1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 
51 #include <drm/drm_debugfs.h>
52 #include <drm/amdgpu_drm.h>
53 
54 #include "amdgpu.h"
55 #include "amdgpu_object.h"
56 #include "amdgpu_trace.h"
57 #include "amdgpu_amdkfd.h"
58 #include "amdgpu_sdma.h"
59 #include "amdgpu_ras.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "bif/bif_4_1_d.h"
62 
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
64 
65 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
66 				   struct ttm_tt *ttm,
67 				   struct ttm_resource *bo_mem);
68 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
69 				      struct ttm_tt *ttm);
70 
71 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
72 				    unsigned int type,
73 				    uint64_t size_in_page)
74 {
75 	return ttm_range_man_init(&adev->mman.bdev, type,
76 				  false, size_in_page);
77 }
78 
79 /**
80  * amdgpu_evict_flags - Compute placement flags
81  *
82  * @bo: The buffer object to evict
83  * @placement: Possible destination(s) for evicted BO
84  *
85  * Fill in placement data when ttm_bo_evict() is called
86  */
87 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
88 				struct ttm_placement *placement)
89 {
90 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
91 	struct amdgpu_bo *abo;
92 	static const struct ttm_place placements = {
93 		.fpfn = 0,
94 		.lpfn = 0,
95 		.mem_type = TTM_PL_SYSTEM,
96 		.flags = 0
97 	};
98 
99 	/* Don't handle scatter gather BOs */
100 	if (bo->type == ttm_bo_type_sg) {
101 		placement->num_placement = 0;
102 		placement->num_busy_placement = 0;
103 		return;
104 	}
105 
106 	/* Object isn't an AMDGPU object so ignore */
107 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
108 		placement->placement = &placements;
109 		placement->busy_placement = &placements;
110 		placement->num_placement = 1;
111 		placement->num_busy_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	switch (bo->mem.mem_type) {
117 	case AMDGPU_PL_GDS:
118 	case AMDGPU_PL_GWS:
119 	case AMDGPU_PL_OA:
120 		placement->num_placement = 0;
121 		placement->num_busy_placement = 0;
122 		return;
123 
124 	case TTM_PL_VRAM:
125 		if (!adev->mman.buffer_funcs_enabled) {
126 			/* Move to system memory */
127 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
128 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
129 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
130 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
131 
132 			/* Try evicting to the CPU inaccessible part of VRAM
133 			 * first, but only set GTT as busy placement, so this
134 			 * BO will be evicted to GTT rather than causing other
135 			 * BOs to be evicted from VRAM
136 			 */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
138 							 AMDGPU_GEM_DOMAIN_GTT);
139 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
140 			abo->placements[0].lpfn = 0;
141 			abo->placement.busy_placement = &abo->placements[1];
142 			abo->placement.num_busy_placement = 1;
143 		} else {
144 			/* Move to GTT memory */
145 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
146 		}
147 		break;
148 	case TTM_PL_TT:
149 	default:
150 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
151 		break;
152 	}
153 	*placement = abo->placement;
154 }
155 
156 /**
157  * amdgpu_verify_access - Verify access for a mmap call
158  *
159  * @bo:	The buffer object to map
160  * @filp: The file pointer from the process performing the mmap
161  *
162  * This is called by ttm_bo_mmap() to verify whether a process
163  * has the right to mmap a BO to their process space.
164  */
165 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
166 {
167 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
168 
169 	/*
170 	 * Don't verify access for KFD BOs. They don't have a GEM
171 	 * object associated with them.
172 	 */
173 	if (abo->kfd_bo)
174 		return 0;
175 
176 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
177 		return -EPERM;
178 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
179 					  filp->private_data);
180 }
181 
182 /**
183  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
184  *
185  * @bo: The bo to assign the memory to.
186  * @mm_node: Memory manager node for drm allocator.
187  * @mem: The region where the bo resides.
188  *
189  */
190 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
191 				    struct drm_mm_node *mm_node,
192 				    struct ttm_resource *mem)
193 {
194 	uint64_t addr = 0;
195 
196 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
197 		addr = mm_node->start << PAGE_SHIFT;
198 		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
199 						mem->mem_type);
200 	}
201 	return addr;
202 }
203 
204 /**
205  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
206  * @offset. It also modifies the offset to be within the drm_mm_node returned
207  *
208  * @mem: The region where the bo resides.
209  * @offset: The offset that drm_mm_node is used for finding.
210  *
211  */
212 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
213 					       uint64_t *offset)
214 {
215 	struct drm_mm_node *mm_node = mem->mm_node;
216 
217 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
218 		*offset -= (mm_node->size << PAGE_SHIFT);
219 		++mm_node;
220 	}
221 	return mm_node;
222 }
223 
224 /**
225  * amdgpu_ttm_map_buffer - Map memory into the GART windows
226  * @bo: buffer object to map
227  * @mem: memory object to map
228  * @mm_node: drm_mm node object to map
229  * @num_pages: number of pages to map
230  * @offset: offset into @mm_node where to start
231  * @window: which GART window to use
232  * @ring: DMA ring to use for the copy
233  * @tmz: if we should setup a TMZ enabled mapping
234  * @addr: resulting address inside the MC address space
235  *
236  * Setup one of the GART windows to access a specific piece of memory or return
237  * the physical address for local memory.
238  */
239 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
240 				 struct ttm_resource *mem,
241 				 struct drm_mm_node *mm_node,
242 				 unsigned num_pages, uint64_t offset,
243 				 unsigned window, struct amdgpu_ring *ring,
244 				 bool tmz, uint64_t *addr)
245 {
246 	struct amdgpu_device *adev = ring->adev;
247 	struct amdgpu_job *job;
248 	unsigned num_dw, num_bytes;
249 	struct dma_fence *fence;
250 	uint64_t src_addr, dst_addr;
251 	void *cpu_addr;
252 	uint64_t flags;
253 	unsigned int i;
254 	int r;
255 
256 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
257 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
258 
259 	/* Map only what can't be accessed directly */
260 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
261 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
262 		return 0;
263 	}
264 
265 	*addr = adev->gmc.gart_start;
266 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
267 		AMDGPU_GPU_PAGE_SIZE;
268 	*addr += offset & ~PAGE_MASK;
269 
270 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
271 	num_bytes = num_pages * 8;
272 
273 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
274 				     AMDGPU_IB_POOL_DELAYED, &job);
275 	if (r)
276 		return r;
277 
278 	src_addr = num_dw * 4;
279 	src_addr += job->ibs[0].gpu_addr;
280 
281 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
282 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
283 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
284 				dst_addr, num_bytes, false);
285 
286 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
287 	WARN_ON(job->ibs[0].length_dw > num_dw);
288 
289 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
290 	if (tmz)
291 		flags |= AMDGPU_PTE_TMZ;
292 
293 	cpu_addr = &job->ibs[0].ptr[num_dw];
294 
295 	if (mem->mem_type == TTM_PL_TT) {
296 		dma_addr_t *dma_address;
297 
298 		dma_address = &bo->ttm->dma_address[offset >> PAGE_SHIFT];
299 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
300 				    cpu_addr);
301 		if (r)
302 			goto error_free;
303 	} else {
304 		dma_addr_t dma_address;
305 
306 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
307 		dma_address += adev->vm_manager.vram_base_offset;
308 
309 		for (i = 0; i < num_pages; ++i) {
310 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
311 					    &dma_address, flags, cpu_addr);
312 			if (r)
313 				goto error_free;
314 
315 			dma_address += PAGE_SIZE;
316 		}
317 	}
318 
319 	r = amdgpu_job_submit(job, &adev->mman.entity,
320 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
321 	if (r)
322 		goto error_free;
323 
324 	dma_fence_put(fence);
325 
326 	return r;
327 
328 error_free:
329 	amdgpu_job_free(job);
330 	return r;
331 }
332 
333 /**
334  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
335  * @adev: amdgpu device
336  * @src: buffer/address where to read from
337  * @dst: buffer/address where to write to
338  * @size: number of bytes to copy
339  * @tmz: if a secure copy should be used
340  * @resv: resv object to sync to
341  * @f: Returns the last fence if multiple jobs are submitted.
342  *
343  * The function copies @size bytes from {src->mem + src->offset} to
344  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
345  * move and different for a BO to BO copy.
