1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 placement->num_busy_placement = 0; 106 return; 107 } 108 109 /* Object isn't an AMDGPU object so ignore */ 110 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 111 placement->placement = &placements; 112 placement->busy_placement = &placements; 113 placement->num_placement = 1; 114 placement->num_busy_placement = 1; 115 return; 116 } 117 118 abo = ttm_to_amdgpu_bo(bo); 119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 120 placement->num_placement = 0; 121 placement->num_busy_placement = 0; 122 return; 123 } 124 125 switch (bo->resource->mem_type) { 126 case AMDGPU_PL_GDS: 127 case AMDGPU_PL_GWS: 128 case AMDGPU_PL_OA: 129 case AMDGPU_PL_DOORBELL: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned int window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned int offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct amdgpu_job *job; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 202 return -EINVAL; 203 204 /* Map only what can't be accessed directly */ 205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 207 mm_cur->start; 208 return 0; 209 } 210 211 212 /* 213 * If start begins at an offset inside the page, then adjust the size 214 * and addr accordingly 215 */ 216 offset = mm_cur->start & ~PAGE_MASK; 217 218 num_pages = PFN_UP(*size + offset); 219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 220 221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 222 223 *addr = adev->gmc.gart_start; 224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 225 AMDGPU_GPU_PAGE_SIZE; 226 *addr += offset; 227 228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 230 231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 232 AMDGPU_FENCE_OWNER_UNDEFINED, 233 num_dw * 4 + num_bytes, 234 AMDGPU_IB_POOL_DELAYED, &job); 235 if (r) 236 return r; 237 238 src_addr = num_dw * 4; 239 src_addr += job->ibs[0].gpu_addr; 240 241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 244 dst_addr, num_bytes, false); 245 246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 247 WARN_ON(job->ibs[0].length_dw > num_dw); 248 249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 250 if (tmz) 251 flags |= AMDGPU_PTE_TMZ; 252 253 cpu_addr = &job->ibs[0].ptr[num_dw]; 254 255 if (mem->mem_type == TTM_PL_TT) { 256 dma_addr_t *dma_addr; 257 258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 268 flags, cpu_addr); 269 dma_address += PAGE_SIZE; 270 } 271 } 272 273 dma_fence_put(amdgpu_job_submit(job)); 274 return 0; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 300 struct amdgpu_res_cursor src_mm, dst_mm; 301 struct dma_fence *fence = NULL; 302 int r = 0; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 DRM_ERROR("Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, 332 resv, &next, false, true, tmz); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /* 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 413 * 414 * Called by amdgpu_bo_move() 415 */ 416 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 417 struct ttm_resource *mem) 418 { 419 u64 mem_size = (u64)mem->size; 420 struct amdgpu_res_cursor cursor; 421 u64 end; 422 423 if (mem->mem_type == TTM_PL_SYSTEM || 424 mem->mem_type == TTM_PL_TT) 425 return true; 426 if (mem->mem_type != TTM_PL_VRAM) 427 return false; 428 429 amdgpu_res_first(mem, 0, mem_size, &cursor); 430 end = cursor.start + cursor.size; 431 while (cursor.remaining) { 432 amdgpu_res_next(&cursor, cursor.size); 433 434 if (!cursor.remaining) 435 break; 436 437 /* ttm_resource_ioremap only supports contiguous memory */ 438 if (end != cursor.start) 439 return false; 440 441 end = cursor.start + cursor.size; 442 } 443 444 return end <= adev->gmc.visible_vram_size; 445 } 446 447 /* 448 * amdgpu_bo_move - Move a buffer object to a new memory location 449 * 450 * Called by ttm_bo_handle_move_mem() 451 */ 452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 453 struct ttm_operation_ctx *ctx, 454 struct ttm_resource *new_mem, 455 struct ttm_place *hop) 456 { 457 struct amdgpu_device *adev; 458 struct amdgpu_bo *abo; 459 struct ttm_resource *old_mem = bo->resource; 460 int r; 461 462 if (new_mem->mem_type == TTM_PL_TT || 463 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 465 if (r) 466 return r; 467 } 468 469 abo = ttm_to_amdgpu_bo(bo); 470 adev = amdgpu_ttm_adev(bo->bdev); 471 472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 473 bo->ttm == NULL)) { 474 ttm_bo_move_null(bo, new_mem); 475 goto out; 476 } 477 if (old_mem->mem_type == TTM_PL_SYSTEM && 478 (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 480 ttm_bo_move_null(bo, new_mem); 481 goto out; 482 } 483 if ((old_mem->mem_type == TTM_PL_TT || 484 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 485 new_mem->mem_type == TTM_PL_SYSTEM) { 486 r = ttm_bo_wait_ctx(bo, ctx); 487 if (r) 488 return r; 489 490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 491 ttm_resource_free(bo, &bo->resource); 492 ttm_bo_assign_mem(bo, new_mem); 493 goto out; 494 } 495 496 if (old_mem->mem_type == AMDGPU_PL_GDS || 497 old_mem->mem_type == AMDGPU_PL_GWS || 498 old_mem->mem_type == AMDGPU_PL_OA || 499 old_mem->mem_type == AMDGPU_PL_DOORBELL || 500 new_mem->mem_type == AMDGPU_PL_GDS || 501 new_mem->mem_type == AMDGPU_PL_GWS || 502 new_mem->mem_type == AMDGPU_PL_OA || 503 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 504 /* Nothing to save here */ 505 ttm_bo_move_null(bo, new_mem); 506 goto out; 507 } 508 509 if (bo->type == ttm_bo_type_device && 510 new_mem->mem_type == TTM_PL_VRAM && 511 old_mem->mem_type != TTM_PL_VRAM) { 512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 513 * accesses the BO after it's moved. 514 */ 515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 516 } 517 518 if (adev->mman.buffer_funcs_enabled) { 519 if (((old_mem->mem_type == TTM_PL_SYSTEM && 520 new_mem->mem_type == TTM_PL_VRAM) || 521 (old_mem->mem_type == TTM_PL_VRAM && 522 new_mem->mem_type == TTM_PL_SYSTEM))) { 523 hop->fpfn = 0; 524 hop->lpfn = 0; 525 hop->mem_type = TTM_PL_TT; 526 hop->flags = TTM_PL_FLAG_TEMPORARY; 527 return -EMULTIHOP; 528 } 529 530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 531 } else { 532 r = -ENODEV; 533 } 534 535 if (r) { 536 /* Check that all memory is CPU accessible */ 537 if (!amdgpu_mem_visible(adev, old_mem) || 538 !amdgpu_mem_visible(adev, new_mem)) { 539 pr_err("Move buffer fallback to memcpy unavailable\n"); 540 return r; 541 } 542 543 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 544 if (r) 545 return r; 546 } 547 548 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type); 549 out: 550 /* update statistics */ 551 atomic64_add(bo->base.size, &adev->num_bytes_moved); 552 amdgpu_bo_move_notify(bo, evict); 553 return 0; 554 } 555 556 /* 557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 558 * 559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 560 */ 561 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 562 struct ttm_resource *mem) 563 { 564 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 565 size_t bus_size = (size_t)mem->size; 566 567 switch (mem->mem_type) { 568 case TTM_PL_SYSTEM: 569 /* system memory */ 570 return 0; 571 case TTM_PL_TT: 572 case AMDGPU_PL_PREEMPT: 573 break; 574 case TTM_PL_VRAM: 575 mem->bus.offset = mem->start << PAGE_SHIFT; 576 /* check if it's visible */ 577 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 578 return -EINVAL; 579 580 if (adev->mman.aper_base_kaddr && 581 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 582 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 583 mem->bus.offset; 584 585 mem->bus.offset += adev->gmc.aper_base; 586 mem->bus.is_iomem = true; 587 break; 588 case AMDGPU_PL_DOORBELL: 589 mem->bus.offset = mem->start << PAGE_SHIFT; 590 mem->bus.offset += adev->doorbell.base; 591 mem->bus.is_iomem = true; 592 mem->bus.caching = ttm_uncached; 593 break; 594 default: 595 return -EINVAL; 596 } 597 return 0; 598 } 599 600 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 601 unsigned long page_offset) 602 { 603 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 604 struct amdgpu_res_cursor cursor; 605 606 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 607 &cursor); 608 609 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 610 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 611 612 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 613 } 614 615 /** 616 * amdgpu_ttm_domain_start - Returns GPU start address 617 * @adev: amdgpu device object 618 * @type: type of the memory 619 * 620 * Returns: 621 * GPU start address of a memory domain 622 */ 623 624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 625 { 626 switch (type) { 627 case TTM_PL_TT: 628 return adev->gmc.gart_start; 629 case TTM_PL_VRAM: 630 return adev->gmc.vram_start; 631 } 632 633 return 0; 634 } 635 636 /* 637 * TTM backend functions. 