 { 217 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 218 219 /* 220 * Don't verify access for KFD BOs. They don't have a GEM 221 * object associated with them. 222 */ 223 if (abo->kfd_bo) 224 return 0; 225 226 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 227 return -EPERM; 228 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 229 filp->private_data); 230 } 231 232 /** 233 * amdgpu_move_null - Register memory for a buffer object 234 * 235 * @bo: The bo to assign the memory to 236 * @new_mem: The memory to be assigned. 237 * 238 * Assign the memory from new_mem to the memory of the buffer object bo. 239 */ 240 static void amdgpu_move_null(struct ttm_buffer_object *bo, 241 struct ttm_mem_reg *new_mem) 242 { 243 struct ttm_mem_reg *old_mem = &bo->mem; 244 245 BUG_ON(old_mem->mm_node != NULL); 246 *old_mem = *new_mem; 247 new_mem->mm_node = NULL; 248 } 249 250 /** 251 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 252 * 253 * @bo: The bo to assign the memory to. 254 * @mm_node: Memory manager node for drm allocator. 255 * @mem: The region where the bo resides. 256 * 257 */ 258 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 259 struct drm_mm_node *mm_node, 260 struct ttm_mem_reg *mem) 261 { 262 uint64_t addr = 0; 263 264 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 265 addr = mm_node->start << PAGE_SHIFT; 266 addr += bo->bdev->man[mem->mem_type].gpu_offset; 267 } 268 return addr; 269 } 270 271 /** 272 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 273 * @offset. It also modifies the offset to be within the drm_mm_node returned 274 * 275 * @mem: The region where the bo resides. 276 * @offset: The offset that drm_mm_node is used for finding. 277 * 278 */ 279 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 280 unsigned long *offset) 281 { 282 struct drm_mm_node *mm_node = mem->mm_node; 283 284 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 285 *offset -= (mm_node->size << PAGE_SHIFT); 286 ++mm_node; 287 } 288 return mm_node; 289 } 290 291 /** 292 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 293 * 294 * The function copies @size bytes from {src->mem + src->offset} to 295 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 296 * move and different for a BO to BO copy. 297 * 298 * @f: Returns the last fence if multiple jobs are submitted. 299 */ 300 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 301 struct amdgpu_copy_mem *src, 302 struct amdgpu_copy_mem *dst, 303 uint64_t size, 304 struct dma_resv *resv, 305 struct dma_fence **f) 306 { 307 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 308 struct drm_mm_node *src_mm, *dst_mm; 309 uint64_t src_node_start, dst_node_start, src_node_size, 310 dst_node_size, src_page_offset, dst_page_offset; 311 struct dma_fence *fence = NULL; 312 int r = 0; 313 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 314 AMDGPU_GPU_PAGE_SIZE); 315 316 if (!adev->mman.buffer_funcs_enabled) { 317 DRM_ERROR("Trying to move memory with ring turned off.\n"); 318 return -EINVAL; 319 } 320 321 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 322 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 323 src->offset; 324 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 325 src_page_offset = src_node_start & (PAGE_SIZE - 1); 326 327 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 328 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 329 dst->offset; 330 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 331 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 332 333 mutex_lock(&adev->mman.gtt_window_lock); 334 335 while (size) { 336 unsigned long cur_size; 337 uint64_t from = src_node_start, to = dst_node_start; 338 struct dma_fence *next; 339 340 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 341 * begins at an offset, then adjust the size accordingly 342 */ 343 cur_size = min3(min(src_node_size, dst_node_size), size, 344 GTT_MAX_BYTES); 345 if (cur_size + src_page_offset > GTT_MAX_BYTES || 346 cur_size + dst_page_offset > GTT_MAX_BYTES) 347 cur_size -= max(src_page_offset, dst_page_offset); 348 349 /* Map only what needs to be accessed. Map src to window 0 and 350 * dst to window 1 351 */ 352 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 353 r = amdgpu_map_buffer(src->bo, src->mem, 354 PFN_UP(cur_size + src_page_offset), 355 src_node_start, 0, ring, 356 &from); 357 if (r) 358 goto error; 359 /* Adjust the offset because amdgpu_map_buffer returns 360 * start of mapped page 361 */ 362 from += src_page_offset; 363 } 364 365 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 366 r = amdgpu_map_buffer(dst->bo, dst->mem, 367 PFN_UP(cur_size + dst_page_offset), 368 dst_node_start, 1, ring, 369 &to); 370 if (r) 371 goto error; 372 to += dst_page_offset; 373 } 374 375 r = amdgpu_copy_buffer(ring, from, to, cur_size, 376 resv, &next, false, true); 377 if (r) 378 goto error; 379 380 dma_fence_put(fence); 381 fence = next; 382 383 size -= cur_size; 384 if (!size) 385 break; 386 387 src_node_size -= cur_size; 388 if (!src_node_size) { 389 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 390 src->mem); 391 src_node_size = (src_mm->size << PAGE_SHIFT); 392 src_page_offset = 0; 393 } else { 394 src_node_start += cur_size; 395 src_page_offset = src_node_start & (PAGE_SIZE - 1); 396 } 397 dst_node_size -= cur_size; 398 if (!dst_node_size) { 399 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 400 dst->mem); 401 dst_node_size = (dst_mm->size << PAGE_SHIFT); 402 dst_page_offset = 0; 403 } else { 404 dst_node_start += cur_size; 405 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 406 } 407 } 408 error: 409 mutex_unlock(&adev->mman.gtt_window_lock); 410 if (f) 411 *f = dma_fence_get(fence); 412 dma_fence_put(fence); 413 return r; 414 } 415 416 /** 417 * amdgpu_move_blit - Copy an entire buffer to another buffer 418 * 419 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 420 * help move buffers to and from VRAM. 421 */ 422 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 423 bool evict, bool no_wait_gpu, 424 struct ttm_mem_reg *new_mem, 425 struct ttm_mem_reg *old_mem) 426 { 427 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 428 struct amdgpu_copy_mem src, dst; 429 struct dma_fence *fence = NULL; 430 int r; 431 432 src.bo = bo; 433 dst.bo = bo; 434 src.mem = old_mem; 435 dst.mem = new_mem; 436 src.offset = 0; 437 dst.offset = 0; 438 439 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 440 new_mem->num_pages << PAGE_SHIFT, 441 bo->base.resv, &fence); 442 if (r) 443 goto error; 444 445 /* clear the space being freed */ 446 if (old_mem->mem_type == TTM_PL_VRAM && 447 (ttm_to_amdgpu_bo(bo)->flags & 448 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 449 struct dma_fence *wipe_fence = NULL; 450 451 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 452 NULL, &wipe_fence); 453 if (r) { 454 goto error; 455 } else if (wipe_fence) { 456 dma_fence_put(fence); 457 fence = wipe_fence; 458 } 459 } 460 461 /* Always block for VM page tables before committing the new location */ 462 if (bo->type == ttm_bo_type_kernel) 463 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 464 else 465 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 466 dma_fence_put(fence); 467 return r; 468 469 error: 470 if (fence) 471 dma_fence_wait(fence, false); 472 dma_fence_put(fence); 473 return r; 474 } 475 476 /** 477 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 478 * 479 * Called by amdgpu_bo_move(). 480 */ 481 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 482 struct ttm_operation_ctx *ctx, 483 struct ttm_mem_reg *new_mem) 484 { 485 struct ttm_mem_reg *old_mem = &bo->mem; 486 struct ttm_mem_reg tmp_mem; 487 struct ttm_place placements; 488 struct ttm_placement placement; 489 int r; 490 491 /* create space/pages for new_mem in GTT space */ 492 tmp_mem = *new_mem; 493 tmp_mem.mm_node = NULL; 494 placement.num_placement = 1; 495 placement.placement = &placements; 496 placement.num_busy_placement = 1; 497 placement.busy_placement = &placements; 498 placements.fpfn = 0; 499 placements.lpfn = 0; 500 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 501 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 502 if (unlikely(r)) { 503 pr_err("Failed to find GTT space for blit from VRAM\n"); 504 return r; 505 } 506 507 /* set caching flags */ 508 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 509 if (unlikely(r)) { 510 goto out_cleanup; 511 } 512 513 /* Bind the memory to the GTT space */ 514 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 515 if (unlikely(r)) { 516 goto out_cleanup; 517 } 518 519 /* blit VRAM to GTT */ 520 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 521 if (unlikely(r)) { 522 goto out_cleanup; 523 } 524 525 /* move BO (in tmp_mem) to new_mem */ 526 r = ttm_bo_move_ttm(bo, ctx, new_mem); 527 out_cleanup: 528 ttm_bo_mem_put(bo, &tmp_mem); 529 return r; 530 } 531 532 /** 533 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 534 * 535 * Called by amdgpu_bo_move(). 