1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_range_manager.h>
50 #include <drm/ttm/ttm_tt.h>
51 
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_hmm.h"
62 #include "amdgpu_atomfirmware.h"
63 #include "amdgpu_res_cursor.h"
64 #include "bif/bif_4_1_d.h"
65 
66 MODULE_IMPORT_NS(DMA_BUF);
67 
68 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
69 
70 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
71 				   struct ttm_tt *ttm,
72 				   struct ttm_resource *bo_mem);
73 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
74 				      struct ttm_tt *ttm);
75 
76 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
77 				    unsigned int type,
78 				    uint64_t size_in_page)
79 {
80 	return ttm_range_man_init(&adev->mman.bdev, type,
81 				  false, size_in_page);
82 }
83 
84 /**
85  * amdgpu_evict_flags - Compute placement flags
86  *
87  * @bo: The buffer object to evict
88  * @placement: Possible destination(s) for evicted BO
89  *
90  * Fill in placement data when ttm_bo_evict() is called
91  */
92 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
93 				struct ttm_placement *placement)
94 {
95 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
96 	struct amdgpu_bo *abo;
97 	static const struct ttm_place placements = {
98 		.fpfn = 0,
99 		.lpfn = 0,
100 		.mem_type = TTM_PL_SYSTEM,
101 		.flags = 0
102 	};
103 
104 	/* Don't handle scatter gather BOs */
105 	if (bo->type == ttm_bo_type_sg) {
106 		placement->num_placement = 0;
107 		placement->num_busy_placement = 0;
108 		return;
109 	}
110 
111 	/* Object isn't an AMDGPU object so ignore */
112 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
113 		placement->placement = &placements;
114 		placement->busy_placement = &placements;
115 		placement->num_placement = 1;
116 		placement->num_busy_placement = 1;
117 		return;
118 	}
119 
120 	abo = ttm_to_amdgpu_bo(bo);
121 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
122 		placement->num_placement = 0;
123 		placement->num_busy_placement = 0;
124 		return;
125 	}
126 
127 	switch (bo->resource->mem_type) {
128 	case AMDGPU_PL_GDS:
129 	case AMDGPU_PL_GWS:
130 	case AMDGPU_PL_OA:
131 		placement->num_placement = 0;
132 		placement->num_busy_placement = 0;
133 		return;
134 
135 	case TTM_PL_VRAM:
136 		if (!adev->mman.buffer_funcs_enabled) {
137 			/* Move to system memory */
138 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
139 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
140 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
141 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
142 
143 			/* Try evicting to the CPU inaccessible part of VRAM
144 			 * first, but only set GTT as busy placement, so this
145 			 * BO will be evicted to GTT rather than causing other
146 			 * BOs to be evicted from VRAM
147 			 */
148 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
149 							AMDGPU_GEM_DOMAIN_GTT |
150 							AMDGPU_GEM_DOMAIN_CPU);
151 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
152 			abo->placements[0].lpfn = 0;
153 			abo->placement.busy_placement = &abo->placements[1];
154 			abo->placement.num_busy_placement = 1;
155 		} else {
156 			/* Move to GTT memory */
157 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
158 							AMDGPU_GEM_DOMAIN_CPU);
159 		}
160 		break;
161 	case TTM_PL_TT:
162 	case AMDGPU_PL_PREEMPT:
163 	default:
164 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
165 		break;
166 	}
167 	*placement = abo->placement;
168 }
169 
170 /**
171  * amdgpu_ttm_map_buffer - Map memory into the GART windows
172  * @bo: buffer object to map
173  * @mem: memory object to map
174  * @mm_cur: range to map
175  * @window: which GART window to use
176  * @ring: DMA ring to use for the copy
177  * @tmz: if we should setup a TMZ enabled mapping
178  * @size: in number of bytes to map, out number of bytes mapped
179  * @addr: resulting address inside the MC address space
180  *
181  * Setup one of the GART windows to access a specific piece of memory or return
182  * the physical address for local memory.
183  */
184 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
185 				 struct ttm_resource *mem,
186 				 struct amdgpu_res_cursor *mm_cur,
187 				 unsigned window, struct amdgpu_ring *ring,
188 				 bool tmz, uint64_t *size, uint64_t *addr)
189 {
190 	struct amdgpu_device *adev = ring->adev;
191 	unsigned offset, num_pages, num_dw, num_bytes;
192 	uint64_t src_addr, dst_addr;
193 	struct amdgpu_job *job;
194 	void *cpu_addr;
195 	uint64_t flags;
196 	unsigned int i;
197 	int r;
198 
199 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 
202 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 		return -EINVAL;
204 
205 	/* Map only what can't be accessed directly */
206 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 			mm_cur->start;
209 		return 0;
210 	}
211 
212 
213 	/*
214 	 * If start begins at an offset inside the page, then adjust the size
215 	 * and addr accordingly
216 	 */
217 	offset = mm_cur->start & ~PAGE_MASK;
218 
219 	num_pages = PFN_UP(*size + offset);
220 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 
222 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 
224 	*addr = adev->gmc.gart_start;
225 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 		AMDGPU_GPU_PAGE_SIZE;
227 	*addr += offset;
228 
229 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 
232 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
233 				     AMDGPU_FENCE_OWNER_UNDEFINED,
234 				     num_dw * 4 + num_bytes,
235 				     AMDGPU_IB_POOL_DELAYED, &job);
236 	if (r)
237 		return r;
238 
239 	src_addr = num_dw * 4;
240 	src_addr += job->ibs[0].gpu_addr;
241 
242 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
243 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
244 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
245 				dst_addr, num_bytes, false);
246 
247 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
248 	WARN_ON(job->ibs[0].length_dw > num_dw);
249 
250 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
251 	if (tmz)
252 		flags |= AMDGPU_PTE_TMZ;
253 
254 	cpu_addr = &job->ibs[0].ptr[num_dw];
255 
256 	if (mem->mem_type == TTM_PL_TT) {
257 		dma_addr_t *dma_addr;
258 
259 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
260 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
261 	} else {
262 		dma_addr_t dma_address;
263 
264 		dma_address = mm_cur->start;
265 		dma_address += adev->vm_manager.vram_base_offset;
266 
267 		for (i = 0; i < num_pages; ++i) {
268 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
269 					flags, cpu_addr);
270 			dma_address += PAGE_SIZE;
271 		}
272 	}
273 
274 	dma_fence_put(amdgpu_job_submit(job));
275 	return 0;
276 }
277 
278 /**
279  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
280  * @adev: amdgpu device
281  * @src: buffer/address where to read from
282  * @dst: buffer/address where to write to
283  * @size: number of bytes to copy
284  * @tmz: if a secure copy should be used
285  * @resv: resv object to sync to
286  * @f: Returns the last fence if multiple jobs are submitted.
287  *
288  * The function copies @size bytes from {src->mem + src->offset} to
289  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
290  * move and different for a BO to BO copy.
291  *
292  */
293 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
294 			       const struct amdgpu_copy_mem *src,
295 			       const struct amdgpu_copy_mem *dst,
296 			       uint64_t size, bool tmz,
297 			       struct dma_resv *resv,
298 			       struct dma_fence **f)
299 {
300 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
301 	struct amdgpu_res_cursor src_mm, dst_mm;
302 	struct dma_fence *fence = NULL;
303 	int r = 0;
304 
305 	if (!adev->mman.buffer_funcs_enabled) {
306 		DRM_ERROR("Trying to move memory with ring turned off.\n");
307 		return -EINVAL;
308 	}
309 
310 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
311 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
312 
313 	mutex_lock(&adev->mman.gtt_window_lock);
314 	while (src_mm.remaining) {
315 		uint64_t from, to, cur_size;
316 		struct dma_fence *next;
317 
318 		/* Never copy more than 256MiB at once to avoid a timeout */
319 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
320 
321 		/* Map src to window 0 and dst to window 1. */
322 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
323 					  0, ring, tmz, &cur_size, &from);
324 		if (r)
325 			goto error;
326 
327 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
328 					  1, ring, tmz, &cur_size, &to);
329 		if (r)
330 			goto error;
331 
332 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
333 				       resv, &next, false, true, tmz);
334 		if (r)
335 			goto error;
336 
337 		dma_fence_put(fence);
338 		fence = next;
339 
340 		amdgpu_res_next(&src_mm, cur_size);
341 		amdgpu_res_next(&dst_mm, cur_size);
342 	}
343 error:
344 	mutex_unlock(&adev->mman.gtt_window_lock);
345 	if (f)
346 		*f = dma_fence_get(fence);
347 	dma_fence_put(fence);
348 	return r;
349 }
350 
351 /*
352  * amdgpu_move_blit - Copy an entire buffer to another buffer
353  *
354  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
355  * help move buffers to and from VRAM.