638 */ 639 struct amdgpu_ttm_tt { 640 struct ttm_tt ttm; 641 struct drm_gem_object *gobj; 642 u64 offset; 643 uint64_t userptr; 644 struct task_struct *usertask; 645 uint32_t userflags; 646 bool bound; 647 int32_t pool_id; 648 }; 649 650 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 651 652 #ifdef CONFIG_DRM_AMDGPU_USERPTR 653 /* 654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 655 * memory and start HMM tracking CPU page table update 656 * 657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 658 * once afterwards to stop HMM tracking 659 */ 660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 661 struct hmm_range **range) 662 { 663 struct ttm_tt *ttm = bo->tbo.ttm; 664 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 665 unsigned long start = gtt->userptr; 666 struct vm_area_struct *vma; 667 struct mm_struct *mm; 668 bool readonly; 669 int r = 0; 670 671 /* Make sure get_user_pages_done() can cleanup gracefully */ 672 *range = NULL; 673 674 mm = bo->notifier.mm; 675 if (unlikely(!mm)) { 676 DRM_DEBUG_DRIVER("BO is not registered?\n"); 677 return -EFAULT; 678 } 679 680 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 681 return -ESRCH; 682 683 mmap_read_lock(mm); 684 vma = vma_lookup(mm, start); 685 if (unlikely(!vma)) { 686 r = -EFAULT; 687 goto out_unlock; 688 } 689 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 690 vma->vm_file)) { 691 r = -EPERM; 692 goto out_unlock; 693 } 694 695 readonly = amdgpu_ttm_tt_is_readonly(ttm); 696 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 697 readonly, NULL, pages, range); 698 out_unlock: 699 mmap_read_unlock(mm); 700 if (r) 701 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 702 703 mmput(mm); 704 705 return r; 706 } 707 708 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 709 */ 710 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 711 struct hmm_range *range) 712 { 713 struct amdgpu_ttm_tt *gtt = (void *)ttm; 714 715 if (gtt && gtt->userptr && range) 716 amdgpu_hmm_range_get_pages_done(range); 717 } 718 719 /* 720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 721 * Check if the pages backing this ttm range have been invalidated 722 * 723 * Returns: true if pages are still valid 724 */ 725 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 726 struct hmm_range *range) 727 { 728 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 729 730 if (!gtt || !gtt->userptr || !range) 731 return false; 732 733 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 734 gtt->userptr, ttm->num_pages); 735 736 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 737 738 return !amdgpu_hmm_range_get_pages_done(range); 739 } 740 #endif 741 742 /* 743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 744 * 745 * Called by amdgpu_cs_list_validate(). This creates the page list 746 * that backs user memory and will ultimately be mapped into the device 747 * address space. 748 */ 749 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 750 { 751 unsigned long i; 752 753 for (i = 0; i < ttm->num_pages; ++i) 754 ttm->pages[i] = pages ? pages[i] : NULL; 755 } 756 757 /* 758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 759 * 760 * Called by amdgpu_ttm_backend_bind() 761 **/ 762 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 763 struct ttm_tt *ttm) 764 { 765 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 766 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 767 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 768 enum dma_data_direction direction = write ? 769 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 770 int r; 771 772 /* Allocate an SG array and squash pages into it */ 773 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 774 (u64)ttm->num_pages << PAGE_SHIFT, 775 GFP_KERNEL); 776 if (r) 777 goto release_sg; 778 779 /* Map SG to device */ 780 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 781 if (r) 782 goto release_sg; 783 784 /* convert SG to linear array of pages and dma addresses */ 785 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 786 ttm->num_pages); 787 788 return 0; 789 790 release_sg: 791 kfree(ttm->sg); 792 ttm->sg = NULL; 793 return r; 794 } 795 796 /* 797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 798 */ 799 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 800 struct ttm_tt *ttm) 801 { 802 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 803 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 804 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 805 enum dma_data_direction direction = write ? 806 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 807 808 /* double check that we don't free the table twice */ 809 if (!ttm->sg || !ttm->sg->sgl) 810 return; 811 812 /* unmap the pages mapped to the device */ 813 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 814 sg_free_table(ttm->sg); 815 } 816 817 /* 818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 819 * MQDn+CtrlStackn where n is the number of XCCs per partition. 820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 821 * and uses memory type default, UC. The rest of pages_per_xcc are 822 * Ctrl stack and modify their memory type to NC. 823 */ 824 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 825 struct ttm_tt *ttm, uint64_t flags) 826 { 827 struct amdgpu_ttm_tt *gtt = (void *)ttm; 828 uint64_t total_pages = ttm->num_pages; 829 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 830 uint64_t page_idx, pages_per_xcc; 831 int i; 832 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 833 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 834 835 pages_per_xcc = total_pages; 836 do_div(pages_per_xcc, num_xcc); 837 838 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 839 /* MQD page: use default flags */ 840 amdgpu_gart_bind(adev, 841 gtt->offset + (page_idx << PAGE_SHIFT), 842 1, >t->ttm.dma_address[page_idx], flags); 843 /* 844 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 845 * the second page of the BO onward. 846 */ 847 amdgpu_gart_bind(adev, 848 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 849 pages_per_xcc - 1, 850 >t->ttm.dma_address[page_idx + 1], 851 ctrl_flags); 852 } 853 } 854 855 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 856 struct ttm_buffer_object *tbo, 857 uint64_t flags) 858 { 859 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 860 struct ttm_tt *ttm = tbo->ttm; 861 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 862 863 if (amdgpu_bo_encrypted(abo)) 864 flags |= AMDGPU_PTE_TMZ; 865 866 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 867 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 868 } else { 869 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 870 gtt->ttm.dma_address, flags); 871 } 872 } 873 874 /* 875 * amdgpu_ttm_backend_bind - Bind GTT memory 876 * 877 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 878 * This handles binding GTT memory to the device address space. 