536 */ 537 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 538 struct ttm_operation_ctx *ctx, 539 struct ttm_mem_reg *new_mem) 540 { 541 struct ttm_mem_reg *old_mem = &bo->mem; 542 struct ttm_mem_reg tmp_mem; 543 struct ttm_placement placement; 544 struct ttm_place placements; 545 int r; 546 547 /* make space in GTT for old_mem buffer */ 548 tmp_mem = *new_mem; 549 tmp_mem.mm_node = NULL; 550 placement.num_placement = 1; 551 placement.placement = &placements; 552 placement.num_busy_placement = 1; 553 placement.busy_placement = &placements; 554 placements.fpfn = 0; 555 placements.lpfn = 0; 556 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 557 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 558 if (unlikely(r)) { 559 pr_err("Failed to find GTT space for blit to VRAM\n"); 560 return r; 561 } 562 563 /* move/bind old memory to GTT space */ 564 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 565 if (unlikely(r)) { 566 goto out_cleanup; 567 } 568 569 /* copy to VRAM */ 570 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 571 if (unlikely(r)) { 572 goto out_cleanup; 573 } 574 out_cleanup: 575 ttm_bo_mem_put(bo, &tmp_mem); 576 return r; 577 } 578 579 /** 580 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 581 * 582 * Called by amdgpu_bo_move() 583 */ 584 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 585 struct ttm_mem_reg *mem) 586 { 587 struct drm_mm_node *nodes = mem->mm_node; 588 589 if (mem->mem_type == TTM_PL_SYSTEM || 590 mem->mem_type == TTM_PL_TT) 591 return true; 592 if (mem->mem_type != TTM_PL_VRAM) 593 return false; 594 595 /* ttm_mem_reg_ioremap only supports contiguous memory */ 596 if (nodes->size != mem->num_pages) 597 return false; 598 599 return ((nodes->start + nodes->size) << PAGE_SHIFT) 600 <= adev->gmc.visible_vram_size; 601 } 602 603 /** 604 * amdgpu_bo_move - Move a buffer object to a new memory location 605 * 606 * Called by ttm_bo_handle_move_mem() 607 */ 608 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 609 struct ttm_operation_ctx *ctx, 610 struct ttm_mem_reg *new_mem) 611 { 612 struct amdgpu_device *adev; 613 struct amdgpu_bo *abo; 614 struct ttm_mem_reg *old_mem = &bo->mem; 615 int r; 616 617 /* Can't move a pinned BO */ 618 abo = ttm_to_amdgpu_bo(bo); 619 if (WARN_ON_ONCE(abo->pin_count > 0)) 620 return -EINVAL; 621 622 adev = amdgpu_ttm_adev(bo->bdev); 623 624 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 625 amdgpu_move_null(bo, new_mem); 626 return 0; 627 } 628 if ((old_mem->mem_type == TTM_PL_TT && 629 new_mem->mem_type == TTM_PL_SYSTEM) || 630 (old_mem->mem_type == TTM_PL_SYSTEM && 631 new_mem->mem_type == TTM_PL_TT)) { 632 /* bind is enough */ 633 amdgpu_move_null(bo, new_mem); 634 return 0; 635 } 636 if (old_mem->mem_type == AMDGPU_PL_GDS || 637 old_mem->mem_type == AMDGPU_PL_GWS || 638 old_mem->mem_type == AMDGPU_PL_OA || 639 new_mem->mem_type == AMDGPU_PL_GDS || 640 new_mem->mem_type == AMDGPU_PL_GWS || 641 new_mem->mem_type == AMDGPU_PL_OA) { 642 /* Nothing to save here */ 643 amdgpu_move_null(bo, new_mem); 644 return 0; 645 } 646 647 if (!adev->mman.buffer_funcs_enabled) { 648 r = -ENODEV; 649 goto memcpy; 650 } 651 652 if (old_mem->mem_type == TTM_PL_VRAM && 653 new_mem->mem_type == TTM_PL_SYSTEM) { 654 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 655 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 656 new_mem->mem_type == TTM_PL_VRAM) { 657 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 658 } else { 659 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 660 new_mem, old_mem); 661 } 662 663 if (r) { 664 memcpy: 665 /* Check that all memory is CPU accessible */ 666 if (!amdgpu_mem_visible(adev, old_mem) || 667 !amdgpu_mem_visible(adev, new_mem)) { 668 pr_err("Move buffer fallback to memcpy unavailable\n"); 669 return r; 670 } 671 672 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 673 if (r) 674 return r; 675 } 676 677 if (bo->type == ttm_bo_type_device && 678 new_mem->mem_type == TTM_PL_VRAM && 679 old_mem->mem_type != TTM_PL_VRAM) { 680 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 681 * accesses the BO after it's moved. 682 */ 683 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 684 } 685 686 /* update statistics */ 687 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 688 return 0; 689 } 690 691 /** 692 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 693 * 694 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 695 */ 696 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 697 { 698 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 699 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 700 struct drm_mm_node *mm_node = mem->mm_node; 701 702 mem->bus.addr = NULL; 703 mem->bus.offset = 0; 704 mem->bus.size = mem->num_pages << PAGE_SHIFT; 705 mem->bus.base = 0; 706 mem->bus.is_iomem = false; 707 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 708 return -EINVAL; 709 switch (mem->mem_type) { 710 case TTM_PL_SYSTEM: 711 /* system memory */ 712 return 0; 713 case TTM_PL_TT: 714 break; 715 case TTM_PL_VRAM: 716 mem->bus.offset = mem->start << PAGE_SHIFT; 717 /* check if it's visible */ 718 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 719 return -EINVAL; 720 /* Only physically contiguous buffers apply. In a contiguous 721 * buffer, size of the first mm_node would match the number of 722 * pages in ttm_mem_reg. 723 */ 724 if (adev->mman.aper_base_kaddr && 725 (mm_node->size == mem->num_pages)) 726 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 727 mem->bus.offset; 728 729 mem->bus.base = adev->gmc.aper_base; 730 mem->bus.is_iomem = true; 731 break; 732 default: 733 return -EINVAL; 734 } 735 return 0; 736 } 737 738 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 739 { 740 } 741 742 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 743 unsigned long page_offset) 744 { 745 struct drm_mm_node *mm; 746 unsigned long offset = (page_offset << PAGE_SHIFT); 747 748 mm = amdgpu_find_mm_node(&bo->mem, &offset); 749 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 750 (offset >> PAGE_SHIFT); 751 } 752 753 /* 754 * TTM backend functions. 755 */ 756 struct amdgpu_ttm_tt { 757 struct ttm_dma_tt ttm; 758 struct drm_gem_object *gobj; 759 u64 offset; 760 uint64_t userptr; 761 struct task_struct *usertask; 762 uint32_t userflags; 763 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 764 struct hmm_range *range; 765 #endif 766 }; 767 768 #ifdef CONFIG_DRM_AMDGPU_USERPTR 769 /* flags used by HMM internal, not related to CPU/GPU PTE flags */ 770 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = { 771 (1 << 0), /* HMM_PFN_VALID */ 772 (1 << 1), /* HMM_PFN_WRITE */ 773 }; 774 775 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = { 776 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */ 777 0, /* HMM_PFN_NONE */ 778 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */ 779 }; 780 781 /** 782 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 783 * memory and start HMM tracking CPU page table update 784 * 785 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 786 * once afterwards to stop HMM tracking 787 */ 788 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 789 { 790 struct ttm_tt *ttm = bo->tbo.ttm; 791 struct amdgpu_ttm_tt *gtt = (void *)ttm; 792 unsigned long start = gtt->userptr; 793 struct vm_area_struct *vma; 794 struct hmm_range *range; 795 unsigned long timeout; 796 struct mm_struct *mm; 797 unsigned long i; 798 int r = 0; 799 800 mm = bo->notifier.mm; 801 if (unlikely(!mm)) { 802 DRM_DEBUG_DRIVER("BO is not registered?