356  */
357 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
358 			    bool evict,
359 			    struct ttm_resource *new_mem,
360 			    struct ttm_resource *old_mem)
361 {
362 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
363 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
364 	struct amdgpu_copy_mem src, dst;
365 	struct dma_fence *fence = NULL;
366 	int r;
367 
368 	src.bo = bo;
369 	dst.bo = bo;
370 	src.mem = old_mem;
371 	dst.mem = new_mem;
372 	src.offset = 0;
373 	dst.offset = 0;
374 
375 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
376 				       new_mem->size,
377 				       amdgpu_bo_encrypted(abo),
378 				       bo->base.resv, &fence);
379 	if (r)
380 		goto error;
381 
382 	/* clear the space being freed */
383 	if (old_mem->mem_type == TTM_PL_VRAM &&
384 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
385 		struct dma_fence *wipe_fence = NULL;
386 
387 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /*
412  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413  *
414  * Called by amdgpu_bo_move()
415  */
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 			       struct ttm_resource *mem)
418 {
419 	u64 mem_size = (u64)mem->size;
420 	struct amdgpu_res_cursor cursor;
421 	u64 end;
422 
423 	if (mem->mem_type == TTM_PL_SYSTEM ||
424 	    mem->mem_type == TTM_PL_TT)
425 		return true;
426 	if (mem->mem_type != TTM_PL_VRAM)
427 		return false;
428 
429 	amdgpu_res_first(mem, 0, mem_size, &cursor);
430 	end = cursor.start + cursor.size;
431 	while (cursor.remaining) {
432 		amdgpu_res_next(&cursor, cursor.size);
433 
434 		if (!cursor.remaining)
435 			break;
436 
437 		/* ttm_resource_ioremap only supports contiguous memory */
438 		if (end != cursor.start)
439 			return false;
440 
441 		end = cursor.start + cursor.size;
442 	}
443 
444 	return end <= adev->gmc.visible_vram_size;
445 }
446 
447 /*
448  * amdgpu_bo_move - Move a buffer object to a new memory location
449  *
450  * Called by ttm_bo_handle_move_mem()
451  */
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 			  struct ttm_operation_ctx *ctx,
454 			  struct ttm_resource *new_mem,
455 			  struct ttm_place *hop)
456 {
457 	struct amdgpu_device *adev;
458 	struct amdgpu_bo *abo;
459 	struct ttm_resource *old_mem = bo->resource;
460 	int r;
461 
462 	if (new_mem->mem_type == TTM_PL_TT ||
463 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465 		if (r)
466 			return r;
467 	}
468 
469 	/* Can't move a pinned BO */
470 	abo = ttm_to_amdgpu_bo(bo);
471 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
472 		return -EINVAL;
473 
474 	adev = amdgpu_ttm_adev(bo->bdev);
475 
476 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
477 			 bo->ttm == NULL)) {
478 		ttm_bo_move_null(bo, new_mem);
479 		goto out;
480 	}
481 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
482 	    (new_mem->mem_type == TTM_PL_TT ||
483 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
484 		ttm_bo_move_null(bo, new_mem);
485 		goto out;
486 	}
487 	if ((old_mem->mem_type == TTM_PL_TT ||
488 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
489 	    new_mem->mem_type == TTM_PL_SYSTEM) {
490 		r = ttm_bo_wait_ctx(bo, ctx);
491 		if (r)
492 			return r;
493 
494 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
495 		ttm_resource_free(bo, &bo->resource);
496 		ttm_bo_assign_mem(bo, new_mem);
497 		goto out;
498 	}
499 
500 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
501 	    old_mem->mem_type == AMDGPU_PL_GWS ||
502 	    old_mem->mem_type == AMDGPU_PL_OA ||
503 	    new_mem->mem_type == AMDGPU_PL_GDS ||
504 	    new_mem->mem_type == AMDGPU_PL_GWS ||
505 	    new_mem->mem_type == AMDGPU_PL_OA) {
506 		/* Nothing to save here */
507 		ttm_bo_move_null(bo, new_mem);
508 		goto out;
509 	}
510 
511 	if (bo->type == ttm_bo_type_device &&
512 	    new_mem->mem_type == TTM_PL_VRAM &&
513 	    old_mem->mem_type != TTM_PL_VRAM) {
514 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
515 		 * accesses the BO after it's moved.
516 		 */
517 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
518 	}
519 
520 	if (adev->mman.buffer_funcs_enabled) {
521 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
522 		      new_mem->mem_type == TTM_PL_VRAM) ||
523 		     (old_mem->mem_type == TTM_PL_VRAM &&
524 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
525 			hop->fpfn = 0;
526 			hop->lpfn = 0;
527 			hop->mem_type = TTM_PL_TT;
528 			hop->flags = TTM_PL_FLAG_TEMPORARY;
529 			return -EMULTIHOP;
530 		}
531 
532 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
533 	} else {
534 		r = -ENODEV;
535 	}
536 
537 	if (r) {
538 		/* Check that all memory is CPU accessible */
539 		if (!amdgpu_mem_visible(adev, old_mem) ||
540 		    !amdgpu_mem_visible(adev, new_mem)) {
541 			pr_err("Move buffer fallback to memcpy unavailable\n");
542 			return r;
543 		}
544 
545 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
546 		if (r)
547 			return r;
548 	}
549 
550 out:
551 	/* update statistics */
552 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
553 	amdgpu_bo_move_notify(bo, evict, new_mem);
554 	return 0;
555 }
556 
557 /*
558  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
559  *
560  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
561  */
562 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
563 				     struct ttm_resource *mem)
564 {
565 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
566 	size_t bus_size = (size_t)mem->size;
567 
568 	switch (mem->mem_type) {
569 	case TTM_PL_SYSTEM:
570 		/* system memory */
571 		return 0;
572 	case TTM_PL_TT:
573 	case AMDGPU_PL_PREEMPT:
574 		break;
575 	case TTM_PL_VRAM:
576 		mem->bus.offset = mem->start << PAGE_SHIFT;
577 		/* check if it's visible */
578 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
579 			return -EINVAL;
580 
581 		if (adev->mman.aper_base_kaddr &&
582 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
583 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
584 					mem->bus.offset;
585 
586 		mem->bus.offset += adev->gmc.aper_base;
587 		mem->bus.is_iomem = true;
588 		break;
589 	default:
590 		return -EINVAL;
591 	}
592 	return 0;
593 }
594 
595 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
596 					   unsigned long page_offset)
597 {
598 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
599 	struct amdgpu_res_cursor cursor;
600 
601 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
602 			 &cursor);
603 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
604 }
605 
606 /**
607  * amdgpu_ttm_domain_start - Returns GPU start address
608  * @adev: amdgpu device object
609  * @type: type of the memory
610  *
611  * Returns:
612  * GPU start address of a memory domain
613  */
614 
615 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
616 {
617 	switch (type) {
618 	case TTM_PL_TT:
619 		return adev->gmc.gart_start;
620 	case TTM_PL_VRAM:
621 		return adev->gmc.vram_start;
622 	}
623 
624 	return 0;
625 }
626 
627 /*
628  * TTM backend functions.
