1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "bif/bif_4_1_d.h"
63 
64 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
65 
66 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
67 				    unsigned int type,
68 				    uint64_t size)
69 {
70 	return ttm_range_man_init(&adev->mman.bdev, type,
71 				  TTM_PL_FLAG_UNCACHED, TTM_PL_FLAG_UNCACHED,
72 				  false, size >> PAGE_SHIFT);
73 }
74 
75 /**
76  * amdgpu_evict_flags - Compute placement flags
77  *
78  * @bo: The buffer object to evict
79  * @placement: Possible destination(s) for evicted BO
80  *
81  * Fill in placement data when ttm_bo_evict() is called
82  */
83 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
84 				struct ttm_placement *placement)
85 {
86 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
87 	struct amdgpu_bo *abo;
88 	static const struct ttm_place placements = {
89 		.fpfn = 0,
90 		.lpfn = 0,
91 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
92 	};
93 
94 	/* Don't handle scatter gather BOs */
95 	if (bo->type == ttm_bo_type_sg) {
96 		placement->num_placement = 0;
97 		placement->num_busy_placement = 0;
98 		return;
99 	}
100 
101 	/* Object isn't an AMDGPU object so ignore */
102 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
103 		placement->placement = &placements;
104 		placement->busy_placement = &placements;
105 		placement->num_placement = 1;
106 		placement->num_busy_placement = 1;
107 		return;
108 	}
109 
110 	abo = ttm_to_amdgpu_bo(bo);
111 	switch (bo->mem.mem_type) {
112 	case AMDGPU_PL_GDS:
113 	case AMDGPU_PL_GWS:
114 	case AMDGPU_PL_OA:
115 		placement->num_placement = 0;
116 		placement->num_busy_placement = 0;
117 		return;
118 
119 	case TTM_PL_VRAM:
120 		if (!adev->mman.buffer_funcs_enabled) {
121 			/* Move to system memory */
122 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
123 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
124 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
125 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
126 
127 			/* Try evicting to the CPU inaccessible part of VRAM
128 			 * first, but only set GTT as busy placement, so this
129 			 * BO will be evicted to GTT rather than causing other
130 			 * BOs to be evicted from VRAM
131 			 */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
133 							 AMDGPU_GEM_DOMAIN_GTT);
134 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
135 			abo->placements[0].lpfn = 0;
136 			abo->placement.busy_placement = &abo->placements[1];
137 			abo->placement.num_busy_placement = 1;
138 		} else {
139 			/* Move to GTT memory */
140 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
141 		}
142 		break;
143 	case TTM_PL_TT:
144 	default:
145 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
146 		break;
147 	}
148 	*placement = abo->placement;
149 }
150 
151 /**
152  * amdgpu_verify_access - Verify access for a mmap call
153  *
154  * @bo:	The buffer object to map
155  * @filp: The file pointer from the process performing the mmap
156  *
157  * This is called by ttm_bo_mmap() to verify whether a process
158  * has the right to mmap a BO to their process space.
159  */
160 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
161 {
162 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
163 
164 	/*
165 	 * Don't verify access for KFD BOs. They don't have a GEM
166 	 * object associated with them.
167 	 */
168 	if (abo->kfd_bo)
169 		return 0;
170 
171 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
172 		return -EPERM;
173 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
174 					  filp->private_data);
175 }
176 
177 /**
178  * amdgpu_move_null - Register memory for a buffer object
179  *
180  * @bo: The bo to assign the memory to
181  * @new_mem: The memory to be assigned.
182  *
183  * Assign the memory from new_mem to the memory of the buffer object bo.
184  */
185 static void amdgpu_move_null(struct ttm_buffer_object *bo,
186 			     struct ttm_resource *new_mem)
187 {
188 	struct ttm_resource *old_mem = &bo->mem;
189 
190 	BUG_ON(old_mem->mm_node != NULL);
191 	*old_mem = *new_mem;
192 	new_mem->mm_node = NULL;
193 }
194 
195 /**
196  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
197  *
198  * @bo: The bo to assign the memory to.
199  * @mm_node: Memory manager node for drm allocator.
200  * @mem: The region where the bo resides.
201  *
202  */
203 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
204 				    struct drm_mm_node *mm_node,
205 				    struct ttm_resource *mem)
206 {
207 	uint64_t addr = 0;
208 
209 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
210 		addr = mm_node->start << PAGE_SHIFT;
211 		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
212 						mem->mem_type);
213 	}
214 	return addr;
215 }
216 
217 /**
218  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
219  * @offset. It also modifies the offset to be within the drm_mm_node returned
220  *
221  * @mem: The region where the bo resides.
222  * @offset: The offset that drm_mm_node is used for finding.
223  *
224  */
225 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
226 					       uint64_t *offset)
227 {
228 	struct drm_mm_node *mm_node = mem->mm_node;
229 
230 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
231 		*offset -= (mm_node->size << PAGE_SHIFT);
232 		++mm_node;
233 	}
234 	return mm_node;
235 }
236 
237 /**
238  * amdgpu_ttm_map_buffer - Map memory into the GART windows
239  * @bo: buffer object to map
240  * @mem: memory object to map
241  * @mm_node: drm_mm node object to map
242  * @num_pages: number of pages to map
243  * @offset: offset into @mm_node where to start
244  * @window: which GART window to use
245  * @ring: DMA ring to use for the copy
246  * @tmz: if we should setup a TMZ enabled mapping
247  * @addr: resulting address inside the MC address space
248  *
249  * Setup one of the GART windows to access a specific piece of memory or return
250  * the physical address for local memory.
251  */
252 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
253 				 struct ttm_resource *mem,
254 				 struct drm_mm_node *mm_node,
255 				 unsigned num_pages, uint64_t offset,
256 				 unsigned window, struct amdgpu_ring *ring,
257 				 bool tmz, uint64_t *addr)
258 {
259 	struct amdgpu_device *adev = ring->adev;
260 	struct amdgpu_job *job;
261 	unsigned num_dw, num_bytes;
262 	struct dma_fence *fence;
263 	uint64_t src_addr, dst_addr;
264 	void *cpu_addr;
265 	uint64_t flags;
266 	unsigned int i;
267 	int r;
268 
269 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
270 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
271 
272 	/* Map only what can't be accessed directly */
273 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
274 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
275 		return 0;
276 	}
277 
278 	*addr = adev->gmc.gart_start;
279 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
280 		AMDGPU_GPU_PAGE_SIZE;
281 	*addr += offset & ~PAGE_MASK;
282 
283 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
284 	num_bytes = num_pages * 8;
285 
286 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
287 				     AMDGPU_IB_POOL_DELAYED, &job);
288 	if (r)
289 		return r;
290 
291 	src_addr = num_dw * 4;
292 	src_addr += job->ibs[0].gpu_addr;
293 
294 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
295 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
296 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
297 				dst_addr, num_bytes, false);
298 
299 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
300 	WARN_ON(job->ibs[0].length_dw > num_dw);
301 
302 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
303 	if (tmz)
304 		flags |= AMDGPU_PTE_TMZ;
305 
306 	cpu_addr = &job->ibs[0].ptr[num_dw];
307 
308 	if (mem->mem_type == TTM_PL_TT) {
309 		struct ttm_dma_tt *dma;
310 		dma_addr_t *dma_address;
311 
312 		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
313 		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
314 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
315 				    cpu_addr);
316 		if (r)
317 			goto error_free;
318 	} else {
319 		dma_addr_t dma_address;
320 
321 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
322 		dma_address += adev->vm_manager.vram_base_offset;
323 
324 		for (i = 0; i < num_pages; ++i) {
325 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
326 					    &dma_address, flags, cpu_addr);
327 			if (r)
328 				goto error_free;
329 
330 			dma_address += PAGE_SIZE;
331 		}
332 	}
333 
334 	r = amdgpu_job_submit(job, &adev->mman.entity,
335 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
336 	if (r)
337 		goto error_free;
338 
339 	dma_fence_put(fence);
340 
341 	return r;
342 
343 error_free:
344 	amdgpu_job_free(job);
345 	return r;
346 }
347 
348 /**
349  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
350  * @adev: amdgpu device
351  * @src: buffer/address where to read from
352  * @dst: buffer/address where to write to
353  * @size: number of bytes to copy
354  * @tmz: if a secure copy should be used
355  * @resv: resv object to sync to
356  * @f: Returns the last fence if multiple jobs are submitted.
357  *
358  * The function copies @size bytes from {src->mem + src->offset} to
359  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
360  * move and different for a BO to BO copy.
