1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 #include <linux/sizes.h> 44 #include <linux/module.h> 45 46 #include <drm/drm_drv.h> 47 #include <drm/ttm/ttm_bo_api.h> 48 #include <drm/ttm/ttm_bo_driver.h> 49 #include <drm/ttm/ttm_placement.h> 50 #include <drm/ttm/ttm_range_manager.h> 51 52 #include <drm/amdgpu_drm.h> 53 #include <drm/drm_drv.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_atomfirmware.h" 62 #include "amdgpu_res_cursor.h" 63 #include "bif/bif_4_1_d.h" 64 65 MODULE_IMPORT_NS(DMA_BUF); 66 67 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 68 69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 70 struct ttm_tt *ttm, 71 struct ttm_resource *bo_mem); 72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 73 struct ttm_tt *ttm); 74 75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 76 unsigned int type, 77 uint64_t size_in_page) 78 { 79 return ttm_range_man_init(&adev->mman.bdev, type, 80 false, size_in_page); 81 } 82 83 /** 84 * amdgpu_evict_flags - Compute placement flags 85 * 86 * @bo: The buffer object to evict 87 * @placement: Possible destination(s) for evicted BO 88 * 89 * Fill in placement data when ttm_bo_evict() is called 90 */ 91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 92 struct ttm_placement *placement) 93 { 94 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 95 struct amdgpu_bo *abo; 96 static const struct ttm_place placements = { 97 .fpfn = 0, 98 .lpfn = 0, 99 .mem_type = TTM_PL_SYSTEM, 100 .flags = 0 101 }; 102 103 /* Don't handle scatter gather BOs */ 104 if (bo->type == ttm_bo_type_sg) { 105 placement->num_placement = 0; 106 placement->num_busy_placement = 0; 107 return; 108 } 109 110 /* Object isn't an AMDGPU object so ignore */ 111 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 112 placement->placement = &placements; 113 placement->busy_placement = &placements; 114 placement->num_placement = 1; 115 placement->num_busy_placement = 1; 116 return; 117 } 118 119 abo = ttm_to_amdgpu_bo(bo); 120 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 121 placement->num_placement = 0; 122 placement->num_busy_placement = 0; 123 return; 124 } 125 126 switch (bo->resource->mem_type) { 127 case AMDGPU_PL_GDS: 128 case AMDGPU_PL_GWS: 129 case AMDGPU_PL_OA: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct dma_fence *fence; 193 struct amdgpu_job *job; 194 void *cpu_addr; 195 uint64_t flags; 196 unsigned int i; 197 int r; 198 199 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 200 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 201 202 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 203 return -EINVAL; 204 205 /* Map only what can't be accessed directly */ 206 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 207 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 208 mm_cur->start; 209 return 0; 210 } 211 212 213 /* 214 * If start begins at an offset inside the page, then adjust the size 215 * and addr accordingly 216 */ 217 offset = mm_cur->start & ~PAGE_MASK; 218 219 num_pages = PFN_UP(*size + offset); 220 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 221 222 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 223 224 *addr = adev->gmc.gart_start; 225 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 226 AMDGPU_GPU_PAGE_SIZE; 227 *addr += offset; 228 229 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 230 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 231 232 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 233 AMDGPU_IB_POOL_DELAYED, &job); 234 if (r) 235 return r; 236 237 src_addr = num_dw * 4; 238 src_addr += job->ibs[0].gpu_addr; 239 240 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 241 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 242 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 243 dst_addr, num_bytes, false); 244 245 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 246 WARN_ON(job->ibs[0].length_dw > num_dw); 247 248 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 249 if (tmz) 250 flags |= AMDGPU_PTE_TMZ; 251 252 cpu_addr = &job->ibs[0].ptr[num_dw]; 253 254 if (mem->mem_type == TTM_PL_TT) { 255 dma_addr_t *dma_addr; 256 257 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 258 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 259 } else { 260 dma_addr_t dma_address; 261 262 dma_address = mm_cur->start; 263 dma_address += adev->vm_manager.vram_base_offset; 264 265 for (i = 0; i < num_pages; ++i) { 266 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 267 flags, cpu_addr); 268 dma_address += PAGE_SIZE; 269 } 270 } 271 272 r = amdgpu_job_submit(job, &adev->mman.entity, 273 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 274 if (r) 275 goto error_free; 276 277 dma_fence_put(fence); 278 279 return r; 280 281 error_free: 282 amdgpu_job_free(job); 283 return r; 284 } 285 286 /** 287 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 288 * @adev: amdgpu device 289 * @src: buffer/address where to read from 290 * @dst: buffer/address where to write to 291 * @size: number of bytes to copy 292 * @tmz: if a secure copy should be used 293 * @resv: resv object to sync to 294 * @f: Returns the last fence if multiple jobs are submitted. 295 * 296 * The function copies @size bytes from {src->mem + src->offset} to 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 298 * move and different for a BO to BO copy. 299 * 300 */ 301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 302 const struct amdgpu_copy_mem *src, 303 const struct amdgpu_copy_mem *dst, 304 uint64_t size, bool tmz, 305 struct dma_resv *resv, 306 struct dma_fence **f) 307 { 308 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 309 struct amdgpu_res_cursor src_mm, dst_mm; 310 struct dma_fence *fence = NULL; 311 int r = 0; 312 313 if (!adev->mman.buffer_funcs_enabled) { 314 DRM_ERROR("Trying to move memory with ring turned off.\n"); 315 return -EINVAL; 316 } 317 318 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 319 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 320 321 mutex_lock(&adev->mman.gtt_window_lock); 322 while (src_mm.remaining) { 323 uint64_t from, to, cur_size; 324 struct dma_fence *next; 325 326 /* Never copy more than 256MiB at once to avoid a timeout */ 327 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 328 329 /* Map src to window 0 and dst to window 1. */ 330 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 331 0, ring, tmz, &cur_size, &from); 332 if (r) 333 goto error; 334 335 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 336 1, ring, tmz, &cur_size, &to); 337 if (r) 338 goto error; 339 340 r = amdgpu_copy_buffer(ring, from, to, cur_size, 341 resv, &next, false, true, tmz); 342 if (r) 343 goto error; 344 345 dma_fence_put(fence); 346 fence = next; 347 348 amdgpu_res_next(&src_mm, cur_size); 349 amdgpu_res_next(&dst_mm, cur_size); 350 } 351 error: 352 mutex_unlock(&adev->mman.gtt_window_lock); 353 if (f) 354 *f = dma_fence_get(fence); 355 dma_fence_put(fence); 356 return r; 357 } 358 359 /* 360 * amdgpu_move_blit - Copy an entire buffer to another buffer 361 * 362 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 363 * help move buffers to and from VRAM. 364 */ 365 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 366 bool evict, 367 struct ttm_resource *new_mem, 368 struct ttm_resource *old_mem) 369 { 370 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 371 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 372 struct amdgpu_copy_mem src, dst; 373 struct dma_fence *fence = NULL; 374 int r; 375 376 src.bo = bo; 377 dst.bo = bo; 378 src.mem = old_mem; 379 dst.mem = new_mem; 380 src.offset = 0; 381 dst.offset = 0; 382 383 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 384 new_mem->num_pages << PAGE_SHIFT, 385 amdgpu_bo_encrypted(abo), 386 bo->base.resv, &fence); 387 if (r) 388 goto error; 389 390 /* clear the space being freed */ 391 if (old_mem->mem_type == TTM_PL_VRAM && 392 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 393 struct dma_fence *wipe_fence = NULL; 394 395 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence); 