1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_range_manager.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_atomfirmware.h"
60 #include "amdgpu_res_cursor.h"
61 #include "bif/bif_4_1_d.h"
62 
63 MODULE_IMPORT_NS(DMA_BUF);
64 
65 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
66 
67 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
68 				   struct ttm_tt *ttm,
69 				   struct ttm_resource *bo_mem);
70 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
71 				      struct ttm_tt *ttm);
72 
73 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
74 				    unsigned int type,
75 				    uint64_t size_in_page)
76 {
77 	return ttm_range_man_init(&adev->mman.bdev, type,
78 				  false, size_in_page);
79 }
80 
81 /**
82  * amdgpu_evict_flags - Compute placement flags
83  *
84  * @bo: The buffer object to evict
85  * @placement: Possible destination(s) for evicted BO
86  *
87  * Fill in placement data when ttm_bo_evict() is called
88  */
89 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
90 				struct ttm_placement *placement)
91 {
92 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
93 	struct amdgpu_bo *abo;
94 	static const struct ttm_place placements = {
95 		.fpfn = 0,
96 		.lpfn = 0,
97 		.mem_type = TTM_PL_SYSTEM,
98 		.flags = 0
99 	};
100 
101 	/* Don't handle scatter gather BOs */
102 	if (bo->type == ttm_bo_type_sg) {
103 		placement->num_placement = 0;
104 		placement->num_busy_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->busy_placement = &placements;
112 		placement->num_placement = 1;
113 		placement->num_busy_placement = 1;
114 		return;
115 	}
116 
117 	abo = ttm_to_amdgpu_bo(bo);
118 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
119 		placement->num_placement = 0;
120 		placement->num_busy_placement = 0;
121 		return;
122 	}
123 
124 	switch (bo->resource->mem_type) {
125 	case AMDGPU_PL_GDS:
126 	case AMDGPU_PL_GWS:
127 	case AMDGPU_PL_OA:
128 		placement->num_placement = 0;
129 		placement->num_busy_placement = 0;
130 		return;
131 
132 	case TTM_PL_VRAM:
133 		if (!adev->mman.buffer_funcs_enabled) {
134 			/* Move to system memory */
135 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
136 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
137 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
138 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
139 
140 			/* Try evicting to the CPU inaccessible part of VRAM
141 			 * first, but only set GTT as busy placement, so this
142 			 * BO will be evicted to GTT rather than causing other
143 			 * BOs to be evicted from VRAM
144 			 */
145 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
146 							AMDGPU_GEM_DOMAIN_GTT |
147 							AMDGPU_GEM_DOMAIN_CPU);
148 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
149 			abo->placements[0].lpfn = 0;
150 			abo->placement.busy_placement = &abo->placements[1];
151 			abo->placement.num_busy_placement = 1;
152 		} else {
153 			/* Move to GTT memory */
154 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
155 							AMDGPU_GEM_DOMAIN_CPU);
156 		}
157 		break;
158 	case TTM_PL_TT:
159 	case AMDGPU_PL_PREEMPT:
160 	default:
161 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
162 		break;
163 	}
164 	*placement = abo->placement;
165 }
166 
167 /**
168  * amdgpu_ttm_map_buffer - Map memory into the GART windows
169  * @bo: buffer object to map
170  * @mem: memory object to map
171  * @mm_cur: range to map
172  * @num_pages: number of pages to map
173  * @window: which GART window to use
174  * @ring: DMA ring to use for the copy
175  * @tmz: if we should setup a TMZ enabled mapping
176  * @addr: resulting address inside the MC address space
177  *
178  * Setup one of the GART windows to access a specific piece of memory or return
179  * the physical address for local memory.