361  *
362  */
363 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
364 			       const struct amdgpu_copy_mem *src,
365 			       const struct amdgpu_copy_mem *dst,
366 			       uint64_t size, bool tmz,
367 			       struct dma_resv *resv,
368 			       struct dma_fence **f)
369 {
370 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
371 					AMDGPU_GPU_PAGE_SIZE);
372 
373 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
374 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
375 	struct drm_mm_node *src_mm, *dst_mm;
376 	struct dma_fence *fence = NULL;
377 	int r = 0;
378 
379 	if (!adev->mman.buffer_funcs_enabled) {
380 		DRM_ERROR("Trying to move memory with ring turned off.\n");
381 		return -EINVAL;
382 	}
383 
384 	src_offset = src->offset;
385 	if (src->mem->mm_node) {
386 		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
387 		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
388 	} else {
389 		src_mm = NULL;
390 		src_node_size = ULLONG_MAX;
391 	}
392 
393 	dst_offset = dst->offset;
394 	if (dst->mem->mm_node) {
395 		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
396 		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
397 	} else {
398 		dst_mm = NULL;
399 		dst_node_size = ULLONG_MAX;
400 	}
401 
402 	mutex_lock(&adev->mman.gtt_window_lock);
403 
404 	while (size) {
405 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
406 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
407 		struct dma_fence *next;
408 		uint32_t cur_size;
409 		uint64_t from, to;
410 
411 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
412 		 * begins at an offset, then adjust the size accordingly
413 		 */
414 		cur_size = max(src_page_offset, dst_page_offset);
415 		cur_size = min(min3(src_node_size, dst_node_size, size),
416 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
417 
418 		/* Map src to window 0 and dst to window 1. */
419 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
420 					  PFN_UP(cur_size + src_page_offset),
421 					  src_offset, 0, ring, tmz, &from);
422 		if (r)
423 			goto error;
424 
425 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
426 					  PFN_UP(cur_size + dst_page_offset),
427 					  dst_offset, 1, ring, tmz, &to);
428 		if (r)
429 			goto error;
430 
431 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
432 				       resv, &next, false, true, tmz);
433 		if (r)
434 			goto error;
435 
436 		dma_fence_put(fence);
437 		fence = next;
438 
439 		size -= cur_size;
440 		if (!size)
441 			break;
442 
443 		src_node_size -= cur_size;
444 		if (!src_node_size) {
445 			++src_mm;
446 			src_node_size = src_mm->size << PAGE_SHIFT;
447 			src_offset = 0;
448 		} else {
449 			src_offset += cur_size;
450 		}
451 
452 		dst_node_size -= cur_size;
453 		if (!dst_node_size) {
454 			++dst_mm;
455 			dst_node_size = dst_mm->size << PAGE_SHIFT;
456 			dst_offset = 0;
457 		} else {
458 			dst_offset += cur_size;
459 		}
460 	}
461 error:
462 	mutex_unlock(&adev->mman.gtt_window_lock);
463 	if (f)
464 		*f = dma_fence_get(fence);
465 	dma_fence_put(fence);
466 	return r;
467 }
468 
469 /**
470  * amdgpu_move_blit - Copy an entire buffer to another buffer
471  *
472  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
473  * help move buffers to and from VRAM.
474  */
475 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
476 			    bool evict,
477 			    struct ttm_resource *new_mem,
478 			    struct ttm_resource *old_mem)
479 {
480 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
481 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
482 	struct amdgpu_copy_mem src, dst;
483 	struct dma_fence *fence = NULL;
484 	int r;
485 
486 	src.bo = bo;
487 	dst.bo = bo;
488 	src.mem = old_mem;
489 	dst.mem = new_mem;
490 	src.offset = 0;
491 	dst.offset = 0;
492 
493 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
494 				       new_mem->num_pages << PAGE_SHIFT,
495 				       amdgpu_bo_encrypted(abo),
496 				       bo->base.resv, &fence);
497 	if (r)
498 		goto error;
499 
500 	/* clear the space being freed */
501 	if (old_mem->mem_type == TTM_PL_VRAM &&
502 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
503 		struct dma_fence *wipe_fence = NULL;
504 
505 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
506 				       NULL, &wipe_fence);
507 		if (r) {
508 			goto error;
509 		} else if (wipe_fence) {
510 			dma_fence_put(fence);
511 			fence = wipe_fence;
512 		}
513 	}
514 
515 	/* Always block for VM page tables before committing the new location */
516 	if (bo->type == ttm_bo_type_kernel)
517 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
518 	else
519 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
520 	dma_fence_put(fence);
521 	return r;
522 
523 error:
524 	if (fence)
525 		dma_fence_wait(fence, false);
526 	dma_fence_put(fence);
527 	return r;
528 }
529 
530 /**
531  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
532  *
533  * Called by amdgpu_bo_move().
534  */
535 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
536 				struct ttm_operation_ctx *ctx,
537 				struct ttm_resource *new_mem)
538 {
539 	struct ttm_resource *old_mem = &bo->mem;
540 	struct ttm_resource tmp_mem;
541 	struct ttm_place placements;
542 	struct ttm_placement placement;
543 	int r;
544 
545 	/* create space/pages for new_mem in GTT space */
546 	tmp_mem = *new_mem;
547 	tmp_mem.mm_node = NULL;
548 	placement.num_placement = 1;
549 	placement.placement = &placements;
550 	placement.num_busy_placement = 1;
551 	placement.busy_placement = &placements;
552 	placements.fpfn = 0;
553 	placements.lpfn = 0;
554 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
555 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
556 	if (unlikely(r)) {
557 		pr_err("Failed to find GTT space for blit from VRAM\n");
558 		return r;
559 	}
560 
561 	/* set caching flags */
562 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
563 	if (unlikely(r)) {
564 		goto out_cleanup;
565 	}
566 
567 	/* Bind the memory to the GTT space */
568 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
569 	if (unlikely(r)) {
570 		goto out_cleanup;
571 	}
572 
573 	/* blit VRAM to GTT */
574 	r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem);
575 	if (unlikely(r)) {
576 		goto out_cleanup;
577 	}
578 
579 	/* move BO (in tmp_mem) to new_mem */
580 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
581 out_cleanup:
582 	ttm_resource_free(bo, &tmp_mem);
583 	return r;
584 }
585 
586 /**
587  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
588  *
589  * Called by amdgpu_bo_move().
590  */
591 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
592 				struct ttm_operation_ctx *ctx,
593 				struct ttm_resource *new_mem)
594 {
595 	struct ttm_resource *old_mem = &bo->mem;
596 	struct ttm_resource tmp_mem;
597 	struct ttm_placement placement;
598 	struct ttm_place placements;
599 	int r;
600 
601 	/* make space in GTT for old_mem buffer */
602 	tmp_mem = *new_mem;
603 	tmp_mem.mm_node = NULL;
604 	placement.num_placement = 1;
605 	placement.placement = &placements;
606 	placement.num_busy_placement = 1;
607 	placement.busy_placement = &placements;
608 	placements.fpfn = 0;
609 	placements.lpfn = 0;
610 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
611 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
612 	if (unlikely(r)) {
613 		pr_err("Failed to find GTT space for blit to VRAM\n");
614 		return r;
615 	}
616 
617 	/* move/bind old memory to GTT space */
618 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
619 	if (unlikely(r)) {
620 		goto out_cleanup;
621 	}
622 
623 	/* copy to VRAM */
624 	r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
625 	if (unlikely(r)) {
626 		goto out_cleanup;
627 	}
628 out_cleanup:
629 	ttm_resource_free(bo, &tmp_mem);
630 	return r;
631 }
632 
633 /**
634  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
635  *
636  * Called by amdgpu_bo_move()
637  */
638 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
639 			       struct ttm_resource *mem)
640 {
641 	struct drm_mm_node *nodes = mem->mm_node;
642 
643 	if (mem->mem_type == TTM_PL_SYSTEM ||
644 	    mem->mem_type == TTM_PL_TT)
645 		return true;
646 	if (mem->mem_type != TTM_PL_VRAM)
647 		return false;
648 
649 	/* ttm_resource_ioremap only supports contiguous memory */
650 	if (nodes->size != mem->num_pages)
651 		return false;
652 
653 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
654 		<= adev->gmc.visible_vram_size;
655 }
656 
657 /**
658  * amdgpu_bo_move - Move a buffer object to a new memory location
659  *
660  * Called by ttm_bo_handle_move_mem()
661  */
662 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
663 			  struct ttm_operation_ctx *ctx,
664 			  struct ttm_resource *new_mem)
665 {
666 	struct amdgpu_device *adev;
667 	struct amdgpu_bo *abo;
668 	struct ttm_resource *old_mem = &bo->mem;
669 	int r;
670 
671 	/* Can't move a pinned BO */
672 	abo = ttm_to_amdgpu_bo(bo);
673 	if (WARN_ON_ONCE(abo->pin_count > 0))
674 		return -EINVAL;
675 
676 	adev = amdgpu_ttm_adev(bo->bdev);
677 
678 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
679 		amdgpu_move_null(bo, new_mem);
680 		return 0;
681 	}
682 	if ((old_mem->mem_type == TTM_PL_TT &&
683 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
684 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
685 	     new_mem->mem_type == TTM_PL_TT)) {
686 		/* bind is enough */
687 		amdgpu_move_null(bo, new_mem);
688 		return 0;
689 	}
690 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
691 	    old_mem->mem_type == AMDGPU_PL_GWS ||
692 	    old_mem->mem_type == AMDGPU_PL_OA ||
693 	    new_mem->mem_type == AMDGPU_PL_GDS ||
694 	    new_mem->mem_type == AMDGPU_PL_GWS ||
695 	    new_mem->mem_type == AMDGPU_PL_OA) {
696 		/* Nothing to save here */
697 		amdgpu_move_null(bo, new_mem);
698 		return 0;
699 	}
700 
701 	if (!adev->mman.buffer_funcs_enabled) {
702 		r = -ENODEV;
703 		goto memcpy;
704 	}
705 
706 	if (old_mem->mem_type == TTM_PL_VRAM &&
707 	    new_mem->mem_type == TTM_PL_SYSTEM) {
708 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
709 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
710 		   new_mem->mem_type == TTM_PL_VRAM) {
711 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
712 	} else {
713 		r = amdgpu_move_blit(bo, evict,
714 				     new_mem, old_mem);
715 	}
716 
717 	if (r) {
718 memcpy:
719 		/* Check that all memory is CPU accessible */
720 		if (!amdgpu_mem_visible(adev, old_mem) ||
721 		    !amdgpu_mem_visible(adev, new_mem)) {
722 			pr_err("Move buffer fallback to memcpy unavailable\n");
723 			return r;
724 		}
725 
726 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
727 		if (r)
728 			return r;
729 	}
730 
731 	if (bo->type == ttm_bo_type_device &&
732 	    new_mem->mem_type == TTM_PL_VRAM &&
733 	    old_mem->mem_type != TTM_PL_VRAM) {
734 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
735 		 * accesses the BO after it's moved.