\n"); 803 return -EFAULT; 804 } 805 806 /* Another get_user_pages is running at the same time?? */ 807 if (WARN_ON(gtt->range)) 808 return -EFAULT; 809 810 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 811 return -ESRCH; 812 813 range = kzalloc(sizeof(*range), GFP_KERNEL); 814 if (unlikely(!range)) { 815 r = -ENOMEM; 816 goto out; 817 } 818 range->notifier = &bo->notifier; 819 range->flags = hmm_range_flags; 820 range->values = hmm_range_values; 821 range->pfn_shift = PAGE_SHIFT; 822 range->start = bo->notifier.interval_tree.start; 823 range->end = bo->notifier.interval_tree.last + 1; 824 range->default_flags = hmm_range_flags[HMM_PFN_VALID]; 825 if (!amdgpu_ttm_tt_is_readonly(ttm)) 826 range->default_flags |= range->flags[HMM_PFN_WRITE]; 827 828 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns), 829 GFP_KERNEL); 830 if (unlikely(!range->pfns)) { 831 r = -ENOMEM; 832 goto out_free_ranges; 833 } 834 835 down_read(&mm->mmap_sem); 836 vma = find_vma(mm, start); 837 if (unlikely(!vma || start < vma->vm_start)) { 838 r = -EFAULT; 839 goto out_unlock; 840 } 841 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 842 vma->vm_file)) { 843 r = -EPERM; 844 goto out_unlock; 845 } 846 up_read(&mm->mmap_sem); 847 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 848 849 retry: 850 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 851 852 down_read(&mm->mmap_sem); 853 r = hmm_range_fault(range); 854 up_read(&mm->mmap_sem); 855 if (unlikely(r <= 0)) { 856 /* 857 * FIXME: This timeout should encompass the retry from 858 * mmu_interval_read_retry() as well. 859 */ 860 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout)) 861 goto retry; 862 goto out_free_pfns; 863 } 864 865 for (i = 0; i < ttm->num_pages; i++) { 866 /* FIXME: The pages cannot be touched outside the notifier_lock */ 867 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]); 868 if (unlikely(!pages[i])) { 869 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 870 i, range->pfns[i]); 871 r = -ENOMEM; 872 873 goto out_free_pfns; 874 } 875 } 876 877 gtt->range = range; 878 mmput(mm); 879 880 return 0; 881 882 out_unlock: 883 up_read(&mm->mmap_sem); 884 out_free_pfns: 885 kvfree(range->pfns); 886 out_free_ranges: 887 kfree(range); 888 out: 889 mmput(mm); 890 return r; 891 } 892 893 /** 894 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 895 * Check if the pages backing this ttm range have been invalidated 896 * 897 * Returns: true if pages are still valid 898 */ 899 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 900 { 901 struct amdgpu_ttm_tt *gtt = (void *)ttm; 902 bool r = false; 903 904 if (!gtt || !gtt->userptr) 905 return false; 906 907 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 908 gtt->userptr, ttm->num_pages); 909 910 WARN_ONCE(!gtt->range || !gtt->range->pfns, 911 "No user pages to check\n"); 912 913 if (gtt->range) { 914 /* 915 * FIXME: Must always hold notifier_lock for this, and must 916 * not ignore the return code. 917 */ 918 r = mmu_interval_read_retry(gtt->range->notifier, 919 gtt->range->notifier_seq); 920 kvfree(gtt->range->pfns); 921 kfree(gtt->range); 922 gtt->range = NULL; 923 } 924 925 return !r; 926 } 927 #endif 928 929 /** 930 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 931 * 932 * Called by amdgpu_cs_list_validate(). This creates the page list 933 * that backs user memory and will ultimately be mapped into the device 934 * address space. 935 */ 936 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 937 { 938 unsigned long i; 939 940 for (i = 0; i < ttm->num_pages; ++i) 941 ttm->pages[i] = pages ? pages[i] : NULL; 942 } 943 944 /** 945 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 946 * 947 * Called by amdgpu_ttm_backend_bind() 948 **/ 949 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 950 { 951 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 952 struct amdgpu_ttm_tt *gtt = (void *)ttm; 953 unsigned nents; 954 int r; 955 956 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 957 enum dma_data_direction direction = write ? 958 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 959 960 /* Allocate an SG array and squash pages into it */ 961 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 962 ttm->num_pages << PAGE_SHIFT, 963 GFP_KERNEL); 964 if (r) 965 goto release_sg; 966 967 /* Map SG to device */ 968 r = -ENOMEM; 969 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 970 if (nents == 0) 971 goto release_sg; 972 973 /* convert SG to linear array of pages and dma addresses */ 974 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 975 gtt->ttm.dma_address, ttm->num_pages); 976 977 return 0; 978 979 release_sg: 980 kfree(ttm->sg); 981 return r; 982 } 983 984 /** 985 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 986 */ 987 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 988 { 989 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 990 struct amdgpu_ttm_tt *gtt = (void *)ttm; 991 992 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 993 enum dma_data_direction direction = write ? 994 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 995 996 /* double check that we don't free the table twice */ 997 if (!ttm->sg->sgl) 998 return; 999 1000 /* unmap the pages mapped to the device */ 1001 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 1002 1003 sg_free_table(ttm->sg); 1004 1005 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1006 if (gtt->range) { 1007 unsigned long i; 1008 1009 for (i = 0; i < ttm->num_pages; i++) { 1010 if (ttm->pages[i] != 1011 hmm_device_entry_to_page(gtt->range, 1012 gtt->range->pfns[i])) 1013 break; 1014 } 1015 1016 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 1017 } 1018 #endif 1019 } 1020 1021 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1022 struct ttm_buffer_object *tbo, 1023 uint64_t flags) 1024 { 1025 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1026 struct ttm_tt *ttm = tbo->ttm; 1027 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1028 int r; 1029 1030 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 1031 uint64_t page_idx = 1; 1032 1033 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1034 ttm->pages, gtt->ttm.dma_address, flags); 1035 if (r) 1036 goto gart_bind_fail; 1037 1038 /* The memory type of the first page defaults to UC. Now 1039 * modify the memory type to NC from the second page of 1040 * the BO onward. 1041 */ 1042 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1043 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1044 1045 r = amdgpu_gart_bind(adev, 1046 gtt->offset + (page_idx << PAGE_SHIFT), 1047 ttm->num_pages - page_idx, 1048 &ttm->pages[page_idx], 1049 &(gtt->ttm.dma_address[page_idx]), flags); 1050 } else { 1051 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1052 ttm->pages, gtt->ttm.dma_address, flags); 1053 } 1054 1055 gart_bind_fail: 1056 if (r) 1057 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1058 ttm->num_pages, gtt->offset); 1059 1060 return r; 1061 } 1062 1063 /** 1064 * amdgpu_ttm_backend_bind - Bind GTT memory 1065 * 1066 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1067 * This handles binding GTT memory to the device address space. 