396 if (r) { 397 goto error; 398 } else if (wipe_fence) { 399 dma_fence_put(fence); 400 fence = wipe_fence; 401 } 402 } 403 404 /* Always block for VM page tables before committing the new location */ 405 if (bo->type == ttm_bo_type_kernel) 406 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 407 else 408 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 409 dma_fence_put(fence); 410 return r; 411 412 error: 413 if (fence) 414 dma_fence_wait(fence, false); 415 dma_fence_put(fence); 416 return r; 417 } 418 419 /* 420 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 421 * 422 * Called by amdgpu_bo_move() 423 */ 424 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 425 struct ttm_resource *mem) 426 { 427 u64 mem_size = (u64)mem->num_pages << PAGE_SHIFT; 428 struct amdgpu_res_cursor cursor; 429 u64 end; 430 431 if (mem->mem_type == TTM_PL_SYSTEM || 432 mem->mem_type == TTM_PL_TT) 433 return true; 434 if (mem->mem_type != TTM_PL_VRAM) 435 return false; 436 437 amdgpu_res_first(mem, 0, mem_size, &cursor); 438 end = cursor.start + cursor.size; 439 while (cursor.remaining) { 440 amdgpu_res_next(&cursor, cursor.size); 441 442 /* ttm_resource_ioremap only supports contiguous memory */ 443 if (end != cursor.start) 444 return false; 445 446 end = cursor.start + cursor.size; 447 } 448 449 return end <= adev->gmc.visible_vram_size; 450 } 451 452 /* 453 * amdgpu_bo_move - Move a buffer object to a new memory location 454 * 455 * Called by ttm_bo_handle_move_mem() 456 */ 457 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 458 struct ttm_operation_ctx *ctx, 459 struct ttm_resource *new_mem, 460 struct ttm_place *hop) 461 { 462 struct amdgpu_device *adev; 463 struct amdgpu_bo *abo; 464 struct ttm_resource *old_mem = bo->resource; 465 int r; 466 467 if (new_mem->mem_type == TTM_PL_TT || 468 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 469 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 470 if (r) 471 return r; 472 } 473 474 /* Can't move a pinned BO */ 475 abo = ttm_to_amdgpu_bo(bo); 476 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 477 return -EINVAL; 478 479 adev = amdgpu_ttm_adev(bo->bdev); 480 481 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 482 bo->ttm == NULL)) { 483 ttm_bo_move_null(bo, new_mem); 484 goto out; 485 } 486 if (old_mem->mem_type == TTM_PL_SYSTEM && 487 (new_mem->mem_type == TTM_PL_TT || 488 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 489 ttm_bo_move_null(bo, new_mem); 490 goto out; 491 } 492 if ((old_mem->mem_type == TTM_PL_TT || 493 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 494 new_mem->mem_type == TTM_PL_SYSTEM) { 495 r = ttm_bo_wait_ctx(bo, ctx); 496 if (r) 497 return r; 498 499 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 500 ttm_resource_free(bo, &bo->resource); 501 ttm_bo_assign_mem(bo, new_mem); 502 goto out; 503 } 504 505 if (old_mem->mem_type == AMDGPU_PL_GDS || 506 old_mem->mem_type == AMDGPU_PL_GWS || 507 old_mem->mem_type == AMDGPU_PL_OA || 508 new_mem->mem_type == AMDGPU_PL_GDS || 509 new_mem->mem_type == AMDGPU_PL_GWS || 510 new_mem->mem_type == AMDGPU_PL_OA) { 511 /* Nothing to save here */ 512 ttm_bo_move_null(bo, new_mem); 513 goto out; 514 } 515 516 if (bo->type == ttm_bo_type_device && 517 new_mem->mem_type == TTM_PL_VRAM && 518 old_mem->mem_type != TTM_PL_VRAM) { 519 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 520 * accesses the BO after it's moved. 521 */ 522 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 523 } 524 525 if (adev->mman.buffer_funcs_enabled) { 526 if (((old_mem->mem_type == TTM_PL_SYSTEM && 527 new_mem->mem_type == TTM_PL_VRAM) || 528 (old_mem->mem_type == TTM_PL_VRAM && 529 new_mem->mem_type == TTM_PL_SYSTEM))) { 530 hop->fpfn = 0; 531 hop->lpfn = 0; 532 hop->mem_type = TTM_PL_TT; 533 hop->flags = TTM_PL_FLAG_TEMPORARY; 534 return -EMULTIHOP; 535 } 536 537 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 538 } else { 539 r = -ENODEV; 540 } 541 542 if (r) { 543 /* Check that all memory is CPU accessible */ 544 if (!amdgpu_mem_visible(adev, old_mem) || 545 !amdgpu_mem_visible(adev, new_mem)) { 546 pr_err("Move buffer fallback to memcpy unavailable\n"); 547 return r; 548 } 549 550 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 551 if (r) 552 return r; 553 } 554 555 out: 556 /* update statistics */ 557 atomic64_add(bo->base.size, &adev->num_bytes_moved); 558 amdgpu_bo_move_notify(bo, evict, new_mem); 559 return 0; 560 } 561 562 /* 563 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 564 * 565 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 566 */ 567 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 568 struct ttm_resource *mem) 569 { 570 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 571 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 572 573 switch (mem->mem_type) { 574 case TTM_PL_SYSTEM: 575 /* system memory */ 576 return 0; 577 case TTM_PL_TT: 578 case AMDGPU_PL_PREEMPT: 579 break; 580 case TTM_PL_VRAM: 581 mem->bus.offset = mem->start << PAGE_SHIFT; 582 /* check if it's visible */ 583 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 584 return -EINVAL; 585 586 if (adev->mman.aper_base_kaddr && 587 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 588 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 589 mem->bus.offset; 590 591 mem->bus.offset += adev->gmc.aper_base; 592 mem->bus.is_iomem = true; 593 break; 594 default: 595 return -EINVAL; 596 } 597 return 0; 598 } 599 600 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 601 unsigned long page_offset) 602 { 603 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 604 struct amdgpu_res_cursor cursor; 605 606 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 607 &cursor); 608 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 609 } 610 611 /** 612 * amdgpu_ttm_domain_start - Returns GPU start address 613 * @adev: amdgpu device object 614 * @type: type of the memory 615 * 616 * Returns: 617 * GPU start address of a memory domain 618 */ 619 620 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 621 { 622 switch (type) { 623 case TTM_PL_TT: 624 return adev->gmc.gart_start; 625 case TTM_PL_VRAM: 626 return adev->gmc.vram_start; 627 } 628 629 return 0; 630 } 631 632 /* 633 * TTM backend functions. 634 */ 635 struct amdgpu_ttm_tt { 636 struct ttm_tt ttm; 637 struct drm_gem_object *gobj; 638 u64 offset; 639 uint64_t userptr; 640 struct task_struct *usertask; 641 uint32_t userflags; 642 bool bound; 643 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 644 struct hmm_range *range; 645 #endif 646 }; 647 648 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 649 650 #ifdef CONFIG_DRM_AMDGPU_USERPTR 651 /* 652 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 653 * memory and start HMM tracking CPU page table update 654 * 655 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 656 * once afterwards to stop HMM tracking 657 */ 658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 659 { 660 struct ttm_tt *ttm = bo->tbo.ttm; 661 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 662 unsigned long start = gtt->userptr; 663 struct vm_area_struct *vma; 664 struct mm_struct *mm; 665 bool readonly; 666 int r = 0; 667 668 mm = bo->notifier.mm; 669 if (unlikely(!mm)) { 670 DRM_DEBUG_DRIVER("BO is not registered?