180  */
181 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
182 				 struct ttm_resource *mem,
183 				 struct amdgpu_res_cursor *mm_cur,
184 				 unsigned num_pages, unsigned window,
185 				 struct amdgpu_ring *ring, bool tmz,
186 				 uint64_t *addr)
187 {
188 	struct amdgpu_device *adev = ring->adev;
189 	struct amdgpu_job *job;
190 	unsigned num_dw, num_bytes;
191 	struct dma_fence *fence;
192 	uint64_t src_addr, dst_addr;
193 	void *cpu_addr;
194 	uint64_t flags;
195 	unsigned int i;
196 	int r;
197 
198 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200 	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
201 
202 	/* Map only what can't be accessed directly */
203 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
204 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
205 			mm_cur->start;
206 		return 0;
207 	}
208 
209 	*addr = adev->gmc.gart_start;
210 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
211 		AMDGPU_GPU_PAGE_SIZE;
212 	*addr += mm_cur->start & ~PAGE_MASK;
213 
214 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
215 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
216 
217 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
218 				     AMDGPU_IB_POOL_DELAYED, &job);
219 	if (r)
220 		return r;
221 
222 	src_addr = num_dw * 4;
223 	src_addr += job->ibs[0].gpu_addr;
224 
225 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
226 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
227 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
228 				dst_addr, num_bytes, false);
229 
230 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
231 	WARN_ON(job->ibs[0].length_dw > num_dw);
232 
233 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
234 	if (tmz)
235 		flags |= AMDGPU_PTE_TMZ;
236 
237 	cpu_addr = &job->ibs[0].ptr[num_dw];
238 
239 	if (mem->mem_type == TTM_PL_TT) {
240 		dma_addr_t *dma_addr;
241 
242 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
243 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
244 				    cpu_addr);
245 		if (r)
246 			goto error_free;
247 	} else {
248 		dma_addr_t dma_address;
249 
250 		dma_address = mm_cur->start;
251 		dma_address += adev->vm_manager.vram_base_offset;
252 
253 		for (i = 0; i < num_pages; ++i) {
254 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
255 					    &dma_address, flags, cpu_addr);
256 			if (r)
257 				goto error_free;
258 
259 			dma_address += PAGE_SIZE;
260 		}
261 	}
262 
263 	r = amdgpu_job_submit(job, &adev->mman.entity,
264 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
265 	if (r)
266 		goto error_free;
267 
268 	dma_fence_put(fence);
269 
270 	return r;
271 
272 error_free:
273 	amdgpu_job_free(job);
274 	return r;
275 }
276 
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 			       const struct amdgpu_copy_mem *src,
294 			       const struct amdgpu_copy_mem *dst,
295 			       uint64_t size, bool tmz,
296 			       struct dma_resv *resv,
297 			       struct dma_fence **f)
298 {
299 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
300 					AMDGPU_GPU_PAGE_SIZE);
301 
302 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
303 	struct amdgpu_res_cursor src_mm, dst_mm;
304 	struct dma_fence *fence = NULL;
305 	int r = 0;
306 
307 	if (!adev->mman.buffer_funcs_enabled) {
308 		DRM_ERROR("Trying to move memory with ring turned off.\n");
309 		return -EINVAL;
310 	}
311 
312 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
313 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
314 
315 	mutex_lock(&adev->mman.gtt_window_lock);
316 	while (src_mm.remaining) {
317 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
318 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
319 		struct dma_fence *next;
320 		uint32_t cur_size;
321 		uint64_t from, to;
322 
323 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
324 		 * begins at an offset, then adjust the size accordingly
325 		 */
326 		cur_size = max(src_page_offset, dst_page_offset);
327 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
328 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
329 
330 		/* Map src to window 0 and dst to window 1. */
331 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
332 					  PFN_UP(cur_size + src_page_offset),
333 					  0, ring, tmz, &from);
334 		if (r)
335 			goto error;
336 
337 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
338 					  PFN_UP(cur_size + dst_page_offset),
339 					  1, ring, tmz, &to);
340 		if (r)
341 			goto error;
342 
343 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
344 				       resv, &next, false, true, tmz);
345 		if (r)
346 			goto error;
347 
348 		dma_fence_put(fence);
349 		fence = next;
350 
351 		amdgpu_res_next(&src_mm, cur_size);
352 		amdgpu_res_next(&dst_mm, cur_size);
353 	}
354 error:
355 	mutex_unlock(&adev->mman.gtt_window_lock);
356 	if (f)
357 		*f = dma_fence_get(fence);
358 	dma_fence_put(fence);
359 	return r;
360 }
361 
362 /*
363  * amdgpu_move_blit - Copy an entire buffer to another buffer
364  *
365  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
366  * help move buffers to and from VRAM.