629  */
630 struct amdgpu_ttm_tt {
631 	struct ttm_tt	ttm;
632 	struct drm_gem_object	*gobj;
633 	u64			offset;
634 	uint64_t		userptr;
635 	struct task_struct	*usertask;
636 	uint32_t		userflags;
637 	bool			bound;
638 };
639 
640 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
641 
642 #ifdef CONFIG_DRM_AMDGPU_USERPTR
643 /*
644  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
645  * memory and start HMM tracking CPU page table update
646  *
647  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
648  * once afterwards to stop HMM tracking
649  */
650 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
651 				 struct hmm_range **range)
652 {
653 	struct ttm_tt *ttm = bo->tbo.ttm;
654 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
655 	unsigned long start = gtt->userptr;
656 	struct vm_area_struct *vma;
657 	struct mm_struct *mm;
658 	bool readonly;
659 	int r = 0;
660 
661 	/* Make sure get_user_pages_done() can cleanup gracefully */
662 	*range = NULL;
663 
664 	mm = bo->notifier.mm;
665 	if (unlikely(!mm)) {
666 		DRM_DEBUG_DRIVER("BO is not registered?\n");
667 		return -EFAULT;
668 	}
669 
670 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
671 		return -ESRCH;
672 
673 	mmap_read_lock(mm);
674 	vma = vma_lookup(mm, start);
675 	if (unlikely(!vma)) {
676 		r = -EFAULT;
677 		goto out_unlock;
678 	}
679 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
680 		vma->vm_file)) {
681 		r = -EPERM;
682 		goto out_unlock;
683 	}
684 
685 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
686 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
687 				       readonly, NULL, pages, range);
688 out_unlock:
689 	mmap_read_unlock(mm);
690 	if (r)
691 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
692 
693 	mmput(mm);
694 
695 	return r;
696 }
697 
698 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
699  */
700 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
701 				      struct hmm_range *range)
702 {
703 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
704 
705 	if (gtt && gtt->userptr && range)
706 		amdgpu_hmm_range_get_pages_done(range);
707 }
708 
709 /*
710  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
711  * Check if the pages backing this ttm range have been invalidated
712  *
713  * Returns: true if pages are still valid
714  */
715 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
716 				       struct hmm_range *range)
717 {
718 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
719 
720 	if (!gtt || !gtt->userptr || !range)
721 		return false;
722 
723 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
724 		gtt->userptr, ttm->num_pages);
725 
726 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
727 
728 	return !amdgpu_hmm_range_get_pages_done(range);
729 }
730 #endif
731 
732 /*
733  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
734  *
735  * Called by amdgpu_cs_list_validate(). This creates the page list
736  * that backs user memory and will ultimately be mapped into the device
737  * address space.
738  */
739 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
740 {
741 	unsigned long i;
742 
743 	for (i = 0; i < ttm->num_pages; ++i)
744 		ttm->pages[i] = pages ? pages[i] : NULL;
745 }
746 
747 /*
748  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
749  *
750  * Called by amdgpu_ttm_backend_bind()
751  **/
752 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
753 				     struct ttm_tt *ttm)
754 {
755 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
756 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
757 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
758 	enum dma_data_direction direction = write ?
759 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
760 	int r;
761 
762 	/* Allocate an SG array and squash pages into it */
763 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
764 				      (u64)ttm->num_pages << PAGE_SHIFT,
765 				      GFP_KERNEL);
766 	if (r)
767 		goto release_sg;
768 
769 	/* Map SG to device */
770 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
771 	if (r)
772 		goto release_sg;
773 
774 	/* convert SG to linear array of pages and dma addresses */
775 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
776 				       ttm->num_pages);
777 
778 	return 0;
779 
780 release_sg:
781 	kfree(ttm->sg);
782 	ttm->sg = NULL;
783 	return r;
784 }
785 
786 /*
787  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
788  */
789 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
790 					struct ttm_tt *ttm)
791 {
792 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
794 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
795 	enum dma_data_direction direction = write ?
796 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
797 
798 	/* double check that we don't free the table twice */
799 	if (!ttm->sg || !ttm->sg->sgl)
800 		return;
801 
802 	/* unmap the pages mapped to the device */
803 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
804 	sg_free_table(ttm->sg);
805 }
806 
807 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
808 				 struct ttm_buffer_object *tbo,
809 				 uint64_t flags)
810 {
811 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
812 	struct ttm_tt *ttm = tbo->ttm;
813 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
814 
815 	if (amdgpu_bo_encrypted(abo))
816 		flags |= AMDGPU_PTE_TMZ;
817 
818 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
819 		uint64_t page_idx = 1;
820 
821 		amdgpu_gart_bind(adev, gtt->offset, page_idx,
822 				 gtt->ttm.dma_address, flags);
823 
824 		/* The memory type of the first page defaults to UC. Now
825 		 * modify the memory type to NC from the second page of
826 		 * the BO onward.
827 		 */
828 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
829 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
830 
831 		amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
832 				 ttm->num_pages - page_idx,
833 				 &(gtt->ttm.dma_address[page_idx]), flags);
834 	} else {
835 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
836 				 gtt->ttm.dma_address, flags);
837 	}
838 }
839 
840 /*
841  * amdgpu_ttm_backend_bind - Bind GTT memory
842  *
843  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
844  * This handles binding GTT memory to the device address space.
845  */
846 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
847 				   struct ttm_tt *ttm,
848 				   struct ttm_resource *bo_mem)
849 {
850 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
851 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
852 	uint64_t flags;
853 	int r;
854 
855 	if (!bo_mem)
856 		return -EINVAL;
857 
858 	if (gtt->bound)
859 		return 0;
860 
861 	if (gtt->userptr) {
862 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
863 		if (r) {
864 			DRM_ERROR("failed to pin userptr\n");
865 			return r;
866 		}
867 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
868 		if (!ttm->sg) {
869 			struct dma_buf_attachment *attach;
870 			struct sg_table *sgt;
871 
872 			attach = gtt->gobj->import_attach;
873 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
874 			if (IS_ERR(sgt))
875 				return PTR_ERR(sgt);
876 
877 			ttm->sg = sgt;
878 		}
879 
880 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
881 					       ttm->num_pages);
882 	}
883 
884 	if (!ttm->num_pages) {
885 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
886 		     ttm->num_pages, bo_mem, ttm);
887 	}
888 
889 	if (bo_mem->mem_type != TTM_PL_TT ||
890 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
891 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
892 		return 0;
893 	}
894 
895 	/* compute PTE flags relevant to this BO memory */
896 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
897 
898 	/* bind pages into GART page tables */
899 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
900 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
901 			 gtt->ttm.dma_address, flags);
902 	gtt->bound = true;
903 	return 0;
904 }
905 
906 /*
907  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
908  * through AGP or GART aperture.
909  *
910  * If bo is accessible through AGP aperture, then use AGP aperture
911  * to access bo; otherwise allocate logical space in GART aperture
912  * and map bo to GART aperture.
913  */
914 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
915 {
916 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
917 	struct ttm_operation_ctx ctx = { false, false };
918 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
919 	struct ttm_placement placement;
920 	struct ttm_place placements;
921 	struct ttm_resource *tmp;
922 	uint64_t addr, flags;
923 	int r;
924 
925 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
926 		return 0;
927 
928 	addr = amdgpu_gmc_agp_addr(bo);
929 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
930 		bo->resource->start = addr >> PAGE_SHIFT;
931 		return 0;
932 	}
933 
934 	/* allocate GART space */
935 	placement.num_placement = 1;
936 	placement.placement = &placements;
937 	placement.num_busy_placement = 1;
938 	placement.busy_placement = &placements;
939 	placements.fpfn = 0;
940 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
941 	placements.mem_type = TTM_PL_TT;
942 	placements.flags = bo->resource->placement;
943 
944 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
945 	if (unlikely(r))
946 		return r;
947 
948 	/* compute PTE flags for this buffer object */
949 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
950 
951 	/* Bind pages */
952 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
953 	amdgpu_ttm_gart_bind(adev, bo, flags);
954 	amdgpu_gart_invalidate_tlb(adev);
955 	ttm_resource_free(bo, &bo->resource);
956 	ttm_bo_assign_mem(bo, tmp);
957 
958 	return 0;
959 }
960 
961 /*
962  * amdgpu_ttm_recover_gart - Rebind GTT pages
963  *
964  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
965  * rebind GTT pages during a GPU reset.