\n"); 671 return -EFAULT; 672 } 673 674 /* Another get_user_pages is running at the same time?? */ 675 if (WARN_ON(gtt->range)) 676 return -EFAULT; 677 678 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 679 return -ESRCH; 680 681 mmap_read_lock(mm); 682 vma = vma_lookup(mm, start); 683 if (unlikely(!vma)) { 684 r = -EFAULT; 685 goto out_unlock; 686 } 687 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 688 vma->vm_file)) { 689 r = -EPERM; 690 goto out_unlock; 691 } 692 693 readonly = amdgpu_ttm_tt_is_readonly(ttm); 694 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start, 695 ttm->num_pages, >t->range, readonly, 696 true, NULL); 697 out_unlock: 698 mmap_read_unlock(mm); 699 if (r) 700 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 701 702 mmput(mm); 703 704 return r; 705 } 706 707 /* 708 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 709 * Check if the pages backing this ttm range have been invalidated 710 * 711 * Returns: true if pages are still valid 712 */ 713 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 714 { 715 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 716 bool r = false; 717 718 if (!gtt || !gtt->userptr) 719 return false; 720 721 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 722 gtt->userptr, ttm->num_pages); 723 724 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 725 "No user pages to check\n"); 726 727 if (gtt->range) { 728 /* 729 * FIXME: Must always hold notifier_lock for this, and must 730 * not ignore the return code. 731 */ 732 r = amdgpu_hmm_range_get_pages_done(gtt->range); 733 gtt->range = NULL; 734 } 735 736 return !r; 737 } 738 #endif 739 740 /* 741 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 742 * 743 * Called by amdgpu_cs_list_validate(). This creates the page list 744 * that backs user memory and will ultimately be mapped into the device 745 * address space. 746 */ 747 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 748 { 749 unsigned long i; 750 751 for (i = 0; i < ttm->num_pages; ++i) 752 ttm->pages[i] = pages ? pages[i] : NULL; 753 } 754 755 /* 756 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 757 * 758 * Called by amdgpu_ttm_backend_bind() 759 **/ 760 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 761 struct ttm_tt *ttm) 762 { 763 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 764 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 765 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 766 enum dma_data_direction direction = write ? 767 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 768 int r; 769 770 /* Allocate an SG array and squash pages into it */ 771 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 772 (u64)ttm->num_pages << PAGE_SHIFT, 773 GFP_KERNEL); 774 if (r) 775 goto release_sg; 776 777 /* Map SG to device */ 778 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 779 if (r) 780 goto release_sg; 781 782 /* convert SG to linear array of pages and dma addresses */ 783 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 784 ttm->num_pages); 785 786 return 0; 787 788 release_sg: 789 kfree(ttm->sg); 790 ttm->sg = NULL; 791 return r; 792 } 793 794 /* 795 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 796 */ 797 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 798 struct ttm_tt *ttm) 799 { 800 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 801 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 802 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 803 enum dma_data_direction direction = write ? 804 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 805 806 /* double check that we don't free the table twice */ 807 if (!ttm->sg || !ttm->sg->sgl) 808 return; 809 810 /* unmap the pages mapped to the device */ 811 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 812 sg_free_table(ttm->sg); 813 814 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 815 if (gtt->range) { 816 unsigned long i; 817 818 for (i = 0; i < ttm->num_pages; i++) { 819 if (ttm->pages[i] != 820 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 821 break; 822 } 823 824 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 825 } 826 #endif 827 } 828 829 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 830 struct ttm_buffer_object *tbo, 831 uint64_t flags) 832 { 833 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 834 struct ttm_tt *ttm = tbo->ttm; 835 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 836 837 if (amdgpu_bo_encrypted(abo)) 838 flags |= AMDGPU_PTE_TMZ; 839 840 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 841 uint64_t page_idx = 1; 842 843 amdgpu_gart_bind(adev, gtt->offset, page_idx, 844 gtt->ttm.dma_address, flags); 845 846 /* The memory type of the first page defaults to UC. Now 847 * modify the memory type to NC from the second page of 848 * the BO onward. 849 */ 850 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 851 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 852 853 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT), 854 ttm->num_pages - page_idx, 855 &(gtt->ttm.dma_address[page_idx]), flags); 856 } else { 857 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 858 gtt->ttm.dma_address, flags); 859 } 860 } 861 862 /* 863 * amdgpu_ttm_backend_bind - Bind GTT memory 864 * 865 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 866 * This handles binding GTT memory to the device address space. 867 */ 868 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 869 struct ttm_tt *ttm, 870 struct ttm_resource *bo_mem) 871 { 872 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 873 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 874 uint64_t flags; 875 int r; 876 877 if (!bo_mem) 878 return -EINVAL; 879 880 if (gtt->bound) 881 return 0; 882 883 if (gtt->userptr) { 884 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 885 if (r) { 886 DRM_ERROR("failed to pin userptr\n"); 887 return r; 888 } 889 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 890 if (!ttm->sg) { 891 struct dma_buf_attachment *attach; 892 struct sg_table *sgt; 893 894 attach = gtt->gobj->import_attach; 895 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 896 if (IS_ERR(sgt)) 897 return PTR_ERR(sgt); 898 899 ttm->sg = sgt; 900 } 901 902 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 903 ttm->num_pages); 904 } 905 906 if (!ttm->num_pages) { 907 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 908 ttm->num_pages, bo_mem, ttm); 909 } 910 911 if (bo_mem->mem_type != TTM_PL_TT || 912 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 913 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 914 return 0; 915 } 916 917 /* compute PTE flags relevant to this BO memory */ 918 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 919 920 /* bind pages into GART page tables */ 921 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 922 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 923 gtt->ttm.dma_address, flags); 924 gtt->bound = true; 925 return 0; 926 } 927 928 /* 929 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 930 * through AGP or GART aperture. 931 * 932 * If bo is accessible through AGP aperture, then use AGP aperture 933 * to access bo; otherwise allocate logical space in GART aperture 934 * and map bo to GART aperture. 935 */ 936 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 937 { 938 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 939 struct ttm_operation_ctx ctx = { false, false }; 940 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 941 struct ttm_placement placement; 942 struct ttm_place placements; 943 struct ttm_resource *tmp; 944 uint64_t addr, flags; 945 int r; 946 947 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 948 return 0; 949 950 addr = amdgpu_gmc_agp_addr(bo); 951 if (addr != AMDGPU_BO_INVALID_OFFSET) { 952 bo->resource->start = addr >> PAGE_SHIFT; 953 return 0; 954 } 955 956 /* allocate GART space */ 957 placement.num_placement = 1; 958 placement.placement = &placements; 959 placement.num_busy_placement = 1; 960 placement.busy_placement = &placements; 961 placements.fpfn = 0; 962 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 963 placements.mem_type = TTM_PL_TT; 964 placements.flags = bo->resource->placement; 965 966 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 967 if (unlikely(r)) 968 return r; 969 970 /* compute PTE flags for this buffer object */ 971 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 972 973 /* Bind pages */ 974 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 975 amdgpu_ttm_gart_bind(adev, bo, flags); 976 amdgpu_gart_invalidate_tlb(adev); 977 ttm_resource_free(bo, &bo->resource); 978 ttm_bo_assign_mem(bo, tmp); 979 980 return 0; 981 } 982 983 /* 984 * amdgpu_ttm_recover_gart - Rebind GTT pages 985 * 986 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 987 * rebind GTT pages during a GPU reset. 