1068 */ 1069 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1070 struct ttm_mem_reg *bo_mem) 1071 { 1072 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1073 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1074 uint64_t flags; 1075 int r = 0; 1076 1077 if (gtt->userptr) { 1078 r = amdgpu_ttm_tt_pin_userptr(ttm); 1079 if (r) { 1080 DRM_ERROR("failed to pin userptr\n"); 1081 return r; 1082 } 1083 } 1084 if (!ttm->num_pages) { 1085 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1086 ttm->num_pages, bo_mem, ttm); 1087 } 1088 1089 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1090 bo_mem->mem_type == AMDGPU_PL_GWS || 1091 bo_mem->mem_type == AMDGPU_PL_OA) 1092 return -EINVAL; 1093 1094 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1095 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1096 return 0; 1097 } 1098 1099 /* compute PTE flags relevant to this BO memory */ 1100 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1101 1102 /* bind pages into GART page tables */ 1103 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1104 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1105 ttm->pages, gtt->ttm.dma_address, flags); 1106 1107 if (r) 1108 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1109 ttm->num_pages, gtt->offset); 1110 return r; 1111 } 1112 1113 /** 1114 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1115 */ 1116 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1117 { 1118 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1119 struct ttm_operation_ctx ctx = { false, false }; 1120 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1121 struct ttm_mem_reg tmp; 1122 struct ttm_placement placement; 1123 struct ttm_place placements; 1124 uint64_t addr, flags; 1125 int r; 1126 1127 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1128 return 0; 1129 1130 addr = amdgpu_gmc_agp_addr(bo); 1131 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1132 bo->mem.start = addr >> PAGE_SHIFT; 1133 } else { 1134 1135 /* allocate GART space */ 1136 tmp = bo->mem; 1137 tmp.mm_node = NULL; 1138 placement.num_placement = 1; 1139 placement.placement = &placements; 1140 placement.num_busy_placement = 1; 1141 placement.busy_placement = &placements; 1142 placements.fpfn = 0; 1143 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1144 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1145 TTM_PL_FLAG_TT; 1146 1147 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1148 if (unlikely(r)) 1149 return r; 1150 1151 /* compute PTE flags for this buffer object */ 1152 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1153 1154 /* Bind pages */ 1155 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1156 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1157 if (unlikely(r)) { 1158 ttm_bo_mem_put(bo, &tmp); 1159 return r; 1160 } 1161 1162 ttm_bo_mem_put(bo, &bo->mem); 1163 bo->mem = tmp; 1164 } 1165 1166 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1167 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * amdgpu_ttm_recover_gart - Rebind GTT pages 1174 * 1175 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1176 * rebind GTT pages during a GPU reset. 1177 */ 1178 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1179 { 1180 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1181 uint64_t flags; 1182 int r; 1183 1184 if (!tbo->ttm) 1185 return 0; 1186 1187 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1188 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1189 1190 return r; 1191 } 1192 1193 /** 1194 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1195 * 1196 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1197 * ttm_tt_destroy(). 1198 */ 1199 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1200 { 1201 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1202 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1203 int r; 1204 1205 /* if the pages have userptr pinning then clear that first */ 1206 if (gtt->userptr) 1207 amdgpu_ttm_tt_unpin_userptr(ttm); 1208 1209 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1210 return 0; 1211 1212 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1213 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1214 if (r) 1215 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1216 gtt->ttm.ttm.num_pages, gtt->offset); 1217 return r; 1218 } 1219 1220 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1221 { 1222 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1223 1224 if (gtt->usertask) 1225 put_task_struct(gtt->usertask); 1226 1227 ttm_dma_tt_fini(>t->ttm); 1228 kfree(gtt); 1229 } 1230 1231 static struct ttm_backend_func amdgpu_backend_func = { 1232 .bind = &amdgpu_ttm_backend_bind, 1233 .unbind = &amdgpu_ttm_backend_unbind, 1234 .destroy = &amdgpu_ttm_backend_destroy, 1235 }; 1236 1237 /** 1238 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1239 * 1240 * @bo: The buffer object to create a GTT ttm_tt object around 1241 * 1242 * Called by ttm_tt_create(). 1243 */ 1244 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1245 uint32_t page_flags) 1246 { 1247 struct amdgpu_ttm_tt *gtt; 1248 1249 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1250 if (gtt == NULL) { 1251 return NULL; 1252 } 1253 gtt->ttm.ttm.func = &amdgpu_backend_func; 1254 gtt->gobj = &bo->base; 1255 1256 /* allocate space for the uninitialized page entries */ 1257 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1258 kfree(gtt); 1259 return NULL; 1260 } 1261 return >t->ttm.ttm; 1262 } 1263 1264 /** 1265 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1266 * 1267 * Map the pages of a ttm_tt object to an address space visible 1268 * to the underlying device. 1269 */ 1270 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1271 struct ttm_operation_ctx *ctx) 1272 { 1273 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1274 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1275 1276 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1277 if (gtt && gtt->userptr) { 1278 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1279 if (!ttm->sg) 1280 return -ENOMEM; 1281 1282 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1283 ttm->state = tt_unbound; 1284 return 0; 1285 } 1286 1287 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1288 if (!ttm->sg) { 1289 struct dma_buf_attachment *attach; 1290 struct sg_table *sgt; 1291 1292 attach = gtt->gobj->import_attach; 1293 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1294 if (IS_ERR(sgt)) 1295 return PTR_ERR(sgt); 1296 1297 ttm->sg = sgt; 1298 } 1299 1300 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1301 gtt->ttm.dma_address, 1302 ttm->num_pages); 1303 ttm->state = tt_unbound; 1304 return 0; 1305 } 1306 1307 #ifdef CONFIG_SWIOTLB 1308 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1309 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1310 } 1311 #endif 1312 1313 /* fall back to generic helper to populate the page array 1314 * and map them to the device */ 1315 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1316 } 1317 1318 /** 1319 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1320 * 1321 * Unmaps pages of a ttm_tt object from the device address space and 1322 * unpopulates the page array backing it. 1323 */ 1324 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1325 { 1326 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1327 struct amdgpu_device *adev; 1328 1329 if (gtt && gtt->userptr) { 1330 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1331 kfree(ttm->sg); 1332 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1333 return; 1334 } 1335 1336 if (ttm->sg && gtt->gobj->import_attach) { 1337 struct dma_buf_attachment *attach; 1338 1339 attach = gtt->gobj->import_attach; 1340 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1341 ttm->sg = NULL; 1342 return; 1343 } 1344 1345 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1346 return; 1347 1348 adev = amdgpu_ttm_adev(ttm->bdev); 1349 1350 #ifdef CONFIG_SWIOTLB 1351 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1352 ttm_dma_unpopulate(>t->ttm, adev->dev); 1353 return; 1354 } 1355 #endif 1356 1357 /* fall back to generic helper to unmap and unpopulate array */ 1358 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1359 } 1360 1361 /** 1362 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1363 * task 1364 * 1365 * @ttm: The ttm_tt object to bind this userptr object to 1366 * @addr: The address in the current tasks VM space to use 1367 * @flags: Requirements of userptr object. 