879 */ 880 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 881 struct ttm_tt *ttm, 882 struct ttm_resource *bo_mem) 883 { 884 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 885 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 886 uint64_t flags; 887 int r; 888 889 if (!bo_mem) 890 return -EINVAL; 891 892 if (gtt->bound) 893 return 0; 894 895 if (gtt->userptr) { 896 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 897 if (r) { 898 DRM_ERROR("failed to pin userptr\n"); 899 return r; 900 } 901 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 902 if (!ttm->sg) { 903 struct dma_buf_attachment *attach; 904 struct sg_table *sgt; 905 906 attach = gtt->gobj->import_attach; 907 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 908 if (IS_ERR(sgt)) 909 return PTR_ERR(sgt); 910 911 ttm->sg = sgt; 912 } 913 914 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 915 ttm->num_pages); 916 } 917 918 if (!ttm->num_pages) { 919 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 920 ttm->num_pages, bo_mem, ttm); 921 } 922 923 if (bo_mem->mem_type != TTM_PL_TT || 924 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 925 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 926 return 0; 927 } 928 929 /* compute PTE flags relevant to this BO memory */ 930 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 931 932 /* bind pages into GART page tables */ 933 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 934 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 935 gtt->ttm.dma_address, flags); 936 gtt->bound = true; 937 return 0; 938 } 939 940 /* 941 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 942 * through AGP or GART aperture. 943 * 944 * If bo is accessible through AGP aperture, then use AGP aperture 945 * to access bo; otherwise allocate logical space in GART aperture 946 * and map bo to GART aperture. 947 */ 948 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 949 { 950 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 951 struct ttm_operation_ctx ctx = { false, false }; 952 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 953 struct ttm_placement placement; 954 struct ttm_place placements; 955 struct ttm_resource *tmp; 956 uint64_t addr, flags; 957 int r; 958 959 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 960 return 0; 961 962 addr = amdgpu_gmc_agp_addr(bo); 963 if (addr != AMDGPU_BO_INVALID_OFFSET) { 964 bo->resource->start = addr >> PAGE_SHIFT; 965 return 0; 966 } 967 968 /* allocate GART space */ 969 placement.num_placement = 1; 970 placement.placement = &placements; 971 placement.num_busy_placement = 1; 972 placement.busy_placement = &placements; 973 placements.fpfn = 0; 974 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 975 placements.mem_type = TTM_PL_TT; 976 placements.flags = bo->resource->placement; 977 978 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 979 if (unlikely(r)) 980 return r; 981 982 /* compute PTE flags for this buffer object */ 983 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 984 985 /* Bind pages */ 986 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 987 amdgpu_ttm_gart_bind(adev, bo, flags); 988 amdgpu_gart_invalidate_tlb(adev); 989 ttm_resource_free(bo, &bo->resource); 990 ttm_bo_assign_mem(bo, tmp); 991 992 return 0; 993 } 994 995 /* 996 * amdgpu_ttm_recover_gart - Rebind GTT pages 997 * 998 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 999 * rebind GTT pages during a GPU reset. 1000 */ 1001 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1002 { 1003 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1004 uint64_t flags; 1005 1006 if (!tbo->ttm) 1007 return; 1008 1009 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1010 amdgpu_ttm_gart_bind(adev, tbo, flags); 1011 } 1012 1013 /* 1014 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1015 * 1016 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1017 * ttm_tt_destroy(). 1018 */ 1019 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1020 struct ttm_tt *ttm) 1021 { 1022 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1023 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1024 1025 /* if the pages have userptr pinning then clear that first */ 1026 if (gtt->userptr) { 1027 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1028 } else if (ttm->sg && gtt->gobj->import_attach) { 1029 struct dma_buf_attachment *attach; 1030 1031 attach = gtt->gobj->import_attach; 1032 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1033 ttm->sg = NULL; 1034 } 1035 1036 if (!gtt->bound) 1037 return; 1038 1039 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1040 return; 1041 1042 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1043 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1044 gtt->bound = false; 1045 } 1046 1047 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1048 struct ttm_tt *ttm) 1049 { 1050 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1051 1052 if (gtt->usertask) 1053 put_task_struct(gtt->usertask); 1054 1055 ttm_tt_fini(>t->ttm); 1056 kfree(gtt); 1057 } 1058 1059 /** 1060 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1061 * 1062 * @bo: The buffer object to create a GTT ttm_tt object around 1063 * @page_flags: Page flags to be added to the ttm_tt object 1064 * 1065 * Called by ttm_tt_create(). 1066 */ 1067 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1068 uint32_t page_flags) 1069 { 1070 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1071 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1072 struct amdgpu_ttm_tt *gtt; 1073 enum ttm_caching caching; 1074 1075 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1076 if (!gtt) 1077 return NULL; 1078 1079 gtt->gobj = &bo->base; 1080 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1081 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1082 else 1083 gtt->pool_id = abo->xcp_id; 1084 1085 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1086 caching = ttm_write_combined; 1087 else 1088 caching = ttm_cached; 1089 1090 /* allocate space for the uninitialized page entries */ 1091 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1092 kfree(gtt); 1093 return NULL; 1094 } 1095 return >t->ttm; 1096 } 1097 1098 /* 1099 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1100 * 1101 * Map the pages of a ttm_tt object to an address space visible 1102 * to the underlying device. 1103 */ 1104 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1105 struct ttm_tt *ttm, 1106 struct ttm_operation_ctx *ctx) 1107 { 1108 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1109 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1110 struct ttm_pool *pool; 1111 pgoff_t i; 1112 int ret; 1113 1114 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1115 if (gtt->userptr) { 1116 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1117 if (!ttm->sg) 1118 return -ENOMEM; 1119 return 0; 1120 } 1121 1122 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1123 return 0; 1124 1125 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1126 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1127 else 1128 pool = &adev->mman.bdev.pool; 1129 ret = ttm_pool_alloc(pool, ttm, ctx); 1130 if (ret) 1131 return ret; 1132 1133 for (i = 0; i < ttm->num_pages; ++i) 1134 ttm->pages[i]->mapping = bdev->dev_mapping; 1135 1136 return 0; 1137 } 1138 1139 /* 1140 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1141 * 1142 * Unmaps pages of a ttm_tt object from the device address space and 1143 * unpopulates the page array backing it. 1144 */ 1145 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1146 struct ttm_tt *ttm) 1147 { 1148 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1149 struct amdgpu_device *adev; 1150 struct ttm_pool *pool; 1151 pgoff_t i; 1152 1153 amdgpu_ttm_backend_unbind(bdev, ttm); 