736 		 */
737 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
738 	}
739 
740 	/* update statistics */
741 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
742 	return 0;
743 }
744 
745 /**
746  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
747  *
748  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
749  */
750 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
751 {
752 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
753 	struct drm_mm_node *mm_node = mem->mm_node;
754 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
755 
756 	switch (mem->mem_type) {
757 	case TTM_PL_SYSTEM:
758 		/* system memory */
759 		return 0;
760 	case TTM_PL_TT:
761 		break;
762 	case TTM_PL_VRAM:
763 		mem->bus.offset = mem->start << PAGE_SHIFT;
764 		/* check if it's visible */
765 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
766 			return -EINVAL;
767 		/* Only physically contiguous buffers apply. In a contiguous
768 		 * buffer, size of the first mm_node would match the number of
769 		 * pages in ttm_resource.
770 		 */
771 		if (adev->mman.aper_base_kaddr &&
772 		    (mm_node->size == mem->num_pages))
773 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
774 					mem->bus.offset;
775 
776 		mem->bus.base = adev->gmc.aper_base;
777 		mem->bus.is_iomem = true;
778 		break;
779 	default:
780 		return -EINVAL;
781 	}
782 	return 0;
783 }
784 
785 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
786 					   unsigned long page_offset)
787 {
788 	uint64_t offset = (page_offset << PAGE_SHIFT);
789 	struct drm_mm_node *mm;
790 
791 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
792 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
793 		(offset >> PAGE_SHIFT);
794 }
795 
796 /**
797  * amdgpu_ttm_domain_start - Returns GPU start address
798  * @adev: amdgpu device object
799  * @type: type of the memory
800  *
801  * Returns:
802  * GPU start address of a memory domain
803  */
804 
805 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
806 {
807 	switch (type) {
808 	case TTM_PL_TT:
809 		return adev->gmc.gart_start;
810 	case TTM_PL_VRAM:
811 		return adev->gmc.vram_start;
812 	}
813 
814 	return 0;
815 }
816 
817 /*
818  * TTM backend functions.
819  */
820 struct amdgpu_ttm_tt {
821 	struct ttm_dma_tt	ttm;
822 	struct drm_gem_object	*gobj;
823 	u64			offset;
824 	uint64_t		userptr;
825 	struct task_struct	*usertask;
826 	uint32_t		userflags;
827 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
828 	struct hmm_range	*range;
829 #endif
830 };
831 
832 #ifdef CONFIG_DRM_AMDGPU_USERPTR
833 /**
834  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
835  * memory and start HMM tracking CPU page table update
836  *
837  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
838  * once afterwards to stop HMM tracking
839  */
840 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
841 {
842 	struct ttm_tt *ttm = bo->tbo.ttm;
843 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
844 	unsigned long start = gtt->userptr;
845 	struct vm_area_struct *vma;
846 	struct hmm_range *range;
847 	unsigned long timeout;
848 	struct mm_struct *mm;
849 	unsigned long i;
850 	int r = 0;
851 
852 	mm = bo->notifier.mm;
853 	if (unlikely(!mm)) {
854 		DRM_DEBUG_DRIVER("BO is not registered?\n");
855 		return -EFAULT;
856 	}
857 
858 	/* Another get_user_pages is running at the same time?? */
859 	if (WARN_ON(gtt->range))
860 		return -EFAULT;
861 
862 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
863 		return -ESRCH;
864 
865 	range = kzalloc(sizeof(*range), GFP_KERNEL);
866 	if (unlikely(!range)) {
867 		r = -ENOMEM;
868 		goto out;
869 	}
870 	range->notifier = &bo->notifier;
871 	range->start = bo->notifier.interval_tree.start;
872 	range->end = bo->notifier.interval_tree.last + 1;
873 	range->default_flags = HMM_PFN_REQ_FAULT;
874 	if (!amdgpu_ttm_tt_is_readonly(ttm))
875 		range->default_flags |= HMM_PFN_REQ_WRITE;
876 
877 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
878 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
879 	if (unlikely(!range->hmm_pfns)) {
880 		r = -ENOMEM;
881 		goto out_free_ranges;
882 	}
883 
884 	mmap_read_lock(mm);
885 	vma = find_vma(mm, start);
886 	if (unlikely(!vma || start < vma->vm_start)) {
887 		r = -EFAULT;
888 		goto out_unlock;
889 	}
890 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
891 		vma->vm_file)) {
892 		r = -EPERM;
893 		goto out_unlock;
894 	}
895 	mmap_read_unlock(mm);
896 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
897 
898 retry:
899 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
900 
901 	mmap_read_lock(mm);
902 	r = hmm_range_fault(range);
903 	mmap_read_unlock(mm);
904 	if (unlikely(r)) {
905 		/*
906 		 * FIXME: This timeout should encompass the retry from
907 		 * mmu_interval_read_retry() as well.
908 		 */
909 		if (r == -EBUSY && !time_after(jiffies, timeout))
910 			goto retry;
911 		goto out_free_pfns;
912 	}
913 
914 	/*
915 	 * Due to default_flags, all pages are HMM_PFN_VALID or
916 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
917 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
918 	 */
919 	for (i = 0; i < ttm->num_pages; i++)
920 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
921 
922 	gtt->range = range;
923 	mmput(mm);
924 
925 	return 0;
926 
927 out_unlock:
928 	mmap_read_unlock(mm);
929 out_free_pfns:
930 	kvfree(range->hmm_pfns);
931 out_free_ranges:
932 	kfree(range);
933 out:
934 	mmput(mm);
935 	return r;
936 }
937 
938 /**
939  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
940  * Check if the pages backing this ttm range have been invalidated
941  *
942  * Returns: true if pages are still valid
943  */
944 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
945 {
946 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
947 	bool r = false;
948 
949 	if (!gtt || !gtt->userptr)
950 		return false;
951 
952 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
953 		gtt->userptr, ttm->num_pages);
954 
955 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
956 		"No user pages to check\n");
957 
958 	if (gtt->range) {
959 		/*
960 		 * FIXME: Must always hold notifier_lock for this, and must
961 		 * not ignore the return code.
962 		 */
963 		r = mmu_interval_read_retry(gtt->range->notifier,
964 					 gtt->range->notifier_seq);
965 		kvfree(gtt->range->hmm_pfns);
966 		kfree(gtt->range);
967 		gtt->range = NULL;
968 	}
969 
970 	return !r;
971 }
972 #endif
973 
974 /**
975  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
976  *
977  * Called by amdgpu_cs_list_validate(). This creates the page list
978  * that backs user memory and will ultimately be mapped into the device
979  * address space.