966  */
967 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
968 {
969 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
970 	uint64_t flags;
971 
972 	if (!tbo->ttm)
973 		return;
974 
975 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
976 	amdgpu_ttm_gart_bind(adev, tbo, flags);
977 }
978 
979 /*
980  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
981  *
982  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
983  * ttm_tt_destroy().
984  */
985 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
986 				      struct ttm_tt *ttm)
987 {
988 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
989 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
990 
991 	/* if the pages have userptr pinning then clear that first */
992 	if (gtt->userptr) {
993 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
994 	} else if (ttm->sg && gtt->gobj->import_attach) {
995 		struct dma_buf_attachment *attach;
996 
997 		attach = gtt->gobj->import_attach;
998 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
999 		ttm->sg = NULL;
1000 	}
1001 
1002 	if (!gtt->bound)
1003 		return;
1004 
1005 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1006 		return;
1007 
1008 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1009 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1010 	gtt->bound = false;
1011 }
1012 
1013 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1014 				       struct ttm_tt *ttm)
1015 {
1016 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1017 
1018 	if (gtt->usertask)
1019 		put_task_struct(gtt->usertask);
1020 
1021 	ttm_tt_fini(&gtt->ttm);
1022 	kfree(gtt);
1023 }
1024 
1025 /**
1026  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1027  *
1028  * @bo: The buffer object to create a GTT ttm_tt object around
1029  * @page_flags: Page flags to be added to the ttm_tt object
1030  *
1031  * Called by ttm_tt_create().
1032  */
1033 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1034 					   uint32_t page_flags)
1035 {
1036 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1037 	struct amdgpu_ttm_tt *gtt;
1038 	enum ttm_caching caching;
1039 
1040 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1041 	if (gtt == NULL) {
1042 		return NULL;
1043 	}
1044 	gtt->gobj = &bo->base;
1045 
1046 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1047 		caching = ttm_write_combined;
1048 	else
1049 		caching = ttm_cached;
1050 
1051 	/* allocate space for the uninitialized page entries */
1052 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1053 		kfree(gtt);
1054 		return NULL;
1055 	}
1056 	return &gtt->ttm;
1057 }
1058 
1059 /*
1060  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1061  *
1062  * Map the pages of a ttm_tt object to an address space visible
1063  * to the underlying device.
1064  */
1065 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1066 				  struct ttm_tt *ttm,
1067 				  struct ttm_operation_ctx *ctx)
1068 {
1069 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1070 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1071 	pgoff_t i;
1072 	int ret;
1073 
1074 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1075 	if (gtt->userptr) {
1076 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1077 		if (!ttm->sg)
1078 			return -ENOMEM;
1079 		return 0;
1080 	}
1081 
1082 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1083 		return 0;
1084 
1085 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1086 	if (ret)
1087 		return ret;
1088 
1089 	for (i = 0; i < ttm->num_pages; ++i)
1090 		ttm->pages[i]->mapping = bdev->dev_mapping;
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1097  *
1098  * Unmaps pages of a ttm_tt object from the device address space and
1099  * unpopulates the page array backing it.
1100  */
1101 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1102 				     struct ttm_tt *ttm)
1103 {
1104 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1105 	struct amdgpu_device *adev;
1106 	pgoff_t i;
1107 
1108 	amdgpu_ttm_backend_unbind(bdev, ttm);
1109 
1110 	if (gtt->userptr) {
1111 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1112 		kfree(ttm->sg);
1113 		ttm->sg = NULL;
1114 		return;
1115 	}
1116 
1117 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1118 		return;
1119 
1120 	for (i = 0; i < ttm->num_pages; ++i)
1121 		ttm->pages[i]->mapping = NULL;
1122 
1123 	adev = amdgpu_ttm_adev(bdev);
1124 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1125 }
1126 
1127 /**
1128  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1129  * task
1130  *
1131  * @tbo: The ttm_buffer_object that contains the userptr
1132  * @user_addr:  The returned value
1133  */
1134 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1135 			      uint64_t *user_addr)
1136 {
1137 	struct amdgpu_ttm_tt *gtt;
1138 
1139 	if (!tbo->ttm)
1140 		return -EINVAL;
1141 
1142 	gtt = (void *)tbo->ttm;
1143 	*user_addr = gtt->userptr;
1144 	return 0;
1145 }
1146 
1147 /**
1148  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1149  * task
1150  *
1151  * @bo: The ttm_buffer_object to bind this userptr to
1152  * @addr:  The address in the current tasks VM space to use
1153  * @flags: Requirements of userptr object.
1154  *
1155  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1156  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1157  * initialize GPU VM for a KFD process.
1158  */
1159 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1160 			      uint64_t addr, uint32_t flags)
1161 {
1162 	struct amdgpu_ttm_tt *gtt;
1163 
1164 	if (!bo->ttm) {
1165 		/* TODO: We want a separate TTM object type for userptrs */
1166 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1167 		if (bo->ttm == NULL)
1168 			return -ENOMEM;
1169 	}
1170 
1171 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1172 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1173 
1174 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1175 	gtt->userptr = addr;
1176 	gtt->userflags = flags;
1177 
1178 	if (gtt->usertask)
1179 		put_task_struct(gtt->usertask);
1180 	gtt->usertask = current->group_leader;
1181 	get_task_struct(gtt->usertask);
1182 
1183 	return 0;
1184 }
1185 
1186 /*
1187  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1188  */
1189 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1190 {
1191 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1192 
1193 	if (gtt == NULL)
1194 		return NULL;
1195 
1196 	if (gtt->usertask == NULL)
1197 		return NULL;
1198 
1199 	return gtt->usertask->mm;
1200 }
1201 
1202 /*
1203  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1204  * address range for the current task.
1205  *
1206  */
1207 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1208 				  unsigned long end, unsigned long *userptr)
1209 {
1210 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1211 	unsigned long size;
1212 
1213 	if (gtt == NULL || !gtt->userptr)
1214 		return false;
1215 
1216 	/* Return false if no part of the ttm_tt object lies within
1217 	 * the range
1218 	 */
1219 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1220 	if (gtt->userptr > end || gtt->userptr + size <= start)
1221 		return false;
1222 
1223 	if (userptr)
1224 		*userptr = gtt->userptr;
1225 	return true;
1226 }
1227 
1228 /*
1229  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1230  */
1231 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1232 {
1233 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1234 
1235 	if (gtt == NULL || !gtt->userptr)
1236 		return false;
1237 
1238 	return true;
1239 }
1240 
1241 /*
1242  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1243  */
1244 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1245 {
1246 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1247 
1248 	if (gtt == NULL)
1249 		return false;
1250 
1251 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1252 }
1253 
1254 /**
1255  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1256  *
1257  * @ttm: The ttm_tt object to compute the flags for
1258  * @mem: The memory registry backing this ttm_tt object
1259  *
1260  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1261  */
1262 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1263 {
1264 	uint64_t flags = 0;
1265 
1266 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1267 		flags |= AMDGPU_PTE_VALID;
1268 
1269 	if (mem && (mem->mem_type == TTM_PL_TT ||
1270 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1271 		flags |= AMDGPU_PTE_SYSTEM;
1272 
1273 		if (ttm->caching == ttm_cached)
1274 			flags |= AMDGPU_PTE_SNOOPED;
1275 	}
1276 
1277 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1278 			mem->bus.caching == ttm_cached)
1279 		flags |= AMDGPU_PTE_SNOOPED;
1280 
1281 	return flags;
1282 }
1283 
1284 /**
1285  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1286  *
1287  * @adev: amdgpu_device pointer
1288  * @ttm: The ttm_tt object to compute the flags for
1289  * @mem: The memory registry backing this ttm_tt object
1290  *
1291  * Figure out the flags to use for a VM PTE (Page Table Entry).