1154 1155 if (gtt->userptr) { 1156 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1157 kfree(ttm->sg); 1158 ttm->sg = NULL; 1159 return; 1160 } 1161 1162 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1163 return; 1164 1165 for (i = 0; i < ttm->num_pages; ++i) 1166 ttm->pages[i]->mapping = NULL; 1167 1168 adev = amdgpu_ttm_adev(bdev); 1169 1170 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1171 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1172 else 1173 pool = &adev->mman.bdev.pool; 1174 1175 return ttm_pool_free(pool, ttm); 1176 } 1177 1178 /** 1179 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1180 * task 1181 * 1182 * @tbo: The ttm_buffer_object that contains the userptr 1183 * @user_addr: The returned value 1184 */ 1185 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1186 uint64_t *user_addr) 1187 { 1188 struct amdgpu_ttm_tt *gtt; 1189 1190 if (!tbo->ttm) 1191 return -EINVAL; 1192 1193 gtt = (void *)tbo->ttm; 1194 *user_addr = gtt->userptr; 1195 return 0; 1196 } 1197 1198 /** 1199 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1200 * task 1201 * 1202 * @bo: The ttm_buffer_object to bind this userptr to 1203 * @addr: The address in the current tasks VM space to use 1204 * @flags: Requirements of userptr object. 1205 * 1206 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1207 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1208 * initialize GPU VM for a KFD process. 1209 */ 1210 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1211 uint64_t addr, uint32_t flags) 1212 { 1213 struct amdgpu_ttm_tt *gtt; 1214 1215 if (!bo->ttm) { 1216 /* TODO: We want a separate TTM object type for userptrs */ 1217 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1218 if (bo->ttm == NULL) 1219 return -ENOMEM; 1220 } 1221 1222 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1223 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1224 1225 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1226 gtt->userptr = addr; 1227 gtt->userflags = flags; 1228 1229 if (gtt->usertask) 1230 put_task_struct(gtt->usertask); 1231 gtt->usertask = current->group_leader; 1232 get_task_struct(gtt->usertask); 1233 1234 return 0; 1235 } 1236 1237 /* 1238 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1239 */ 1240 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1241 { 1242 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1243 1244 if (gtt == NULL) 1245 return NULL; 1246 1247 if (gtt->usertask == NULL) 1248 return NULL; 1249 1250 return gtt->usertask->mm; 1251 } 1252 1253 /* 1254 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1255 * address range for the current task. 1256 * 1257 */ 1258 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1259 unsigned long end, unsigned long *userptr) 1260 { 1261 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1262 unsigned long size; 1263 1264 if (gtt == NULL || !gtt->userptr) 1265 return false; 1266 1267 /* Return false if no part of the ttm_tt object lies within 1268 * the range 1269 */ 1270 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1271 if (gtt->userptr > end || gtt->userptr + size <= start) 1272 return false; 1273 1274 if (userptr) 1275 *userptr = gtt->userptr; 1276 return true; 1277 } 1278 1279 /* 1280 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1281 */ 1282 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1283 { 1284 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1285 1286 if (gtt == NULL || !gtt->userptr) 1287 return false; 1288 1289 return true; 1290 } 1291 1292 /* 1293 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1294 */ 1295 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1296 { 1297 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1298 1299 if (gtt == NULL) 1300 return false; 1301 1302 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1303 } 1304 1305 /** 1306 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1307 * 1308 * @ttm: The ttm_tt object to compute the flags for 1309 * @mem: The memory registry backing this ttm_tt object 1310 * 1311 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1312 */ 1313 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1314 { 1315 uint64_t flags = 0; 1316 1317 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1318 flags |= AMDGPU_PTE_VALID; 1319 1320 if (mem && (mem->mem_type == TTM_PL_TT || 1321 mem->mem_type == AMDGPU_PL_DOORBELL || 1322 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1323 flags |= AMDGPU_PTE_SYSTEM; 1324 1325 if (ttm->caching == ttm_cached) 1326 flags |= AMDGPU_PTE_SNOOPED; 1327 } 1328 1329 if (mem && mem->mem_type == TTM_PL_VRAM && 1330 mem->bus.caching == ttm_cached) 1331 flags |= AMDGPU_PTE_SNOOPED; 1332 1333 return flags; 1334 } 1335 1336 /** 1337 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1338 * 1339 * @adev: amdgpu_device pointer 1340 * @ttm: The ttm_tt object to compute the flags for 1341 * @mem: The memory registry backing this ttm_tt object 1342 * 1343 * Figure out the flags to use for a VM PTE (Page Table Entry). 1344 */ 1345 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1346 struct ttm_resource *mem) 1347 { 1348 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1349 1350 flags |= adev->gart.gart_pte_flags; 1351 flags |= AMDGPU_PTE_READABLE; 1352 1353 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1354 flags |= AMDGPU_PTE_WRITEABLE; 1355 1356 return flags; 1357 } 1358 1359 /* 1360 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1361 * object. 1362 * 1363 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1364 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1365 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1366 * used to clean out a memory space. 1367 */ 1368 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1369 const struct ttm_place *place) 1370 { 1371 struct dma_resv_iter resv_cursor; 1372 struct dma_fence *f; 1373 1374 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1375 return ttm_bo_eviction_valuable(bo, place); 1376 1377 /* Swapout? */ 1378 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1379 return true; 1380 1381 if (bo->type == ttm_bo_type_kernel && 1382 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1383 return false; 1384 1385 /* If bo is a KFD BO, check if the bo belongs to the current process. 1386 * If true, then return false as any KFD process needs all its BOs to 1387 * be resident to run successfully 1388 */ 1389 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1390 DMA_RESV_USAGE_BOOKKEEP, f) { 1391 if (amdkfd_fence_check_mm(f, current->mm)) 1392 return false; 1393 } 1394 1395 /* Preemptible BOs don't own system resources managed by the 1396 * driver (pages, VRAM, GART space). They point to resources 1397 * owned by someone else (e.g. pageable memory in user mode 1398 * or a DMABuf). They are used in a preemptible context so we 1399 * can guarantee no deadlocks and good QoS in case of MMU 1400 * notifiers or DMABuf move notifiers from the resource owner. 