367  */
368 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
369 			    bool evict,
370 			    struct ttm_resource *new_mem,
371 			    struct ttm_resource *old_mem)
372 {
373 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
374 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
375 	struct amdgpu_copy_mem src, dst;
376 	struct dma_fence *fence = NULL;
377 	int r;
378 
379 	src.bo = bo;
380 	dst.bo = bo;
381 	src.mem = old_mem;
382 	dst.mem = new_mem;
383 	src.offset = 0;
384 	dst.offset = 0;
385 
386 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
387 				       new_mem->num_pages << PAGE_SHIFT,
388 				       amdgpu_bo_encrypted(abo),
389 				       bo->base.resv, &fence);
390 	if (r)
391 		goto error;
392 
393 	/* clear the space being freed */
394 	if (old_mem->mem_type == TTM_PL_VRAM &&
395 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
396 		struct dma_fence *wipe_fence = NULL;
397 
398 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
399 				       NULL, &wipe_fence);
400 		if (r) {
401 			goto error;
402 		} else if (wipe_fence) {
403 			dma_fence_put(fence);
404 			fence = wipe_fence;
405 		}
406 	}
407 
408 	/* Always block for VM page tables before committing the new location */
409 	if (bo->type == ttm_bo_type_kernel)
410 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
411 	else
412 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
413 	dma_fence_put(fence);
414 	return r;
415 
416 error:
417 	if (fence)
418 		dma_fence_wait(fence, false);
419 	dma_fence_put(fence);
420 	return r;
421 }
422 
423 /*
424  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
425  *
426  * Called by amdgpu_bo_move()
427  */
428 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
429 			       struct ttm_resource *mem)
430 {
431 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
432 	struct amdgpu_res_cursor cursor;
433 
434 	if (mem->mem_type == TTM_PL_SYSTEM ||
435 	    mem->mem_type == TTM_PL_TT)
436 		return true;
437 	if (mem->mem_type != TTM_PL_VRAM)
438 		return false;
439 
440 	amdgpu_res_first(mem, 0, mem_size, &cursor);
441 
442 	/* ttm_resource_ioremap only supports contiguous memory */
443 	if (cursor.size != mem_size)
444 		return false;
445 
446 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
447 }
448 
449 /*
450  * amdgpu_bo_move - Move a buffer object to a new memory location
451  *
452  * Called by ttm_bo_handle_move_mem()
453  */
454 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
455 			  struct ttm_operation_ctx *ctx,
456 			  struct ttm_resource *new_mem,
457 			  struct ttm_place *hop)
458 {
459 	struct amdgpu_device *adev;
460 	struct amdgpu_bo *abo;
461 	struct ttm_resource *old_mem = bo->resource;
462 	int r;
463 
464 	if (new_mem->mem_type == TTM_PL_TT ||
465 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
466 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
467 		if (r)
468 			return r;
469 	}
470 
471 	/* Can't move a pinned BO */
472 	abo = ttm_to_amdgpu_bo(bo);
473 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
474 		return -EINVAL;
475 
476 	adev = amdgpu_ttm_adev(bo->bdev);
477 
478 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
479 		ttm_bo_move_null(bo, new_mem);
480 		goto out;
481 	}
482 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
483 	    (new_mem->mem_type == TTM_PL_TT ||
484 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
485 		ttm_bo_move_null(bo, new_mem);
486 		goto out;
487 	}
488 	if ((old_mem->mem_type == TTM_PL_TT ||
489 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
490 	    new_mem->mem_type == TTM_PL_SYSTEM) {
491 		r = ttm_bo_wait_ctx(bo, ctx);
492 		if (r)
493 			return r;
494 
495 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
496 		ttm_resource_free(bo, &bo->resource);
497 		ttm_bo_assign_mem(bo, new_mem);
498 		goto out;
499 	}
500 
501 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
502 	    old_mem->mem_type == AMDGPU_PL_GWS ||
503 	    old_mem->mem_type == AMDGPU_PL_OA ||
504 	    new_mem->mem_type == AMDGPU_PL_GDS ||
505 	    new_mem->mem_type == AMDGPU_PL_GWS ||
506 	    new_mem->mem_type == AMDGPU_PL_OA) {
507 		/* Nothing to save here */
508 		ttm_bo_move_null(bo, new_mem);
509 		goto out;
510 	}
511 
512 	if (bo->type == ttm_bo_type_device &&
513 	    new_mem->mem_type == TTM_PL_VRAM &&
514 	    old_mem->mem_type != TTM_PL_VRAM) {
515 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
516 		 * accesses the BO after it's moved.