988 */ 989 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 990 { 991 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 992 uint64_t flags; 993 994 if (!tbo->ttm) 995 return; 996 997 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 998 amdgpu_ttm_gart_bind(adev, tbo, flags); 999 } 1000 1001 /* 1002 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1003 * 1004 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1005 * ttm_tt_destroy(). 1006 */ 1007 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1008 struct ttm_tt *ttm) 1009 { 1010 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1011 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1012 1013 /* if the pages have userptr pinning then clear that first */ 1014 if (gtt->userptr) { 1015 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1016 } else if (ttm->sg && gtt->gobj->import_attach) { 1017 struct dma_buf_attachment *attach; 1018 1019 attach = gtt->gobj->import_attach; 1020 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1021 ttm->sg = NULL; 1022 } 1023 1024 if (!gtt->bound) 1025 return; 1026 1027 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1028 return; 1029 1030 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1031 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1032 gtt->bound = false; 1033 } 1034 1035 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1036 struct ttm_tt *ttm) 1037 { 1038 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1039 1040 if (gtt->usertask) 1041 put_task_struct(gtt->usertask); 1042 1043 ttm_tt_fini(>t->ttm); 1044 kfree(gtt); 1045 } 1046 1047 /** 1048 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1049 * 1050 * @bo: The buffer object to create a GTT ttm_tt object around 1051 * @page_flags: Page flags to be added to the ttm_tt object 1052 * 1053 * Called by ttm_tt_create(). 1054 */ 1055 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1056 uint32_t page_flags) 1057 { 1058 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1059 struct amdgpu_ttm_tt *gtt; 1060 enum ttm_caching caching; 1061 1062 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1063 if (gtt == NULL) { 1064 return NULL; 1065 } 1066 gtt->gobj = &bo->base; 1067 1068 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1069 caching = ttm_write_combined; 1070 else 1071 caching = ttm_cached; 1072 1073 /* allocate space for the uninitialized page entries */ 1074 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1075 kfree(gtt); 1076 return NULL; 1077 } 1078 return >t->ttm; 1079 } 1080 1081 /* 1082 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1083 * 1084 * Map the pages of a ttm_tt object to an address space visible 1085 * to the underlying device. 1086 */ 1087 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1088 struct ttm_tt *ttm, 1089 struct ttm_operation_ctx *ctx) 1090 { 1091 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1092 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1093 pgoff_t i; 1094 int ret; 1095 1096 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1097 if (gtt->userptr) { 1098 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1099 if (!ttm->sg) 1100 return -ENOMEM; 1101 return 0; 1102 } 1103 1104 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1105 return 0; 1106 1107 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1108 if (ret) 1109 return ret; 1110 1111 for (i = 0; i < ttm->num_pages; ++i) 1112 ttm->pages[i]->mapping = bdev->dev_mapping; 1113 1114 return 0; 1115 } 1116 1117 /* 1118 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1119 * 1120 * Unmaps pages of a ttm_tt object from the device address space and 1121 * unpopulates the page array backing it. 1122 */ 1123 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1124 struct ttm_tt *ttm) 1125 { 1126 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1127 struct amdgpu_device *adev; 1128 pgoff_t i; 1129 1130 amdgpu_ttm_backend_unbind(bdev, ttm); 1131 1132 if (gtt->userptr) { 1133 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1134 kfree(ttm->sg); 1135 ttm->sg = NULL; 1136 return; 1137 } 1138 1139 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1140 return; 1141 1142 for (i = 0; i < ttm->num_pages; ++i) 1143 ttm->pages[i]->mapping = NULL; 1144 1145 adev = amdgpu_ttm_adev(bdev); 1146 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1147 } 1148 1149 /** 1150 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1151 * task 1152 * 1153 * @tbo: The ttm_buffer_object that contains the userptr 1154 * @user_addr: The returned value 1155 */ 1156 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1157 uint64_t *user_addr) 1158 { 1159 struct amdgpu_ttm_tt *gtt; 1160 1161 if (!tbo->ttm) 1162 return -EINVAL; 1163 1164 gtt = (void *)tbo->ttm; 1165 *user_addr = gtt->userptr; 1166 return 0; 1167 } 1168 1169 /** 1170 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1171 * task 1172 * 1173 * @bo: The ttm_buffer_object to bind this userptr to 1174 * @addr: The address in the current tasks VM space to use 1175 * @flags: Requirements of userptr object. 1176 * 1177 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1178 * to current task 1179 */ 1180 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1181 uint64_t addr, uint32_t flags) 1182 { 1183 struct amdgpu_ttm_tt *gtt; 1184 1185 if (!bo->ttm) { 1186 /* TODO: We want a separate TTM object type for userptrs */ 1187 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1188 if (bo->ttm == NULL) 1189 return -ENOMEM; 1190 } 1191 1192 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1193 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1194 1195 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1196 gtt->userptr = addr; 1197 gtt->userflags = flags; 1198 1199 if (gtt->usertask) 1200 put_task_struct(gtt->usertask); 1201 gtt->usertask = current->group_leader; 1202 get_task_struct(gtt->usertask); 1203 1204 return 0; 1205 } 1206 1207 /* 1208 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1209 */ 1210 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1211 { 1212 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1213 1214 if (gtt == NULL) 1215 return NULL; 1216 1217 if (gtt->usertask == NULL) 1218 return NULL; 1219 1220 return gtt->usertask->mm; 1221 } 1222 1223 /* 1224 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1225 * address range for the current task. 1226 * 1227 */ 1228 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1229 unsigned long end, unsigned long *userptr) 1230 { 1231 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1232 unsigned long size; 1233 1234 if (gtt == NULL || !gtt->userptr) 1235 return false; 1236 1237 /* Return false if no part of the ttm_tt object lies within 1238 * the range 1239 */ 1240 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1241 if (gtt->userptr > end || gtt->userptr + size <= start) 1242 return false; 1243 1244 if (userptr) 1245 *userptr = gtt->userptr; 1246 return true; 1247 } 1248 1249 /* 1250 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1251 */ 1252 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1253 { 1254 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1255 1256 if (gtt == NULL || !gtt->userptr) 1257 return false; 1258 1259 return true; 1260 } 1261 1262 /* 1263 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1264 */ 1265 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1266 { 1267 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1268 1269 if (gtt == NULL) 1270 return false; 1271 1272 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1273 } 1274 1275 /** 1276 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1277 * 1278 * @ttm: The ttm_tt object to compute the flags for 1279 * @mem: The memory registry backing this ttm_tt object 1280 * 1281 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1282 */ 1283 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1284 { 1285 uint64_t flags = 0; 1286 1287 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1288 flags |= AMDGPU_PTE_VALID; 1289 1290 if (mem && (mem->mem_type == TTM_PL_TT || 1291 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1292 flags |= AMDGPU_PTE_SYSTEM; 1293 1294 if (ttm->caching == ttm_cached) 1295 flags |= AMDGPU_PTE_SNOOPED; 1296 } 1297 1298 if (mem && mem->mem_type == TTM_PL_VRAM && 1299 mem->bus.caching == ttm_cached) 1300 flags |= AMDGPU_PTE_SNOOPED; 1301 1302 return flags; 1303 } 1304 1305 /** 1306 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1307 * 1308 * @adev: amdgpu_device pointer 1309 * @ttm: The ttm_tt object to compute the flags for 1310 * @mem: The memory registry backing this ttm_tt object 1311 * 1312 * Figure out the flags to use for a VM PTE (Page Table Entry). 