346  *
347  */
348 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
349 			       const struct amdgpu_copy_mem *src,
350 			       const struct amdgpu_copy_mem *dst,
351 			       uint64_t size, bool tmz,
352 			       struct dma_resv *resv,
353 			       struct dma_fence **f)
354 {
355 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
356 					AMDGPU_GPU_PAGE_SIZE);
357 
358 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
359 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
360 	struct drm_mm_node *src_mm, *dst_mm;
361 	struct dma_fence *fence = NULL;
362 	int r = 0;
363 
364 	if (!adev->mman.buffer_funcs_enabled) {
365 		DRM_ERROR("Trying to move memory with ring turned off.\n");
366 		return -EINVAL;
367 	}
368 
369 	src_offset = src->offset;
370 	if (src->mem->mm_node) {
371 		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
372 		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
373 	} else {
374 		src_mm = NULL;
375 		src_node_size = ULLONG_MAX;
376 	}
377 
378 	dst_offset = dst->offset;
379 	if (dst->mem->mm_node) {
380 		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
381 		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
382 	} else {
383 		dst_mm = NULL;
384 		dst_node_size = ULLONG_MAX;
385 	}
386 
387 	mutex_lock(&adev->mman.gtt_window_lock);
388 
389 	while (size) {
390 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
391 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
392 		struct dma_fence *next;
393 		uint32_t cur_size;
394 		uint64_t from, to;
395 
396 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
397 		 * begins at an offset, then adjust the size accordingly
398 		 */
399 		cur_size = max(src_page_offset, dst_page_offset);
400 		cur_size = min(min3(src_node_size, dst_node_size, size),
401 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
402 
403 		/* Map src to window 0 and dst to window 1. */
404 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
405 					  PFN_UP(cur_size + src_page_offset),
406 					  src_offset, 0, ring, tmz, &from);
407 		if (r)
408 			goto error;
409 
410 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
411 					  PFN_UP(cur_size + dst_page_offset),
412 					  dst_offset, 1, ring, tmz, &to);
413 		if (r)
414 			goto error;
415 
416 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
417 				       resv, &next, false, true, tmz);
418 		if (r)
419 			goto error;
420 
421 		dma_fence_put(fence);
422 		fence = next;
423 
424 		size -= cur_size;
425 		if (!size)
426 			break;
427 
428 		src_node_size -= cur_size;
429 		if (!src_node_size) {
430 			++src_mm;
431 			src_node_size = src_mm->size << PAGE_SHIFT;
432 			src_offset = 0;
433 		} else {
434 			src_offset += cur_size;
435 		}
436 
437 		dst_node_size -= cur_size;
438 		if (!dst_node_size) {
439 			++dst_mm;
440 			dst_node_size = dst_mm->size << PAGE_SHIFT;
441 			dst_offset = 0;
442 		} else {
443 			dst_offset += cur_size;
444 		}
445 	}
446 error:
447 	mutex_unlock(&adev->mman.gtt_window_lock);
448 	if (f)
449 		*f = dma_fence_get(fence);
450 	dma_fence_put(fence);
451 	return r;
452 }
453 
454 /*
455  * amdgpu_move_blit - Copy an entire buffer to another buffer
456  *
457  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
458  * help move buffers to and from VRAM.
459  */
460 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
461 			    bool evict,
462 			    struct ttm_resource *new_mem,
463 			    struct ttm_resource *old_mem)
464 {
465 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
466 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
467 	struct amdgpu_copy_mem src, dst;
468 	struct dma_fence *fence = NULL;
469 	int r;
470 
471 	src.bo = bo;
472 	dst.bo = bo;
473 	src.mem = old_mem;
474 	dst.mem = new_mem;
475 	src.offset = 0;
476 	dst.offset = 0;
477 
478 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
479 				       new_mem->num_pages << PAGE_SHIFT,
480 				       amdgpu_bo_encrypted(abo),
481 				       bo->base.resv, &fence);
482 	if (r)
483 		goto error;
484 
485 	/* clear the space being freed */
486 	if (old_mem->mem_type == TTM_PL_VRAM &&
487 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
488 		struct dma_fence *wipe_fence = NULL;
489 
490 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
491 				       NULL, &wipe_fence);
492 		if (r) {
493 			goto error;
494 		} else if (wipe_fence) {
495 			dma_fence_put(fence);
496 			fence = wipe_fence;
497 		}
498 	}
499 
500 	/* Always block for VM page tables before committing the new location */
501 	if (bo->type == ttm_bo_type_kernel)
502 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
503 	else
504 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
505 	dma_fence_put(fence);
506 	return r;
507 
508 error:
509 	if (fence)
510 		dma_fence_wait(fence, false);
511 	dma_fence_put(fence);
512 	return r;
513 }
514 
515 /**
516  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
517  *
518  * Called by amdgpu_bo_move().
519  */
520 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
521 				struct ttm_operation_ctx *ctx,
522 				struct ttm_resource *new_mem)
523 {
524 	struct ttm_resource *old_mem = &bo->mem;
525 	struct ttm_resource tmp_mem;
526 	struct ttm_place placements;
527 	struct ttm_placement placement;
528 	int r;
529 
530 	/* create space/pages for new_mem in GTT space */
531 	tmp_mem = *new_mem;
532 	tmp_mem.mm_node = NULL;
533 	placement.num_placement = 1;
534 	placement.placement = &placements;
535 	placement.num_busy_placement = 1;
536 	placement.busy_placement = &placements;
537 	placements.fpfn = 0;
538 	placements.lpfn = 0;
539 	placements.mem_type = TTM_PL_TT;
540 	placements.flags = 0;
541 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
542 	if (unlikely(r)) {
543 		pr_err("Failed to find GTT space for blit from VRAM\n");
544 		return r;
545 	}
546 
547 	r = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
548 	if (unlikely(r))
549 		goto out_cleanup;
550 
551 	/* Bind the memory to the GTT space */
552 	r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, &tmp_mem);
553 	if (unlikely(r)) {
554 		goto out_cleanup;
555 	}
556 
557 	/* blit VRAM to GTT */
558 	r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem);
559 	if (unlikely(r)) {
560 		goto out_cleanup;
561 	}
562 
563 	r = ttm_bo_wait_ctx(bo, ctx);
564 	if (unlikely(r))
565 		goto out_cleanup;
566 
567 	amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
568 	ttm_resource_free(bo, &bo->mem);
569 	ttm_bo_assign_mem(bo, new_mem);
570 out_cleanup:
571 	ttm_resource_free(bo, &tmp_mem);
572 	return r;
573 }
574 
575 /**
576  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
577  *
578  * Called by amdgpu_bo_move().
579  */
580 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
581 				struct ttm_operation_ctx *ctx,
582 				struct ttm_resource *new_mem)
583 {
584 	struct ttm_resource *old_mem = &bo->mem;
585 	struct ttm_resource tmp_mem;
586 	struct ttm_placement placement;
587 	struct ttm_place placements;
588 	int r;
589 
590 	/* make space in GTT for old_mem buffer */
591 	tmp_mem = *new_mem;
592 	tmp_mem.mm_node = NULL;
593 	placement.num_placement = 1;
594 	placement.placement = &placements;
595 	placement.num_busy_placement = 1;
596 	placement.busy_placement = &placements;
597 	placements.fpfn = 0;
598 	placements.lpfn = 0;
599 	placements.mem_type = TTM_PL_TT;
600 	placements.flags = 0;
601 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
602 	if (unlikely(r)) {
603 		pr_err("Failed to find GTT space for blit to VRAM\n");
604 		return r;
605 	}
606 
607 	/* move/bind old memory to GTT space */
608 	r = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
609 	if (unlikely(r))
610 		return r;
611 
612 	r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, &tmp_mem);
613 	if (unlikely(r)) {
614 		goto out_cleanup;
615 	}
616 
617 	ttm_bo_assign_mem(bo, &tmp_mem);
618 	/* copy to VRAM */
619 	r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
620 	if (unlikely(r)) {
621 		goto out_cleanup;
622 	}
623 out_cleanup:
624 	ttm_resource_free(bo, &tmp_mem);
625 	return r;
626 }
627 
628 /*
629  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
630  *
631  * Called by amdgpu_bo_move()
632  */
633 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
634 			       struct ttm_resource *mem)
635 {
636 	struct drm_mm_node *nodes = mem->mm_node;
637 
638 	if (mem->mem_type == TTM_PL_SYSTEM ||
639 	    mem->mem_type == TTM_PL_TT)
640 		return true;
641 	if (mem->mem_type != TTM_PL_VRAM)
642 		return false;
643 
644 	/* ttm_resource_ioremap only supports contiguous memory */
645 	if (nodes->size != mem->num_pages)
646 		return false;
647 
648 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
649 		<= adev->gmc.visible_vram_size;
650 }
651 
652 /*
653  * amdgpu_bo_move - Move a buffer object to a new memory location
654  *
655  * Called by ttm_bo_handle_move_mem()
656  */
657 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
658 			  struct ttm_operation_ctx *ctx,
659 			  struct ttm_resource *new_mem)
660 {
661 	struct amdgpu_device *adev;
662 	struct amdgpu_bo *abo;
663 	struct ttm_resource *old_mem = &bo->mem;
664 	int r;
665 
666 	if (new_mem->mem_type == TTM_PL_TT) {
667 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
668 		if (r)
669 			return r;
670 	}
671 
672 	amdgpu_bo_move_notify(bo, evict, new_mem);
673 
674 	/* Can't move a pinned BO */
675 	abo = ttm_to_amdgpu_bo(bo);
676 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
677 		return -EINVAL;
678 
679 	adev = amdgpu_ttm_adev(bo->bdev);
680 
681 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
682 		ttm_bo_move_null(bo, new_mem);
683 		return 0;
684 	}
685 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
686 	    new_mem->mem_type == TTM_PL_TT) {
687 		ttm_bo_move_null(bo, new_mem);
688 		return 0;
689 	}
690 
691 	if (old_mem->mem_type == TTM_PL_TT &&
692 	    new_mem->mem_type == TTM_PL_SYSTEM) {
693 		r = ttm_bo_wait_ctx(bo, ctx);
694 		if (r)
695 			goto fail;
696 
697 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
698 		ttm_resource_free(bo, &bo->mem);
699 		ttm_bo_assign_mem(bo, new_mem);
700 		return 0;
701 	}
702 
703 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
704 	    old_mem->mem_type == AMDGPU_PL_GWS ||
705 	    old_mem->mem_type == AMDGPU_PL_OA ||
706 	    new_mem->mem_type == AMDGPU_PL_GDS ||
707 	    new_mem->mem_type == AMDGPU_PL_GWS ||
708 	    new_mem->mem_type == AMDGPU_PL_OA) {
709 		/* Nothing to save here */
710 		ttm_bo_move_null(bo, new_mem);
711 		return 0;
712 	}
713 
714 	if (!adev->mman.buffer_funcs_enabled) {
715 		r = -ENODEV;
716 		goto memcpy;
717 	}
718 
719 	if (old_mem->mem_type == TTM_PL_VRAM &&
720 	    new_mem->mem_type == TTM_PL_SYSTEM) {
721 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
722 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
723 		   new_mem->mem_type == TTM_PL_VRAM) {
724 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
725 	} else {
726 		r = amdgpu_move_blit(bo, evict,
727 				     new_mem, old_mem);
728 	}
729 
730 	if (r) {
731 memcpy:
732 		/* Check that all memory is CPU accessible */
733 		if (!amdgpu_mem_visible(adev, old_mem) ||
734 		    !amdgpu_mem_visible(adev, new_mem)) {
735 			pr_err("Move buffer fallback to memcpy unavailable\n");
736 			goto fail;
737 		}
738 
739 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
740 		if (r)
741 			goto fail;
742 	}
743 
744 	if (bo->type == ttm_bo_type_device &&
745 	    new_mem->mem_type == TTM_PL_VRAM &&
746 	    old_mem->mem_type != TTM_PL_VRAM) {
747 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
748 		 * accesses the BO after it's moved.