517 		 */
518 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
519 	}
520 
521 	if (adev->mman.buffer_funcs_enabled) {
522 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
523 		      new_mem->mem_type == TTM_PL_VRAM) ||
524 		     (old_mem->mem_type == TTM_PL_VRAM &&
525 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
526 			hop->fpfn = 0;
527 			hop->lpfn = 0;
528 			hop->mem_type = TTM_PL_TT;
529 			hop->flags = TTM_PL_FLAG_TEMPORARY;
530 			return -EMULTIHOP;
531 		}
532 
533 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
534 	} else {
535 		r = -ENODEV;
536 	}
537 
538 	if (r) {
539 		/* Check that all memory is CPU accessible */
540 		if (!amdgpu_mem_visible(adev, old_mem) ||
541 		    !amdgpu_mem_visible(adev, new_mem)) {
542 			pr_err("Move buffer fallback to memcpy unavailable\n");
543 			return r;
544 		}
545 
546 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
547 		if (r)
548 			return r;
549 	}
550 
551 out:
552 	/* update statistics */
553 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
554 	amdgpu_bo_move_notify(bo, evict, new_mem);
555 	return 0;
556 }
557 
558 /*
559  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
560  *
561  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
562  */
563 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
564 				     struct ttm_resource *mem)
565 {
566 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
567 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
568 
569 	switch (mem->mem_type) {
570 	case TTM_PL_SYSTEM:
571 		/* system memory */
572 		return 0;
573 	case TTM_PL_TT:
574 	case AMDGPU_PL_PREEMPT:
575 		break;
576 	case TTM_PL_VRAM:
577 		mem->bus.offset = mem->start << PAGE_SHIFT;
578 		/* check if it's visible */
579 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
580 			return -EINVAL;
581 
582 		if (adev->mman.aper_base_kaddr &&
583 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
584 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
585 					mem->bus.offset;
586 
587 		mem->bus.offset += adev->gmc.aper_base;
588 		mem->bus.is_iomem = true;
589 		break;
590 	default:
591 		return -EINVAL;
592 	}
593 	return 0;
594 }
595 
596 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
597 					   unsigned long page_offset)
598 {
599 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
600 	struct amdgpu_res_cursor cursor;
601 
602 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
603 			 &cursor);
604 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
605 }
606 
607 /**
608  * amdgpu_ttm_domain_start - Returns GPU start address
609  * @adev: amdgpu device object
610  * @type: type of the memory
611  *
612  * Returns:
613  * GPU start address of a memory domain
614  */
615 
616 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
617 {
618 	switch (type) {
619 	case TTM_PL_TT:
620 		return adev->gmc.gart_start;
621 	case TTM_PL_VRAM:
622 		return adev->gmc.vram_start;
623 	}
624 
625 	return 0;
626 }
627 
628 /*
629  * TTM backend functions.
630  */
631 struct amdgpu_ttm_tt {
632 	struct ttm_tt	ttm;
633 	struct drm_gem_object	*gobj;
634 	u64			offset;
635 	uint64_t		userptr;
636 	struct task_struct	*usertask;
637 	uint32_t		userflags;
638 	bool			bound;
639 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
640 	struct hmm_range	*range;
641 #endif
642 };
643 
644 #ifdef CONFIG_DRM_AMDGPU_USERPTR
645 /*
646  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
647  * memory and start HMM tracking CPU page table update
648  *
649  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
650  * once afterwards to stop HMM tracking
651  */
652 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
653 {
654 	struct ttm_tt *ttm = bo->tbo.ttm;
655 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
656 	unsigned long start = gtt->userptr;
657 	struct vm_area_struct *vma;
658 	struct mm_struct *mm;
659 	bool readonly;
660 	int r = 0;
661 
662 	mm = bo->notifier.mm;
663 	if (unlikely(!mm)) {
664 		DRM_DEBUG_DRIVER("BO is not registered?\n");
665 		return -EFAULT;
666 	}
667 
668 	/* Another get_user_pages is running at the same time?? */
669 	if (WARN_ON(gtt->range))
670 		return -EFAULT;
671 
672 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
673 		return -ESRCH;
674 
675 	mmap_read_lock(mm);
676 	vma = vma_lookup(mm, start);
677 	if (unlikely(!vma)) {
678 		r = -EFAULT;
679 		goto out_unlock;
680 	}
681 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
682 		vma->vm_file)) {
683 		r = -EPERM;
684 		goto out_unlock;
685 	}
686 
687 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
688 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
689 				       ttm->num_pages, &gtt->range, readonly,
690 				       true, NULL);
691 out_unlock:
692 	mmap_read_unlock(mm);
693 	if (r)
694 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
695 
696 	mmput(mm);
697 
698 	return r;
699 }
700 
701 /*
702  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
703  * Check if the pages backing this ttm range have been invalidated
704  *
705  * Returns: true if pages are still valid
706  */
707 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
708 {
709 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
710 	bool r = false;
711 
712 	if (!gtt || !gtt->userptr)
713 		return false;
714 
715 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
716 		gtt->userptr, ttm->num_pages);
717 
718 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
719 		"No user pages to check\n");
720 
721 	if (gtt->range) {
722 		/*
723 		 * FIXME: Must always hold notifier_lock for this, and must
724 		 * not ignore the return code.
725 		 */
726 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
727 		gtt->range = NULL;
728 	}
729 
730 	return !r;
731 }
732 #endif
733 
734 /*
735  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
736  *
737  * Called by amdgpu_cs_list_validate(). This creates the page list
738  * that backs user memory and will ultimately be mapped into the device
739  * address space.
740  */
741 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
742 {
743 	unsigned long i;
744 
745 	for (i = 0; i < ttm->num_pages; ++i)
746 		ttm->pages[i] = pages ? pages[i] : NULL;
747 }
748 
749 /*
750  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
751  *
752  * Called by amdgpu_ttm_backend_bind()
753  **/
754 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
755 				     struct ttm_tt *ttm)
756 {
757 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
758 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
759 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
760 	enum dma_data_direction direction = write ?