1401 */ 1402 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1403 return false; 1404 1405 if (bo->resource->mem_type == TTM_PL_TT && 1406 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1407 return false; 1408 1409 return ttm_bo_eviction_valuable(bo, place); 1410 } 1411 1412 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1413 void *buf, size_t size, bool write) 1414 { 1415 while (size) { 1416 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1417 uint64_t bytes = 4 - (pos & 0x3); 1418 uint32_t shift = (pos & 0x3) * 8; 1419 uint32_t mask = 0xffffffff << shift; 1420 uint32_t value = 0; 1421 1422 if (size < bytes) { 1423 mask &= 0xffffffff >> (bytes - size) * 8; 1424 bytes = size; 1425 } 1426 1427 if (mask != 0xffffffff) { 1428 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1429 if (write) { 1430 value &= ~mask; 1431 value |= (*(uint32_t *)buf << shift) & mask; 1432 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1433 } else { 1434 value = (value & mask) >> shift; 1435 memcpy(buf, &value, bytes); 1436 } 1437 } else { 1438 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1439 } 1440 1441 pos += bytes; 1442 buf += bytes; 1443 size -= bytes; 1444 } 1445 } 1446 1447 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1448 unsigned long offset, void *buf, 1449 int len, int write) 1450 { 1451 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1452 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1453 struct amdgpu_res_cursor src_mm; 1454 struct amdgpu_job *job; 1455 struct dma_fence *fence; 1456 uint64_t src_addr, dst_addr; 1457 unsigned int num_dw; 1458 int r, idx; 1459 1460 if (len != PAGE_SIZE) 1461 return -EINVAL; 1462 1463 if (!adev->mman.sdma_access_ptr) 1464 return -EACCES; 1465 1466 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1467 return -ENODEV; 1468 1469 if (write) 1470 memcpy(adev->mman.sdma_access_ptr, buf, len); 1471 1472 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1473 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1474 AMDGPU_FENCE_OWNER_UNDEFINED, 1475 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1476 &job); 1477 if (r) 1478 goto out; 1479 1480 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1481 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1482 src_mm.start; 1483 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1484 if (write) 1485 swap(src_addr, dst_addr); 1486 1487 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1488 PAGE_SIZE, false); 1489 1490 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1491 WARN_ON(job->ibs[0].length_dw > num_dw); 1492 1493 fence = amdgpu_job_submit(job); 1494 1495 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1496 r = -ETIMEDOUT; 1497 dma_fence_put(fence); 1498 1499 if (!(r || write)) 1500 memcpy(buf, adev->mman.sdma_access_ptr, len); 1501 out: 1502 drm_dev_exit(idx); 1503 return r; 1504 } 1505 1506 /** 1507 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1508 * 1509 * @bo: The buffer object to read/write 1510 * @offset: Offset into buffer object 1511 * @buf: Secondary buffer to write/read from 1512 * @len: Length in bytes of access 1513 * @write: true if writing 1514 * 1515 * This is used to access VRAM that backs a buffer object via MMIO 1516 * access for debugging purposes. 1517 */ 1518 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1519 unsigned long offset, void *buf, int len, 1520 int write) 1521 { 1522 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1523 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1524 struct amdgpu_res_cursor cursor; 1525 int ret = 0; 1526 1527 if (bo->resource->mem_type != TTM_PL_VRAM) 1528 return -EIO; 1529 1530 if (amdgpu_device_has_timeouts_enabled(adev) && 1531 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1532 return len; 1533 1534 amdgpu_res_first(bo->resource, offset, len, &cursor); 1535 while (cursor.remaining) { 1536 size_t count, size = cursor.size; 1537 loff_t pos = cursor.start; 1538 1539 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1540 size -= count; 1541 if (size) { 1542 /* using MM to access rest vram and handle un-aligned address */ 1543 pos += count; 1544 buf += count; 1545 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1546 } 1547 1548 ret += cursor.size; 1549 buf += cursor.size; 1550 amdgpu_res_next(&cursor, cursor.size); 1551 } 1552 1553 return ret; 1554 } 1555 1556 static void 1557 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1558 { 1559 amdgpu_bo_move_notify(bo, false); 1560 } 1561 1562 static struct ttm_device_funcs amdgpu_bo_driver = { 1563 .ttm_tt_create = &amdgpu_ttm_tt_create, 1564 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1565 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1566 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1567 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1568 .evict_flags = &amdgpu_evict_flags, 1569 .move = &amdgpu_bo_move, 1570 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1571 .release_notify = &amdgpu_bo_release_notify, 1572 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1573 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1574 .access_memory = &amdgpu_ttm_access_memory, 1575 }; 1576 1577 /* 1578 * Firmware Reservation functions 1579 */ 1580 /** 1581 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1582 * 1583 * @adev: amdgpu_device pointer 1584 * 1585 * free fw reserved vram if it has been reserved. 1586 */ 1587 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1588 { 1589 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1590 NULL, &adev->mman.fw_vram_usage_va); 1591 } 1592 1593 /* 1594 * Driver Reservation functions 1595 */ 1596 /** 1597 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1598 * 1599 * @adev: amdgpu_device pointer 1600 * 1601 * free drv reserved vram if it has been reserved. 1602 */ 1603 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1604 { 1605 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1606 NULL, 1607 &adev->mman.drv_vram_usage_va); 1608 } 1609 1610 /** 1611 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1612 * 1613 * @adev: amdgpu_device pointer 1614 * 1615 * create bo vram reservation from fw. 1616 */ 1617 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1618 { 1619 uint64_t vram_size = adev->gmc.visible_vram_size; 1620 1621 adev->mman.fw_vram_usage_va = NULL; 1622 adev->mman.fw_vram_usage_reserved_bo = NULL; 1623 1624 if (adev->mman.fw_vram_usage_size == 0 || 1625 adev->mman.fw_vram_usage_size > vram_size) 1626 return 0; 1627 1628 return amdgpu_bo_create_kernel_at(adev, 1629 adev->mman.fw_vram_usage_start_offset, 1630 adev->mman.fw_vram_usage_size, 1631 &adev->mman.fw_vram_usage_reserved_bo, 1632 &adev->mman.fw_vram_usage_va); 1633 } 1634 1635 /** 1636 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1637 * 1638 * @adev: amdgpu_device pointer 1639 * 1640 * create bo vram reservation from drv. 1641 */ 1642 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1643 { 1644 u64 vram_size = adev->gmc.visible_vram_size; 1645 1646 adev->mman.drv_vram_usage_va = NULL; 1647 adev->mman.drv_vram_usage_reserved_bo = NULL; 1648 1649 if (adev->mman.drv_vram_usage_size == 0 || 1650 adev->mman.drv_vram_usage_size > vram_size) 1651 return 0; 1652 1653 return amdgpu_bo_create_kernel_at(adev, 1654 adev->mman.drv_vram_usage_start_offset, 1655 adev->mman.drv_vram_usage_size, 1656 &adev->mman.drv_vram_usage_reserved_bo, 1657 &adev->mman.drv_vram_usage_va); 1658 } 1659 1660 /* 1661 * Memoy training reservation functions 1662 */ 1663 1664 /** 1665 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1666 * 1667 * @adev: amdgpu_device pointer 1668 * 1669 * free memory training reserved vram if it has been reserved. 1670 */ 1671 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1672 { 1673 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1674 1675 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1676 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1677 ctx->c2p_bo = NULL; 1678 1679 return 0; 1680 } 1681 1682 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1683 uint32_t reserve_size) 1684 { 1685 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1686 1687 memset(ctx, 0, sizeof(*ctx)); 1688 1689 ctx->c2p_train_data_offset = 1690 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1691 ctx->p2c_train_data_offset = 1692 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1693 ctx->train_data_size = 1694 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1695 1696 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1697 ctx->train_data_size, 1698 ctx->p2c_train_data_offset, 1699 ctx->c2p_train_data_offset); 1700 } 1701 1702 /* 1703 * reserve TMR memory at the top of VRAM which holds 1704 * IP Discovery data and is protected by PSP. 1705 */ 1706 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1707 { 1708 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1709 bool mem_train_support = false; 1710 uint32_t reserve_size = 0; 1711 int ret; 1712 1713 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1714 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1715 mem_train_support = true; 1716 else 1717 DRM_DEBUG("memory training does not support!