749 		 */
750 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
751 	}
752 
753 	/* update statistics */
754 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
755 	return 0;
756 fail:
757 	swap(*new_mem, bo->mem);
758 	amdgpu_bo_move_notify(bo, false, new_mem);
759 	swap(*new_mem, bo->mem);
760 	return r;
761 }
762 
763 /*
764  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
765  *
766  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
767  */
768 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
769 {
770 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
771 	struct drm_mm_node *mm_node = mem->mm_node;
772 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
773 
774 	switch (mem->mem_type) {
775 	case TTM_PL_SYSTEM:
776 		/* system memory */
777 		return 0;
778 	case TTM_PL_TT:
779 		break;
780 	case TTM_PL_VRAM:
781 		mem->bus.offset = mem->start << PAGE_SHIFT;
782 		/* check if it's visible */
783 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
784 			return -EINVAL;
785 		/* Only physically contiguous buffers apply. In a contiguous
786 		 * buffer, size of the first mm_node would match the number of
787 		 * pages in ttm_resource.
788 		 */
789 		if (adev->mman.aper_base_kaddr &&
790 		    (mm_node->size == mem->num_pages))
791 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
792 					mem->bus.offset;
793 
794 		mem->bus.offset += adev->gmc.aper_base;
795 		mem->bus.is_iomem = true;
796 		mem->bus.caching = ttm_write_combined;
797 		break;
798 	default:
799 		return -EINVAL;
800 	}
801 	return 0;
802 }
803 
804 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
805 					   unsigned long page_offset)
806 {
807 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
808 	uint64_t offset = (page_offset << PAGE_SHIFT);
809 	struct drm_mm_node *mm;
810 
811 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
812 	offset += adev->gmc.aper_base;
813 	return mm->start + (offset >> PAGE_SHIFT);
814 }
815 
816 /**
817  * amdgpu_ttm_domain_start - Returns GPU start address
818  * @adev: amdgpu device object
819  * @type: type of the memory
820  *
821  * Returns:
822  * GPU start address of a memory domain
823  */
824 
825 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
826 {
827 	switch (type) {
828 	case TTM_PL_TT:
829 		return adev->gmc.gart_start;
830 	case TTM_PL_VRAM:
831 		return adev->gmc.vram_start;
832 	}
833 
834 	return 0;
835 }
836 
837 /*
838  * TTM backend functions.
839  */
840 struct amdgpu_ttm_tt {
841 	struct ttm_tt	ttm;
842 	struct drm_gem_object	*gobj;
843 	u64			offset;
844 	uint64_t		userptr;
845 	struct task_struct	*usertask;
846 	uint32_t		userflags;
847 	bool			bound;
848 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
849 	struct hmm_range	*range;
850 #endif
851 };
852 
853 #ifdef CONFIG_DRM_AMDGPU_USERPTR
854 /*
855  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
856  * memory and start HMM tracking CPU page table update
857  *
858  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
859  * once afterwards to stop HMM tracking
860  */
861 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
862 {
863 	struct ttm_tt *ttm = bo->tbo.ttm;
864 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
865 	unsigned long start = gtt->userptr;
866 	struct vm_area_struct *vma;
867 	struct hmm_range *range;
868 	unsigned long timeout;
869 	struct mm_struct *mm;
870 	unsigned long i;
871 	int r = 0;
872 
873 	mm = bo->notifier.mm;
874 	if (unlikely(!mm)) {
875 		DRM_DEBUG_DRIVER("BO is not registered?\n");
876 		return -EFAULT;
877 	}
878 
879 	/* Another get_user_pages is running at the same time?? */
880 	if (WARN_ON(gtt->range))
881 		return -EFAULT;
882 
883 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
884 		return -ESRCH;
885 
886 	range = kzalloc(sizeof(*range), GFP_KERNEL);
887 	if (unlikely(!range)) {
888 		r = -ENOMEM;
889 		goto out;
890 	}
891 	range->notifier = &bo->notifier;
892 	range->start = bo->notifier.interval_tree.start;
893 	range->end = bo->notifier.interval_tree.last + 1;
894 	range->default_flags = HMM_PFN_REQ_FAULT;
895 	if (!amdgpu_ttm_tt_is_readonly(ttm))
896 		range->default_flags |= HMM_PFN_REQ_WRITE;
897 
898 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
899 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
900 	if (unlikely(!range->hmm_pfns)) {
901 		r = -ENOMEM;
902 		goto out_free_ranges;
903 	}
904 
905 	mmap_read_lock(mm);
906 	vma = find_vma(mm, start);
907 	if (unlikely(!vma || start < vma->vm_start)) {
908 		r = -EFAULT;
909 		goto out_unlock;
910 	}
911 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
912 		vma->vm_file)) {
913 		r = -EPERM;
914 		goto out_unlock;
915 	}
916 	mmap_read_unlock(mm);
917 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
918 
919 retry:
920 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
921 
922 	mmap_read_lock(mm);
923 	r = hmm_range_fault(range);
924 	mmap_read_unlock(mm);
925 	if (unlikely(r)) {
926 		/*
927 		 * FIXME: This timeout should encompass the retry from
928 		 * mmu_interval_read_retry() as well.
929 		 */
930 		if (r == -EBUSY && !time_after(jiffies, timeout))
931 			goto retry;
932 		goto out_free_pfns;
933 	}
934 
935 	/*
936 	 * Due to default_flags, all pages are HMM_PFN_VALID or
937 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
938 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
939 	 */
940 	for (i = 0; i < ttm->num_pages; i++)
941 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
942 
943 	gtt->range = range;
944 	mmput(mm);
945 
946 	return 0;
947 
948 out_unlock:
949 	mmap_read_unlock(mm);
950 out_free_pfns:
951 	kvfree(range->hmm_pfns);
952 out_free_ranges:
953 	kfree(range);
954 out:
955 	mmput(mm);
956 	return r;
957 }
958 
959 /*
960  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
961  * Check if the pages backing this ttm range have been invalidated
962  *
963  * Returns: true if pages are still valid
964  */
965 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
966 {
967 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
968 	bool r = false;
969 
970 	if (!gtt || !gtt->userptr)
971 		return false;
972 
973 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
974 		gtt->userptr, ttm->num_pages);
975 
976 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
977 		"No user pages to check\n");
978 
979 	if (gtt->range) {
980 		/*
981 		 * FIXME: Must always hold notifier_lock for this, and must
982 		 * not ignore the return code.
983 		 */
984 		r = mmu_interval_read_retry(gtt->range->notifier,
985 					 gtt->range->notifier_seq);
986 		kvfree(gtt->range->hmm_pfns);
987 		kfree(gtt->range);
988 		gtt->range = NULL;
989 	}
990 
991 	return !r;
992 }
993 #endif
994 
995 /*
996  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
997  *
998  * Called by amdgpu_cs_list_validate(). This creates the page list
999  * that backs user memory and will ultimately be mapped into the device
1000  * address space.