980  */
981 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
982 {
983 	unsigned long i;
984 
985 	for (i = 0; i < ttm->num_pages; ++i)
986 		ttm->pages[i] = pages ? pages[i] : NULL;
987 }
988 
989 /**
990  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
991  *
992  * Called by amdgpu_ttm_backend_bind()
993  **/
994 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
995 {
996 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
997 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
998 	int r;
999 
1000 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1001 	enum dma_data_direction direction = write ?
1002 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1003 
1004 	/* Allocate an SG array and squash pages into it */
1005 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1006 				      ttm->num_pages << PAGE_SHIFT,
1007 				      GFP_KERNEL);
1008 	if (r)
1009 		goto release_sg;
1010 
1011 	/* Map SG to device */
1012 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1013 	if (r)
1014 		goto release_sg;
1015 
1016 	/* convert SG to linear array of pages and dma addresses */
1017 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1018 					 gtt->ttm.dma_address, ttm->num_pages);
1019 
1020 	return 0;
1021 
1022 release_sg:
1023 	kfree(ttm->sg);
1024 	return r;
1025 }
1026 
1027 /**
1028  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1029  */
1030 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1031 {
1032 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1033 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1034 
1035 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1036 	enum dma_data_direction direction = write ?
1037 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1038 
1039 	/* double check that we don't free the table twice */
1040 	if (!ttm->sg->sgl)
1041 		return;
1042 
1043 	/* unmap the pages mapped to the device */
1044 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1045 	sg_free_table(ttm->sg);
1046 
1047 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1048 	if (gtt->range) {
1049 		unsigned long i;
1050 
1051 		for (i = 0; i < ttm->num_pages; i++) {
1052 			if (ttm->pages[i] !=
1053 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1054 				break;
1055 		}
1056 
1057 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1058 	}
1059 #endif
1060 }
1061 
1062 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1063 				struct ttm_buffer_object *tbo,
1064 				uint64_t flags)
1065 {
1066 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1067 	struct ttm_tt *ttm = tbo->ttm;
1068 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1069 	int r;
1070 
1071 	if (amdgpu_bo_encrypted(abo))
1072 		flags |= AMDGPU_PTE_TMZ;
1073 
1074 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1075 		uint64_t page_idx = 1;
1076 
1077 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1078 				ttm->pages, gtt->ttm.dma_address, flags);
1079 		if (r)
1080 			goto gart_bind_fail;
1081 
1082 		/* The memory type of the first page defaults to UC. Now
1083 		 * modify the memory type to NC from the second page of
1084 		 * the BO onward.
1085 		 */
1086 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1087 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1088 
1089 		r = amdgpu_gart_bind(adev,
1090 				gtt->offset + (page_idx << PAGE_SHIFT),
1091 				ttm->num_pages - page_idx,
1092 				&ttm->pages[page_idx],
1093 				&(gtt->ttm.dma_address[page_idx]), flags);
1094 	} else {
1095 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1096 				     ttm->pages, gtt->ttm.dma_address, flags);
1097 	}
1098 
1099 gart_bind_fail:
1100 	if (r)
1101 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1102 			  ttm->num_pages, gtt->offset);
1103 
1104 	return r;
1105 }
1106 
1107 /**
1108  * amdgpu_ttm_backend_bind - Bind GTT memory
1109  *
1110  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1111  * This handles binding GTT memory to the device address space.
1112  */
1113 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1114 				   struct ttm_resource *bo_mem)
1115 {
1116 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1117 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1118 	uint64_t flags;
1119 	int r = 0;
1120 
1121 	if (gtt->userptr) {
1122 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1123 		if (r) {
1124 			DRM_ERROR("failed to pin userptr\n");
1125 			return r;
1126 		}
1127 	}
1128 	if (!ttm->num_pages) {
1129 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1130 		     ttm->num_pages, bo_mem, ttm);
1131 	}
1132 
1133 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1134 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1135 	    bo_mem->mem_type == AMDGPU_PL_OA)
1136 		return -EINVAL;
1137 
1138 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1139 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1140 		return 0;
1141 	}
1142 
1143 	/* compute PTE flags relevant to this BO memory */
1144 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1145 
1146 	/* bind pages into GART page tables */
1147 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1148 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1149 		ttm->pages, gtt->ttm.dma_address, flags);
1150 
1151 	if (r)
1152 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1153 			  ttm->num_pages, gtt->offset);
1154 	return r;
1155 }
1156 
1157 /**
1158  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
1159  * through AGP or GART aperture.
1160  *
1161  * If bo is accessible through AGP aperture, then use AGP aperture
1162  * to access bo; otherwise allocate logical space in GART aperture
1163  * and map bo to GART aperture.
1164  */
1165 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1166 {
1167 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1168 	struct ttm_operation_ctx ctx = { false, false };
1169 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1170 	struct ttm_resource tmp;
1171 	struct ttm_placement placement;
1172 	struct ttm_place placements;
1173 	uint64_t addr, flags;
1174 	int r;
1175 
1176 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1177 		return 0;
1178 
1179 	addr = amdgpu_gmc_agp_addr(bo);
1180 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1181 		bo->mem.start = addr >> PAGE_SHIFT;
1182 	} else {
1183 
1184 		/* allocate GART space */
1185 		tmp = bo->mem;
1186 		tmp.mm_node = NULL;
1187 		placement.num_placement = 1;
1188 		placement.placement = &placements;
1189 		placement.num_busy_placement = 1;
1190 		placement.busy_placement = &placements;
1191 		placements.fpfn = 0;
1192 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1193 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1194 			TTM_PL_FLAG_TT;
1195 
1196 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1197 		if (unlikely(r))
1198 			return r;
1199 
1200 		/* compute PTE flags for this buffer object */
1201 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1202 
1203 		/* Bind pages */
1204 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1205 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1206 		if (unlikely(r)) {
1207 			ttm_resource_free(bo, &tmp);
1208 			return r;
1209 		}
1210 
1211 		ttm_resource_free(bo, &bo->mem);
1212 		bo->mem = tmp;
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 /**
1219  * amdgpu_ttm_recover_gart - Rebind GTT pages
1220  *
1221  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1222  * rebind GTT pages during a GPU reset.
1223  */
1224 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1225 {
1226 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1227 	uint64_t flags;
1228 	int r;
1229 
1230 	if (!tbo->ttm)
1231 		return 0;
1232 
1233 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1234 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1235 
1236 	return r;
1237 }
1238 
1239 /**
1240  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1241  *
1242  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1243  * ttm_tt_destroy().
1244  */
1245 static void amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1246 {
1247 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1248 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1249 	int r;
1250 
1251 	/* if the pages have userptr pinning then clear that first */
1252 	if (gtt->userptr)
1253 		amdgpu_ttm_tt_unpin_userptr(ttm);
1254 
1255 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1256 		return;
1257 
1258 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1259 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1260 	if (r)
1261 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1262 			  gtt->ttm.ttm.num_pages, gtt->offset);
1263 }
1264 
1265 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1266 {
1267 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1268 
1269 	if (gtt->usertask)
1270 		put_task_struct(gtt->usertask);
1271 
1272 	ttm_dma_tt_fini(&gtt->ttm);
1273 	kfree(gtt);
1274 }
1275 
1276 static struct ttm_backend_func amdgpu_backend_func = {
1277 	.bind = &amdgpu_ttm_backend_bind,
1278 	.unbind = &amdgpu_ttm_backend_unbind,
1279 	.destroy = &amdgpu_ttm_backend_destroy,
1280 };
1281 
1282 /**
1283  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1284  *
1285  * @bo: The buffer object to create a GTT ttm_tt object around
1286  *
1287  * Called by ttm_tt_create().
1288  */
1289 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1290 					   uint32_t page_flags)
1291 {
1292 	struct amdgpu_ttm_tt *gtt;
1293 
1294 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1295 	if (gtt == NULL) {
1296 		return NULL;
1297 	}
1298 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1299 	gtt->gobj = &bo->base;
1300 
1301 	/* allocate space for the uninitialized page entries */
1302 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1303 		kfree(gtt);
1304 		return NULL;
1305 	}
1306 	return &gtt->ttm.ttm;
1307 }
1308 
1309 /**
1310  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1311  *
1312  * Map the pages of a ttm_tt object to an address space visible
1313  * to the underlying device.