1368 * 1369 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1370 * to current task 1371 */ 1372 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1373 uint32_t flags) 1374 { 1375 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1376 1377 if (gtt == NULL) 1378 return -EINVAL; 1379 1380 gtt->userptr = addr; 1381 gtt->userflags = flags; 1382 1383 if (gtt->usertask) 1384 put_task_struct(gtt->usertask); 1385 gtt->usertask = current->group_leader; 1386 get_task_struct(gtt->usertask); 1387 1388 return 0; 1389 } 1390 1391 /** 1392 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1393 */ 1394 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1395 { 1396 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1397 1398 if (gtt == NULL) 1399 return NULL; 1400 1401 if (gtt->usertask == NULL) 1402 return NULL; 1403 1404 return gtt->usertask->mm; 1405 } 1406 1407 /** 1408 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1409 * address range for the current task. 1410 * 1411 */ 1412 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1413 unsigned long end) 1414 { 1415 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1416 unsigned long size; 1417 1418 if (gtt == NULL || !gtt->userptr) 1419 return false; 1420 1421 /* Return false if no part of the ttm_tt object lies within 1422 * the range 1423 */ 1424 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1425 if (gtt->userptr > end || gtt->userptr + size <= start) 1426 return false; 1427 1428 return true; 1429 } 1430 1431 /** 1432 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1433 */ 1434 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1435 { 1436 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1437 1438 if (gtt == NULL || !gtt->userptr) 1439 return false; 1440 1441 return true; 1442 } 1443 1444 /** 1445 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1446 */ 1447 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1448 { 1449 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1450 1451 if (gtt == NULL) 1452 return false; 1453 1454 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1455 } 1456 1457 /** 1458 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1459 * 1460 * @ttm: The ttm_tt object to compute the flags for 1461 * @mem: The memory registry backing this ttm_tt object 1462 * 1463 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1464 */ 1465 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1466 { 1467 uint64_t flags = 0; 1468 1469 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1470 flags |= AMDGPU_PTE_VALID; 1471 1472 if (mem && mem->mem_type == TTM_PL_TT) { 1473 flags |= AMDGPU_PTE_SYSTEM; 1474 1475 if (ttm->caching_state == tt_cached) 1476 flags |= AMDGPU_PTE_SNOOPED; 1477 } 1478 1479 return flags; 1480 } 1481 1482 /** 1483 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1484 * 1485 * @ttm: The ttm_tt object to compute the flags for 1486 * @mem: The memory registry backing this ttm_tt object 1487 1488 * Figure out the flags to use for a VM PTE (Page Table Entry). 1489 */ 1490 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1491 struct ttm_mem_reg *mem) 1492 { 1493 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1494 1495 flags |= adev->gart.gart_pte_flags; 1496 flags |= AMDGPU_PTE_READABLE; 1497 1498 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1499 flags |= AMDGPU_PTE_WRITEABLE; 1500 1501 return flags; 1502 } 1503 1504 /** 1505 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1506 * object. 1507 * 1508 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1509 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1510 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1511 * used to clean out a memory space. 1512 */ 1513 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1514 const struct ttm_place *place) 1515 { 1516 unsigned long num_pages = bo->mem.num_pages; 1517 struct drm_mm_node *node = bo->mem.mm_node; 1518 struct dma_resv_list *flist; 1519 struct dma_fence *f; 1520 int i; 1521 1522 if (bo->type == ttm_bo_type_kernel && 1523 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1524 return false; 1525 1526 /* If bo is a KFD BO, check if the bo belongs to the current process. 1527 * If true, then return false as any KFD process needs all its BOs to 1528 * be resident to run successfully 1529 */ 1530 flist = dma_resv_get_list(bo->base.resv); 1531 if (flist) { 1532 for (i = 0; i < flist->shared_count; ++i) { 1533 f = rcu_dereference_protected(flist->shared[i], 1534 dma_resv_held(bo->base.resv)); 1535 if (amdkfd_fence_check_mm(f, current->mm)) 1536 return false; 1537 } 1538 } 1539 1540 switch (bo->mem.mem_type) { 1541 case TTM_PL_TT: 1542 return true; 1543 1544 case TTM_PL_VRAM: 1545 /* Check each drm MM node individually */ 1546 while (num_pages) { 1547 if (place->fpfn < (node->start + node->size) && 1548 !(place->lpfn && place->lpfn <= node->start)) 1549 return true; 1550 1551 num_pages -= node->size; 1552 ++node; 1553 } 1554 return false; 1555 1556 default: 1557 break; 1558 } 1559 1560 return ttm_bo_eviction_valuable(bo, place); 1561 } 1562 1563 /** 1564 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1565 * 1566 * @bo: The buffer object to read/write 1567 * @offset: Offset into buffer object 1568 * @buf: Secondary buffer to write/read from 1569 * @len: Length in bytes of access 1570 * @write: true if writing 1571 * 1572 * This is used to access VRAM that backs a buffer object via MMIO 1573 * access for debugging purposes. 1574 */ 1575 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1576 unsigned long offset, 1577 void *buf, int len, int write) 1578 { 1579 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1580 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1581 struct drm_mm_node *nodes; 1582 uint32_t value = 0; 1583 int ret = 0; 1584 uint64_t pos; 1585 unsigned long flags; 1586 1587 if (bo->mem.mem_type != TTM_PL_VRAM) 1588 return -EIO; 1589 1590 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1591 pos = (nodes->start << PAGE_SHIFT) + offset; 1592 1593 while (len && pos < adev->gmc.mc_vram_size) { 1594 uint64_t aligned_pos = pos & ~(uint64_t)3; 1595 uint64_t bytes = 4 - (pos & 3); 1596 uint32_t shift = (pos & 3) * 8; 1597 uint32_t mask = 0xffffffff << shift; 1598 1599 if (len < bytes) { 1600 mask &= 0xffffffff >> (bytes - len) * 8; 1601 bytes = len; 1602 } 1603 1604 if (mask != 0xffffffff) { 1605 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1606 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1607 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1608 if (!write || mask != 0xffffffff) 1609 value = RREG32_NO_KIQ(mmMM_DATA); 1610 if (write) { 1611 value &= ~mask; 1612 value |= (*(uint32_t *)buf << shift) & mask; 1613 WREG32_NO_KIQ(mmMM_DATA, value); 1614 } 1615 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1616 if (!write) { 1617 value = (value & mask) >> shift; 1618 memcpy(buf, &value, bytes); 1619 } 1620 } else { 1621 bytes = (nodes->start + nodes->size) << PAGE_SHIFT; 1622 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull); 1623 1624 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf, 1625 bytes, write); 1626 } 1627 1628 ret += bytes; 1629 buf = (uint8_t *)buf + bytes; 1630 pos += bytes; 1631 len -= bytes; 1632 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1633 ++nodes; 1634 pos = (nodes->start << PAGE_SHIFT); 1635 } 1636 } 1637 1638 return ret; 1639 } 1640 1641 static struct ttm_bo_driver amdgpu_bo_driver = { 1642 .ttm_tt_create = &amdgpu_ttm_tt_create, 1643 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1644 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1645 .init_mem_type = &amdgpu_init_mem_type, 1646 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1647 .evict_flags = &amdgpu_evict_flags, 1648 .move = &amdgpu_bo_move, 1649 .verify_access = &amdgpu_verify_access, 1650 .move_notify = &amdgpu_bo_move_notify, 1651 .release_notify = &amdgpu_bo_release_notify, 1652 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1653 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1654 .io_mem_free = &amdgpu_ttm_io_mem_free, 1655 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1656 .access_memory = &amdgpu_ttm_access_memory, 1657 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1658 }; 1659 1660 /* 1661 * Firmware Reservation functions 1662 */ 1663 /** 1664 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1665 * 1666 * @adev: amdgpu_device pointer 1667 * 1668 * free fw reserved vram if it has been reserved. 1669 */ 1670 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1671 { 1672 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1673 NULL, &adev->fw_vram_usage.va); 1674 } 1675 1676 /** 1677 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1678 * 1679 * @adev: amdgpu_device pointer 1680 * 1681 * create bo vram reservation from fw. 1682 */ 1683 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1684 { 1685 uint64_t vram_size = adev->gmc.visible_vram_size; 1686 1687 adev->fw_vram_usage.va = NULL; 1688 adev->fw_vram_usage.reserved_bo = NULL; 1689 1690 if (adev->fw_vram_usage.size == 0 || 1691 adev->fw_vram_usage.size > vram_size) 1692 return 0; 1693 1694 return amdgpu_bo_create_kernel_at(adev, 1695 adev->fw_vram_usage.start_offset, 1696 adev->fw_vram_usage.size, 1697 AMDGPU_GEM_DOMAIN_VRAM, 1698 &adev->fw_vram_usage.reserved_bo, 1699 &adev->fw_vram_usage.va); 1700 } 1701 1702 /* 1703 * Memoy training reservation functions 1704 */ 1705 1706 /** 1707 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1708 * 1709 * @adev: amdgpu_device pointer 1710 * 1711 * free memory training reserved vram if it has been reserved. 