761 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
762 	int r;
763 
764 	/* Allocate an SG array and squash pages into it */
765 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
766 				      (u64)ttm->num_pages << PAGE_SHIFT,
767 				      GFP_KERNEL);
768 	if (r)
769 		goto release_sg;
770 
771 	/* Map SG to device */
772 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
773 	if (r)
774 		goto release_sg;
775 
776 	/* convert SG to linear array of pages and dma addresses */
777 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
778 				       ttm->num_pages);
779 
780 	return 0;
781 
782 release_sg:
783 	kfree(ttm->sg);
784 	ttm->sg = NULL;
785 	return r;
786 }
787 
788 /*
789  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
790  */
791 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
792 					struct ttm_tt *ttm)
793 {
794 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
795 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
796 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
797 	enum dma_data_direction direction = write ?
798 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
799 
800 	/* double check that we don't free the table twice */
801 	if (!ttm->sg || !ttm->sg->sgl)
802 		return;
803 
804 	/* unmap the pages mapped to the device */
805 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
806 	sg_free_table(ttm->sg);
807 
808 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
809 	if (gtt->range) {
810 		unsigned long i;
811 
812 		for (i = 0; i < ttm->num_pages; i++) {
813 			if (ttm->pages[i] !=
814 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
815 				break;
816 		}
817 
818 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
819 	}
820 #endif
821 }
822 
823 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
824 				struct ttm_buffer_object *tbo,
825 				uint64_t flags)
826 {
827 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
828 	struct ttm_tt *ttm = tbo->ttm;
829 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
830 	int r;
831 
832 	if (amdgpu_bo_encrypted(abo))
833 		flags |= AMDGPU_PTE_TMZ;
834 
835 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
836 		uint64_t page_idx = 1;
837 
838 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
839 				gtt->ttm.dma_address, flags);
840 		if (r)
841 			goto gart_bind_fail;
842 
843 		/* The memory type of the first page defaults to UC. Now
844 		 * modify the memory type to NC from the second page of
845 		 * the BO onward.
846 		 */
847 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
848 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
849 
850 		r = amdgpu_gart_bind(adev,
851 				gtt->offset + (page_idx << PAGE_SHIFT),
852 				ttm->num_pages - page_idx,
853 				&(gtt->ttm.dma_address[page_idx]), flags);
854 	} else {
855 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
856 				     gtt->ttm.dma_address, flags);
857 	}
858 
859 gart_bind_fail:
860 	if (r)
861 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
862 			  ttm->num_pages, gtt->offset);
863 
864 	return r;
865 }
866 
867 /*
868  * amdgpu_ttm_backend_bind - Bind GTT memory
869  *
870  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
871  * This handles binding GTT memory to the device address space.
872  */
873 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
874 				   struct ttm_tt *ttm,
875 				   struct ttm_resource *bo_mem)
876 {
877 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
878 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
879 	uint64_t flags;
880 	int r = 0;
881 
882 	if (!bo_mem)
883 		return -EINVAL;
884 
885 	if (gtt->bound)
886 		return 0;
887 
888 	if (gtt->userptr) {
889 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
890 		if (r) {
891 			DRM_ERROR("failed to pin userptr\n");
892 			return r;
893 		}
894 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
895 		if (!ttm->sg) {
896 			struct dma_buf_attachment *attach;
897 			struct sg_table *sgt;
898 
899 			attach = gtt->gobj->import_attach;
900 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
901 			if (IS_ERR(sgt))
902 				return PTR_ERR(sgt);
903 
904 			ttm->sg = sgt;
905 		}
906 
907 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
908 					       ttm->num_pages);
909 	}
910 
911 	if (!ttm->num_pages) {
912 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
913 		     ttm->num_pages, bo_mem, ttm);
914 	}
915 
916 	if (bo_mem->mem_type != TTM_PL_TT ||
917 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
918 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
919 		return 0;
920 	}
921 
922 	/* compute PTE flags relevant to this BO memory */
923 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
924 
925 	/* bind pages into GART page tables */
926 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
927 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
928 		gtt->ttm.dma_address, flags);
929 
930 	if (r)
931 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
932 			  ttm->num_pages, gtt->offset);
933 	gtt->bound = true;
934 	return r;
935 }
936 
937 /*
938  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
939  * through AGP or GART aperture.
940  *
941  * If bo is accessible through AGP aperture, then use AGP aperture
942  * to access bo; otherwise allocate logical space in GART aperture
943  * and map bo to GART aperture.