\n"); 1718 } 1719 1720 /* 1721 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1722 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1723 * 1724 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1725 * discovery data and G6 memory training data respectively 1726 */ 1727 if (adev->bios) 1728 reserve_size = 1729 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1730 1731 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3)) 1732 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1733 else if (!reserve_size) 1734 reserve_size = DISCOVERY_TMR_OFFSET; 1735 1736 if (mem_train_support) { 1737 /* reserve vram for mem train according to TMR location */ 1738 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1739 ret = amdgpu_bo_create_kernel_at(adev, 1740 ctx->c2p_train_data_offset, 1741 ctx->train_data_size, 1742 &ctx->c2p_bo, 1743 NULL); 1744 if (ret) { 1745 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1746 amdgpu_ttm_training_reserve_vram_fini(adev); 1747 return ret; 1748 } 1749 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1750 } 1751 1752 if (!adev->gmc.is_app_apu) { 1753 ret = amdgpu_bo_create_kernel_at( 1754 adev, adev->gmc.real_vram_size - reserve_size, 1755 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1756 if (ret) { 1757 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1758 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1759 NULL, NULL); 1760 return ret; 1761 } 1762 } else { 1763 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1764 } 1765 1766 return 0; 1767 } 1768 1769 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1770 { 1771 int i; 1772 1773 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1774 return 0; 1775 1776 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1777 sizeof(*adev->mman.ttm_pools), 1778 GFP_KERNEL); 1779 if (!adev->mman.ttm_pools) 1780 return -ENOMEM; 1781 1782 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1783 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1784 adev->gmc.mem_partitions[i].numa.node, 1785 false, false); 1786 } 1787 return 0; 1788 } 1789 1790 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1791 { 1792 int i; 1793 1794 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1795 return; 1796 1797 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1798 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1799 1800 kfree(adev->mman.ttm_pools); 1801 adev->mman.ttm_pools = NULL; 1802 } 1803 1804 /* 1805 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1806 * gtt/vram related fields. 1807 * 1808 * This initializes all of the memory space pools that the TTM layer 1809 * will need such as the GTT space (system memory mapped to the device), 1810 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1811 * can be mapped per VMID. 1812 */ 1813 int amdgpu_ttm_init(struct amdgpu_device *adev) 1814 { 1815 uint64_t gtt_size; 1816 int r; 1817 1818 mutex_init(&adev->mman.gtt_window_lock); 1819 1820 /* No others user of address space so set it to 0 */ 1821 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1822 adev_to_drm(adev)->anon_inode->i_mapping, 1823 adev_to_drm(adev)->vma_offset_manager, 1824 adev->need_swiotlb, 1825 dma_addressing_limited(adev->dev)); 1826 if (r) { 1827 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1828 return r; 1829 } 1830 1831 r = amdgpu_ttm_pools_init(adev); 1832 if (r) { 1833 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1834 return r; 1835 } 1836 adev->mman.initialized = true; 1837 1838 /* Initialize VRAM pool with all of VRAM divided into pages */ 1839 r = amdgpu_vram_mgr_init(adev); 1840 if (r) { 1841 DRM_ERROR("Failed initializing VRAM heap.\n"); 1842 return r; 1843 } 1844 1845 /* Change the size here instead of the init above so only lpfn is affected */ 1846 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1847 #ifdef CONFIG_64BIT 1848 #ifdef CONFIG_X86 1849 if (adev->gmc.xgmi.connected_to_cpu) 1850 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1851 adev->gmc.visible_vram_size); 1852 1853 else if (adev->gmc.is_app_apu) 1854 DRM_DEBUG_DRIVER( 1855 "No need to ioremap when real vram size is 0\n"); 1856 else 1857 #endif 1858 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1859 adev->gmc.visible_vram_size); 1860 #endif 1861 1862 /* 1863 *The reserved vram for firmware must be pinned to the specified 1864 *place on the VRAM, so reserve it early. 1865 */ 1866 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1867 if (r) 1868 return r; 1869 1870 /* 1871 *The reserved vram for driver must be pinned to the specified 1872 *place on the VRAM, so reserve it early. 1873 */ 1874 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1875 if (r) 1876 return r; 1877 1878 /* 1879 * only NAVI10 and onwards ASIC support for IP discovery. 1880 * If IP discovery enabled, a block of memory should be 1881 * reserved for IP discovey. 1882 */ 1883 if (adev->mman.discovery_bin) { 1884 r = amdgpu_ttm_reserve_tmr(adev); 1885 if (r) 1886 return r; 1887 } 1888 1889 /* allocate memory as required for VGA 1890 * This is used for VGA emulation and pre-OS scanout buffers to 1891 * avoid display artifacts while transitioning between pre-OS 1892 * and driver. 1893 */ 1894 if (!adev->gmc.is_app_apu) { 1895 r = amdgpu_bo_create_kernel_at(adev, 0, 1896 adev->mman.stolen_vga_size, 1897 &adev->mman.stolen_vga_memory, 1898 NULL); 1899 if (r) 1900 return r; 1901 1902 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1903 adev->mman.stolen_extended_size, 1904 &adev->mman.stolen_extended_memory, 1905 NULL); 1906 1907 if (r) 1908 return r; 1909 1910 r = amdgpu_bo_create_kernel_at(adev, 1911 adev->mman.stolen_reserved_offset, 1912 adev->mman.stolen_reserved_size, 1913 &adev->mman.stolen_reserved_memory, 1914 NULL); 1915 if (r) 1916 return r; 1917 } else { 1918 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1919 } 1920 1921 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1922 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1923 1924 /* Compute GTT size, either based on TTM limit 1925 * or whatever the user passed on module init. 1926 */ 1927 if (amdgpu_gtt_size == -1) 1928 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1929 else 1930 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1931 1932 /* Initialize GTT memory pool */ 1933 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1934 if (r) { 1935 DRM_ERROR("Failed initializing GTT heap.\n"); 1936 return r; 1937 } 1938 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1939 (unsigned int)(gtt_size / (1024 * 1024))); 1940 1941 /* Initiailize doorbell pool on PCI BAR */ 1942 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1943 if (r) { 1944 DRM_ERROR("Failed initializing doorbell heap.\n"); 1945 return r; 1946 } 1947 1948 /* Create a boorbell page for kernel usages */ 1949 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1950 if (r) { 1951 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1952 return r; 1953 } 1954 1955 /* Initialize preemptible memory pool */ 1956 r = amdgpu_preempt_mgr_init(adev); 1957 if (r) { 1958 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1959 return r; 1960 } 1961 1962 /* Initialize various on-chip memory pools */ 1963 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1964 if (r) { 1965 DRM_ERROR("Failed initializing GDS heap.\n"); 1966 return r; 1967 } 1968 1969 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1970 if (r) { 1971 DRM_ERROR("Failed initializing gws heap.