1292  */
1293 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1294 				 struct ttm_resource *mem)
1295 {
1296 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1297 
1298 	flags |= adev->gart.gart_pte_flags;
1299 	flags |= AMDGPU_PTE_READABLE;
1300 
1301 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1302 		flags |= AMDGPU_PTE_WRITEABLE;
1303 
1304 	return flags;
1305 }
1306 
1307 /*
1308  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1309  * object.
1310  *
1311  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1312  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1313  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1314  * used to clean out a memory space.
1315  */
1316 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1317 					    const struct ttm_place *place)
1318 {
1319 	struct dma_resv_iter resv_cursor;
1320 	struct dma_fence *f;
1321 
1322 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1323 		return ttm_bo_eviction_valuable(bo, place);
1324 
1325 	/* Swapout? */
1326 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1327 		return true;
1328 
1329 	if (bo->type == ttm_bo_type_kernel &&
1330 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1331 		return false;
1332 
1333 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1334 	 * If true, then return false as any KFD process needs all its BOs to
1335 	 * be resident to run successfully
1336 	 */
1337 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1338 				DMA_RESV_USAGE_BOOKKEEP, f) {
1339 		if (amdkfd_fence_check_mm(f, current->mm))
1340 			return false;
1341 	}
1342 
1343 	/* Preemptible BOs don't own system resources managed by the
1344 	 * driver (pages, VRAM, GART space). They point to resources
1345 	 * owned by someone else (e.g. pageable memory in user mode
1346 	 * or a DMABuf). They are used in a preemptible context so we
1347 	 * can guarantee no deadlocks and good QoS in case of MMU
1348 	 * notifiers or DMABuf move notifiers from the resource owner.
1349 	 */
1350 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1351 		return false;
1352 
1353 	if (bo->resource->mem_type == TTM_PL_TT &&
1354 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1355 		return false;
1356 
1357 	return ttm_bo_eviction_valuable(bo, place);
1358 }
1359 
1360 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1361 				      void *buf, size_t size, bool write)
1362 {
1363 	while (size) {
1364 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1365 		uint64_t bytes = 4 - (pos & 0x3);
1366 		uint32_t shift = (pos & 0x3) * 8;
1367 		uint32_t mask = 0xffffffff << shift;
1368 		uint32_t value = 0;
1369 
1370 		if (size < bytes) {
1371 			mask &= 0xffffffff >> (bytes - size) * 8;
1372 			bytes = size;
1373 		}
1374 
1375 		if (mask != 0xffffffff) {
1376 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1377 			if (write) {
1378 				value &= ~mask;
1379 				value |= (*(uint32_t *)buf << shift) & mask;
1380 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1381 			} else {
1382 				value = (value & mask) >> shift;
1383 				memcpy(buf, &value, bytes);
1384 			}
1385 		} else {
1386 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1387 		}
1388 
1389 		pos += bytes;
1390 		buf += bytes;
1391 		size -= bytes;
1392 	}
1393 }
1394 
1395 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1396 					unsigned long offset, void *buf,
1397 					int len, int write)
1398 {
1399 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1400 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1401 	struct amdgpu_res_cursor src_mm;
1402 	struct amdgpu_job *job;
1403 	struct dma_fence *fence;
1404 	uint64_t src_addr, dst_addr;
1405 	unsigned int num_dw;
1406 	int r, idx;
1407 
1408 	if (len != PAGE_SIZE)
1409 		return -EINVAL;
1410 
1411 	if (!adev->mman.sdma_access_ptr)
1412 		return -EACCES;
1413 
1414 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1415 		return -ENODEV;
1416 
1417 	if (write)
1418 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1419 
1420 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1421 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1422 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1423 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1424 				     &job);
1425 	if (r)
1426 		goto out;
1427 
1428 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1429 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1430 		src_mm.start;
1431 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1432 	if (write)
1433 		swap(src_addr, dst_addr);
1434 
1435 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1436 				PAGE_SIZE, false);
1437 
1438 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1439 	WARN_ON(job->ibs[0].length_dw > num_dw);
1440 
1441 	fence = amdgpu_job_submit(job);
1442 
1443 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1444 		r = -ETIMEDOUT;
1445 	dma_fence_put(fence);
1446 
1447 	if (!(r || write))
1448 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1449 out:
1450 	drm_dev_exit(idx);
1451 	return r;
1452 }
1453 
1454 /**
1455  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1456  *
1457  * @bo:  The buffer object to read/write
1458  * @offset:  Offset into buffer object
1459  * @buf:  Secondary buffer to write/read from
1460  * @len: Length in bytes of access
1461  * @write:  true if writing
1462  *
1463  * This is used to access VRAM that backs a buffer object via MMIO
1464  * access for debugging purposes.
1465  */
1466 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1467 				    unsigned long offset, void *buf, int len,
1468 				    int write)
1469 {
1470 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1471 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1472 	struct amdgpu_res_cursor cursor;
1473 	int ret = 0;
1474 
1475 	if (bo->resource->mem_type != TTM_PL_VRAM)
1476 		return -EIO;
1477 
1478 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1479 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1480 		return len;
1481 
1482 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1483 	while (cursor.remaining) {
1484 		size_t count, size = cursor.size;
1485 		loff_t pos = cursor.start;
1486 
1487 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1488 		size -= count;
1489 		if (size) {
1490 			/* using MM to access rest vram and handle un-aligned address */
1491 			pos += count;
1492 			buf += count;
1493 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1494 		}
1495 
1496 		ret += cursor.size;
1497 		buf += cursor.size;
1498 		amdgpu_res_next(&cursor, cursor.size);
1499 	}
1500 
1501 	return ret;
1502 }
1503 
1504 static void
1505 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1506 {
1507 	amdgpu_bo_move_notify(bo, false, NULL);
1508 }
1509 
1510 static struct ttm_device_funcs amdgpu_bo_driver = {
1511 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1512 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1513 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1514 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1515 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1516 	.evict_flags = &amdgpu_evict_flags,
1517 	.move = &amdgpu_bo_move,
1518 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1519 	.release_notify = &amdgpu_bo_release_notify,
1520 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1521 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1522 	.access_memory = &amdgpu_ttm_access_memory,
1523 };
1524 
1525 /*
1526  * Firmware Reservation functions
1527  */
1528 /**
1529  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1530  *
1531  * @adev: amdgpu_device pointer
1532  *
1533  * free fw reserved vram if it has been reserved.
1534  */
1535 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1536 {
1537 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1538 		NULL, &adev->mman.fw_vram_usage_va);
1539 }
1540 
1541 /*
1542  * Driver Reservation functions
1543  */
1544 /**
1545  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1546  *
1547  * @adev: amdgpu_device pointer
1548  *
1549  * free drv reserved vram if it has been reserved.
1550  */
1551 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1552 {
1553 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1554 						  NULL,
1555 						  &adev->mman.drv_vram_usage_va);
1556 }
1557 
1558 /**
1559  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1560  *
1561  * @adev: amdgpu_device pointer
1562  *
1563  * create bo vram reservation from fw.
1564  */
1565 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1566 {
1567 	uint64_t vram_size = adev->gmc.visible_vram_size;
1568 
1569 	adev->mman.fw_vram_usage_va = NULL;
1570 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1571 
1572 	if (adev->mman.fw_vram_usage_size == 0 ||
1573 	    adev->mman.fw_vram_usage_size > vram_size)
1574 		return 0;
1575 
1576 	return amdgpu_bo_create_kernel_at(adev,
1577 					  adev->mman.fw_vram_usage_start_offset,
1578 					  adev->mman.fw_vram_usage_size,
1579 					  &adev->mman.fw_vram_usage_reserved_bo,
1580 					  &adev->mman.fw_vram_usage_va);
1581 }
1582 
1583 /**
1584  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1585  *
1586  * @adev: amdgpu_device pointer
1587  *
1588  * create bo vram reservation from drv.