1001  */
1002 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1003 {
1004 	unsigned long i;
1005 
1006 	for (i = 0; i < ttm->num_pages; ++i)
1007 		ttm->pages[i] = pages ? pages[i] : NULL;
1008 }
1009 
1010 /*
1011  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
1012  *
1013  * Called by amdgpu_ttm_backend_bind()
1014  **/
1015 static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev,
1016 				     struct ttm_tt *ttm)
1017 {
1018 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1019 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1020 	int r;
1021 
1022 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1023 	enum dma_data_direction direction = write ?
1024 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1025 
1026 	/* Allocate an SG array and squash pages into it */
1027 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1028 				      ttm->num_pages << PAGE_SHIFT,
1029 				      GFP_KERNEL);
1030 	if (r)
1031 		goto release_sg;
1032 
1033 	/* Map SG to device */
1034 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1035 	if (r)
1036 		goto release_sg;
1037 
1038 	/* convert SG to linear array of pages and dma addresses */
1039 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1040 					 gtt->ttm.dma_address, ttm->num_pages);
1041 
1042 	return 0;
1043 
1044 release_sg:
1045 	kfree(ttm->sg);
1046 	ttm->sg = NULL;
1047 	return r;
1048 }
1049 
1050 /*
1051  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1052  */
1053 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev,
1054 					struct ttm_tt *ttm)
1055 {
1056 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1057 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1058 
1059 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1060 	enum dma_data_direction direction = write ?
1061 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1062 
1063 	/* double check that we don't free the table twice */
1064 	if (!ttm->sg->sgl)
1065 		return;
1066 
1067 	/* unmap the pages mapped to the device */
1068 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1069 	sg_free_table(ttm->sg);
1070 
1071 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1072 	if (gtt->range) {
1073 		unsigned long i;
1074 
1075 		for (i = 0; i < ttm->num_pages; i++) {
1076 			if (ttm->pages[i] !=
1077 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1078 				break;
1079 		}
1080 
1081 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1082 	}
1083 #endif
1084 }
1085 
1086 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1087 				struct ttm_buffer_object *tbo,
1088 				uint64_t flags)
1089 {
1090 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1091 	struct ttm_tt *ttm = tbo->ttm;
1092 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1093 	int r;
1094 
1095 	if (amdgpu_bo_encrypted(abo))
1096 		flags |= AMDGPU_PTE_TMZ;
1097 
1098 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1099 		uint64_t page_idx = 1;
1100 
1101 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1102 				ttm->pages, gtt->ttm.dma_address, flags);
1103 		if (r)
1104 			goto gart_bind_fail;
1105 
1106 		/* The memory type of the first page defaults to UC. Now
1107 		 * modify the memory type to NC from the second page of
1108 		 * the BO onward.
1109 		 */
1110 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1111 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1112 
1113 		r = amdgpu_gart_bind(adev,
1114 				gtt->offset + (page_idx << PAGE_SHIFT),
1115 				ttm->num_pages - page_idx,
1116 				&ttm->pages[page_idx],
1117 				&(gtt->ttm.dma_address[page_idx]), flags);
1118 	} else {
1119 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1120 				     ttm->pages, gtt->ttm.dma_address, flags);
1121 	}
1122 
1123 gart_bind_fail:
1124 	if (r)
1125 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
1126 			  ttm->num_pages, gtt->offset);
1127 
1128 	return r;
1129 }
1130 
1131 /*
1132  * amdgpu_ttm_backend_bind - Bind GTT memory
1133  *
1134  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1135  * This handles binding GTT memory to the device address space.
1136  */
1137 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
1138 				   struct ttm_tt *ttm,
1139 				   struct ttm_resource *bo_mem)
1140 {
1141 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1142 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1143 	uint64_t flags;
1144 	int r = 0;
1145 
1146 	if (!bo_mem)
1147 		return -EINVAL;
1148 
1149 	if (gtt->bound)
1150 		return 0;
1151 
1152 	if (gtt->userptr) {
1153 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
1154 		if (r) {
1155 			DRM_ERROR("failed to pin userptr\n");
1156 			return r;
1157 		}
1158 	}
1159 	if (!ttm->num_pages) {
1160 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
1161 		     ttm->num_pages, bo_mem, ttm);
1162 	}
1163 
1164 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1165 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1166 	    bo_mem->mem_type == AMDGPU_PL_OA)
1167 		return -EINVAL;
1168 
1169 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1170 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1171 		return 0;
1172 	}
1173 
1174 	/* compute PTE flags relevant to this BO memory */
1175 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1176 
1177 	/* bind pages into GART page tables */
1178 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1179 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1180 		ttm->pages, gtt->ttm.dma_address, flags);
1181 
1182 	if (r)
1183 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
1184 			  ttm->num_pages, gtt->offset);
1185 	gtt->bound = true;
1186 	return r;
1187 }
1188 
1189 /*
1190  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
1191  * through AGP or GART aperture.
1192  *
1193  * If bo is accessible through AGP aperture, then use AGP aperture
1194  * to access bo; otherwise allocate logical space in GART aperture
1195  * and map bo to GART aperture.
1196  */
1197 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1198 {
1199 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1200 	struct ttm_operation_ctx ctx = { false, false };
1201 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1202 	struct ttm_resource tmp;
1203 	struct ttm_placement placement;
1204 	struct ttm_place placements;
1205 	uint64_t addr, flags;
1206 	int r;
1207 
1208 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1209 		return 0;
1210 
1211 	addr = amdgpu_gmc_agp_addr(bo);
1212 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1213 		bo->mem.start = addr >> PAGE_SHIFT;
1214 	} else {
1215 
1216 		/* allocate GART space */
1217 		tmp = bo->mem;
1218 		tmp.mm_node = NULL;
1219 		placement.num_placement = 1;
1220 		placement.placement = &placements;
1221 		placement.num_busy_placement = 1;
1222 		placement.busy_placement = &placements;
1223 		placements.fpfn = 0;
1224 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1225 		placements.mem_type = TTM_PL_TT;
1226 		placements.flags = bo->mem.placement;
1227 
1228 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1229 		if (unlikely(r))
1230 			return r;
1231 
1232 		/* compute PTE flags for this buffer object */
1233 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1234 
1235 		/* Bind pages */
1236 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1237 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1238 		if (unlikely(r)) {
1239 			ttm_resource_free(bo, &tmp);
1240 			return r;
1241 		}
1242 
1243 		ttm_resource_free(bo, &bo->mem);
1244 		bo->mem = tmp;
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 /*
1251  * amdgpu_ttm_recover_gart - Rebind GTT pages
1252  *
1253  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1254  * rebind GTT pages during a GPU reset.
1255  */
1256 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1257 {
1258 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1259 	uint64_t flags;
1260 	int r;
1261 
1262 	if (!tbo->ttm)
1263 		return 0;
1264 
1265 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1266 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1267 
1268 	return r;
1269 }
1270 
1271 /*
1272  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1273  *
1274  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1275  * ttm_tt_destroy().
1276  */
1277 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
1278 				      struct ttm_tt *ttm)
1279 {
1280 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1281 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1282 	int r;
1283 
1284 	if (!gtt->bound)
1285 		return;
1286 
1287 	/* if the pages have userptr pinning then clear that first */
1288 	if (gtt->userptr)
1289 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1290 
1291 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1292 		return;
1293 
1294 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1295 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1296 	if (r)
1297 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1298 			  gtt->ttm.num_pages, gtt->offset);
1299 	gtt->bound = false;
1300 }
1301 
1302 static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev,
1303 				       struct ttm_tt *ttm)
1304 {
1305 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1306 
1307 	amdgpu_ttm_backend_unbind(bdev, ttm);
1308 	ttm_tt_destroy_common(bdev, ttm);
1309 	if (gtt->usertask)
1310 		put_task_struct(gtt->usertask);
1311 
1312 	ttm_tt_fini(&gtt->ttm);
1313 	kfree(gtt);
1314 }
1315 
1316 /**
1317  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1318  *
1319  * @bo: The buffer object to create a GTT ttm_tt object around
1320  *
1321  * Called by ttm_tt_create().
1322  */
1323 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1324 					   uint32_t page_flags)
1325 {
1326 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1327 	struct amdgpu_ttm_tt *gtt;
1328 	enum ttm_caching caching;
1329 
1330 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1331 	if (gtt == NULL) {
1332 		return NULL;
1333 	}
1334 	gtt->gobj = &bo->base;
1335 
1336 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1337 		caching = ttm_write_combined;
1338 	else
1339 		caching = ttm_cached;
1340 
1341 	/* allocate space for the uninitialized page entries */
1342 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1343 		kfree(gtt);
1344 		return NULL;
1345 	}
1346 	return &gtt->ttm;
1347 }
1348 
1349 /*
1350  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1351  *
1352  * Map the pages of a ttm_tt object to an address space visible
1353  * to the underlying device.