944  */
945 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
946 {
947 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
948 	struct ttm_operation_ctx ctx = { false, false };
949 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
950 	struct ttm_placement placement;
951 	struct ttm_place placements;
952 	struct ttm_resource *tmp;
953 	uint64_t addr, flags;
954 	int r;
955 
956 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
957 		return 0;
958 
959 	addr = amdgpu_gmc_agp_addr(bo);
960 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
961 		bo->resource->start = addr >> PAGE_SHIFT;
962 		return 0;
963 	}
964 
965 	/* allocate GART space */
966 	placement.num_placement = 1;
967 	placement.placement = &placements;
968 	placement.num_busy_placement = 1;
969 	placement.busy_placement = &placements;
970 	placements.fpfn = 0;
971 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
972 	placements.mem_type = TTM_PL_TT;
973 	placements.flags = bo->resource->placement;
974 
975 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
976 	if (unlikely(r))
977 		return r;
978 
979 	/* compute PTE flags for this buffer object */
980 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
981 
982 	/* Bind pages */
983 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
984 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
985 	if (unlikely(r)) {
986 		ttm_resource_free(bo, &tmp);
987 		return r;
988 	}
989 
990 	amdgpu_gart_invalidate_tlb(adev);
991 	ttm_resource_free(bo, &bo->resource);
992 	ttm_bo_assign_mem(bo, tmp);
993 
994 	return 0;
995 }
996 
997 /*
998  * amdgpu_ttm_recover_gart - Rebind GTT pages
999  *
1000  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1001  * rebind GTT pages during a GPU reset.
1002  */
1003 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1004 {
1005 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1006 	uint64_t flags;
1007 	int r;
1008 
1009 	if (!tbo->ttm)
1010 		return 0;
1011 
1012 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1013 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1014 
1015 	return r;
1016 }
1017 
1018 /*
1019  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1020  *
1021  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1022  * ttm_tt_destroy().
1023  */
1024 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1025 				      struct ttm_tt *ttm)
1026 {
1027 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1028 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1029 	int r;
1030 
1031 	/* if the pages have userptr pinning then clear that first */
1032 	if (gtt->userptr) {
1033 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1034 	} else if (ttm->sg && gtt->gobj->import_attach) {
1035 		struct dma_buf_attachment *attach;
1036 
1037 		attach = gtt->gobj->import_attach;
1038 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1039 		ttm->sg = NULL;
1040 	}
1041 
1042 	if (!gtt->bound)
1043 		return;
1044 
1045 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1046 		return;
1047 
1048 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1049 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1050 	if (r)
1051 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1052 			  gtt->ttm.num_pages, gtt->offset);
1053 	gtt->bound = false;
1054 }
1055 
1056 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1057 				       struct ttm_tt *ttm)
1058 {
1059 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1060 
1061 	if (gtt->usertask)
1062 		put_task_struct(gtt->usertask);
1063 
1064 	ttm_tt_fini(&gtt->ttm);
1065 	kfree(gtt);
1066 }
1067 
1068 /**
1069  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1070  *
1071  * @bo: The buffer object to create a GTT ttm_tt object around
1072  * @page_flags: Page flags to be added to the ttm_tt object
1073  *
1074  * Called by ttm_tt_create().
1075  */
1076 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1077 					   uint32_t page_flags)
1078 {
1079 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1080 	struct amdgpu_ttm_tt *gtt;
1081 	enum ttm_caching caching;
1082 
1083 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1084 	if (gtt == NULL) {
1085 		return NULL;
1086 	}
1087 	gtt->gobj = &bo->base;
1088 
1089 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1090 		caching = ttm_write_combined;
1091 	else
1092 		caching = ttm_cached;
1093 
1094 	/* allocate space for the uninitialized page entries */
1095 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1096 		kfree(gtt);
1097 		return NULL;
1098 	}
1099 	return &gtt->ttm;
1100 }
1101 
1102 /*
1103  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1104  *
1105  * Map the pages of a ttm_tt object to an address space visible
1106  * to the underlying device.
1107  */
1108 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1109 				  struct ttm_tt *ttm,
1110 				  struct ttm_operation_ctx *ctx)
1111 {
1112 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1113 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1114 	pgoff_t i;
1115 	int ret;
1116 
1117 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1118 	if (gtt->userptr) {
1119 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1120 		if (!ttm->sg)
1121 			return -ENOMEM;
1122 		return 0;
1123 	}
1124 
1125 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1126 		return 0;
1127 
1128 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1129 	if (ret)
1130 		return ret;
1131 
1132 	for (i = 0; i < ttm->num_pages; ++i)
1133 		ttm->pages[i]->mapping = bdev->dev_mapping;
1134 
1135 	return 0;
1136 }
1137 
1138 /*
1139  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1140  *
1141  * Unmaps pages of a ttm_tt object from the device address space and
1142  * unpopulates the page array backing it.