1313 */ 1314 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1315 struct ttm_resource *mem) 1316 { 1317 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1318 1319 flags |= adev->gart.gart_pte_flags; 1320 flags |= AMDGPU_PTE_READABLE; 1321 1322 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1323 flags |= AMDGPU_PTE_WRITEABLE; 1324 1325 return flags; 1326 } 1327 1328 /* 1329 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1330 * object. 1331 * 1332 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1333 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1334 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1335 * used to clean out a memory space. 1336 */ 1337 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1338 const struct ttm_place *place) 1339 { 1340 struct dma_resv_iter resv_cursor; 1341 struct dma_fence *f; 1342 1343 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1344 return ttm_bo_eviction_valuable(bo, place); 1345 1346 /* Swapout? */ 1347 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1348 return true; 1349 1350 if (bo->type == ttm_bo_type_kernel && 1351 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1352 return false; 1353 1354 /* If bo is a KFD BO, check if the bo belongs to the current process. 1355 * If true, then return false as any KFD process needs all its BOs to 1356 * be resident to run successfully 1357 */ 1358 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1359 DMA_RESV_USAGE_BOOKKEEP, f) { 1360 if (amdkfd_fence_check_mm(f, current->mm)) 1361 return false; 1362 } 1363 1364 /* Preemptible BOs don't own system resources managed by the 1365 * driver (pages, VRAM, GART space). They point to resources 1366 * owned by someone else (e.g. pageable memory in user mode 1367 * or a DMABuf). They are used in a preemptible context so we 1368 * can guarantee no deadlocks and good QoS in case of MMU 1369 * notifiers or DMABuf move notifiers from the resource owner. 1370 */ 1371 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1372 return false; 1373 1374 if (bo->resource->mem_type == TTM_PL_TT && 1375 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1376 return false; 1377 1378 return ttm_bo_eviction_valuable(bo, place); 1379 } 1380 1381 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1382 void *buf, size_t size, bool write) 1383 { 1384 while (size) { 1385 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1386 uint64_t bytes = 4 - (pos & 0x3); 1387 uint32_t shift = (pos & 0x3) * 8; 1388 uint32_t mask = 0xffffffff << shift; 1389 uint32_t value = 0; 1390 1391 if (size < bytes) { 1392 mask &= 0xffffffff >> (bytes - size) * 8; 1393 bytes = size; 1394 } 1395 1396 if (mask != 0xffffffff) { 1397 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1398 if (write) { 1399 value &= ~mask; 1400 value |= (*(uint32_t *)buf << shift) & mask; 1401 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1402 } else { 1403 value = (value & mask) >> shift; 1404 memcpy(buf, &value, bytes); 1405 } 1406 } else { 1407 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1408 } 1409 1410 pos += bytes; 1411 buf += bytes; 1412 size -= bytes; 1413 } 1414 } 1415 1416 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1417 unsigned long offset, void *buf, int len, int write) 1418 { 1419 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1420 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1421 struct amdgpu_res_cursor src_mm; 1422 struct amdgpu_job *job; 1423 struct dma_fence *fence; 1424 uint64_t src_addr, dst_addr; 1425 unsigned int num_dw; 1426 int r, idx; 1427 1428 if (len != PAGE_SIZE) 1429 return -EINVAL; 1430 1431 if (!adev->mman.sdma_access_ptr) 1432 return -EACCES; 1433 1434 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1435 return -ENODEV; 1436 1437 if (write) 1438 memcpy(adev->mman.sdma_access_ptr, buf, len); 1439 1440 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1441 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job); 1442 if (r) 1443 goto out; 1444 1445 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1446 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start; 1447 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1448 if (write) 1449 swap(src_addr, dst_addr); 1450 1451 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false); 1452 1453 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1454 WARN_ON(job->ibs[0].length_dw > num_dw); 1455 1456 r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1457 if (r) { 1458 amdgpu_job_free(job); 1459 goto out; 1460 } 1461 1462 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1463 r = -ETIMEDOUT; 1464 dma_fence_put(fence); 1465 1466 if (!(r || write)) 1467 memcpy(buf, adev->mman.sdma_access_ptr, len); 1468 out: 1469 drm_dev_exit(idx); 1470 return r; 1471 } 1472 1473 /** 1474 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1475 * 1476 * @bo: The buffer object to read/write 1477 * @offset: Offset into buffer object 1478 * @buf: Secondary buffer to write/read from 1479 * @len: Length in bytes of access 1480 * @write: true if writing 1481 * 1482 * This is used to access VRAM that backs a buffer object via MMIO 1483 * access for debugging purposes. 1484 */ 1485 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1486 unsigned long offset, void *buf, int len, 1487 int write) 1488 { 1489 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1490 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1491 struct amdgpu_res_cursor cursor; 1492 int ret = 0; 1493 1494 if (bo->resource->mem_type != TTM_PL_VRAM) 1495 return -EIO; 1496 1497 if (amdgpu_device_has_timeouts_enabled(adev) && 1498 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1499 return len; 1500 1501 amdgpu_res_first(bo->resource, offset, len, &cursor); 1502 while (cursor.remaining) { 1503 size_t count, size = cursor.size; 1504 loff_t pos = cursor.start; 1505 1506 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1507 size -= count; 1508 if (size) { 1509 /* using MM to access rest vram and handle un-aligned address */ 1510 pos += count; 1511 buf += count; 1512 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1513 } 1514 1515 ret += cursor.size; 1516 buf += cursor.size; 1517 amdgpu_res_next(&cursor, cursor.size); 1518 } 1519 1520 return ret; 1521 } 1522 1523 static void 1524 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1525 { 1526 amdgpu_bo_move_notify(bo, false, NULL); 1527 } 1528 1529 static struct ttm_device_funcs amdgpu_bo_driver = { 1530 .ttm_tt_create = &amdgpu_ttm_tt_create, 1531 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1532 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1533 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1534 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1535 .evict_flags = &amdgpu_evict_flags, 1536 .move = &amdgpu_bo_move, 1537 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1538 .release_notify = &amdgpu_bo_release_notify, 1539 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1540 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1541 .access_memory = &amdgpu_ttm_access_memory, 1542 }; 1543 1544 /* 1545 * Firmware Reservation functions 1546 */ 1547 /** 1548 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1549 * 1550 * @adev: amdgpu_device pointer 1551 * 1552 * free fw reserved vram if it has been reserved. 