1314  */
1315 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1316 			struct ttm_operation_ctx *ctx)
1317 {
1318 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1319 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1320 
1321 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1322 	if (gtt && gtt->userptr) {
1323 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1324 		if (!ttm->sg)
1325 			return -ENOMEM;
1326 
1327 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1328 		ttm->state = tt_unbound;
1329 		return 0;
1330 	}
1331 
1332 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1333 		if (!ttm->sg) {
1334 			struct dma_buf_attachment *attach;
1335 			struct sg_table *sgt;
1336 
1337 			attach = gtt->gobj->import_attach;
1338 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1339 			if (IS_ERR(sgt))
1340 				return PTR_ERR(sgt);
1341 
1342 			ttm->sg = sgt;
1343 		}
1344 
1345 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1346 						 gtt->ttm.dma_address,
1347 						 ttm->num_pages);
1348 		ttm->state = tt_unbound;
1349 		return 0;
1350 	}
1351 
1352 #ifdef CONFIG_SWIOTLB
1353 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1354 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1355 	}
1356 #endif
1357 
1358 	/* fall back to generic helper to populate the page array
1359 	 * and map them to the device */
1360 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1361 }
1362 
1363 /**
1364  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1365  *
1366  * Unmaps pages of a ttm_tt object from the device address space and
1367  * unpopulates the page array backing it.
1368  */
1369 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1370 {
1371 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372 	struct amdgpu_device *adev;
1373 
1374 	if (gtt && gtt->userptr) {
1375 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1376 		kfree(ttm->sg);
1377 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1378 		return;
1379 	}
1380 
1381 	if (ttm->sg && gtt->gobj->import_attach) {
1382 		struct dma_buf_attachment *attach;
1383 
1384 		attach = gtt->gobj->import_attach;
1385 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1386 		ttm->sg = NULL;
1387 		return;
1388 	}
1389 
1390 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1391 		return;
1392 
1393 	adev = amdgpu_ttm_adev(ttm->bdev);
1394 
1395 #ifdef CONFIG_SWIOTLB
1396 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1397 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1398 		return;
1399 	}
1400 #endif
1401 
1402 	/* fall back to generic helper to unmap and unpopulate array */
1403 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1404 }
1405 
1406 /**
1407  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1408  * task
1409  *
1410  * @bo: The ttm_buffer_object to bind this userptr to
1411  * @addr:  The address in the current tasks VM space to use
1412  * @flags: Requirements of userptr object.
1413  *
1414  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1415  * to current task
1416  */
1417 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1418 			      uint64_t addr, uint32_t flags)
1419 {
1420 	struct amdgpu_ttm_tt *gtt;
1421 
1422 	if (!bo->ttm) {
1423 		/* TODO: We want a separate TTM object type for userptrs */
1424 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1425 		if (bo->ttm == NULL)
1426 			return -ENOMEM;
1427 	}
1428 
1429 	gtt = (void*)bo->ttm;
1430 	gtt->userptr = addr;
1431 	gtt->userflags = flags;
1432 
1433 	if (gtt->usertask)
1434 		put_task_struct(gtt->usertask);
1435 	gtt->usertask = current->group_leader;
1436 	get_task_struct(gtt->usertask);
1437 
1438 	return 0;
1439 }
1440 
1441 /**
1442  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1443  */
1444 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1445 {
1446 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1447 
1448 	if (gtt == NULL)
1449 		return NULL;
1450 
1451 	if (gtt->usertask == NULL)
1452 		return NULL;
1453 
1454 	return gtt->usertask->mm;
1455 }
1456 
1457 /**
1458  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1459  * address range for the current task.
1460  *
1461  */
1462 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1463 				  unsigned long end)
1464 {
1465 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1466 	unsigned long size;
1467 
1468 	if (gtt == NULL || !gtt->userptr)
1469 		return false;
1470 
1471 	/* Return false if no part of the ttm_tt object lies within
1472 	 * the range
1473 	 */
1474 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1475 	if (gtt->userptr > end || gtt->userptr + size <= start)
1476 		return false;
1477 
1478 	return true;
1479 }
1480 
1481 /**
1482  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1483  */
1484 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1485 {
1486 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1487 
1488 	if (gtt == NULL || !gtt->userptr)
1489 		return false;
1490 
1491 	return true;
1492 }
1493 
1494 /**
1495  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1496  */
1497 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1498 {
1499 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1500 
1501 	if (gtt == NULL)
1502 		return false;
1503 
1504 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1505 }
1506 
1507 /**
1508  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1509  *
1510  * @ttm: The ttm_tt object to compute the flags for
1511  * @mem: The memory registry backing this ttm_tt object
1512  *
1513  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1514  */
1515 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1516 {
1517 	uint64_t flags = 0;
1518 
1519 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1520 		flags |= AMDGPU_PTE_VALID;
1521 
1522 	if (mem && mem->mem_type == TTM_PL_TT) {
1523 		flags |= AMDGPU_PTE_SYSTEM;
1524 
1525 		if (ttm->caching_state == tt_cached)
1526 			flags |= AMDGPU_PTE_SNOOPED;
1527 	}
1528 
1529 	return flags;
1530 }
1531 
1532 /**
1533  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1534  *
1535  * @ttm: The ttm_tt object to compute the flags for
1536  * @mem: The memory registry backing this ttm_tt object
1537 
1538  * Figure out the flags to use for a VM PTE (Page Table Entry).
1539  */
1540 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1541 				 struct ttm_resource *mem)
1542 {
1543 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1544 
1545 	flags |= adev->gart.gart_pte_flags;
1546 	flags |= AMDGPU_PTE_READABLE;
1547 
1548 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1549 		flags |= AMDGPU_PTE_WRITEABLE;
1550 
1551 	return flags;
1552 }
1553 
1554 /**
1555  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1556  * object.
1557  *
1558  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1559  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1560  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1561  * used to clean out a memory space.
1562  */
1563 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1564 					    const struct ttm_place *place)
1565 {
1566 	unsigned long num_pages = bo->mem.num_pages;
1567 	struct drm_mm_node *node = bo->mem.mm_node;
1568 	struct dma_resv_list *flist;
1569 	struct dma_fence *f;
1570 	int i;
1571 
1572 	if (bo->type == ttm_bo_type_kernel &&
1573 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1574 		return false;
1575 
1576 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1577 	 * If true, then return false as any KFD process needs all its BOs to
1578 	 * be resident to run successfully
1579 	 */
1580 	flist = dma_resv_get_list(bo->base.resv);
1581 	if (flist) {
1582 		for (i = 0; i < flist->shared_count; ++i) {
1583 			f = rcu_dereference_protected(flist->shared[i],
1584 				dma_resv_held(bo->base.resv));
1585 			if (amdkfd_fence_check_mm(f, current->mm))
1586 				return false;
1587 		}
1588 	}
1589 
1590 	switch (bo->mem.mem_type) {
1591 	case TTM_PL_TT:
1592 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1593 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1594 			return false;
1595 		return true;
1596 
1597 	case TTM_PL_VRAM:
1598 		/* Check each drm MM node individually */
1599 		while (num_pages) {
1600 			if (place->fpfn < (node->start + node->size) &&
1601 			    !(place->lpfn && place->lpfn <= node->start))
1602 				return true;
1603 
1604 			num_pages -= node->size;
1605 			++node;
1606 		}
1607 		return false;
1608 
1609 	default:
1610 		break;
1611 	}
1612 
1613 	return ttm_bo_eviction_valuable(bo, place);
1614 }
1615 
1616 /**
1617  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1618  *
1619  * @bo:  The buffer object to read/write
1620  * @offset:  Offset into buffer object
1621  * @buf:  Secondary buffer to write/read from
1622  * @len: Length in bytes of access
1623  * @write:  true if writing
1624  *
1625  * This is used to access VRAM that backs a buffer object via MMIO
1626  * access for debugging purposes.