1354  */
1355 static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev,
1356 				  struct ttm_tt *ttm,
1357 				  struct ttm_operation_ctx *ctx)
1358 {
1359 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1360 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1361 
1362 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1363 	if (gtt && gtt->userptr) {
1364 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1365 		if (!ttm->sg)
1366 			return -ENOMEM;
1367 
1368 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1369 		return 0;
1370 	}
1371 
1372 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1373 		if (!ttm->sg) {
1374 			struct dma_buf_attachment *attach;
1375 			struct sg_table *sgt;
1376 
1377 			attach = gtt->gobj->import_attach;
1378 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1379 			if (IS_ERR(sgt))
1380 				return PTR_ERR(sgt);
1381 
1382 			ttm->sg = sgt;
1383 		}
1384 
1385 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1386 						 gtt->ttm.dma_address,
1387 						 ttm->num_pages);
1388 		return 0;
1389 	}
1390 
1391 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1392 }
1393 
1394 /*
1395  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1396  *
1397  * Unmaps pages of a ttm_tt object from the device address space and
1398  * unpopulates the page array backing it.
1399  */
1400 static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev,
1401 				     struct ttm_tt *ttm)
1402 {
1403 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1404 	struct amdgpu_device *adev;
1405 
1406 	if (gtt && gtt->userptr) {
1407 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1408 		kfree(ttm->sg);
1409 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1410 		return;
1411 	}
1412 
1413 	if (ttm->sg && gtt->gobj->import_attach) {
1414 		struct dma_buf_attachment *attach;
1415 
1416 		attach = gtt->gobj->import_attach;
1417 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1418 		ttm->sg = NULL;
1419 		return;
1420 	}
1421 
1422 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1423 		return;
1424 
1425 	adev = amdgpu_ttm_adev(bdev);
1426 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1427 }
1428 
1429 /**
1430  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1431  * task
1432  *
1433  * @bo: The ttm_buffer_object to bind this userptr to
1434  * @addr:  The address in the current tasks VM space to use
1435  * @flags: Requirements of userptr object.
1436  *
1437  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1438  * to current task
1439  */
1440 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1441 			      uint64_t addr, uint32_t flags)
1442 {
1443 	struct amdgpu_ttm_tt *gtt;
1444 
1445 	if (!bo->ttm) {
1446 		/* TODO: We want a separate TTM object type for userptrs */
1447 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1448 		if (bo->ttm == NULL)
1449 			return -ENOMEM;
1450 	}
1451 
1452 	gtt = (void *)bo->ttm;
1453 	gtt->userptr = addr;
1454 	gtt->userflags = flags;
1455 
1456 	if (gtt->usertask)
1457 		put_task_struct(gtt->usertask);
1458 	gtt->usertask = current->group_leader;
1459 	get_task_struct(gtt->usertask);
1460 
1461 	return 0;
1462 }
1463 
1464 /*
1465  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1466  */
1467 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1468 {
1469 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1470 
1471 	if (gtt == NULL)
1472 		return NULL;
1473 
1474 	if (gtt->usertask == NULL)
1475 		return NULL;
1476 
1477 	return gtt->usertask->mm;
1478 }
1479 
1480 /*
1481  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1482  * address range for the current task.
1483  *
1484  */
1485 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1486 				  unsigned long end)
1487 {
1488 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1489 	unsigned long size;
1490 
1491 	if (gtt == NULL || !gtt->userptr)
1492 		return false;
1493 
1494 	/* Return false if no part of the ttm_tt object lies within
1495 	 * the range
1496 	 */
1497 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1498 	if (gtt->userptr > end || gtt->userptr + size <= start)
1499 		return false;
1500 
1501 	return true;
1502 }
1503 
1504 /*
1505  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1506  */
1507 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1508 {
1509 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1510 
1511 	if (gtt == NULL || !gtt->userptr)
1512 		return false;
1513 
1514 	return true;
1515 }
1516 
1517 /*
1518  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1519  */
1520 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1521 {
1522 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1523 
1524 	if (gtt == NULL)
1525 		return false;
1526 
1527 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1528 }
1529 
1530 /**
1531  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1532  *
1533  * @ttm: The ttm_tt object to compute the flags for
1534  * @mem: The memory registry backing this ttm_tt object
1535  *
1536  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1537  */
1538 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1539 {
1540 	uint64_t flags = 0;
1541 
1542 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1543 		flags |= AMDGPU_PTE_VALID;
1544 
1545 	if (mem && mem->mem_type == TTM_PL_TT) {
1546 		flags |= AMDGPU_PTE_SYSTEM;
1547 
1548 		if (ttm->caching == ttm_cached)
1549 			flags |= AMDGPU_PTE_SNOOPED;
1550 	}
1551 
1552 	return flags;
1553 }
1554 
1555 /**
1556  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1557  *
1558  * @adev: amdgpu_device pointer
1559  * @ttm: The ttm_tt object to compute the flags for
1560  * @mem: The memory registry backing this ttm_tt object
1561  *
1562  * Figure out the flags to use for a VM PTE (Page Table Entry).
1563  */
1564 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1565 				 struct ttm_resource *mem)
1566 {
1567 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1568 
1569 	flags |= adev->gart.gart_pte_flags;
1570 	flags |= AMDGPU_PTE_READABLE;
1571 
1572 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1573 		flags |= AMDGPU_PTE_WRITEABLE;
1574 
1575 	return flags;
1576 }
1577 
1578 /*
1579  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1580  * object.
1581  *
1582  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1583  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1584  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1585  * used to clean out a memory space.
1586  */
1587 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1588 					    const struct ttm_place *place)
1589 {
1590 	unsigned long num_pages = bo->mem.num_pages;
1591 	struct drm_mm_node *node = bo->mem.mm_node;
1592 	struct dma_resv_list *flist;
1593 	struct dma_fence *f;
1594 	int i;
1595 
1596 	if (bo->type == ttm_bo_type_kernel &&
1597 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1598 		return false;
1599 
1600 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1601 	 * If true, then return false as any KFD process needs all its BOs to
1602 	 * be resident to run successfully
1603 	 */
1604 	flist = dma_resv_get_list(bo->base.resv);
1605 	if (flist) {
1606 		for (i = 0; i < flist->shared_count; ++i) {
1607 			f = rcu_dereference_protected(flist->shared[i],
1608 				dma_resv_held(bo->base.resv));
1609 			if (amdkfd_fence_check_mm(f, current->mm))
1610 				return false;
1611 		}
1612 	}
1613 
1614 	switch (bo->mem.mem_type) {
1615 	case TTM_PL_TT:
1616 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1617 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1618 			return false;
1619 		return true;
1620 
1621 	case TTM_PL_VRAM:
1622 		/* Check each drm MM node individually */
1623 		while (num_pages) {
1624 			if (place->fpfn < (node->start + node->size) &&
1625 			    !(place->lpfn && place->lpfn <= node->start))
1626 				return true;
1627 
1628 			num_pages -= node->size;
1629 			++node;
1630 		}
1631 		return false;
1632 
1633 	default:
1634 		break;
1635 	}
1636 
1637 	return ttm_bo_eviction_valuable(bo, place);
1638 }
1639 
1640 /**
1641  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1642  *
1643  * @bo:  The buffer object to read/write
1644  * @offset:  Offset into buffer object
1645  * @buf:  Secondary buffer to write/read from
1646  * @len: Length in bytes of access
1647  * @write:  true if writing
1648  *
1649  * This is used to access VRAM that backs a buffer object via MMIO
1650  * access for debugging purposes.
1651  */
1652 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1653 				    unsigned long offset,
1654 				    void *buf, int len, int write)
1655 {
1656 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1657 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1658 	struct drm_mm_node *nodes;
1659 	uint32_t value = 0;
1660 	int ret = 0;
1661 	uint64_t pos;
1662 	unsigned long flags;
1663 
1664 	if (bo->mem.mem_type != TTM_PL_VRAM)
1665 		return -EIO;
1666 
1667 	pos = offset;
1668 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1669 	pos += (nodes->start << PAGE_SHIFT);
1670 
1671 	while (len && pos < adev->gmc.mc_vram_size) {
1672 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1673 		uint64_t bytes = 4 - (pos & 3);
1674 		uint32_t shift = (pos & 3) * 8;
1675 		uint32_t mask = 0xffffffff << shift;
1676 
1677 		if (len < bytes) {
1678 			mask &= 0xffffffff >> (bytes - len) * 8;
1679 			bytes = len;
1680 		}
1681 
1682 		if (mask != 0xffffffff) {
1683 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1684 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1685 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1686 			if (!write || mask != 0xffffffff)
1687 				value = RREG32_NO_KIQ(mmMM_DATA);
1688 			if (write) {
1689 				value &= ~mask;
1690 				value |= (*(uint32_t *)buf << shift) & mask;
1691 				WREG32_NO_KIQ(mmMM_DATA, value);
1692 			}
1693 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1694 			if (!write) {
1695 				value = (value & mask) >> shift;
1696 				memcpy(buf, &value, bytes);
1697 			}
1698 		} else {
1699 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1700 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1701 
1702 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1703 						  bytes, write);
1704 		}
1705 
1706 		ret += bytes;
1707 		buf = (uint8_t *)buf + bytes;
1708 		pos += bytes;
1709 		len -= bytes;
1710 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1711 			++nodes;
1712 			pos = (nodes->start << PAGE_SHIFT);
1713 		}
1714 	}
1715 
1716 	return ret;
1717 }
1718 
1719 static void
1720 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1721 {
1722 	amdgpu_bo_move_notify(bo, false, NULL);
1723 }
1724 
1725 static struct ttm_bo_driver amdgpu_bo_driver = {
1726 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1727 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1728 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1729 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1730 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1731 	.evict_flags = &amdgpu_evict_flags,
1732 	.move = &amdgpu_bo_move,
1733 	.verify_access = &amdgpu_verify_access,
1734 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1735 	.release_notify = &amdgpu_bo_release_notify,
1736 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1737 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1738 	.access_memory = &amdgpu_ttm_access_memory,
1739 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1740 };
1741 
1742 /*
1743  * Firmware Reservation functions
1744  */
1745 /**
1746  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1747  *
1748  * @adev: amdgpu_device pointer
1749  *
1750  * free fw reserved vram if it has been reserved.