1553 */ 1554 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1555 { 1556 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1557 NULL, &adev->mman.fw_vram_usage_va); 1558 } 1559 1560 /** 1561 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1562 * 1563 * @adev: amdgpu_device pointer 1564 * 1565 * create bo vram reservation from fw. 1566 */ 1567 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1568 { 1569 uint64_t vram_size = adev->gmc.visible_vram_size; 1570 1571 adev->mman.fw_vram_usage_va = NULL; 1572 adev->mman.fw_vram_usage_reserved_bo = NULL; 1573 1574 if (adev->mman.fw_vram_usage_size == 0 || 1575 adev->mman.fw_vram_usage_size > vram_size) 1576 return 0; 1577 1578 return amdgpu_bo_create_kernel_at(adev, 1579 adev->mman.fw_vram_usage_start_offset, 1580 adev->mman.fw_vram_usage_size, 1581 AMDGPU_GEM_DOMAIN_VRAM, 1582 &adev->mman.fw_vram_usage_reserved_bo, 1583 &adev->mman.fw_vram_usage_va); 1584 } 1585 1586 /* 1587 * Memoy training reservation functions 1588 */ 1589 1590 /** 1591 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1592 * 1593 * @adev: amdgpu_device pointer 1594 * 1595 * free memory training reserved vram if it has been reserved. 1596 */ 1597 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1598 { 1599 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1600 1601 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1602 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1603 ctx->c2p_bo = NULL; 1604 1605 return 0; 1606 } 1607 1608 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1609 { 1610 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1611 1612 memset(ctx, 0, sizeof(*ctx)); 1613 1614 ctx->c2p_train_data_offset = 1615 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1616 ctx->p2c_train_data_offset = 1617 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1618 ctx->train_data_size = 1619 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1620 1621 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1622 ctx->train_data_size, 1623 ctx->p2c_train_data_offset, 1624 ctx->c2p_train_data_offset); 1625 } 1626 1627 /* 1628 * reserve TMR memory at the top of VRAM which holds 1629 * IP Discovery data and is protected by PSP. 1630 */ 1631 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1632 { 1633 int ret; 1634 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1635 bool mem_train_support = false; 1636 1637 if (!amdgpu_sriov_vf(adev)) { 1638 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1639 mem_train_support = true; 1640 else 1641 DRM_DEBUG("memory training does not support!\n"); 1642 } 1643 1644 /* 1645 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1646 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1647 * 1648 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1649 * discovery data and G6 memory training data respectively 1650 */ 1651 adev->mman.discovery_tmr_size = 1652 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1653 if (!adev->mman.discovery_tmr_size) 1654 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1655 1656 if (mem_train_support) { 1657 /* reserve vram for mem train according to TMR location */ 1658 amdgpu_ttm_training_data_block_init(adev); 1659 ret = amdgpu_bo_create_kernel_at(adev, 1660 ctx->c2p_train_data_offset, 1661 ctx->train_data_size, 1662 AMDGPU_GEM_DOMAIN_VRAM, 1663 &ctx->c2p_bo, 1664 NULL); 1665 if (ret) { 1666 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1667 amdgpu_ttm_training_reserve_vram_fini(adev); 1668 return ret; 1669 } 1670 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1671 } 1672 1673 ret = amdgpu_bo_create_kernel_at(adev, 1674 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1675 adev->mman.discovery_tmr_size, 1676 AMDGPU_GEM_DOMAIN_VRAM, 1677 &adev->mman.discovery_memory, 1678 NULL); 1679 if (ret) { 1680 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1681 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1682 return ret; 1683 } 1684 1685 return 0; 1686 } 1687 1688 /* 1689 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1690 * gtt/vram related fields. 1691 * 1692 * This initializes all of the memory space pools that the TTM layer 1693 * will need such as the GTT space (system memory mapped to the device), 1694 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1695 * can be mapped per VMID. 1696 */ 1697 int amdgpu_ttm_init(struct amdgpu_device *adev) 1698 { 1699 uint64_t gtt_size; 1700 int r; 1701 u64 vis_vram_limit; 1702 1703 mutex_init(&adev->mman.gtt_window_lock); 1704 1705 /* No others user of address space so set it to 0 */ 1706 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1707 adev_to_drm(adev)->anon_inode->i_mapping, 1708 adev_to_drm(adev)->vma_offset_manager, 1709 adev->need_swiotlb, 1710 dma_addressing_limited(adev->dev)); 1711 if (r) { 1712 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1713 return r; 1714 } 1715 adev->mman.initialized = true; 1716 1717 /* Initialize VRAM pool with all of VRAM divided into pages */ 1718 r = amdgpu_vram_mgr_init(adev); 1719 if (r) { 1720 DRM_ERROR("Failed initializing VRAM heap.\n"); 1721 return r; 1722 } 1723 1724 /* Reduce size of CPU-visible VRAM if requested */ 1725 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1726 if (amdgpu_vis_vram_limit > 0 && 1727 vis_vram_limit <= adev->gmc.visible_vram_size) 1728 adev->gmc.visible_vram_size = vis_vram_limit; 1729 1730 /* Change the size here instead of the init above so only lpfn is affected */ 1731 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1732 #ifdef CONFIG_64BIT 1733 #ifdef CONFIG_X86 1734 if (adev->gmc.xgmi.connected_to_cpu) 1735 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1736 adev->gmc.visible_vram_size); 1737 1738 else 1739 #endif 1740 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1741 adev->gmc.visible_vram_size); 1742 #endif 1743 1744 /* 1745 *The reserved vram for firmware must be pinned to the specified 1746 *place on the VRAM, so reserve it early. 1747 */ 1748 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1749 if (r) { 1750 return r; 1751 } 1752 1753 /* 1754 * only NAVI10 and onwards ASIC support for IP discovery. 1755 * If IP discovery enabled, a block of memory should be 1756 * reserved for IP discovey. 1757 */ 1758 if (adev->mman.discovery_bin) { 1759 r = amdgpu_ttm_reserve_tmr(adev); 1760 if (r) 1761 return r; 1762 } 1763 1764 /* allocate memory as required for VGA 1765 * This is used for VGA emulation and pre-OS scanout buffers to 1766 * avoid display artifacts while transitioning between pre-OS 1767 * and driver. */ 1768 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1769 AMDGPU_GEM_DOMAIN_VRAM, 1770 &adev->mman.stolen_vga_memory, 1771 NULL); 1772 if (r) 1773 return r; 1774 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1775 adev->mman.stolen_extended_size, 1776 AMDGPU_GEM_DOMAIN_VRAM, 1777 &adev->mman.stolen_extended_memory, 1778 NULL); 1779 if (r) 1780 return r; 1781 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, 1782 adev->mman.stolen_reserved_size, 1783 AMDGPU_GEM_DOMAIN_VRAM, 1784 &adev->mman.stolen_reserved_memory, 1785 NULL); 1786 if (r) 1787 return r; 1788 1789 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1790 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1791 1792 /* Compute GTT size, either based on 1/2 the size of RAM size 1793 * or whatever the user passed on module init */ 1794 if (amdgpu_gtt_size == -1) { 1795 struct sysinfo si; 1796 1797 si_meminfo(&si); 1798 /* Certain GL unit tests for large textures can cause problems 1799 * with the OOM killer since there is no way to link this memory 1800 * to a process. This was originally mitigated (but not necessarily 1801 * eliminated) by limiting the GTT size. The problem is this limit 1802 * is often too low for many modern games so just make the limit 1/2 1803 * of system memory which aligns with TTM. The OOM accounting needs 1804 * to be addressed, but we shouldn't prevent common 3D applications 1805 * from being usable just to potentially mitigate that corner case. 1806 */ 1807 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1808 (u64)si.totalram * si.mem_unit / 2); 1809 } else { 1810 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1811 } 1812 1813 /* Initialize GTT memory pool */ 1814 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1815 if (r) { 1816 DRM_ERROR("Failed initializing GTT heap.