1712 */ 1713 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1714 { 1715 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1716 1717 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1718 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1719 ctx->c2p_bo = NULL; 1720 1721 return 0; 1722 } 1723 1724 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size) 1725 { 1726 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) ) 1727 vram_size -= SZ_1M; 1728 1729 return ALIGN(vram_size, SZ_1M); 1730 } 1731 1732 /** 1733 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training 1734 * 1735 * @adev: amdgpu_device pointer 1736 * 1737 * create bo vram reservation from memory training. 1738 */ 1739 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev) 1740 { 1741 int ret; 1742 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1743 1744 memset(ctx, 0, sizeof(*ctx)); 1745 if (!adev->fw_vram_usage.mem_train_support) { 1746 DRM_DEBUG("memory training does not support!\n"); 1747 return 0; 1748 } 1749 1750 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size); 1751 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1752 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1753 1754 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1755 ctx->train_data_size, 1756 ctx->p2c_train_data_offset, 1757 ctx->c2p_train_data_offset); 1758 1759 ret = amdgpu_bo_create_kernel_at(adev, 1760 ctx->c2p_train_data_offset, 1761 ctx->train_data_size, 1762 AMDGPU_GEM_DOMAIN_VRAM, 1763 &ctx->c2p_bo, 1764 NULL); 1765 if (ret) { 1766 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1767 amdgpu_ttm_training_reserve_vram_fini(adev); 1768 return ret; 1769 } 1770 1771 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1772 return 0; 1773 } 1774 1775 /** 1776 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1777 * gtt/vram related fields. 1778 * 1779 * This initializes all of the memory space pools that the TTM layer 1780 * will need such as the GTT space (system memory mapped to the device), 1781 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1782 * can be mapped per VMID. 1783 */ 1784 int amdgpu_ttm_init(struct amdgpu_device *adev) 1785 { 1786 uint64_t gtt_size; 1787 int r; 1788 u64 vis_vram_limit; 1789 void *stolen_vga_buf; 1790 1791 mutex_init(&adev->mman.gtt_window_lock); 1792 1793 /* No others user of address space so set it to 0 */ 1794 r = ttm_bo_device_init(&adev->mman.bdev, 1795 &amdgpu_bo_driver, 1796 adev->ddev->anon_inode->i_mapping, 1797 adev->ddev->vma_offset_manager, 1798 dma_addressing_limited(adev->dev)); 1799 if (r) { 1800 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1801 return r; 1802 } 1803 adev->mman.initialized = true; 1804 1805 /* We opt to avoid OOM on system pages allocations */ 1806 adev->mman.bdev.no_retry = true; 1807 1808 /* Initialize VRAM pool with all of VRAM divided into pages */ 1809 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1810 adev->gmc.real_vram_size >> PAGE_SHIFT); 1811 if (r) { 1812 DRM_ERROR("Failed initializing VRAM heap.\n"); 1813 return r; 1814 } 1815 1816 /* Reduce size of CPU-visible VRAM if requested */ 1817 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1818 if (amdgpu_vis_vram_limit > 0 && 1819 vis_vram_limit <= adev->gmc.visible_vram_size) 1820 adev->gmc.visible_vram_size = vis_vram_limit; 1821 1822 /* Change the size here instead of the init above so only lpfn is affected */ 1823 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1824 #ifdef CONFIG_64BIT 1825 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1826 adev->gmc.visible_vram_size); 1827 #endif 1828 1829 /* 1830 *The reserved vram for firmware must be pinned to the specified 1831 *place on the VRAM, so reserve it early. 1832 */ 1833 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1834 if (r) { 1835 return r; 1836 } 1837 1838 /* 1839 *The reserved vram for memory training must be pinned to the specified 1840 *place on the VRAM, so reserve it early. 1841 */ 1842 if (!amdgpu_sriov_vf(adev)) { 1843 r = amdgpu_ttm_training_reserve_vram_init(adev); 1844 if (r) 1845 return r; 1846 } 1847 1848 /* allocate memory as required for VGA 1849 * This is used for VGA emulation and pre-OS scanout buffers to 1850 * avoid display artifacts while transitioning between pre-OS 1851 * and driver. */ 1852 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1853 AMDGPU_GEM_DOMAIN_VRAM, 1854 &adev->stolen_vga_memory, 1855 NULL, &stolen_vga_buf); 1856 if (r) 1857 return r; 1858 1859 /* 1860 * reserve one TMR (64K) memory at the top of VRAM which holds 1861 * IP Discovery data and is protected by PSP. 1862 */ 1863 r = amdgpu_bo_create_kernel_at(adev, 1864 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE, 1865 DISCOVERY_TMR_SIZE, 1866 AMDGPU_GEM_DOMAIN_VRAM, 1867 &adev->discovery_memory, 1868 NULL); 1869 if (r) 1870 return r; 1871 1872 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1873 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1874 1875 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1876 * or whatever the user passed on module init */ 1877 if (amdgpu_gtt_size == -1) { 1878 struct sysinfo si; 1879 1880 si_meminfo(&si); 1881 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1882 adev->gmc.mc_vram_size), 1883 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1884 } 1885 else 1886 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1887 1888 /* Initialize GTT memory pool */ 1889 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1890 if (r) { 1891 DRM_ERROR("Failed initializing GTT heap.\n"); 1892 return r; 1893 } 1894 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1895 (unsigned)(gtt_size / (1024 * 1024))); 1896 1897 /* Initialize various on-chip memory pools */ 1898 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1899 adev->gds.gds_size); 1900 if (r) { 1901 DRM_ERROR("Failed initializing GDS heap.\n"); 1902 return r; 1903 } 1904 1905 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1906 adev->gds.gws_size); 1907 if (r) { 1908 DRM_ERROR("Failed initializing gws heap.\n"); 1909 return r; 1910 } 1911 1912 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1913 adev->gds.oa_size); 1914 if (r) { 1915 DRM_ERROR("Failed initializing oa heap.\n"); 1916 return r; 1917 } 1918 1919 return 0; 1920 } 1921 1922 /** 1923 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1924 */ 1925 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1926 { 1927 void *stolen_vga_buf; 1928 /* return the VGA stolen memory (if any) back to VRAM */ 1929 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); 1930 } 1931 1932 /** 1933 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1934 */ 1935 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1936 { 1937 if (!adev->mman.initialized) 1938 return; 1939 1940 amdgpu_ttm_training_reserve_vram_fini(adev); 1941 /* return the IP Discovery TMR memory back to VRAM */ 1942 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); 1943 amdgpu_ttm_fw_reserve_vram_fini(adev); 1944 1945 if (adev->mman.aper_base_kaddr) 1946 iounmap(adev->mman.aper_base_kaddr); 1947 adev->mman.aper_base_kaddr = NULL; 1948 1949 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1950 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1951 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1952 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1953 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1954 ttm_bo_device_release(&adev->mman.bdev); 1955 adev->mman.initialized = false; 1956 DRM_INFO("amdgpu: ttm finalized\n"); 1957 } 1958 1959 /** 1960 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1961 * 1962 * @adev: amdgpu_device pointer 1963 * @enable: true when we can use buffer functions. 