1589  */
1590 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1591 {
1592 	u64 vram_size = adev->gmc.visible_vram_size;
1593 
1594 	adev->mman.drv_vram_usage_va = NULL;
1595 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1596 
1597 	if (adev->mman.drv_vram_usage_size == 0 ||
1598 	    adev->mman.drv_vram_usage_size > vram_size)
1599 		return 0;
1600 
1601 	return amdgpu_bo_create_kernel_at(adev,
1602 					  adev->mman.drv_vram_usage_start_offset,
1603 					  adev->mman.drv_vram_usage_size,
1604 					  &adev->mman.drv_vram_usage_reserved_bo,
1605 					  &adev->mman.drv_vram_usage_va);
1606 }
1607 
1608 /*
1609  * Memoy training reservation functions
1610  */
1611 
1612 /**
1613  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1614  *
1615  * @adev: amdgpu_device pointer
1616  *
1617  * free memory training reserved vram if it has been reserved.
1618  */
1619 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1620 {
1621 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1622 
1623 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1624 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1625 	ctx->c2p_bo = NULL;
1626 
1627 	return 0;
1628 }
1629 
1630 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1631 {
1632 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1633 
1634 	memset(ctx, 0, sizeof(*ctx));
1635 
1636 	ctx->c2p_train_data_offset =
1637 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1638 	ctx->p2c_train_data_offset =
1639 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1640 	ctx->train_data_size =
1641 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1642 
1643 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1644 			ctx->train_data_size,
1645 			ctx->p2c_train_data_offset,
1646 			ctx->c2p_train_data_offset);
1647 }
1648 
1649 /*
1650  * reserve TMR memory at the top of VRAM which holds
1651  * IP Discovery data and is protected by PSP.
1652  */
1653 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1654 {
1655 	int ret;
1656 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1657 	bool mem_train_support = false;
1658 
1659 	if (!amdgpu_sriov_vf(adev)) {
1660 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1661 			mem_train_support = true;
1662 		else
1663 			DRM_DEBUG("memory training does not support!\n");
1664 	}
1665 
1666 	/*
1667 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1668 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1669 	 *
1670 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1671 	 * discovery data and G6 memory training data respectively
1672 	 */
1673 	adev->mman.discovery_tmr_size =
1674 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1675 	if (!adev->mman.discovery_tmr_size)
1676 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1677 
1678 	if (mem_train_support) {
1679 		/* reserve vram for mem train according to TMR location */
1680 		amdgpu_ttm_training_data_block_init(adev);
1681 		ret = amdgpu_bo_create_kernel_at(adev,
1682 						 ctx->c2p_train_data_offset,
1683 						 ctx->train_data_size,
1684 						 &ctx->c2p_bo,
1685 						 NULL);
1686 		if (ret) {
1687 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1688 			amdgpu_ttm_training_reserve_vram_fini(adev);
1689 			return ret;
1690 		}
1691 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1692 	}
1693 
1694 	ret = amdgpu_bo_create_kernel_at(adev,
1695 					 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1696 					 adev->mman.discovery_tmr_size,
1697 					 &adev->mman.discovery_memory,
1698 					 NULL);
1699 	if (ret) {
1700 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1701 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1702 		return ret;
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 /*
1709  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1710  * gtt/vram related fields.
1711  *
1712  * This initializes all of the memory space pools that the TTM layer
1713  * will need such as the GTT space (system memory mapped to the device),
1714  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1715  * can be mapped per VMID.
1716  */
1717 int amdgpu_ttm_init(struct amdgpu_device *adev)
1718 {
1719 	uint64_t gtt_size;
1720 	int r;
1721 
1722 	mutex_init(&adev->mman.gtt_window_lock);
1723 
1724 	/* No others user of address space so set it to 0 */
1725 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1726 			       adev_to_drm(adev)->anon_inode->i_mapping,
1727 			       adev_to_drm(adev)->vma_offset_manager,
1728 			       adev->need_swiotlb,
1729 			       dma_addressing_limited(adev->dev));
1730 	if (r) {
1731 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1732 		return r;
1733 	}
1734 	adev->mman.initialized = true;
1735 
1736 	/* Initialize VRAM pool with all of VRAM divided into pages */
1737 	r = amdgpu_vram_mgr_init(adev);
1738 	if (r) {
1739 		DRM_ERROR("Failed initializing VRAM heap.\n");
1740 		return r;
1741 	}
1742 
1743 	/* Change the size here instead of the init above so only lpfn is affected */
1744 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1745 #ifdef CONFIG_64BIT
1746 #ifdef CONFIG_X86
1747 	if (adev->gmc.xgmi.connected_to_cpu)
1748 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1749 				adev->gmc.visible_vram_size);
1750 
1751 	else
1752 #endif
1753 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1754 				adev->gmc.visible_vram_size);
1755 #endif
1756 
1757 	/*
1758 	 *The reserved vram for firmware must be pinned to the specified
1759 	 *place on the VRAM, so reserve it early.
1760 	 */
1761 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1762 	if (r) {
1763 		return r;
1764 	}
1765 
1766 	/*
1767 	 *The reserved vram for driver must be pinned to the specified
1768 	 *place on the VRAM, so reserve it early.
1769 	 */
1770 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1771 	if (r)
1772 		return r;
1773 
1774 	/*
1775 	 * only NAVI10 and onwards ASIC support for IP discovery.
1776 	 * If IP discovery enabled, a block of memory should be
1777 	 * reserved for IP discovey.
1778 	 */
1779 	if (adev->mman.discovery_bin) {
1780 		r = amdgpu_ttm_reserve_tmr(adev);
1781 		if (r)
1782 			return r;
1783 	}
1784 
1785 	/* allocate memory as required for VGA
1786 	 * This is used for VGA emulation and pre-OS scanout buffers to
1787 	 * avoid display artifacts while transitioning between pre-OS
1788 	 * and driver.  */
1789 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1790 				       &adev->mman.stolen_vga_memory,
1791 				       NULL);
1792 	if (r)
1793 		return r;
1794 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1795 				       adev->mman.stolen_extended_size,
1796 				       &adev->mman.stolen_extended_memory,
1797 				       NULL);
1798 	if (r)
1799 		return r;
1800 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1801 				       adev->mman.stolen_reserved_size,
1802 				       &adev->mman.stolen_reserved_memory,
1803 				       NULL);
1804 	if (r)
1805 		return r;
1806 
1807 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1808 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1809 
1810 	/* Compute GTT size, either based on 1/2 the size of RAM size
1811 	 * or whatever the user passed on module init */
1812 	if (amdgpu_gtt_size == -1) {
1813 		struct sysinfo si;
1814 
1815 		si_meminfo(&si);
1816 		/* Certain GL unit tests for large textures can cause problems
1817 		 * with the OOM killer since there is no way to link this memory
1818 		 * to a process.  This was originally mitigated (but not necessarily
1819 		 * eliminated) by limiting the GTT size.  The problem is this limit
1820 		 * is often too low for many modern games so just make the limit 1/2
1821 		 * of system memory which aligns with TTM. The OOM accounting needs
1822 		 * to be addressed, but we shouldn't prevent common 3D applications
1823 		 * from being usable just to potentially mitigate that corner case.