1751  */
1752 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1753 {
1754 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1755 		NULL, &adev->mman.fw_vram_usage_va);
1756 }
1757 
1758 /**
1759  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1760  *
1761  * @adev: amdgpu_device pointer
1762  *
1763  * create bo vram reservation from fw.
1764  */
1765 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1766 {
1767 	uint64_t vram_size = adev->gmc.visible_vram_size;
1768 
1769 	adev->mman.fw_vram_usage_va = NULL;
1770 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1771 
1772 	if (adev->mman.fw_vram_usage_size == 0 ||
1773 	    adev->mman.fw_vram_usage_size > vram_size)
1774 		return 0;
1775 
1776 	return amdgpu_bo_create_kernel_at(adev,
1777 					  adev->mman.fw_vram_usage_start_offset,
1778 					  adev->mman.fw_vram_usage_size,
1779 					  AMDGPU_GEM_DOMAIN_VRAM,
1780 					  &adev->mman.fw_vram_usage_reserved_bo,
1781 					  &adev->mman.fw_vram_usage_va);
1782 }
1783 
1784 /*
1785  * Memoy training reservation functions
1786  */
1787 
1788 /**
1789  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1790  *
1791  * @adev: amdgpu_device pointer
1792  *
1793  * free memory training reserved vram if it has been reserved.
1794  */
1795 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1796 {
1797 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1798 
1799 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1800 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1801 	ctx->c2p_bo = NULL;
1802 
1803 	return 0;
1804 }
1805 
1806 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1807 {
1808 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1809 
1810 	memset(ctx, 0, sizeof(*ctx));
1811 
1812 	ctx->c2p_train_data_offset =
1813 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1814 	ctx->p2c_train_data_offset =
1815 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1816 	ctx->train_data_size =
1817 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1818 
1819 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1820 			ctx->train_data_size,
1821 			ctx->p2c_train_data_offset,
1822 			ctx->c2p_train_data_offset);
1823 }
1824 
1825 /*
1826  * reserve TMR memory at the top of VRAM which holds
1827  * IP Discovery data and is protected by PSP.
1828  */
1829 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1830 {
1831 	int ret;
1832 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1833 	bool mem_train_support = false;
1834 
1835 	if (!amdgpu_sriov_vf(adev)) {
1836 		ret = amdgpu_mem_train_support(adev);
1837 		if (ret == 1)
1838 			mem_train_support = true;
1839 		else if (ret == -1)
1840 			return -EINVAL;
1841 		else
1842 			DRM_DEBUG("memory training does not support!\n");
1843 	}
1844 
1845 	/*
1846 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1847 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1848 	 *
1849 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1850 	 * discovery data and G6 memory training data respectively
1851 	 */
1852 	adev->mman.discovery_tmr_size =
1853 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1854 	if (!adev->mman.discovery_tmr_size)
1855 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1856 
1857 	if (mem_train_support) {
1858 		/* reserve vram for mem train according to TMR location */
1859 		amdgpu_ttm_training_data_block_init(adev);
1860 		ret = amdgpu_bo_create_kernel_at(adev,
1861 					 ctx->c2p_train_data_offset,
1862 					 ctx->train_data_size,
1863 					 AMDGPU_GEM_DOMAIN_VRAM,
1864 					 &ctx->c2p_bo,
1865 					 NULL);
1866 		if (ret) {
1867 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1868 			amdgpu_ttm_training_reserve_vram_fini(adev);
1869 			return ret;
1870 		}
1871 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1872 	}
1873 
1874 	ret = amdgpu_bo_create_kernel_at(adev,
1875 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1876 				adev->mman.discovery_tmr_size,
1877 				AMDGPU_GEM_DOMAIN_VRAM,
1878 				&adev->mman.discovery_memory,
1879 				NULL);
1880 	if (ret) {
1881 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1882 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1883 		return ret;
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 /*
1890  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1891  * gtt/vram related fields.
1892  *
1893  * This initializes all of the memory space pools that the TTM layer
1894  * will need such as the GTT space (system memory mapped to the device),
1895  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1896  * can be mapped per VMID.
1897  */
1898 int amdgpu_ttm_init(struct amdgpu_device *adev)
1899 {
1900 	uint64_t gtt_size;
1901 	int r;
1902 	u64 vis_vram_limit;
1903 
1904 	mutex_init(&adev->mman.gtt_window_lock);
1905 
1906 	/* No others user of address space so set it to 0 */
1907 	r = ttm_bo_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1908 			       adev_to_drm(adev)->anon_inode->i_mapping,
1909 			       adev_to_drm(adev)->vma_offset_manager,
1910 			       adev->need_swiotlb,
1911 			       dma_addressing_limited(adev->dev));
1912 	if (r) {
1913 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1914 		return r;
1915 	}
1916 	adev->mman.initialized = true;
1917 
1918 	/* Initialize VRAM pool with all of VRAM divided into pages */
1919 	r = amdgpu_vram_mgr_init(adev);
1920 	if (r) {
1921 		DRM_ERROR("Failed initializing VRAM heap.\n");
1922 		return r;
1923 	}
1924 
1925 	/* Reduce size of CPU-visible VRAM if requested */
1926 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1927 	if (amdgpu_vis_vram_limit > 0 &&
1928 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1929 		adev->gmc.visible_vram_size = vis_vram_limit;
1930 
1931 	/* Change the size here instead of the init above so only lpfn is affected */
1932 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1933 #ifdef CONFIG_64BIT
1934 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1935 						adev->gmc.visible_vram_size);
1936 #endif
1937 
1938 	/*
1939 	 *The reserved vram for firmware must be pinned to the specified
1940 	 *place on the VRAM, so reserve it early.
1941 	 */
1942 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1943 	if (r) {
1944 		return r;
1945 	}
1946 
1947 	/*
1948 	 * only NAVI10 and onwards ASIC support for IP discovery.
1949 	 * If IP discovery enabled, a block of memory should be
1950 	 * reserved for IP discovey.
1951 	 */
1952 	if (adev->mman.discovery_bin) {
1953 		r = amdgpu_ttm_reserve_tmr(adev);
1954 		if (r)
1955 			return r;
1956 	}
1957 
1958 	/* allocate memory as required for VGA
1959 	 * This is used for VGA emulation and pre-OS scanout buffers to
1960 	 * avoid display artifacts while transitioning between pre-OS
1961 	 * and driver.  */
1962 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1963 				       AMDGPU_GEM_DOMAIN_VRAM,
1964 				       &adev->mman.stolen_vga_memory,
1965 				       NULL);
1966 	if (r)
1967 		return r;
1968 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1969 				       adev->mman.stolen_extended_size,
1970 				       AMDGPU_GEM_DOMAIN_VRAM,
1971 				       &adev->mman.stolen_extended_memory,
1972 				       NULL);
1973 	if (r)
1974 		return r;
1975 
1976 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1977 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1978 
1979 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1980 	 * or whatever the user passed on module init */
1981 	if (amdgpu_gtt_size == -1) {
1982 		struct sysinfo si;
1983 
1984 		si_meminfo(&si);
1985 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1986 			       adev->gmc.mc_vram_size),
1987 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1988 	}
1989 	else
1990 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1991 
1992 	/* Initialize GTT memory pool */
1993 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1994 	if (r) {
1995 		DRM_ERROR("Failed initializing GTT heap.\n");
1996 		return r;
1997 	}
1998 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1999 		 (unsigned)(gtt_size / (1024 * 1024)));
2000 
2001 	/* Initialize various on-chip memory pools */
2002 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2003 	if (r) {
2004 		DRM_ERROR("Failed initializing GDS heap.\n");
2005 		return r;
2006 	}
2007 
2008 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2009 	if (r) {
2010 		DRM_ERROR("Failed initializing gws heap.\n");
2011 		return r;
2012 	}
2013 
2014 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2015 	if (r) {
2016 		DRM_ERROR("Failed initializing oa heap.\n");
2017 		return r;
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 /*
2024  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2025  */
2026 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2027 {
2028 	/* return the VGA stolen memory (if any) back to VRAM */
2029 	if (!adev->mman.keep_stolen_vga_memory)
2030 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2031 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2032 }
2033 
2034 /*
2035  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2036  */
2037 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2038 {
2039 	if (!adev->mman.initialized)
2040 		return;
2041 
2042 	amdgpu_ttm_training_reserve_vram_fini(adev);
2043 	/* return the stolen vga memory back to VRAM */
2044 	if (adev->mman.keep_stolen_vga_memory)
2045 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2046 	/* return the IP Discovery TMR memory back to VRAM */
2047 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
2048 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2049 
2050 	if (adev->mman.aper_base_kaddr)
2051 		iounmap(adev->mman.aper_base_kaddr);
2052 	adev->mman.aper_base_kaddr = NULL;
2053 
2054 	amdgpu_vram_mgr_fini(adev);
2055 	amdgpu_gtt_mgr_fini(adev);
2056 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2057 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2058 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2059 	ttm_bo_device_release(&adev->mman.bdev);
2060 	adev->mman.initialized = false;
2061 	DRM_INFO("amdgpu: ttm finalized\n");
2062 }
2063 
2064 /**
2065  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2066  *
2067  * @adev: amdgpu_device pointer
2068  * @enable: true when we can use buffer functions.