1964 * 1965 * Enable/disable use of buffer functions during suspend/resume. This should 1966 * only be called at bootup or when userspace isn't running. 1967 */ 1968 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1969 { 1970 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1971 uint64_t size; 1972 int r; 1973 1974 if (!adev->mman.initialized || adev->in_gpu_reset || 1975 adev->mman.buffer_funcs_enabled == enable) 1976 return; 1977 1978 if (enable) { 1979 struct amdgpu_ring *ring; 1980 struct drm_gpu_scheduler *sched; 1981 1982 ring = adev->mman.buffer_funcs_ring; 1983 sched = &ring->sched; 1984 r = drm_sched_entity_init(&adev->mman.entity, 1985 DRM_SCHED_PRIORITY_KERNEL, &sched, 1986 1, NULL); 1987 if (r) { 1988 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1989 r); 1990 return; 1991 } 1992 } else { 1993 drm_sched_entity_destroy(&adev->mman.entity); 1994 dma_fence_put(man->move); 1995 man->move = NULL; 1996 } 1997 1998 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1999 if (enable) 2000 size = adev->gmc.real_vram_size; 2001 else 2002 size = adev->gmc.visible_vram_size; 2003 man->size = size >> PAGE_SHIFT; 2004 adev->mman.buffer_funcs_enabled = enable; 2005 } 2006 2007 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2008 { 2009 struct drm_file *file_priv = filp->private_data; 2010 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 2011 2012 if (adev == NULL) 2013 return -EINVAL; 2014 2015 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2016 } 2017 2018 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 2019 struct ttm_mem_reg *mem, unsigned num_pages, 2020 uint64_t offset, unsigned window, 2021 struct amdgpu_ring *ring, 2022 uint64_t *addr) 2023 { 2024 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 2025 struct amdgpu_device *adev = ring->adev; 2026 struct ttm_tt *ttm = bo->ttm; 2027 struct amdgpu_job *job; 2028 unsigned num_dw, num_bytes; 2029 dma_addr_t *dma_address; 2030 struct dma_fence *fence; 2031 uint64_t src_addr, dst_addr; 2032 uint64_t flags; 2033 int r; 2034 2035 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 2036 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 2037 2038 *addr = adev->gmc.gart_start; 2039 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 2040 AMDGPU_GPU_PAGE_SIZE; 2041 2042 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 2043 num_bytes = num_pages * 8; 2044 2045 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 2046 if (r) 2047 return r; 2048 2049 src_addr = num_dw * 4; 2050 src_addr += job->ibs[0].gpu_addr; 2051 2052 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 2053 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 2054 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 2055 dst_addr, num_bytes); 2056 2057 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2058 WARN_ON(job->ibs[0].length_dw > num_dw); 2059 2060 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2061 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2062 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2063 &job->ibs[0].ptr[num_dw]); 2064 if (r) 2065 goto error_free; 2066 2067 r = amdgpu_job_submit(job, &adev->mman.entity, 2068 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2069 if (r) 2070 goto error_free; 2071 2072 dma_fence_put(fence); 2073 2074 return r; 2075 2076 error_free: 2077 amdgpu_job_free(job); 2078 return r; 2079 } 2080 2081 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2082 uint64_t dst_offset, uint32_t byte_count, 2083 struct dma_resv *resv, 2084 struct dma_fence **fence, bool direct_submit, 2085 bool vm_needs_flush) 2086 { 2087 struct amdgpu_device *adev = ring->adev; 2088 struct amdgpu_job *job; 2089 2090 uint32_t max_bytes; 2091 unsigned num_loops, num_dw; 2092 unsigned i; 2093 int r; 2094 2095 if (direct_submit && !ring->sched.ready) { 2096 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2097 return -EINVAL; 2098 } 2099 2100 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2101 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2102 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2103 2104 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2105 if (r) 2106 return r; 2107 2108 if (vm_needs_flush) { 2109 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2110 job->vm_needs_flush = true; 2111 } 2112 if (resv) { 2113 r = amdgpu_sync_resv(adev, &job->sync, resv, 2114 AMDGPU_SYNC_ALWAYS, 2115 AMDGPU_FENCE_OWNER_UNDEFINED); 2116 if (r) { 2117 DRM_ERROR("sync failed (%d).\n", r); 2118 goto error_free; 2119 } 2120 } 2121 2122 for (i = 0; i < num_loops; i++) { 2123 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2124 2125 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2126 dst_offset, cur_size_in_bytes); 2127 2128 src_offset += cur_size_in_bytes; 2129 dst_offset += cur_size_in_bytes; 2130 byte_count -= cur_size_in_bytes; 2131 } 2132 2133 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2134 WARN_ON(job->ibs[0].length_dw > num_dw); 2135 if (direct_submit) 2136 r = amdgpu_job_submit_direct(job, ring, fence); 2137 else 2138 r = amdgpu_job_submit(job, &adev->mman.entity, 2139 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2140 if (r) 2141 goto error_free; 2142 2143 return r; 2144 2145 error_free: 2146 amdgpu_job_free(job); 2147 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2148 return r; 2149 } 2150 2151 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2152 uint32_t src_data, 2153 struct dma_resv *resv, 2154 struct dma_fence **fence) 2155 { 2156 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2157 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2158 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2159 2160 struct drm_mm_node *mm_node; 2161 unsigned long num_pages; 2162 unsigned int num_loops, num_dw; 2163 2164 struct amdgpu_job *job; 2165 int r; 2166 2167 if (!adev->mman.buffer_funcs_enabled) { 2168 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2169 return -EINVAL; 2170 } 2171 2172 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2173 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2174 if (r) 2175 return r; 2176 } 2177 2178 num_pages = bo->tbo.num_pages; 2179 mm_node = bo->tbo.mem.mm_node; 2180 num_loops = 0; 2181 while (num_pages) { 2182 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2183 2184 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2185 num_pages -= mm_node->size; 2186 ++mm_node; 2187 } 2188 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2189 2190 /* for IB padding */ 2191 num_dw += 64; 2192 2193 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2194 if (r) 2195 return r; 2196 2197 if (resv) { 2198 r = amdgpu_sync_resv(adev, &job->sync, resv, 2199 AMDGPU_SYNC_ALWAYS, 2200 AMDGPU_FENCE_OWNER_UNDEFINED); 2201 if (r) { 2202 DRM_ERROR("sync failed (%d).\n", r); 2203 goto error_free; 2204 } 2205 } 2206 2207 num_pages = bo->tbo.num_pages; 2208 mm_node = bo->tbo.mem.mm_node; 2209 2210 while (num_pages) { 2211 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2212 uint64_t dst_addr; 2213 2214 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2215 while (byte_count) { 2216 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2217 max_bytes); 2218 2219 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2220 dst_addr, cur_size_in_bytes); 2221 2222 dst_addr += cur_size_in_bytes; 2223 byte_count -= cur_size_in_bytes; 2224 } 2225 2226 num_pages -= mm_node->size; 2227 ++mm_node; 2228 } 2229 2230 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2231 WARN_ON(job->ibs[0].length_dw > num_dw); 2232 r = amdgpu_job_submit(job, &adev->mman.entity, 2233 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2234 if (r) 2235 goto error_free; 2236 2237 return 0; 2238 2239 error_free: 2240 amdgpu_job_free(job); 2241 return r; 2242 } 2243 2244 #if defined(CONFIG_DEBUG_FS) 2245 2246 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2247 { 2248 struct drm_info_node *node = (struct drm_info_node *)m->private; 2249 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2250 struct drm_device *dev = node->minor->dev; 2251 struct amdgpu_device *adev = dev->dev_private; 2252 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2253 struct drm_printer p = drm_seq_file_printer(m); 2254 2255 man->func->debug(man, &p); 2256 return 0; 2257 } 2258 2259 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2260 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2261 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2262 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2263 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2264 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2265 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2266 #ifdef CONFIG_SWIOTLB 2267 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2268 #endif 2269 }; 2270 2271 /** 2272 * amdgpu_ttm_vram_read - Linear read access to VRAM 2273 * 2274 * Accesses VRAM via MMIO for debugging purposes. 