1627  */
1628 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1629 				    unsigned long offset,
1630 				    void *buf, int len, int write)
1631 {
1632 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1633 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1634 	struct drm_mm_node *nodes;
1635 	uint32_t value = 0;
1636 	int ret = 0;
1637 	uint64_t pos;
1638 	unsigned long flags;
1639 
1640 	if (bo->mem.mem_type != TTM_PL_VRAM)
1641 		return -EIO;
1642 
1643 	pos = offset;
1644 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1645 	pos += (nodes->start << PAGE_SHIFT);
1646 
1647 	while (len && pos < adev->gmc.mc_vram_size) {
1648 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1649 		uint64_t bytes = 4 - (pos & 3);
1650 		uint32_t shift = (pos & 3) * 8;
1651 		uint32_t mask = 0xffffffff << shift;
1652 
1653 		if (len < bytes) {
1654 			mask &= 0xffffffff >> (bytes - len) * 8;
1655 			bytes = len;
1656 		}
1657 
1658 		if (mask != 0xffffffff) {
1659 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1660 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1661 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1662 			if (!write || mask != 0xffffffff)
1663 				value = RREG32_NO_KIQ(mmMM_DATA);
1664 			if (write) {
1665 				value &= ~mask;
1666 				value |= (*(uint32_t *)buf << shift) & mask;
1667 				WREG32_NO_KIQ(mmMM_DATA, value);
1668 			}
1669 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1670 			if (!write) {
1671 				value = (value & mask) >> shift;
1672 				memcpy(buf, &value, bytes);
1673 			}
1674 		} else {
1675 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1676 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1677 
1678 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1679 						  bytes, write);
1680 		}
1681 
1682 		ret += bytes;
1683 		buf = (uint8_t *)buf + bytes;
1684 		pos += bytes;
1685 		len -= bytes;
1686 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1687 			++nodes;
1688 			pos = (nodes->start << PAGE_SHIFT);
1689 		}
1690 	}
1691 
1692 	return ret;
1693 }
1694 
1695 static struct ttm_bo_driver amdgpu_bo_driver = {
1696 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1697 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1698 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1699 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1700 	.evict_flags = &amdgpu_evict_flags,
1701 	.move = &amdgpu_bo_move,
1702 	.verify_access = &amdgpu_verify_access,
1703 	.move_notify = &amdgpu_bo_move_notify,
1704 	.release_notify = &amdgpu_bo_release_notify,
1705 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1706 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1707 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1708 	.access_memory = &amdgpu_ttm_access_memory,
1709 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1710 };
1711 
1712 /*
1713  * Firmware Reservation functions
1714  */
1715 /**
1716  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1717  *
1718  * @adev: amdgpu_device pointer
1719  *
1720  * free fw reserved vram if it has been reserved.
1721  */
1722 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1723 {
1724 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1725 		NULL, &adev->mman.fw_vram_usage_va);
1726 }
1727 
1728 /**
1729  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1730  *
1731  * @adev: amdgpu_device pointer
1732  *
1733  * create bo vram reservation from fw.
1734  */
1735 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1736 {
1737 	uint64_t vram_size = adev->gmc.visible_vram_size;
1738 
1739 	adev->mman.fw_vram_usage_va = NULL;
1740 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1741 
1742 	if (adev->mman.fw_vram_usage_size == 0 ||
1743 	    adev->mman.fw_vram_usage_size > vram_size)
1744 		return 0;
1745 
1746 	return amdgpu_bo_create_kernel_at(adev,
1747 					  adev->mman.fw_vram_usage_start_offset,
1748 					  adev->mman.fw_vram_usage_size,
1749 					  AMDGPU_GEM_DOMAIN_VRAM,
1750 					  &adev->mman.fw_vram_usage_reserved_bo,
1751 					  &adev->mman.fw_vram_usage_va);
1752 }
1753 
1754 /*
1755  * Memoy training reservation functions
1756  */
1757 
1758 /**
1759  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1760  *
1761  * @adev: amdgpu_device pointer
1762  *
1763  * free memory training reserved vram if it has been reserved.
1764  */
1765 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1766 {
1767 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1768 
1769 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1770 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1771 	ctx->c2p_bo = NULL;
1772 
1773 	return 0;
1774 }
1775 
1776 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1777 {
1778 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1779 
1780 	memset(ctx, 0, sizeof(*ctx));
1781 
1782 	ctx->c2p_train_data_offset =
1783 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1784 	ctx->p2c_train_data_offset =
1785 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1786 	ctx->train_data_size =
1787 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1788 
1789 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1790 			ctx->train_data_size,
1791 			ctx->p2c_train_data_offset,
1792 			ctx->c2p_train_data_offset);
1793 }
1794 
1795 /*
1796  * reserve TMR memory at the top of VRAM which holds
1797  * IP Discovery data and is protected by PSP.
1798  */
1799 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1800 {
1801 	int ret;
1802 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1803 	bool mem_train_support = false;
1804 
1805 	if (!amdgpu_sriov_vf(adev)) {
1806 		ret = amdgpu_mem_train_support(adev);
1807 		if (ret == 1)
1808 			mem_train_support = true;
1809 		else if (ret == -1)
1810 			return -EINVAL;
1811 		else
1812 			DRM_DEBUG("memory training does not support!\n");
1813 	}
1814 
1815 	/*
1816 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1817 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1818 	 *
1819 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1820 	 * discovery data and G6 memory training data respectively
1821 	 */
1822 	adev->mman.discovery_tmr_size =
1823 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1824 	if (!adev->mman.discovery_tmr_size)
1825 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1826 
1827 	if (mem_train_support) {
1828 		/* reserve vram for mem train according to TMR location */
1829 		amdgpu_ttm_training_data_block_init(adev);
1830 		ret = amdgpu_bo_create_kernel_at(adev,
1831 					 ctx->c2p_train_data_offset,
1832 					 ctx->train_data_size,
1833 					 AMDGPU_GEM_DOMAIN_VRAM,
1834 					 &ctx->c2p_bo,
1835 					 NULL);
1836 		if (ret) {
1837 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1838 			amdgpu_ttm_training_reserve_vram_fini(adev);
1839 			return ret;
1840 		}
1841 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1842 	}
1843 
1844 	ret = amdgpu_bo_create_kernel_at(adev,
1845 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1846 				adev->mman.discovery_tmr_size,
1847 				AMDGPU_GEM_DOMAIN_VRAM,
1848 				&adev->mman.discovery_memory,
1849 				NULL);
1850 	if (ret) {
1851 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1852 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1853 		return ret;
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 /**
1860  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1861  * gtt/vram related fields.
1862  *
1863  * This initializes all of the memory space pools that the TTM layer
1864  * will need such as the GTT space (system memory mapped to the device),
1865  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1866  * can be mapped per VMID.
1867  */
1868 int amdgpu_ttm_init(struct amdgpu_device *adev)
1869 {
1870 	uint64_t gtt_size;
1871 	int r;
1872 	u64 vis_vram_limit;
1873 
1874 	mutex_init(&adev->mman.gtt_window_lock);
1875 
1876 	/* No others user of address space so set it to 0 */
1877 	r = ttm_bo_device_init(&adev->mman.bdev,
1878 			       &amdgpu_bo_driver,
1879 			       adev_to_drm(adev)->anon_inode->i_mapping,
1880 			       adev_to_drm(adev)->vma_offset_manager,
1881 			       dma_addressing_limited(adev->dev));
1882 	if (r) {
1883 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1884 		return r;
1885 	}
1886 	adev->mman.initialized = true;
1887 
1888 	/* We opt to avoid OOM on system pages allocations */
1889 	adev->mman.bdev.no_retry = true;
1890 
1891 	/* Initialize VRAM pool with all of VRAM divided into pages */
1892 	r = amdgpu_vram_mgr_init(adev);
1893 	if (r) {
1894 		DRM_ERROR("Failed initializing VRAM heap.\n");
1895 		return r;
1896 	}
1897 
1898 	/* Reduce size of CPU-visible VRAM if requested */
1899 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1900 	if (amdgpu_vis_vram_limit > 0 &&
1901 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1902 		adev->gmc.visible_vram_size = vis_vram_limit;
1903 
1904 	/* Change the size here instead of the init above so only lpfn is affected */
1905 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1906 #ifdef CONFIG_64BIT
1907 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1908 						adev->gmc.visible_vram_size);
1909 #endif
1910 
1911 	/*
1912 	 *The reserved vram for firmware must be pinned to the specified
1913 	 *place on the VRAM, so reserve it early.
1914 	 */
1915 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1916 	if (r) {
1917 		return r;
1918 	}
1919 
1920 	/*
1921 	 * only NAVI10 and onwards ASIC support for IP discovery.
1922 	 * If IP discovery enabled, a block of memory should be
1923 	 * reserved for IP discovey.