1824 		 */
1825 		gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1826 			       (u64)si.totalram * si.mem_unit / 2);
1827 	} else {
1828 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1829 	}
1830 
1831 	/* Initialize GTT memory pool */
1832 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1833 	if (r) {
1834 		DRM_ERROR("Failed initializing GTT heap.\n");
1835 		return r;
1836 	}
1837 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1838 		 (unsigned)(gtt_size / (1024 * 1024)));
1839 
1840 	/* Initialize preemptible memory pool */
1841 	r = amdgpu_preempt_mgr_init(adev);
1842 	if (r) {
1843 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1844 		return r;
1845 	}
1846 
1847 	/* Initialize various on-chip memory pools */
1848 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1849 	if (r) {
1850 		DRM_ERROR("Failed initializing GDS heap.\n");
1851 		return r;
1852 	}
1853 
1854 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1855 	if (r) {
1856 		DRM_ERROR("Failed initializing gws heap.\n");
1857 		return r;
1858 	}
1859 
1860 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1861 	if (r) {
1862 		DRM_ERROR("Failed initializing oa heap.\n");
1863 		return r;
1864 	}
1865 
1866 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1867 				AMDGPU_GEM_DOMAIN_GTT,
1868 				&adev->mman.sdma_access_bo, NULL,
1869 				&adev->mman.sdma_access_ptr))
1870 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1871 
1872 	return 0;
1873 }
1874 
1875 /*
1876  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1877  */
1878 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1879 {
1880 	int idx;
1881 	if (!adev->mman.initialized)
1882 		return;
1883 
1884 	amdgpu_ttm_training_reserve_vram_fini(adev);
1885 	/* return the stolen vga memory back to VRAM */
1886 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1887 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1888 	/* return the IP Discovery TMR memory back to VRAM */
1889 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1890 	if (adev->mman.stolen_reserved_size)
1891 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1892 				      NULL, NULL);
1893 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1894 					&adev->mman.sdma_access_ptr);
1895 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1896 	amdgpu_ttm_drv_reserve_vram_fini(adev);
1897 
1898 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1899 
1900 		if (adev->mman.aper_base_kaddr)
1901 			iounmap(adev->mman.aper_base_kaddr);
1902 		adev->mman.aper_base_kaddr = NULL;
1903 
1904 		drm_dev_exit(idx);
1905 	}
1906 
1907 	amdgpu_vram_mgr_fini(adev);
1908 	amdgpu_gtt_mgr_fini(adev);
1909 	amdgpu_preempt_mgr_fini(adev);
1910 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1911 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1912 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1913 	ttm_device_fini(&adev->mman.bdev);
1914 	adev->mman.initialized = false;
1915 	DRM_INFO("amdgpu: ttm finalized\n");
1916 }
1917 
1918 /**
1919  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1920  *
1921  * @adev: amdgpu_device pointer
1922  * @enable: true when we can use buffer functions.
1923  *
1924  * Enable/disable use of buffer functions during suspend/resume. This should
1925  * only be called at bootup or when userspace isn't running.
1926  */
1927 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1928 {
1929 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1930 	uint64_t size;
1931 	int r;
1932 
1933 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1934 	    adev->mman.buffer_funcs_enabled == enable)
1935 		return;
1936 
1937 	if (enable) {
1938 		struct amdgpu_ring *ring;
1939 		struct drm_gpu_scheduler *sched;
1940 
1941 		ring = adev->mman.buffer_funcs_ring;
1942 		sched = &ring->sched;
1943 		r = drm_sched_entity_init(&adev->mman.entity,
1944 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1945 					  1, NULL);
1946 		if (r) {
1947 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1948 				  r);
1949 			return;
1950 		}
1951 	} else {
1952 		drm_sched_entity_destroy(&adev->mman.entity);
1953 		dma_fence_put(man->move);
1954 		man->move = NULL;
1955 	}
1956 
1957 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1958 	if (enable)
1959 		size = adev->gmc.real_vram_size;
1960 	else
1961 		size = adev->gmc.visible_vram_size;
1962 	man->size = size;
1963 	adev->mman.buffer_funcs_enabled = enable;
1964 }
1965 
1966 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1967 				  bool direct_submit,
1968 				  unsigned int num_dw,
1969 				  struct dma_resv *resv,
1970 				  bool vm_needs_flush,
1971 				  struct amdgpu_job **job)
1972 {
1973 	enum amdgpu_ib_pool_type pool = direct_submit ?
1974 		AMDGPU_IB_POOL_DIRECT :
1975 		AMDGPU_IB_POOL_DELAYED;
1976 	int r;
1977 
1978 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1979 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1980 				     num_dw * 4, pool, job);
1981 	if (r)
1982 		return r;
1983 
1984 	if (vm_needs_flush) {
1985 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1986 							adev->gmc.pdb0_bo :
1987 							adev->gart.bo);
1988 		(*job)->vm_needs_flush = true;
1989 	}
1990 	if (!resv)
1991 		return 0;
1992 
1993 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
1994 						   DMA_RESV_USAGE_BOOKKEEP);
1995 }
1996 
1997 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1998 		       uint64_t dst_offset, uint32_t byte_count,
1999 		       struct dma_resv *resv,
2000 		       struct dma_fence **fence, bool direct_submit,
2001 		       bool vm_needs_flush, bool tmz)
2002 {
2003 	struct amdgpu_device *adev = ring->adev;
2004 	unsigned num_loops, num_dw;
2005 	struct amdgpu_job *job;
2006 	uint32_t max_bytes;
2007 	unsigned i;
2008 	int r;
2009 
2010 	if (!direct_submit && !ring->sched.ready) {
2011 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2012 		return -EINVAL;
2013 	}
2014 
2015 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2016 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2017 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2018 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2019 				   resv, vm_needs_flush, &job);
2020 	if (r)
2021 		return r;
2022 
2023 	for (i = 0; i < num_loops; i++) {
2024 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2025 
2026 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2027 					dst_offset, cur_size_in_bytes, tmz);
2028 
2029 		src_offset += cur_size_in_bytes;
2030 		dst_offset += cur_size_in_bytes;
2031 		byte_count -= cur_size_in_bytes;
2032 	}
2033 
2034 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2035 	WARN_ON(job->ibs[0].length_dw > num_dw);
2036 	if (direct_submit)
2037 		r = amdgpu_job_submit_direct(job, ring, fence);
2038 	else
2039 		*fence = amdgpu_job_submit(job);
2040 	if (r)
2041 		goto error_free;
2042 
2043 	return r;
2044 
2045 error_free:
2046 	amdgpu_job_free(job);
2047 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2048 	return r;
2049 }
2050 
2051 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2052 			       uint64_t dst_addr, uint32_t byte_count,
2053 			       struct dma_resv *resv,
2054 			       struct dma_fence **fence,
2055 			       bool vm_needs_flush)
2056 {
2057 	struct amdgpu_device *adev = ring->adev;
2058 	unsigned int num_loops, num_dw;
2059 	struct amdgpu_job *job;
2060 	uint32_t max_bytes;
2061 	unsigned int i;
2062 	int r;
2063 
2064 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2065 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2066 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2067 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2068 				   &job);
2069 	if (r)
2070 		return r;
2071 
2072 	for (i = 0; i < num_loops; i++) {
2073 		uint32_t cur_size = min(byte_count, max_bytes);
2074 
2075 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2076 					cur_size);
2077 
2078 		dst_addr += cur_size;
2079 		byte_count -= cur_size;
2080 	}
2081 
2082 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2083 	WARN_ON(job->ibs[0].length_dw > num_dw);
2084 	*fence = amdgpu_job_submit(job);
2085 	return 0;
2086 }
2087 
2088 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2089 			uint32_t src_data,
2090 			struct dma_resv *resv,
2091 			struct dma_fence **f)
2092 {
2093 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2094 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2095 	struct dma_fence *fence = NULL;
2096 	struct amdgpu_res_cursor dst;
2097 	int r;
2098 
2099 	if (!adev->mman.buffer_funcs_enabled) {
2100 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2101 		return -EINVAL;
2102 	}
2103 
2104 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2105 
2106 	mutex_lock(&adev->mman.gtt_window_lock);
2107 	while (dst.remaining) {
2108 		struct dma_fence *next;
2109 		uint64_t cur_size, to;
2110 
2111 		/* Never fill more than 256MiB at once to avoid timeouts */
2112 		cur_size = min(dst.size, 256ULL << 20);
2113 
2114 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2115 					  1, ring, false, &cur_size, &to);
2116 		if (r)
2117 			goto error;
2118 
2119 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2120 					&next, true);
2121 		if (r)
2122 			goto error;
2123 
2124 		dma_fence_put(fence);
2125 		fence = next;
2126 
2127 		amdgpu_res_next(&dst, cur_size);
2128 	}
2129 error:
2130 	mutex_unlock(&adev->mman.gtt_window_lock);
2131 	if (f)
2132 		*f = dma_fence_get(fence);
2133 	dma_fence_put(fence);
2134 	return r;
2135 }
2136 
2137 /**
2138  * amdgpu_ttm_evict_resources - evict memory buffers
2139  * @adev: amdgpu device object
2140  * @mem_type: evicted BO's memory type
2141  *
2142  * Evicts all @mem_type buffers on the lru list of the memory type.