2069  *
2070  * Enable/disable use of buffer functions during suspend/resume. This should
2071  * only be called at bootup or when userspace isn't running.
2072  */
2073 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2074 {
2075 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2076 	uint64_t size;
2077 	int r;
2078 
2079 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2080 	    adev->mman.buffer_funcs_enabled == enable)
2081 		return;
2082 
2083 	if (enable) {
2084 		struct amdgpu_ring *ring;
2085 		struct drm_gpu_scheduler *sched;
2086 
2087 		ring = adev->mman.buffer_funcs_ring;
2088 		sched = &ring->sched;
2089 		r = drm_sched_entity_init(&adev->mman.entity,
2090 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2091 					  1, NULL);
2092 		if (r) {
2093 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2094 				  r);
2095 			return;
2096 		}
2097 	} else {
2098 		drm_sched_entity_destroy(&adev->mman.entity);
2099 		dma_fence_put(man->move);
2100 		man->move = NULL;
2101 	}
2102 
2103 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2104 	if (enable)
2105 		size = adev->gmc.real_vram_size;
2106 	else
2107 		size = adev->gmc.visible_vram_size;
2108 	man->size = size >> PAGE_SHIFT;
2109 	adev->mman.buffer_funcs_enabled = enable;
2110 }
2111 
2112 static vm_fault_t amdgpu_ttm_fault(struct vm_fault *vmf)
2113 {
2114 	struct ttm_buffer_object *bo = vmf->vma->vm_private_data;
2115 	vm_fault_t ret;
2116 
2117 	ret = ttm_bo_vm_reserve(bo, vmf);
2118 	if (ret)
2119 		return ret;
2120 
2121 	ret = amdgpu_bo_fault_reserve_notify(bo);
2122 	if (ret)
2123 		goto unlock;
2124 
2125 	ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
2126 				       TTM_BO_VM_NUM_PREFAULT, 1);
2127 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
2128 		return ret;
2129 
2130 unlock:
2131 	dma_resv_unlock(bo->base.resv);
2132 	return ret;
2133 }
2134 
2135 static struct vm_operations_struct amdgpu_ttm_vm_ops = {
2136 	.fault = amdgpu_ttm_fault,
2137 	.open = ttm_bo_vm_open,
2138 	.close = ttm_bo_vm_close,
2139 	.access = ttm_bo_vm_access
2140 };
2141 
2142 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2143 {
2144 	struct drm_file *file_priv = filp->private_data;
2145 	struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
2146 	int r;
2147 
2148 	r = ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2149 	if (unlikely(r != 0))
2150 		return r;
2151 
2152 	vma->vm_ops = &amdgpu_ttm_vm_ops;
2153 	return 0;
2154 }
2155 
2156 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2157 		       uint64_t dst_offset, uint32_t byte_count,
2158 		       struct dma_resv *resv,
2159 		       struct dma_fence **fence, bool direct_submit,
2160 		       bool vm_needs_flush, bool tmz)
2161 {
2162 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2163 		AMDGPU_IB_POOL_DELAYED;
2164 	struct amdgpu_device *adev = ring->adev;
2165 	struct amdgpu_job *job;
2166 
2167 	uint32_t max_bytes;
2168 	unsigned num_loops, num_dw;
2169 	unsigned i;
2170 	int r;
2171 
2172 	if (direct_submit && !ring->sched.ready) {
2173 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2174 		return -EINVAL;
2175 	}
2176 
2177 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2178 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2179 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2180 
2181 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2182 	if (r)
2183 		return r;
2184 
2185 	if (vm_needs_flush) {
2186 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2187 		job->vm_needs_flush = true;
2188 	}
2189 	if (resv) {
2190 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2191 				     AMDGPU_SYNC_ALWAYS,
2192 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2193 		if (r) {
2194 			DRM_ERROR("sync failed (%d).\n", r);
2195 			goto error_free;
2196 		}
2197 	}
2198 
2199 	for (i = 0; i < num_loops; i++) {
2200 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2201 
2202 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2203 					dst_offset, cur_size_in_bytes, tmz);
2204 
2205 		src_offset += cur_size_in_bytes;
2206 		dst_offset += cur_size_in_bytes;
2207 		byte_count -= cur_size_in_bytes;
2208 	}
2209 
2210 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2211 	WARN_ON(job->ibs[0].length_dw > num_dw);
2212 	if (direct_submit)
2213 		r = amdgpu_job_submit_direct(job, ring, fence);
2214 	else
2215 		r = amdgpu_job_submit(job, &adev->mman.entity,
2216 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2217 	if (r)
2218 		goto error_free;
2219 
2220 	return r;
2221 
2222 error_free:
2223 	amdgpu_job_free(job);
2224 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2225 	return r;
2226 }
2227 
2228 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2229 		       uint32_t src_data,
2230 		       struct dma_resv *resv,
2231 		       struct dma_fence **fence)
2232 {
2233 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2234 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2235 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2236 
2237 	struct drm_mm_node *mm_node;
2238 	unsigned long num_pages;
2239 	unsigned int num_loops, num_dw;
2240 
2241 	struct amdgpu_job *job;
2242 	int r;
2243 
2244 	if (!adev->mman.buffer_funcs_enabled) {
2245 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2246 		return -EINVAL;
2247 	}
2248 
2249 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2250 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2251 		if (r)
2252 			return r;
2253 	}
2254 
2255 	num_pages = bo->tbo.num_pages;
2256 	mm_node = bo->tbo.mem.mm_node;
2257 	num_loops = 0;
2258 	while (num_pages) {
2259 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2260 
2261 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2262 		num_pages -= mm_node->size;
2263 		++mm_node;
2264 	}
2265 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2266 
2267 	/* for IB padding */
2268 	num_dw += 64;
2269 
2270 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2271 				     &job);
2272 	if (r)
2273 		return r;
2274 
2275 	if (resv) {
2276 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2277 				     AMDGPU_SYNC_ALWAYS,
2278 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2279 		if (r) {
2280 			DRM_ERROR("sync failed (%d).\n", r);
2281 			goto error_free;
2282 		}
2283 	}
2284 
2285 	num_pages = bo->tbo.num_pages;
2286 	mm_node = bo->tbo.mem.mm_node;
2287 
2288 	while (num_pages) {
2289 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2290 		uint64_t dst_addr;
2291 
2292 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2293 		while (byte_count) {
2294 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2295 							   max_bytes);
2296 
2297 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2298 						dst_addr, cur_size_in_bytes);
2299 
2300 			dst_addr += cur_size_in_bytes;
2301 			byte_count -= cur_size_in_bytes;
2302 		}
2303 
2304 		num_pages -= mm_node->size;
2305 		++mm_node;
2306 	}
2307 
2308 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2309 	WARN_ON(job->ibs[0].length_dw > num_dw);
2310 	r = amdgpu_job_submit(job, &adev->mman.entity,
2311 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2312 	if (r)
2313 		goto error_free;
2314 
2315 	return 0;
2316 
2317 error_free:
2318 	amdgpu_job_free(job);
2319 	return r;
2320 }
2321 
2322 #if defined(CONFIG_DEBUG_FS)
2323 
2324 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2325 {
2326 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2327 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2328 	struct drm_device *dev = node->minor->dev;
2329 	struct amdgpu_device *adev = drm_to_adev(dev);
2330 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2331 	struct drm_printer p = drm_seq_file_printer(m);
2332 
2333 	man->func->debug(man, &p);
2334 	return 0;
2335 }
2336 
2337 static int amdgpu_ttm_pool_debugfs(struct seq_file *m, void *data)
2338 {
2339 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2340 	struct drm_device *dev = node->minor->dev;
2341 	struct amdgpu_device *adev = drm_to_adev(dev);
2342 
2343 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2344 }
2345 
2346 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2347 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2348 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2349 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2350 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2351 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2352 	{"ttm_page_pool", amdgpu_ttm_pool_debugfs, 0, NULL},
2353 };
2354 
2355 /*
2356  * amdgpu_ttm_vram_read - Linear read access to VRAM
2357  *
2358  * Accesses VRAM via MMIO for debugging purposes.