1924 	 */
1925 	if (adev->mman.discovery_bin) {
1926 		r = amdgpu_ttm_reserve_tmr(adev);
1927 		if (r)
1928 			return r;
1929 	}
1930 
1931 	/* allocate memory as required for VGA
1932 	 * This is used for VGA emulation and pre-OS scanout buffers to
1933 	 * avoid display artifacts while transitioning between pre-OS
1934 	 * and driver.  */
1935 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1936 				       AMDGPU_GEM_DOMAIN_VRAM,
1937 				       &adev->mman.stolen_vga_memory,
1938 				       NULL);
1939 	if (r)
1940 		return r;
1941 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1942 				       adev->mman.stolen_extended_size,
1943 				       AMDGPU_GEM_DOMAIN_VRAM,
1944 				       &adev->mman.stolen_extended_memory,
1945 				       NULL);
1946 	if (r)
1947 		return r;
1948 
1949 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1950 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1951 
1952 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1953 	 * or whatever the user passed on module init */
1954 	if (amdgpu_gtt_size == -1) {
1955 		struct sysinfo si;
1956 
1957 		si_meminfo(&si);
1958 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1959 			       adev->gmc.mc_vram_size),
1960 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1961 	}
1962 	else
1963 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1964 
1965 	/* Initialize GTT memory pool */
1966 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1967 	if (r) {
1968 		DRM_ERROR("Failed initializing GTT heap.\n");
1969 		return r;
1970 	}
1971 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1972 		 (unsigned)(gtt_size / (1024 * 1024)));
1973 
1974 	/* Initialize various on-chip memory pools */
1975 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1976 	if (r) {
1977 		DRM_ERROR("Failed initializing GDS heap.\n");
1978 		return r;
1979 	}
1980 
1981 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1982 	if (r) {
1983 		DRM_ERROR("Failed initializing gws heap.\n");
1984 		return r;
1985 	}
1986 
1987 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1988 	if (r) {
1989 		DRM_ERROR("Failed initializing oa heap.\n");
1990 		return r;
1991 	}
1992 
1993 	return 0;
1994 }
1995 
1996 /**
1997  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1998  */
1999 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2000 {
2001 	/* return the VGA stolen memory (if any) back to VRAM */
2002 	if (!adev->mman.keep_stolen_vga_memory)
2003 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005 }
2006 
2007 /**
2008  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2009  */
2010 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2011 {
2012 	if (!adev->mman.initialized)
2013 		return;
2014 
2015 	amdgpu_ttm_training_reserve_vram_fini(adev);
2016 	/* return the stolen vga memory back to VRAM */
2017 	if (adev->mman.keep_stolen_vga_memory)
2018 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2019 	/* return the IP Discovery TMR memory back to VRAM */
2020 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
2021 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2022 
2023 	if (adev->mman.aper_base_kaddr)
2024 		iounmap(adev->mman.aper_base_kaddr);
2025 	adev->mman.aper_base_kaddr = NULL;
2026 
2027 	amdgpu_vram_mgr_fini(adev);
2028 	amdgpu_gtt_mgr_fini(adev);
2029 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032 	ttm_bo_device_release(&adev->mman.bdev);
2033 	adev->mman.initialized = false;
2034 	DRM_INFO("amdgpu: ttm finalized\n");
2035 }
2036 
2037 /**
2038  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039  *
2040  * @adev: amdgpu_device pointer
2041  * @enable: true when we can use buffer functions.
2042  *
2043  * Enable/disable use of buffer functions during suspend/resume. This should
2044  * only be called at bootup or when userspace isn't running.
2045  */
2046 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047 {
2048 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049 	uint64_t size;
2050 	int r;
2051 
2052 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053 	    adev->mman.buffer_funcs_enabled == enable)
2054 		return;
2055 
2056 	if (enable) {
2057 		struct amdgpu_ring *ring;
2058 		struct drm_gpu_scheduler *sched;
2059 
2060 		ring = adev->mman.buffer_funcs_ring;
2061 		sched = &ring->sched;
2062 		r = drm_sched_entity_init(&adev->mman.entity,
2063 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2064 					  1, NULL);
2065 		if (r) {
2066 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067 				  r);
2068 			return;
2069 		}
2070 	} else {
2071 		drm_sched_entity_destroy(&adev->mman.entity);
2072 		dma_fence_put(man->move);
2073 		man->move = NULL;
2074 	}
2075 
2076 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2077 	if (enable)
2078 		size = adev->gmc.real_vram_size;
2079 	else
2080 		size = adev->gmc.visible_vram_size;
2081 	man->size = size >> PAGE_SHIFT;
2082 	adev->mman.buffer_funcs_enabled = enable;
2083 }
2084 
2085 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2086 {
2087 	struct drm_file *file_priv = filp->private_data;
2088 	struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
2089 
2090 	if (adev == NULL)
2091 		return -EINVAL;
2092 
2093 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2094 }
2095 
2096 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2097 		       uint64_t dst_offset, uint32_t byte_count,
2098 		       struct dma_resv *resv,
2099 		       struct dma_fence **fence, bool direct_submit,
2100 		       bool vm_needs_flush, bool tmz)
2101 {
2102 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2103 		AMDGPU_IB_POOL_DELAYED;
2104 	struct amdgpu_device *adev = ring->adev;
2105 	struct amdgpu_job *job;
2106 
2107 	uint32_t max_bytes;
2108 	unsigned num_loops, num_dw;
2109 	unsigned i;
2110 	int r;
2111 
2112 	if (direct_submit && !ring->sched.ready) {
2113 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2114 		return -EINVAL;
2115 	}
2116 
2117 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2118 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2119 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2120 
2121 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2122 	if (r)
2123 		return r;
2124 
2125 	if (vm_needs_flush) {
2126 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2127 		job->vm_needs_flush = true;
2128 	}
2129 	if (resv) {
2130 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2131 				     AMDGPU_SYNC_ALWAYS,
2132 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2133 		if (r) {
2134 			DRM_ERROR("sync failed (%d).\n", r);
2135 			goto error_free;
2136 		}
2137 	}
2138 
2139 	for (i = 0; i < num_loops; i++) {
2140 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2141 
2142 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2143 					dst_offset, cur_size_in_bytes, tmz);
2144 
2145 		src_offset += cur_size_in_bytes;
2146 		dst_offset += cur_size_in_bytes;
2147 		byte_count -= cur_size_in_bytes;
2148 	}
2149 
2150 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2151 	WARN_ON(job->ibs[0].length_dw > num_dw);
2152 	if (direct_submit)
2153 		r = amdgpu_job_submit_direct(job, ring, fence);
2154 	else
2155 		r = amdgpu_job_submit(job, &adev->mman.entity,
2156 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2157 	if (r)
2158 		goto error_free;
2159 
2160 	return r;
2161 
2162 error_free:
2163 	amdgpu_job_free(job);
2164 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2165 	return r;
2166 }
2167 
2168 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2169 		       uint32_t src_data,
2170 		       struct dma_resv *resv,
2171 		       struct dma_fence **fence)
2172 {
2173 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2174 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2175 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2176 
2177 	struct drm_mm_node *mm_node;
2178 	unsigned long num_pages;
2179 	unsigned int num_loops, num_dw;
2180 
2181 	struct amdgpu_job *job;
2182 	int r;
2183 
2184 	if (!adev->mman.buffer_funcs_enabled) {
2185 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2186 		return -EINVAL;
2187 	}
2188 
2189 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2190 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2191 		if (r)
2192 			return r;
2193 	}
2194 
2195 	num_pages = bo->tbo.num_pages;
2196 	mm_node = bo->tbo.mem.mm_node;
2197 	num_loops = 0;
2198 	while (num_pages) {
2199 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2200 
2201 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202 		num_pages -= mm_node->size;
2203 		++mm_node;
2204 	}
2205 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2206 
2207 	/* for IB padding */
2208 	num_dw += 64;
2209 
2210 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2211 				     &job);
2212 	if (r)
2213 		return r;
2214 
2215 	if (resv) {
2216 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2217 				     AMDGPU_SYNC_ALWAYS,
2218 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2219 		if (r) {
2220 			DRM_ERROR("sync failed (%d).\n", r);
2221 			goto error_free;
2222 		}
2223 	}
2224 
2225 	num_pages = bo->tbo.num_pages;
2226 	mm_node = bo->tbo.mem.mm_node;
2227 
2228 	while (num_pages) {
2229 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2230 		uint64_t dst_addr;
2231 
2232 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2233 		while (byte_count) {
2234 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2235 							   max_bytes);
2236 
2237 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2238 						dst_addr, cur_size_in_bytes);
2239 
2240 			dst_addr += cur_size_in_bytes;
2241 			byte_count -= cur_size_in_bytes;
2242 		}
2243 
2244 		num_pages -= mm_node->size;
2245 		++mm_node;
2246 	}
2247 
2248 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2249 	WARN_ON(job->ibs[0].length_dw > num_dw);
2250 	r = amdgpu_job_submit(job, &adev->mman.entity,
2251 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2252 	if (r)
2253 		goto error_free;
2254 
2255 	return 0;
2256 
2257 error_free:
2258 	amdgpu_job_free(job);
2259 	return r;
2260 }
2261 
2262 #if defined(CONFIG_DEBUG_FS)
2263 
2264 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2265 {
2266 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2267 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2268 	struct drm_device *dev = node->minor->dev;
2269 	struct amdgpu_device *adev = drm_to_adev(dev);
2270 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2271 	struct drm_printer p = drm_seq_file_printer(m);
2272 
2273 	man->func->debug(man, &p);
2274 	return 0;
2275 }
2276 
2277 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2278 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2279 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2280 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2281 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2282 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2283 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2284 #ifdef CONFIG_SWIOTLB
2285 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2286 #endif
2287 };
2288 
2289 /**
2290  * amdgpu_ttm_vram_read - Linear read access to VRAM
2291  *
2292  * Accesses VRAM via MMIO for debugging purposes.