\n"); 1817 return r; 1818 } 1819 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1820 (unsigned)(gtt_size / (1024 * 1024))); 1821 1822 /* Initialize preemptible memory pool */ 1823 r = amdgpu_preempt_mgr_init(adev); 1824 if (r) { 1825 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1826 return r; 1827 } 1828 1829 /* Initialize various on-chip memory pools */ 1830 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1831 if (r) { 1832 DRM_ERROR("Failed initializing GDS heap.\n"); 1833 return r; 1834 } 1835 1836 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1837 if (r) { 1838 DRM_ERROR("Failed initializing gws heap.\n"); 1839 return r; 1840 } 1841 1842 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1843 if (r) { 1844 DRM_ERROR("Failed initializing oa heap.\n"); 1845 return r; 1846 } 1847 1848 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1849 AMDGPU_GEM_DOMAIN_GTT, 1850 &adev->mman.sdma_access_bo, NULL, 1851 &adev->mman.sdma_access_ptr)) 1852 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1853 1854 return 0; 1855 } 1856 1857 /* 1858 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1859 */ 1860 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1861 { 1862 int idx; 1863 if (!adev->mman.initialized) 1864 return; 1865 1866 amdgpu_ttm_training_reserve_vram_fini(adev); 1867 /* return the stolen vga memory back to VRAM */ 1868 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1869 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1870 /* return the IP Discovery TMR memory back to VRAM */ 1871 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1872 if (adev->mman.stolen_reserved_size) 1873 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1874 NULL, NULL); 1875 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 1876 &adev->mman.sdma_access_ptr); 1877 amdgpu_ttm_fw_reserve_vram_fini(adev); 1878 1879 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 1880 1881 if (adev->mman.aper_base_kaddr) 1882 iounmap(adev->mman.aper_base_kaddr); 1883 adev->mman.aper_base_kaddr = NULL; 1884 1885 drm_dev_exit(idx); 1886 } 1887 1888 amdgpu_vram_mgr_fini(adev); 1889 amdgpu_gtt_mgr_fini(adev); 1890 amdgpu_preempt_mgr_fini(adev); 1891 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1892 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1893 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1894 ttm_device_fini(&adev->mman.bdev); 1895 adev->mman.initialized = false; 1896 DRM_INFO("amdgpu: ttm finalized\n"); 1897 } 1898 1899 /** 1900 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1901 * 1902 * @adev: amdgpu_device pointer 1903 * @enable: true when we can use buffer functions. 1904 * 1905 * Enable/disable use of buffer functions during suspend/resume. This should 1906 * only be called at bootup or when userspace isn't running. 1907 */ 1908 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1909 { 1910 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1911 uint64_t size; 1912 int r; 1913 1914 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1915 adev->mman.buffer_funcs_enabled == enable) 1916 return; 1917 1918 if (enable) { 1919 struct amdgpu_ring *ring; 1920 struct drm_gpu_scheduler *sched; 1921 1922 ring = adev->mman.buffer_funcs_ring; 1923 sched = &ring->sched; 1924 r = drm_sched_entity_init(&adev->mman.entity, 1925 DRM_SCHED_PRIORITY_KERNEL, &sched, 1926 1, NULL); 1927 if (r) { 1928 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1929 r); 1930 return; 1931 } 1932 } else { 1933 drm_sched_entity_destroy(&adev->mman.entity); 1934 dma_fence_put(man->move); 1935 man->move = NULL; 1936 } 1937 1938 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1939 if (enable) 1940 size = adev->gmc.real_vram_size; 1941 else 1942 size = adev->gmc.visible_vram_size; 1943 man->size = size; 1944 adev->mman.buffer_funcs_enabled = enable; 1945 } 1946 1947 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 1948 bool direct_submit, 1949 unsigned int num_dw, 1950 struct dma_resv *resv, 1951 bool vm_needs_flush, 1952 struct amdgpu_job **job) 1953 { 1954 enum amdgpu_ib_pool_type pool = direct_submit ? 1955 AMDGPU_IB_POOL_DIRECT : 1956 AMDGPU_IB_POOL_DELAYED; 1957 int r; 1958 1959 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job); 1960 if (r) 1961 return r; 1962 1963 if (vm_needs_flush) { 1964 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1965 adev->gmc.pdb0_bo : 1966 adev->gart.bo); 1967 (*job)->vm_needs_flush = true; 1968 } 1969 if (resv) { 1970 r = amdgpu_sync_resv(adev, &(*job)->sync, resv, 1971 AMDGPU_SYNC_ALWAYS, 1972 AMDGPU_FENCE_OWNER_UNDEFINED); 1973 if (r) { 1974 DRM_ERROR("sync failed (%d).\n", r); 1975 amdgpu_job_free(*job); 1976 return r; 1977 } 1978 } 1979 return 0; 1980 } 1981 1982 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1983 uint64_t dst_offset, uint32_t byte_count, 1984 struct dma_resv *resv, 1985 struct dma_fence **fence, bool direct_submit, 1986 bool vm_needs_flush, bool tmz) 1987 { 1988 struct amdgpu_device *adev = ring->adev; 1989 unsigned num_loops, num_dw; 1990 struct amdgpu_job *job; 1991 uint32_t max_bytes; 1992 unsigned i; 1993 int r; 1994 1995 if (!direct_submit && !ring->sched.ready) { 1996 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1997 return -EINVAL; 1998 } 1999 2000 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2001 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2002 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2003 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2004 resv, vm_needs_flush, &job); 2005 if (r) 2006 return r; 2007 2008 for (i = 0; i < num_loops; i++) { 2009 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2010 2011 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2012 dst_offset, cur_size_in_bytes, tmz); 2013 2014 src_offset += cur_size_in_bytes; 2015 dst_offset += cur_size_in_bytes; 2016 byte_count -= cur_size_in_bytes; 2017 } 2018 2019 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2020 WARN_ON(job->ibs[0].length_dw > num_dw); 2021 if (direct_submit) 2022 r = amdgpu_job_submit_direct(job, ring, fence); 2023 else 2024 r = amdgpu_job_submit(job, &adev->mman.entity, 2025 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2026 if (r) 2027 goto error_free; 2028 2029 return r; 2030 2031 error_free: 2032 amdgpu_job_free(job); 2033 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2034 return r; 2035 } 2036 2037 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2038 uint64_t dst_addr, uint32_t byte_count, 2039 struct dma_resv *resv, 2040 struct dma_fence **fence, 2041 bool vm_needs_flush) 2042 { 2043 struct amdgpu_device *adev = ring->adev; 2044 unsigned int num_loops, num_dw; 2045 struct amdgpu_job *job; 2046 uint32_t max_bytes; 2047 unsigned int i; 2048 int r; 2049 2050 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2051 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2052 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2053 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2054 &job); 2055 if (r) 2056 return r; 2057 2058 for (i = 0; i < num_loops; i++) { 2059 uint32_t cur_size = min(byte_count, max_bytes); 2060 2061 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2062 cur_size); 2063 2064 dst_addr += cur_size; 2065 byte_count -= cur_size; 2066 } 2067 2068 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2069 WARN_ON(job->ibs[0].length_dw > num_dw); 2070 r = amdgpu_job_submit(job, &adev->mman.entity, 2071 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2072 if (r) 2073 goto error_free; 2074 2075 return 0; 2076 2077 error_free: 2078 amdgpu_job_free(job); 2079 return r; 2080 } 2081 2082 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2083 uint32_t src_data, 2084 struct dma_resv *resv, 2085 struct dma_fence **f) 2086 { 2087 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2088 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2089 struct dma_fence *fence = NULL; 2090 struct amdgpu_res_cursor dst; 2091 int