2359  */
2360 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2361 				    size_t size, loff_t *pos)
2362 {
2363 	struct amdgpu_device *adev = file_inode(f)->i_private;
2364 	ssize_t result = 0;
2365 
2366 	if (size & 0x3 || *pos & 0x3)
2367 		return -EINVAL;
2368 
2369 	if (*pos >= adev->gmc.mc_vram_size)
2370 		return -ENXIO;
2371 
2372 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2373 	while (size) {
2374 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2375 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2376 
2377 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2378 		if (copy_to_user(buf, value, bytes))
2379 			return -EFAULT;
2380 
2381 		result += bytes;
2382 		buf += bytes;
2383 		*pos += bytes;
2384 		size -= bytes;
2385 	}
2386 
2387 	return result;
2388 }
2389 
2390 /*
2391  * amdgpu_ttm_vram_write - Linear write access to VRAM
2392  *
2393  * Accesses VRAM via MMIO for debugging purposes.
2394  */
2395 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2396 				    size_t size, loff_t *pos)
2397 {
2398 	struct amdgpu_device *adev = file_inode(f)->i_private;
2399 	ssize_t result = 0;
2400 	int r;
2401 
2402 	if (size & 0x3 || *pos & 0x3)
2403 		return -EINVAL;
2404 
2405 	if (*pos >= adev->gmc.mc_vram_size)
2406 		return -ENXIO;
2407 
2408 	while (size) {
2409 		unsigned long flags;
2410 		uint32_t value;
2411 
2412 		if (*pos >= adev->gmc.mc_vram_size)
2413 			return result;
2414 
2415 		r = get_user(value, (uint32_t *)buf);
2416 		if (r)
2417 			return r;
2418 
2419 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2420 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2421 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2422 		WREG32_NO_KIQ(mmMM_DATA, value);
2423 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2424 
2425 		result += 4;
2426 		buf += 4;
2427 		*pos += 4;
2428 		size -= 4;
2429 	}
2430 
2431 	return result;
2432 }
2433 
2434 static const struct file_operations amdgpu_ttm_vram_fops = {
2435 	.owner = THIS_MODULE,
2436 	.read = amdgpu_ttm_vram_read,
2437 	.write = amdgpu_ttm_vram_write,
2438 	.llseek = default_llseek,
2439 };
2440 
2441 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2442 
2443 /*
2444  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2445  */
2446 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2447 				   size_t size, loff_t *pos)
2448 {
2449 	struct amdgpu_device *adev = file_inode(f)->i_private;
2450 	ssize_t result = 0;
2451 	int r;
2452 
2453 	while (size) {
2454 		loff_t p = *pos / PAGE_SIZE;
2455 		unsigned off = *pos & ~PAGE_MASK;
2456 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2457 		struct page *page;
2458 		void *ptr;
2459 
2460 		if (p >= adev->gart.num_cpu_pages)
2461 			return result;
2462 
2463 		page = adev->gart.pages[p];
2464 		if (page) {
2465 			ptr = kmap(page);
2466 			ptr += off;
2467 
2468 			r = copy_to_user(buf, ptr, cur_size);
2469 			kunmap(adev->gart.pages[p]);
2470 		} else
2471 			r = clear_user(buf, cur_size);
2472 
2473 		if (r)
2474 			return -EFAULT;
2475 
2476 		result += cur_size;
2477 		buf += cur_size;
2478 		*pos += cur_size;
2479 		size -= cur_size;
2480 	}
2481 
2482 	return result;
2483 }
2484 
2485 static const struct file_operations amdgpu_ttm_gtt_fops = {
2486 	.owner = THIS_MODULE,
2487 	.read = amdgpu_ttm_gtt_read,
2488 	.llseek = default_llseek
2489 };
2490 
2491 #endif
2492 
2493 /*
2494  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2495  *
2496  * This function is used to read memory that has been mapped to the
2497  * GPU and the known addresses are not physical addresses but instead
2498  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2499  */
2500 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2501 				 size_t size, loff_t *pos)
2502 {
2503 	struct amdgpu_device *adev = file_inode(f)->i_private;
2504 	struct iommu_domain *dom;
2505 	ssize_t result = 0;
2506 	int r;
2507 
2508 	/* retrieve the IOMMU domain if any for this device */
2509 	dom = iommu_get_domain_for_dev(adev->dev);
2510 
2511 	while (size) {
2512 		phys_addr_t addr = *pos & PAGE_MASK;
2513 		loff_t off = *pos & ~PAGE_MASK;
2514 		size_t bytes = PAGE_SIZE - off;
2515 		unsigned long pfn;
2516 		struct page *p;
2517 		void *ptr;
2518 
2519 		bytes = bytes < size ? bytes : size;
2520 
2521 		/* Translate the bus address to a physical address.  If
2522 		 * the domain is NULL it means there is no IOMMU active
2523 		 * and the address translation is the identity
2524 		 */
2525 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2526 
2527 		pfn = addr >> PAGE_SHIFT;
2528 		if (!pfn_valid(pfn))
2529 			return -EPERM;
2530 
2531 		p = pfn_to_page(pfn);
2532 		if (p->mapping != adev->mman.bdev.dev_mapping)
2533 			return -EPERM;
2534 
2535 		ptr = kmap(p);
2536 		r = copy_to_user(buf, ptr + off, bytes);
2537 		kunmap(p);
2538 		if (r)
2539 			return -EFAULT;
2540 
2541 		size -= bytes;
2542 		*pos += bytes;
2543 		result += bytes;
2544 	}
2545 
2546 	return result;
2547 }
2548 
2549 /*
2550  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2551  *
2552  * This function is used to write memory that has been mapped to the
2553  * GPU and the known addresses are not physical addresses but instead
2554  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2555  */
2556 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2557 				 size_t size, loff_t *pos)
2558 {
2559 	struct amdgpu_device *adev = file_inode(f)->i_private;
2560 	struct iommu_domain *dom;
2561 	ssize_t result = 0;
2562 	int r;
2563 
2564 	dom = iommu_get_domain_for_dev(adev->dev);
2565 
2566 	while (size) {
2567 		phys_addr_t addr = *pos & PAGE_MASK;
2568 		loff_t off = *pos & ~PAGE_MASK;
2569 		size_t bytes = PAGE_SIZE - off;
2570 		unsigned long pfn;
2571 		struct page *p;
2572 		void *ptr;
2573 
2574 		bytes = bytes < size ? bytes : size;
2575 
2576 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2577 
2578 		pfn = addr >> PAGE_SHIFT;
2579 		if (!pfn_valid(pfn))
2580 			return -EPERM;
2581 
2582 		p = pfn_to_page(pfn);
2583 		if (p->mapping != adev->mman.bdev.dev_mapping)
2584 			return -EPERM;
2585 
2586 		ptr = kmap(p);
2587 		r = copy_from_user(ptr + off, buf, bytes);
2588 		kunmap(p);
2589 		if (r)
2590 			return -EFAULT;
2591 
2592 		size -= bytes;
2593 		*pos += bytes;
2594 		result += bytes;
2595 	}
2596 
2597 	return result;
2598 }
2599 
2600 static const struct file_operations amdgpu_ttm_iomem_fops = {
2601 	.owner = THIS_MODULE,
2602 	.read = amdgpu_iomem_read,
2603 	.write = amdgpu_iomem_write,
2604 	.llseek = default_llseek
2605 };
2606 
2607 static const struct {
2608 	char *name;
2609 	const struct file_operations *fops;
2610 	int domain;
2611 } ttm_debugfs_entries[] = {
2612 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2613 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2614 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2615 #endif
2616 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2617 };
2618 
2619 #endif
2620 
2621 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2622 {
2623 #if defined(CONFIG_DEBUG_FS)
2624 	unsigned count;
2625 
2626 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2627 	struct dentry *ent, *root = minor->debugfs_root;
2628 
2629 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2630 		ent = debugfs_create_file(
2631 				ttm_debugfs_entries[count].name,
2632 				S_IFREG | S_IRUGO, root,
2633 				adev,
2634 				ttm_debugfs_entries[count].fops);
2635 		if (IS_ERR(ent))
2636 			return PTR_ERR(ent);
2637 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2638 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2639 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2640 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2641 		adev->mman.debugfs_entries[count] = ent;
2642 	}
2643 
2644 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2645 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2646 #else
2647 	return 0;
2648 #endif
2649 }
2650