2275 */ 2276 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2277 size_t size, loff_t *pos) 2278 { 2279 struct amdgpu_device *adev = file_inode(f)->i_private; 2280 ssize_t result = 0; 2281 2282 if (size & 0x3 || *pos & 0x3) 2283 return -EINVAL; 2284 2285 if (*pos >= adev->gmc.mc_vram_size) 2286 return -ENXIO; 2287 2288 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2289 while (size) { 2290 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2291 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2292 2293 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2294 if (copy_to_user(buf, value, bytes)) 2295 return -EFAULT; 2296 2297 result += bytes; 2298 buf += bytes; 2299 *pos += bytes; 2300 size -= bytes; 2301 } 2302 2303 return result; 2304 } 2305 2306 /** 2307 * amdgpu_ttm_vram_write - Linear write access to VRAM 2308 * 2309 * Accesses VRAM via MMIO for debugging purposes. 2310 */ 2311 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2312 size_t size, loff_t *pos) 2313 { 2314 struct amdgpu_device *adev = file_inode(f)->i_private; 2315 ssize_t result = 0; 2316 int r; 2317 2318 if (size & 0x3 || *pos & 0x3) 2319 return -EINVAL; 2320 2321 if (*pos >= adev->gmc.mc_vram_size) 2322 return -ENXIO; 2323 2324 while (size) { 2325 unsigned long flags; 2326 uint32_t value; 2327 2328 if (*pos >= adev->gmc.mc_vram_size) 2329 return result; 2330 2331 r = get_user(value, (uint32_t *)buf); 2332 if (r) 2333 return r; 2334 2335 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2336 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2337 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2338 WREG32_NO_KIQ(mmMM_DATA, value); 2339 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2340 2341 result += 4; 2342 buf += 4; 2343 *pos += 4; 2344 size -= 4; 2345 } 2346 2347 return result; 2348 } 2349 2350 static const struct file_operations amdgpu_ttm_vram_fops = { 2351 .owner = THIS_MODULE, 2352 .read = amdgpu_ttm_vram_read, 2353 .write = amdgpu_ttm_vram_write, 2354 .llseek = default_llseek, 2355 }; 2356 2357 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2358 2359 /** 2360 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2361 */ 2362 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2363 size_t size, loff_t *pos) 2364 { 2365 struct amdgpu_device *adev = file_inode(f)->i_private; 2366 ssize_t result = 0; 2367 int r; 2368 2369 while (size) { 2370 loff_t p = *pos / PAGE_SIZE; 2371 unsigned off = *pos & ~PAGE_MASK; 2372 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2373 struct page *page; 2374 void *ptr; 2375 2376 if (p >= adev->gart.num_cpu_pages) 2377 return result; 2378 2379 page = adev->gart.pages[p]; 2380 if (page) { 2381 ptr = kmap(page); 2382 ptr += off; 2383 2384 r = copy_to_user(buf, ptr, cur_size); 2385 kunmap(adev->gart.pages[p]); 2386 } else 2387 r = clear_user(buf, cur_size); 2388 2389 if (r) 2390 return -EFAULT; 2391 2392 result += cur_size; 2393 buf += cur_size; 2394 *pos += cur_size; 2395 size -= cur_size; 2396 } 2397 2398 return result; 2399 } 2400 2401 static const struct file_operations amdgpu_ttm_gtt_fops = { 2402 .owner = THIS_MODULE, 2403 .read = amdgpu_ttm_gtt_read, 2404 .llseek = default_llseek 2405 }; 2406 2407 #endif 2408 2409 /** 2410 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2411 * 2412 * This function is used to read memory that has been mapped to the 2413 * GPU and the known addresses are not physical addresses but instead 2414 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2415 */ 2416 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2417 size_t size, loff_t *pos) 2418 { 2419 struct amdgpu_device *adev = file_inode(f)->i_private; 2420 struct iommu_domain *dom; 2421 ssize_t result = 0; 2422 int r; 2423 2424 /* retrieve the IOMMU domain if any for this device */ 2425 dom = iommu_get_domain_for_dev(adev->dev); 2426 2427 while (size) { 2428 phys_addr_t addr = *pos & PAGE_MASK; 2429 loff_t off = *pos & ~PAGE_MASK; 2430 size_t bytes = PAGE_SIZE - off; 2431 unsigned long pfn; 2432 struct page *p; 2433 void *ptr; 2434 2435 bytes = bytes < size ? bytes : size; 2436 2437 /* Translate the bus address to a physical address. If 2438 * the domain is NULL it means there is no IOMMU active 2439 * and the address translation is the identity 2440 */ 2441 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2442 2443 pfn = addr >> PAGE_SHIFT; 2444 if (!pfn_valid(pfn)) 2445 return -EPERM; 2446 2447 p = pfn_to_page(pfn); 2448 if (p->mapping != adev->mman.bdev.dev_mapping) 2449 return -EPERM; 2450 2451 ptr = kmap(p); 2452 r = copy_to_user(buf, ptr + off, bytes); 2453 kunmap(p); 2454 if (r) 2455 return -EFAULT; 2456 2457 size -= bytes; 2458 *pos += bytes; 2459 result += bytes; 2460 } 2461 2462 return result; 2463 } 2464 2465 /** 2466 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2467 * 2468 * This function is used to write memory that has been mapped to the 2469 * GPU and the known addresses are not physical addresses but instead 2470 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2471 */ 2472 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2473 size_t size, loff_t *pos) 2474 { 2475 struct amdgpu_device *adev = file_inode(f)->i_private; 2476 struct iommu_domain *dom; 2477 ssize_t result = 0; 2478 int r; 2479 2480 dom = iommu_get_domain_for_dev(adev->dev); 2481 2482 while (size) { 2483 phys_addr_t addr = *pos & PAGE_MASK; 2484 loff_t off = *pos & ~PAGE_MASK; 2485 size_t bytes = PAGE_SIZE - off; 2486 unsigned long pfn; 2487 struct page *p; 2488 void *ptr; 2489 2490 bytes = bytes < size ? bytes : size; 2491 2492 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2493 2494 pfn = addr >> PAGE_SHIFT; 2495 if (!pfn_valid(pfn)) 2496 return -EPERM; 2497 2498 p = pfn_to_page(pfn); 2499 if (p->mapping != adev->mman.bdev.dev_mapping) 2500 return -EPERM; 2501 2502 ptr = kmap(p); 2503 r = copy_from_user(ptr + off, buf, bytes); 2504 kunmap(p); 2505 if (r) 2506 return -EFAULT; 2507 2508 size -= bytes; 2509 *pos += bytes; 2510 result += bytes; 2511 } 2512 2513 return result; 2514 } 2515 2516 static const struct file_operations amdgpu_ttm_iomem_fops = { 2517 .owner = THIS_MODULE, 2518 .read = amdgpu_iomem_read, 2519 .write = amdgpu_iomem_write, 2520 .llseek = default_llseek 2521 }; 2522 2523 static const struct { 2524 char *name; 2525 const struct file_operations *fops; 2526 int domain; 2527 } ttm_debugfs_entries[] = { 2528 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2529 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2530 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2531 #endif 2532 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2533 }; 2534 2535 #endif 2536 2537 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2538 { 2539 #if defined(CONFIG_DEBUG_FS) 2540 unsigned count; 2541 2542 struct drm_minor *minor = adev->ddev->primary; 2543 struct dentry *ent, *root = minor->debugfs_root; 2544 2545 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2546 ent = debugfs_create_file( 2547 ttm_debugfs_entries[count].name, 2548 S_IFREG | S_IRUGO, root, 2549 adev, 2550 ttm_debugfs_entries[count].fops); 2551 if (IS_ERR(ent)) 2552 return PTR_ERR(ent); 2553 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2554 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2555 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2556 i_size_write(ent->d_inode, adev->gmc.gart_size); 2557 adev->mman.debugfs_entries[count] = ent; 2558 } 2559 2560 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2561 2562 #ifdef CONFIG_SWIOTLB 2563 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2564 --count; 2565 #endif 2566 2567 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2568 #else 2569 return 0; 2570 #endif 2571 } 2572