2293  */
2294 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2295 				    size_t size, loff_t *pos)
2296 {
2297 	struct amdgpu_device *adev = file_inode(f)->i_private;
2298 	ssize_t result = 0;
2299 
2300 	if (size & 0x3 || *pos & 0x3)
2301 		return -EINVAL;
2302 
2303 	if (*pos >= adev->gmc.mc_vram_size)
2304 		return -ENXIO;
2305 
2306 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2307 	while (size) {
2308 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2309 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2310 
2311 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2312 		if (copy_to_user(buf, value, bytes))
2313 			return -EFAULT;
2314 
2315 		result += bytes;
2316 		buf += bytes;
2317 		*pos += bytes;
2318 		size -= bytes;
2319 	}
2320 
2321 	return result;
2322 }
2323 
2324 /**
2325  * amdgpu_ttm_vram_write - Linear write access to VRAM
2326  *
2327  * Accesses VRAM via MMIO for debugging purposes.
2328  */
2329 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2330 				    size_t size, loff_t *pos)
2331 {
2332 	struct amdgpu_device *adev = file_inode(f)->i_private;
2333 	ssize_t result = 0;
2334 	int r;
2335 
2336 	if (size & 0x3 || *pos & 0x3)
2337 		return -EINVAL;
2338 
2339 	if (*pos >= adev->gmc.mc_vram_size)
2340 		return -ENXIO;
2341 
2342 	while (size) {
2343 		unsigned long flags;
2344 		uint32_t value;
2345 
2346 		if (*pos >= adev->gmc.mc_vram_size)
2347 			return result;
2348 
2349 		r = get_user(value, (uint32_t *)buf);
2350 		if (r)
2351 			return r;
2352 
2353 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2354 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2355 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2356 		WREG32_NO_KIQ(mmMM_DATA, value);
2357 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2358 
2359 		result += 4;
2360 		buf += 4;
2361 		*pos += 4;
2362 		size -= 4;
2363 	}
2364 
2365 	return result;
2366 }
2367 
2368 static const struct file_operations amdgpu_ttm_vram_fops = {
2369 	.owner = THIS_MODULE,
2370 	.read = amdgpu_ttm_vram_read,
2371 	.write = amdgpu_ttm_vram_write,
2372 	.llseek = default_llseek,
2373 };
2374 
2375 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2376 
2377 /**
2378  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2379  */
2380 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2381 				   size_t size, loff_t *pos)
2382 {
2383 	struct amdgpu_device *adev = file_inode(f)->i_private;
2384 	ssize_t result = 0;
2385 	int r;
2386 
2387 	while (size) {
2388 		loff_t p = *pos / PAGE_SIZE;
2389 		unsigned off = *pos & ~PAGE_MASK;
2390 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2391 		struct page *page;
2392 		void *ptr;
2393 
2394 		if (p >= adev->gart.num_cpu_pages)
2395 			return result;
2396 
2397 		page = adev->gart.pages[p];
2398 		if (page) {
2399 			ptr = kmap(page);
2400 			ptr += off;
2401 
2402 			r = copy_to_user(buf, ptr, cur_size);
2403 			kunmap(adev->gart.pages[p]);
2404 		} else
2405 			r = clear_user(buf, cur_size);
2406 
2407 		if (r)
2408 			return -EFAULT;
2409 
2410 		result += cur_size;
2411 		buf += cur_size;
2412 		*pos += cur_size;
2413 		size -= cur_size;
2414 	}
2415 
2416 	return result;
2417 }
2418 
2419 static const struct file_operations amdgpu_ttm_gtt_fops = {
2420 	.owner = THIS_MODULE,
2421 	.read = amdgpu_ttm_gtt_read,
2422 	.llseek = default_llseek
2423 };
2424 
2425 #endif
2426 
2427 /**
2428  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2429  *
2430  * This function is used to read memory that has been mapped to the
2431  * GPU and the known addresses are not physical addresses but instead
2432  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2433  */
2434 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2435 				 size_t size, loff_t *pos)
2436 {
2437 	struct amdgpu_device *adev = file_inode(f)->i_private;
2438 	struct iommu_domain *dom;
2439 	ssize_t result = 0;
2440 	int r;
2441 
2442 	/* retrieve the IOMMU domain if any for this device */
2443 	dom = iommu_get_domain_for_dev(adev->dev);
2444 
2445 	while (size) {
2446 		phys_addr_t addr = *pos & PAGE_MASK;
2447 		loff_t off = *pos & ~PAGE_MASK;
2448 		size_t bytes = PAGE_SIZE - off;
2449 		unsigned long pfn;
2450 		struct page *p;
2451 		void *ptr;
2452 
2453 		bytes = bytes < size ? bytes : size;
2454 
2455 		/* Translate the bus address to a physical address.  If
2456 		 * the domain is NULL it means there is no IOMMU active
2457 		 * and the address translation is the identity
2458 		 */
2459 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2460 
2461 		pfn = addr >> PAGE_SHIFT;
2462 		if (!pfn_valid(pfn))
2463 			return -EPERM;
2464 
2465 		p = pfn_to_page(pfn);
2466 		if (p->mapping != adev->mman.bdev.dev_mapping)
2467 			return -EPERM;
2468 
2469 		ptr = kmap(p);
2470 		r = copy_to_user(buf, ptr + off, bytes);
2471 		kunmap(p);
2472 		if (r)
2473 			return -EFAULT;
2474 
2475 		size -= bytes;
2476 		*pos += bytes;
2477 		result += bytes;
2478 	}
2479 
2480 	return result;
2481 }
2482 
2483 /**
2484  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2485  *
2486  * This function is used to write memory that has been mapped to the
2487  * GPU and the known addresses are not physical addresses but instead
2488  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2489  */
2490 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2491 				 size_t size, loff_t *pos)
2492 {
2493 	struct amdgpu_device *adev = file_inode(f)->i_private;
2494 	struct iommu_domain *dom;
2495 	ssize_t result = 0;
2496 	int r;
2497 
2498 	dom = iommu_get_domain_for_dev(adev->dev);
2499 
2500 	while (size) {
2501 		phys_addr_t addr = *pos & PAGE_MASK;
2502 		loff_t off = *pos & ~PAGE_MASK;
2503 		size_t bytes = PAGE_SIZE - off;
2504 		unsigned long pfn;
2505 		struct page *p;
2506 		void *ptr;
2507 
2508 		bytes = bytes < size ? bytes : size;
2509 
2510 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2511 
2512 		pfn = addr >> PAGE_SHIFT;
2513 		if (!pfn_valid(pfn))
2514 			return -EPERM;
2515 
2516 		p = pfn_to_page(pfn);
2517 		if (p->mapping != adev->mman.bdev.dev_mapping)
2518 			return -EPERM;
2519 
2520 		ptr = kmap(p);
2521 		r = copy_from_user(ptr + off, buf, bytes);
2522 		kunmap(p);
2523 		if (r)
2524 			return -EFAULT;
2525 
2526 		size -= bytes;
2527 		*pos += bytes;
2528 		result += bytes;
2529 	}
2530 
2531 	return result;
2532 }
2533 
2534 static const struct file_operations amdgpu_ttm_iomem_fops = {
2535 	.owner = THIS_MODULE,
2536 	.read = amdgpu_iomem_read,
2537 	.write = amdgpu_iomem_write,
2538 	.llseek = default_llseek
2539 };
2540 
2541 static const struct {
2542 	char *name;
2543 	const struct file_operations *fops;
2544 	int domain;
2545 } ttm_debugfs_entries[] = {
2546 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2547 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2548 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2549 #endif
2550 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2551 };
2552 
2553 #endif
2554 
2555 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2556 {
2557 #if defined(CONFIG_DEBUG_FS)
2558 	unsigned count;
2559 
2560 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2561 	struct dentry *ent, *root = minor->debugfs_root;
2562 
2563 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2564 		ent = debugfs_create_file(
2565 				ttm_debugfs_entries[count].name,
2566 				S_IFREG | S_IRUGO, root,
2567 				adev,
2568 				ttm_debugfs_entries[count].fops);
2569 		if (IS_ERR(ent))
2570 			return PTR_ERR(ent);
2571 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2572 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2573 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2574 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2575 		adev->mman.debugfs_entries[count] = ent;
2576 	}
2577 
2578 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2579 
2580 #ifdef CONFIG_SWIOTLB
2581 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2582 		--count;
2583 #endif
2584 
2585 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2586 #else
2587 	return 0;
2588 #endif
2589 }
2590