1143  */
1144 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1145 				     struct ttm_tt *ttm)
1146 {
1147 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1148 	struct amdgpu_device *adev;
1149 	pgoff_t i;
1150 
1151 	amdgpu_ttm_backend_unbind(bdev, ttm);
1152 
1153 	if (gtt->userptr) {
1154 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1155 		kfree(ttm->sg);
1156 		ttm->sg = NULL;
1157 		return;
1158 	}
1159 
1160 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1161 		return;
1162 
1163 	for (i = 0; i < ttm->num_pages; ++i)
1164 		ttm->pages[i]->mapping = NULL;
1165 
1166 	adev = amdgpu_ttm_adev(bdev);
1167 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1168 }
1169 
1170 /**
1171  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1172  * task
1173  *
1174  * @bo: The ttm_buffer_object to bind this userptr to
1175  * @addr:  The address in the current tasks VM space to use
1176  * @flags: Requirements of userptr object.
1177  *
1178  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1179  * to current task
1180  */
1181 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1182 			      uint64_t addr, uint32_t flags)
1183 {
1184 	struct amdgpu_ttm_tt *gtt;
1185 
1186 	if (!bo->ttm) {
1187 		/* TODO: We want a separate TTM object type for userptrs */
1188 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1189 		if (bo->ttm == NULL)
1190 			return -ENOMEM;
1191 	}
1192 
1193 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1194 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1195 
1196 	gtt = (void *)bo->ttm;
1197 	gtt->userptr = addr;
1198 	gtt->userflags = flags;
1199 
1200 	if (gtt->usertask)
1201 		put_task_struct(gtt->usertask);
1202 	gtt->usertask = current->group_leader;
1203 	get_task_struct(gtt->usertask);
1204 
1205 	return 0;
1206 }
1207 
1208 /*
1209  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1210  */
1211 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1212 {
1213 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1214 
1215 	if (gtt == NULL)
1216 		return NULL;
1217 
1218 	if (gtt->usertask == NULL)
1219 		return NULL;
1220 
1221 	return gtt->usertask->mm;
1222 }
1223 
1224 /*
1225  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1226  * address range for the current task.
1227  *
1228  */
1229 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1230 				  unsigned long end, unsigned long *userptr)
1231 {
1232 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1233 	unsigned long size;
1234 
1235 	if (gtt == NULL || !gtt->userptr)
1236 		return false;
1237 
1238 	/* Return false if no part of the ttm_tt object lies within
1239 	 * the range
1240 	 */
1241 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1242 	if (gtt->userptr > end || gtt->userptr + size <= start)
1243 		return false;
1244 
1245 	if (userptr)
1246 		*userptr = gtt->userptr;
1247 	return true;
1248 }
1249 
1250 /*
1251  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1252  */
1253 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1254 {
1255 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1256 
1257 	if (gtt == NULL || !gtt->userptr)
1258 		return false;
1259 
1260 	return true;
1261 }
1262 
1263 /*
1264  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1265  */
1266 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1267 {
1268 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1269 
1270 	if (gtt == NULL)
1271 		return false;
1272 
1273 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1274 }
1275 
1276 /**
1277  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1278  *
1279  * @ttm: The ttm_tt object to compute the flags for
1280  * @mem: The memory registry backing this ttm_tt object
1281  *
1282  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1283  */
1284 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1285 {
1286 	uint64_t flags = 0;
1287 
1288 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1289 		flags |= AMDGPU_PTE_VALID;
1290 
1291 	if (mem && (mem->mem_type == TTM_PL_TT ||
1292 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1293 		flags |= AMDGPU_PTE_SYSTEM;
1294 
1295 		if (ttm->caching == ttm_cached)
1296 			flags |= AMDGPU_PTE_SNOOPED;
1297 	}
1298 
1299 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1300 			mem->bus.caching == ttm_cached)
1301 		flags |= AMDGPU_PTE_SNOOPED;
1302 
1303 	return flags;
1304 }
1305 
1306 /**
1307  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1308  *
1309  * @adev: amdgpu_device pointer
1310  * @ttm: The ttm_tt object to compute the flags for
1311  * @mem: The memory registry backing this ttm_tt object
1312  *
1313  * Figure out the flags to use for a VM PTE (Page Table Entry).
1314  */
1315 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1316 				 struct ttm_resource *mem)
1317 {
1318 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1319 
1320 	flags |= adev->gart.gart_pte_flags;
1321 	flags |= AMDGPU_PTE_READABLE;
1322 
1323 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1324 		flags |= AMDGPU_PTE_WRITEABLE;
1325 
1326 	return flags;
1327 }
1328 
1329 /*
1330  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1331  * object.
1332  *
1333  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1334  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1335  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1336  * used to clean out a memory space.