2143  *
2144  * Returns:
2145  * 0 for success or a negative error code on failure.
2146  */
2147 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2148 {
2149 	struct ttm_resource_manager *man;
2150 
2151 	switch (mem_type) {
2152 	case TTM_PL_VRAM:
2153 	case TTM_PL_TT:
2154 	case AMDGPU_PL_GWS:
2155 	case AMDGPU_PL_GDS:
2156 	case AMDGPU_PL_OA:
2157 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2158 		break;
2159 	default:
2160 		DRM_ERROR("Trying to evict invalid memory type\n");
2161 		return -EINVAL;
2162 	}
2163 
2164 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2165 }
2166 
2167 #if defined(CONFIG_DEBUG_FS)
2168 
2169 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2170 {
2171 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2172 
2173 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2174 }
2175 
2176 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2177 
2178 /*
2179  * amdgpu_ttm_vram_read - Linear read access to VRAM
2180  *
2181  * Accesses VRAM via MMIO for debugging purposes.
2182  */
2183 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2184 				    size_t size, loff_t *pos)
2185 {
2186 	struct amdgpu_device *adev = file_inode(f)->i_private;
2187 	ssize_t result = 0;
2188 
2189 	if (size & 0x3 || *pos & 0x3)
2190 		return -EINVAL;
2191 
2192 	if (*pos >= adev->gmc.mc_vram_size)
2193 		return -ENXIO;
2194 
2195 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2196 	while (size) {
2197 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2198 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2199 
2200 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2201 		if (copy_to_user(buf, value, bytes))
2202 			return -EFAULT;
2203 
2204 		result += bytes;
2205 		buf += bytes;
2206 		*pos += bytes;
2207 		size -= bytes;
2208 	}
2209 
2210 	return result;
2211 }
2212 
2213 /*
2214  * amdgpu_ttm_vram_write - Linear write access to VRAM
2215  *
2216  * Accesses VRAM via MMIO for debugging purposes.
2217  */
2218 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2219 				    size_t size, loff_t *pos)
2220 {
2221 	struct amdgpu_device *adev = file_inode(f)->i_private;
2222 	ssize_t result = 0;
2223 	int r;
2224 
2225 	if (size & 0x3 || *pos & 0x3)
2226 		return -EINVAL;
2227 
2228 	if (*pos >= adev->gmc.mc_vram_size)
2229 		return -ENXIO;
2230 
2231 	while (size) {
2232 		uint32_t value;
2233 
2234 		if (*pos >= adev->gmc.mc_vram_size)
2235 			return result;
2236 
2237 		r = get_user(value, (uint32_t *)buf);
2238 		if (r)
2239 			return r;
2240 
2241 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2242 
2243 		result += 4;
2244 		buf += 4;
2245 		*pos += 4;
2246 		size -= 4;
2247 	}
2248 
2249 	return result;
2250 }
2251 
2252 static const struct file_operations amdgpu_ttm_vram_fops = {
2253 	.owner = THIS_MODULE,
2254 	.read = amdgpu_ttm_vram_read,
2255 	.write = amdgpu_ttm_vram_write,
2256 	.llseek = default_llseek,
2257 };
2258 
2259 /*
2260  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2261  *
2262  * This function is used to read memory that has been mapped to the
2263  * GPU and the known addresses are not physical addresses but instead
2264  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2265  */
2266 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2267 				 size_t size, loff_t *pos)
2268 {
2269 	struct amdgpu_device *adev = file_inode(f)->i_private;
2270 	struct iommu_domain *dom;
2271 	ssize_t result = 0;
2272 	int r;
2273 
2274 	/* retrieve the IOMMU domain if any for this device */
2275 	dom = iommu_get_domain_for_dev(adev->dev);
2276 
2277 	while (size) {
2278 		phys_addr_t addr = *pos & PAGE_MASK;
2279 		loff_t off = *pos & ~PAGE_MASK;
2280 		size_t bytes = PAGE_SIZE - off;
2281 		unsigned long pfn;
2282 		struct page *p;
2283 		void *ptr;
2284 
2285 		bytes = bytes < size ? bytes : size;
2286 
2287 		/* Translate the bus address to a physical address.  If
2288 		 * the domain is NULL it means there is no IOMMU active
2289 		 * and the address translation is the identity
2290 		 */
2291 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2292 
2293 		pfn = addr >> PAGE_SHIFT;
2294 		if (!pfn_valid(pfn))
2295 			return -EPERM;
2296 
2297 		p = pfn_to_page(pfn);
2298 		if (p->mapping != adev->mman.bdev.dev_mapping)
2299 			return -EPERM;
2300 
2301 		ptr = kmap_local_page(p);
2302 		r = copy_to_user(buf, ptr + off, bytes);
2303 		kunmap_local(ptr);
2304 		if (r)
2305 			return -EFAULT;
2306 
2307 		size -= bytes;
2308 		*pos += bytes;
2309 		result += bytes;
2310 	}
2311 
2312 	return result;
2313 }
2314 
2315 /*
2316  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2317  *
2318  * This function is used to write memory that has been mapped to the
2319  * GPU and the known addresses are not physical addresses but instead
2320  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2321  */
2322 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2323 				 size_t size, loff_t *pos)
2324 {
2325 	struct amdgpu_device *adev = file_inode(f)->i_private;
2326 	struct iommu_domain *dom;
2327 	ssize_t result = 0;
2328 	int r;
2329 
2330 	dom = iommu_get_domain_for_dev(adev->dev);
2331 
2332 	while (size) {
2333 		phys_addr_t addr = *pos & PAGE_MASK;
2334 		loff_t off = *pos & ~PAGE_MASK;
2335 		size_t bytes = PAGE_SIZE - off;
2336 		unsigned long pfn;
2337 		struct page *p;
2338 		void *ptr;
2339 
2340 		bytes = bytes < size ? bytes : size;
2341 
2342 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2343 
2344 		pfn = addr >> PAGE_SHIFT;
2345 		if (!pfn_valid(pfn))
2346 			return -EPERM;
2347 
2348 		p = pfn_to_page(pfn);
2349 		if (p->mapping != adev->mman.bdev.dev_mapping)
2350 			return -EPERM;
2351 
2352 		ptr = kmap_local_page(p);
2353 		r = copy_from_user(ptr + off, buf, bytes);
2354 		kunmap_local(ptr);
2355 		if (r)
2356 			return -EFAULT;
2357 
2358 		size -= bytes;
2359 		*pos += bytes;
2360 		result += bytes;
2361 	}
2362 
2363 	return result;
2364 }
2365 
2366 static const struct file_operations amdgpu_ttm_iomem_fops = {
2367 	.owner = THIS_MODULE,
2368 	.read = amdgpu_iomem_read,
2369 	.write = amdgpu_iomem_write,
2370 	.llseek = default_llseek
2371 };
2372 
2373 #endif
2374 
2375 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2376 {
2377 #if defined(CONFIG_DEBUG_FS)
2378 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2379 	struct dentry *root = minor->debugfs_root;
2380 
2381 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2382 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2383 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2384 			    &amdgpu_ttm_iomem_fops);
2385 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2386 			    &amdgpu_ttm_page_pool_fops);
2387 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2388 							     TTM_PL_VRAM),
2389 					    root, "amdgpu_vram_mm");
2390 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2391 							     TTM_PL_TT),
2392 					    root, "amdgpu_gtt_mm");
2393 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2394 							     AMDGPU_PL_GDS),
2395 					    root, "amdgpu_gds_mm");
2396 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2397 							     AMDGPU_PL_GWS),
2398 					    root, "amdgpu_gws_mm");
2399 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2400 							     AMDGPU_PL_OA),
2401 					    root, "amdgpu_oa_mm");
2402 
2403 #endif
2404 }
2405