\n"); 1972 return r; 1973 } 1974 1975 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1976 if (r) { 1977 DRM_ERROR("Failed initializing oa heap.\n"); 1978 return r; 1979 } 1980 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1981 AMDGPU_GEM_DOMAIN_GTT, 1982 &adev->mman.sdma_access_bo, NULL, 1983 &adev->mman.sdma_access_ptr)) 1984 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1985 1986 return 0; 1987 } 1988 1989 /* 1990 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1991 */ 1992 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1993 { 1994 int idx; 1995 1996 if (!adev->mman.initialized) 1997 return; 1998 1999 amdgpu_ttm_pools_fini(adev); 2000 2001 amdgpu_ttm_training_reserve_vram_fini(adev); 2002 /* return the stolen vga memory back to VRAM */ 2003 if (!adev->gmc.is_app_apu) { 2004 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2005 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2006 /* return the FW reserved memory back to VRAM */ 2007 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2008 NULL); 2009 if (adev->mman.stolen_reserved_size) 2010 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2011 NULL, NULL); 2012 } 2013 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2014 &adev->mman.sdma_access_ptr); 2015 amdgpu_ttm_fw_reserve_vram_fini(adev); 2016 amdgpu_ttm_drv_reserve_vram_fini(adev); 2017 2018 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2019 2020 if (adev->mman.aper_base_kaddr) 2021 iounmap(adev->mman.aper_base_kaddr); 2022 adev->mman.aper_base_kaddr = NULL; 2023 2024 drm_dev_exit(idx); 2025 } 2026 2027 amdgpu_vram_mgr_fini(adev); 2028 amdgpu_gtt_mgr_fini(adev); 2029 amdgpu_preempt_mgr_fini(adev); 2030 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2031 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2032 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2033 ttm_device_fini(&adev->mman.bdev); 2034 adev->mman.initialized = false; 2035 DRM_INFO("amdgpu: ttm finalized\n"); 2036 } 2037 2038 /** 2039 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2040 * 2041 * @adev: amdgpu_device pointer 2042 * @enable: true when we can use buffer functions. 2043 * 2044 * Enable/disable use of buffer functions during suspend/resume. This should 2045 * only be called at bootup or when userspace isn't running. 2046 */ 2047 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2048 { 2049 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2050 uint64_t size; 2051 int r; 2052 2053 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2054 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2055 return; 2056 2057 if (enable) { 2058 struct amdgpu_ring *ring; 2059 struct drm_gpu_scheduler *sched; 2060 2061 ring = adev->mman.buffer_funcs_ring; 2062 sched = &ring->sched; 2063 r = drm_sched_entity_init(&adev->mman.high_pr, 2064 DRM_SCHED_PRIORITY_KERNEL, &sched, 2065 1, NULL); 2066 if (r) { 2067 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2068 r); 2069 return; 2070 } 2071 2072 r = drm_sched_entity_init(&adev->mman.low_pr, 2073 DRM_SCHED_PRIORITY_NORMAL, &sched, 2074 1, NULL); 2075 if (r) { 2076 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2077 r); 2078 goto error_free_entity; 2079 } 2080 } else { 2081 drm_sched_entity_destroy(&adev->mman.high_pr); 2082 drm_sched_entity_destroy(&adev->mman.low_pr); 2083 dma_fence_put(man->move); 2084 man->move = NULL; 2085 } 2086 2087 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2088 if (enable) 2089 size = adev->gmc.real_vram_size; 2090 else 2091 size = adev->gmc.visible_vram_size; 2092 man->size = size; 2093 adev->mman.buffer_funcs_enabled = enable; 2094 2095 return; 2096 2097 error_free_entity: 2098 drm_sched_entity_destroy(&adev->mman.high_pr); 2099 } 2100 2101 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2102 bool direct_submit, 2103 unsigned int num_dw, 2104 struct dma_resv *resv, 2105 bool vm_needs_flush, 2106 struct amdgpu_job **job, 2107 bool delayed) 2108 { 2109 enum amdgpu_ib_pool_type pool = direct_submit ? 2110 AMDGPU_IB_POOL_DIRECT : 2111 AMDGPU_IB_POOL_DELAYED; 2112 int r; 2113 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2114 &adev->mman.high_pr; 2115 r = amdgpu_job_alloc_with_ib(adev, entity, 2116 AMDGPU_FENCE_OWNER_UNDEFINED, 2117 num_dw * 4, pool, job); 2118 if (r) 2119 return r; 2120 2121 if (vm_needs_flush) { 2122 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2123 adev->gmc.pdb0_bo : 2124 adev->gart.bo); 2125 (*job)->vm_needs_flush = true; 2126 } 2127 if (!resv) 2128 return 0; 2129 2130 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2131 DMA_RESV_USAGE_BOOKKEEP); 2132 } 2133 2134 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2135 uint64_t dst_offset, uint32_t byte_count, 2136 struct dma_resv *resv, 2137 struct dma_fence **fence, bool direct_submit, 2138 bool vm_needs_flush, bool tmz) 2139 { 2140 struct amdgpu_device *adev = ring->adev; 2141 unsigned int num_loops, num_dw; 2142 struct amdgpu_job *job; 2143 uint32_t max_bytes; 2144 unsigned int i; 2145 int r; 2146 2147 if (!direct_submit && !ring->sched.ready) { 2148 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2149 return -EINVAL; 2150 } 2151 2152 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2153 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2154 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2155 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2156 resv, vm_needs_flush, &job, false); 2157 if (r) 2158 return r; 2159 2160 for (i = 0; i < num_loops; i++) { 2161 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2162 2163 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2164 dst_offset, cur_size_in_bytes, tmz); 2165 2166 src_offset += cur_size_in_bytes; 2167 dst_offset += cur_size_in_bytes; 2168 byte_count -= cur_size_in_bytes; 2169 } 2170 2171 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2172 WARN_ON(job->ibs[0].length_dw > num_dw); 2173 if (direct_submit) 2174 r = amdgpu_job_submit_direct(job, ring, fence); 2175 else 2176 *fence = amdgpu_job_submit(job); 2177 if (r) 2178 goto error_free; 2179 2180 return r; 2181 2182 error_free: 2183 amdgpu_job_free(job); 2184 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2185 return r; 2186 } 2187 2188 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2189 uint64_t dst_addr, uint32_t byte_count, 2190 struct dma_resv *resv, 2191 struct dma_fence **fence, 2192 bool vm_needs_flush, bool delayed) 2193 { 2194 struct amdgpu_device *adev = ring->adev; 2195 unsigned int num_loops, num_dw; 2196 struct amdgpu_job *job; 2197 uint32_t max_bytes; 2198 unsigned int i; 2199 int r; 2200 2201 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2202 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2203 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2204 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2205 &job, delayed); 2206 if (r) 2207 return r; 2208 2209 for (i = 0; i < num_loops; i++) { 2210 uint32_t cur_size = min(byte_count, max_bytes); 2211 2212 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2213 cur_size); 2214 2215 dst_addr += cur_size; 2216 byte_count -= cur_size; 2217 } 2218 2219 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2220 WARN_ON(job->ibs[0].length_dw > num_dw); 2221 *fence = amdgpu_job_submit(job); 2222 return 0; 2223 } 2224 2225 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2226 uint32_t src_data, 2227 struct dma_resv *resv, 2228 struct dma_fence **f, 2229 bool delayed) 2230 { 2231 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2232 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2233 struct dma_fence *fence = NULL; 2234 struct amdgpu_res_cursor dst; 2235 int r; 2236 2237 if (!adev->mman.buffer_funcs_enabled) { 2238 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2239 return -EINVAL; 2240 } 2241 2242 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2243 2244 mutex_lock(&adev->mman.gtt_window_lock); 2245 while (dst.remaining) { 2246 struct dma_fence *next; 2247 uint64_t cur_size, to; 2248 2249 /* Never fill more than 256MiB at once to avoid timeouts */ 2250 cur_size = min(dst.size, 256ULL << 20); 2251 2252 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2253 1, ring, false, &cur_size, &to); 2254 if (r) 2255 goto error; 2256 2257 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2258 &next, true, delayed); 2259 if (r) 2260 goto error; 2261 2262 dma_fence_put(fence); 2263 fence = next; 2264 2265 amdgpu_res_next(&dst, cur_size); 2266 } 2267 error: 2268 mutex_unlock(&adev->mman.gtt_window_lock); 2269 if (f) 2270 *f = dma_fence_get(fence); 2271 dma_fence_put(fence); 2272 return r; 2273 } 2274 2275 /** 2276 * amdgpu_ttm_evict_resources - evict memory buffers 2277 * @adev: amdgpu device object 2278 * @mem_type: evicted BO's memory type 2279 * 2280 * Evicts all @mem_type buffers on the lru list of the memory type. 2281 * 2282 * Returns: 2283 * 0 for success or a negative error code on failure. 