r; 2092 2093 if (!adev->mman.buffer_funcs_enabled) { 2094 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2095 return -EINVAL; 2096 } 2097 2098 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2099 2100 mutex_lock(&adev->mman.gtt_window_lock); 2101 while (dst.remaining) { 2102 struct dma_fence *next; 2103 uint64_t cur_size, to; 2104 2105 /* Never fill more than 256MiB at once to avoid timeouts */ 2106 cur_size = min(dst.size, 256ULL << 20); 2107 2108 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2109 1, ring, false, &cur_size, &to); 2110 if (r) 2111 goto error; 2112 2113 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2114 &next, true); 2115 if (r) 2116 goto error; 2117 2118 dma_fence_put(fence); 2119 fence = next; 2120 2121 amdgpu_res_next(&dst, cur_size); 2122 } 2123 error: 2124 mutex_unlock(&adev->mman.gtt_window_lock); 2125 if (f) 2126 *f = dma_fence_get(fence); 2127 dma_fence_put(fence); 2128 return r; 2129 } 2130 2131 /** 2132 * amdgpu_ttm_evict_resources - evict memory buffers 2133 * @adev: amdgpu device object 2134 * @mem_type: evicted BO's memory type 2135 * 2136 * Evicts all @mem_type buffers on the lru list of the memory type. 2137 * 2138 * Returns: 2139 * 0 for success or a negative error code on failure. 2140 */ 2141 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2142 { 2143 struct ttm_resource_manager *man; 2144 2145 switch (mem_type) { 2146 case TTM_PL_VRAM: 2147 case TTM_PL_TT: 2148 case AMDGPU_PL_GWS: 2149 case AMDGPU_PL_GDS: 2150 case AMDGPU_PL_OA: 2151 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2152 break; 2153 default: 2154 DRM_ERROR("Trying to evict invalid memory type\n"); 2155 return -EINVAL; 2156 } 2157 2158 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2159 } 2160 2161 #if defined(CONFIG_DEBUG_FS) 2162 2163 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2164 { 2165 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2166 2167 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2168 } 2169 2170 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2171 2172 /* 2173 * amdgpu_ttm_vram_read - Linear read access to VRAM 2174 * 2175 * Accesses VRAM via MMIO for debugging purposes. 2176 */ 2177 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2178 size_t size, loff_t *pos) 2179 { 2180 struct amdgpu_device *adev = file_inode(f)->i_private; 2181 ssize_t result = 0; 2182 2183 if (size & 0x3 || *pos & 0x3) 2184 return -EINVAL; 2185 2186 if (*pos >= adev->gmc.mc_vram_size) 2187 return -ENXIO; 2188 2189 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2190 while (size) { 2191 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2192 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2193 2194 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2195 if (copy_to_user(buf, value, bytes)) 2196 return -EFAULT; 2197 2198 result += bytes; 2199 buf += bytes; 2200 *pos += bytes; 2201 size -= bytes; 2202 } 2203 2204 return result; 2205 } 2206 2207 /* 2208 * amdgpu_ttm_vram_write - Linear write access to VRAM 2209 * 2210 * Accesses VRAM via MMIO for debugging purposes. 2211 */ 2212 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2213 size_t size, loff_t *pos) 2214 { 2215 struct amdgpu_device *adev = file_inode(f)->i_private; 2216 ssize_t result = 0; 2217 int r; 2218 2219 if (size & 0x3 || *pos & 0x3) 2220 return -EINVAL; 2221 2222 if (*pos >= adev->gmc.mc_vram_size) 2223 return -ENXIO; 2224 2225 while (size) { 2226 uint32_t value; 2227 2228 if (*pos >= adev->gmc.mc_vram_size) 2229 return result; 2230 2231 r = get_user(value, (uint32_t *)buf); 2232 if (r) 2233 return r; 2234 2235 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2236 2237 result += 4; 2238 buf += 4; 2239 *pos += 4; 2240 size -= 4; 2241 } 2242 2243 return result; 2244 } 2245 2246 static const struct file_operations amdgpu_ttm_vram_fops = { 2247 .owner = THIS_MODULE, 2248 .read = amdgpu_ttm_vram_read, 2249 .write = amdgpu_ttm_vram_write, 2250 .llseek = default_llseek, 2251 }; 2252 2253 /* 2254 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2255 * 2256 * This function is used to read memory that has been mapped to the 2257 * GPU and the known addresses are not physical addresses but instead 2258 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2259 */ 2260 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2261 size_t size, loff_t *pos) 2262 { 2263 struct amdgpu_device *adev = file_inode(f)->i_private; 2264 struct iommu_domain *dom; 2265 ssize_t result = 0; 2266 int r; 2267 2268 /* retrieve the IOMMU domain if any for this device */ 2269 dom = iommu_get_domain_for_dev(adev->dev); 2270 2271 while (size) { 2272 phys_addr_t addr = *pos & PAGE_MASK; 2273 loff_t off = *pos & ~PAGE_MASK; 2274 size_t bytes = PAGE_SIZE - off; 2275 unsigned long pfn; 2276 struct page *p; 2277 void *ptr; 2278 2279 bytes = bytes < size ? bytes : size; 2280 2281 /* Translate the bus address to a physical address. If 2282 * the domain is NULL it means there is no IOMMU active 2283 * and the address translation is the identity 2284 */ 2285 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2286 2287 pfn = addr >> PAGE_SHIFT; 2288 if (!pfn_valid(pfn)) 2289 return -EPERM; 2290 2291 p = pfn_to_page(pfn); 2292 if (p->mapping != adev->mman.bdev.dev_mapping) 2293 return -EPERM; 2294 2295 ptr = kmap(p); 2296 r = copy_to_user(buf, ptr + off, bytes); 2297 kunmap(p); 2298 if (r) 2299 return -EFAULT; 2300 2301 size -= bytes; 2302 *pos += bytes; 2303 result += bytes; 2304 } 2305 2306 return result; 2307 } 2308 2309 /* 2310 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2311 * 2312 * This function is used to write memory that has been mapped to the 2313 * GPU and the known addresses are not physical addresses but instead 2314 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2315 */ 2316 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2317 size_t size, loff_t *pos) 2318 { 2319 struct amdgpu_device *adev = file_inode(f)->i_private; 2320 struct iommu_domain *dom; 2321 ssize_t result = 0; 2322 int r; 2323 2324 dom = iommu_get_domain_for_dev(adev->dev); 2325 2326 while (size) { 2327 phys_addr_t addr = *pos & PAGE_MASK; 2328 loff_t off = *pos & ~PAGE_MASK; 2329 size_t bytes = PAGE_SIZE - off; 2330 unsigned long pfn; 2331 struct page *p; 2332 void *ptr; 2333 2334 bytes = bytes < size ? bytes : size; 2335 2336 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2337 2338 pfn = addr >> PAGE_SHIFT; 2339 if (!pfn_valid(pfn)) 2340 return -EPERM; 2341 2342 p = pfn_to_page(pfn); 2343 if (p->mapping != adev->mman.bdev.dev_mapping) 2344 return -EPERM; 2345 2346 ptr = kmap(p); 2347 r = copy_from_user(ptr + off, buf, bytes); 2348 kunmap(p); 2349 if (r) 2350 return -EFAULT; 2351 2352 size -= bytes; 2353 *pos += bytes; 2354 result += bytes; 2355 } 2356 2357 return result; 2358 } 2359 2360 static const struct file_operations amdgpu_ttm_iomem_fops = { 2361 .owner = THIS_MODULE, 2362 .read = amdgpu_iomem_read, 2363 .write = amdgpu_iomem_write, 2364 .llseek = default_llseek 2365 }; 2366 2367 #endif 2368 2369 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2370 { 2371 #if defined(CONFIG_DEBUG_FS) 2372 struct drm_minor *minor = adev_to_drm(adev)->primary; 2373 struct dentry *root = minor->debugfs_root; 2374 2375 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2376 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2377 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2378 &amdgpu_ttm_iomem_fops); 2379 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2380 &amdgpu_ttm_page_pool_fops); 2381 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2382 TTM_PL_VRAM), 2383 root, "amdgpu_vram_mm"); 2384 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2385 TTM_PL_TT), 2386 root, "amdgpu_gtt_mm"); 2387 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2388 AMDGPU_PL_GDS), 2389 root, "amdgpu_gds_mm"); 2390 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2391 AMDGPU_PL_GWS), 2392 root, "amdgpu_gws_mm"); 2393 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2394 AMDGPU_PL_OA), 2395 root, "amdgpu_oa_mm"); 2396 2397 #endif 2398 } 2399