2284 */ 2285 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2286 { 2287 struct ttm_resource_manager *man; 2288 2289 switch (mem_type) { 2290 case TTM_PL_VRAM: 2291 case TTM_PL_TT: 2292 case AMDGPU_PL_GWS: 2293 case AMDGPU_PL_GDS: 2294 case AMDGPU_PL_OA: 2295 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2296 break; 2297 default: 2298 DRM_ERROR("Trying to evict invalid memory type\n"); 2299 return -EINVAL; 2300 } 2301 2302 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2303 } 2304 2305 #if defined(CONFIG_DEBUG_FS) 2306 2307 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2308 { 2309 struct amdgpu_device *adev = m->private; 2310 2311 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2312 } 2313 2314 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2315 2316 /* 2317 * amdgpu_ttm_vram_read - Linear read access to VRAM 2318 * 2319 * Accesses VRAM via MMIO for debugging purposes. 2320 */ 2321 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2322 size_t size, loff_t *pos) 2323 { 2324 struct amdgpu_device *adev = file_inode(f)->i_private; 2325 ssize_t result = 0; 2326 2327 if (size & 0x3 || *pos & 0x3) 2328 return -EINVAL; 2329 2330 if (*pos >= adev->gmc.mc_vram_size) 2331 return -ENXIO; 2332 2333 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2334 while (size) { 2335 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2336 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2337 2338 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2339 if (copy_to_user(buf, value, bytes)) 2340 return -EFAULT; 2341 2342 result += bytes; 2343 buf += bytes; 2344 *pos += bytes; 2345 size -= bytes; 2346 } 2347 2348 return result; 2349 } 2350 2351 /* 2352 * amdgpu_ttm_vram_write - Linear write access to VRAM 2353 * 2354 * Accesses VRAM via MMIO for debugging purposes. 2355 */ 2356 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2357 size_t size, loff_t *pos) 2358 { 2359 struct amdgpu_device *adev = file_inode(f)->i_private; 2360 ssize_t result = 0; 2361 int r; 2362 2363 if (size & 0x3 || *pos & 0x3) 2364 return -EINVAL; 2365 2366 if (*pos >= adev->gmc.mc_vram_size) 2367 return -ENXIO; 2368 2369 while (size) { 2370 uint32_t value; 2371 2372 if (*pos >= adev->gmc.mc_vram_size) 2373 return result; 2374 2375 r = get_user(value, (uint32_t *)buf); 2376 if (r) 2377 return r; 2378 2379 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2380 2381 result += 4; 2382 buf += 4; 2383 *pos += 4; 2384 size -= 4; 2385 } 2386 2387 return result; 2388 } 2389 2390 static const struct file_operations amdgpu_ttm_vram_fops = { 2391 .owner = THIS_MODULE, 2392 .read = amdgpu_ttm_vram_read, 2393 .write = amdgpu_ttm_vram_write, 2394 .llseek = default_llseek, 2395 }; 2396 2397 /* 2398 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2399 * 2400 * This function is used to read memory that has been mapped to the 2401 * GPU and the known addresses are not physical addresses but instead 2402 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2403 */ 2404 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2405 size_t size, loff_t *pos) 2406 { 2407 struct amdgpu_device *adev = file_inode(f)->i_private; 2408 struct iommu_domain *dom; 2409 ssize_t result = 0; 2410 int r; 2411 2412 /* retrieve the IOMMU domain if any for this device */ 2413 dom = iommu_get_domain_for_dev(adev->dev); 2414 2415 while (size) { 2416 phys_addr_t addr = *pos & PAGE_MASK; 2417 loff_t off = *pos & ~PAGE_MASK; 2418 size_t bytes = PAGE_SIZE - off; 2419 unsigned long pfn; 2420 struct page *p; 2421 void *ptr; 2422 2423 bytes = min(bytes, size); 2424 2425 /* Translate the bus address to a physical address. If 2426 * the domain is NULL it means there is no IOMMU active 2427 * and the address translation is the identity 2428 */ 2429 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2430 2431 pfn = addr >> PAGE_SHIFT; 2432 if (!pfn_valid(pfn)) 2433 return -EPERM; 2434 2435 p = pfn_to_page(pfn); 2436 if (p->mapping != adev->mman.bdev.dev_mapping) 2437 return -EPERM; 2438 2439 ptr = kmap_local_page(p); 2440 r = copy_to_user(buf, ptr + off, bytes); 2441 kunmap_local(ptr); 2442 if (r) 2443 return -EFAULT; 2444 2445 size -= bytes; 2446 *pos += bytes; 2447 result += bytes; 2448 } 2449 2450 return result; 2451 } 2452 2453 /* 2454 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2455 * 2456 * This function is used to write memory that has been mapped to the 2457 * GPU and the known addresses are not physical addresses but instead 2458 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2459 */ 2460 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2461 size_t size, loff_t *pos) 2462 { 2463 struct amdgpu_device *adev = file_inode(f)->i_private; 2464 struct iommu_domain *dom; 2465 ssize_t result = 0; 2466 int r; 2467 2468 dom = iommu_get_domain_for_dev(adev->dev); 2469 2470 while (size) { 2471 phys_addr_t addr = *pos & PAGE_MASK; 2472 loff_t off = *pos & ~PAGE_MASK; 2473 size_t bytes = PAGE_SIZE - off; 2474 unsigned long pfn; 2475 struct page *p; 2476 void *ptr; 2477 2478 bytes = min(bytes, size); 2479 2480 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2481 2482 pfn = addr >> PAGE_SHIFT; 2483 if (!pfn_valid(pfn)) 2484 return -EPERM; 2485 2486 p = pfn_to_page(pfn); 2487 if (p->mapping != adev->mman.bdev.dev_mapping) 2488 return -EPERM; 2489 2490 ptr = kmap_local_page(p); 2491 r = copy_from_user(ptr + off, buf, bytes); 2492 kunmap_local(ptr); 2493 if (r) 2494 return -EFAULT; 2495 2496 size -= bytes; 2497 *pos += bytes; 2498 result += bytes; 2499 } 2500 2501 return result; 2502 } 2503 2504 static const struct file_operations amdgpu_ttm_iomem_fops = { 2505 .owner = THIS_MODULE, 2506 .read = amdgpu_iomem_read, 2507 .write = amdgpu_iomem_write, 2508 .llseek = default_llseek 2509 }; 2510 2511 #endif 2512 2513 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2514 { 2515 #if defined(CONFIG_DEBUG_FS) 2516 struct drm_minor *minor = adev_to_drm(adev)->primary; 2517 struct dentry *root = minor->debugfs_root; 2518 2519 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2520 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2521 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2522 &amdgpu_ttm_iomem_fops); 2523 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2524 &amdgpu_ttm_page_pool_fops); 2525 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2526 TTM_PL_VRAM), 2527 root, "amdgpu_vram_mm"); 2528 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2529 TTM_PL_TT), 2530 root, "amdgpu_gtt_mm"); 2531 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2532 AMDGPU_PL_GDS), 2533 root, "amdgpu_gds_mm"); 2534 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2535 AMDGPU_PL_GWS), 2536 root, "amdgpu_gws_mm"); 2537 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2538 AMDGPU_PL_OA), 2539 root, "amdgpu_oa_mm"); 2540 2541 #endif 2542 } 2543