1337  */
1338 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1339 					    const struct ttm_place *place)
1340 {
1341 	unsigned long num_pages = bo->resource->num_pages;
1342 	struct dma_resv_iter resv_cursor;
1343 	struct amdgpu_res_cursor cursor;
1344 	struct dma_fence *f;
1345 
1346 	/* Swapout? */
1347 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1348 		return true;
1349 
1350 	if (bo->type == ttm_bo_type_kernel &&
1351 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1352 		return false;
1353 
1354 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1355 	 * If true, then return false as any KFD process needs all its BOs to
1356 	 * be resident to run successfully
1357 	 */
1358 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv, true, f) {
1359 		if (amdkfd_fence_check_mm(f, current->mm))
1360 			return false;
1361 	}
1362 
1363 	switch (bo->resource->mem_type) {
1364 	case AMDGPU_PL_PREEMPT:
1365 		/* Preemptible BOs don't own system resources managed by the
1366 		 * driver (pages, VRAM, GART space). They point to resources
1367 		 * owned by someone else (e.g. pageable memory in user mode
1368 		 * or a DMABuf). They are used in a preemptible context so we
1369 		 * can guarantee no deadlocks and good QoS in case of MMU
1370 		 * notifiers or DMABuf move notifiers from the resource owner.
1371 		 */
1372 		return false;
1373 	case TTM_PL_TT:
1374 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1375 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1376 			return false;
1377 		return true;
1378 
1379 	case TTM_PL_VRAM:
1380 		/* Check each drm MM node individually */
1381 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1382 				 &cursor);
1383 		while (cursor.remaining) {
1384 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1385 			    && !(place->lpfn &&
1386 				 place->lpfn <= PFN_DOWN(cursor.start)))
1387 				return true;
1388 
1389 			amdgpu_res_next(&cursor, cursor.size);
1390 		}
1391 		return false;
1392 
1393 	default:
1394 		break;
1395 	}
1396 
1397 	return ttm_bo_eviction_valuable(bo, place);
1398 }
1399 
1400 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1401 				      void *buf, size_t size, bool write)
1402 {
1403 	while (size) {
1404 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1405 		uint64_t bytes = 4 - (pos & 0x3);
1406 		uint32_t shift = (pos & 0x3) * 8;
1407 		uint32_t mask = 0xffffffff << shift;
1408 		uint32_t value = 0;
1409 
1410 		if (size < bytes) {
1411 			mask &= 0xffffffff >> (bytes - size) * 8;
1412 			bytes = size;
1413 		}
1414 
1415 		if (mask != 0xffffffff) {
1416 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1417 			if (write) {
1418 				value &= ~mask;
1419 				value |= (*(uint32_t *)buf << shift) & mask;
1420 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1421 			} else {
1422 				value = (value & mask) >> shift;
1423 				memcpy(buf, &value, bytes);
1424 			}
1425 		} else {
1426 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1427 		}
1428 
1429 		pos += bytes;
1430 		buf += bytes;
1431 		size -= bytes;
1432 	}
1433 }
1434 
1435 /**
1436  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1437  *
1438  * @bo:  The buffer object to read/write
1439  * @offset:  Offset into buffer object
1440  * @buf:  Secondary buffer to write/read from
1441  * @len: Length in bytes of access
1442  * @write:  true if writing
1443  *
1444  * This is used to access VRAM that backs a buffer object via MMIO
1445  * access for debugging purposes.
1446  */
1447 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1448 				    unsigned long offset, void *buf, int len,
1449 				    int write)
1450 {
1451 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1452 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1453 	struct amdgpu_res_cursor cursor;
1454 	int ret = 0;
1455 
1456 	if (bo->resource->mem_type != TTM_PL_VRAM)
1457 		return -EIO;
1458 
1459 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1460 	while (cursor.remaining) {
1461 		size_t count, size = cursor.size;
1462 		loff_t pos = cursor.start;
1463 
1464 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1465 		size -= count;
1466 		if (size) {
1467 			/* using MM to access rest vram and handle un-aligned address */
1468 			pos += count;
1469 			buf += count;
1470 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1471 		}
1472 
1473 		ret += cursor.size;
1474 		buf += cursor.size;
1475 		amdgpu_res_next(&cursor, cursor.size);
1476 	}
1477 
1478 	return ret;
1479 }
1480 
1481 static void
1482 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1483 {
1484 	amdgpu_bo_move_notify(bo, false, NULL);
1485 }
1486 
1487 static struct ttm_device_funcs amdgpu_bo_driver = {
1488 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1489 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1490 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1491 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1492 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1493 	.evict_flags = &amdgpu_evict_flags,
1494 	.move = &amdgpu_bo_move,
1495 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1496 	.release_notify = &amdgpu_bo_release_notify,
1497 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1498 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1499 	.access_memory = &amdgpu_ttm_access_memory,
1500 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1501 };
1502 
1503 /*
1504  * Firmware Reservation functions
1505  */
1506 /**
1507  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1508  *
1509  * @adev: amdgpu_device pointer
1510  *
1511  * free fw reserved vram if it has been reserved.
1512  */
1513 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1514 {
1515 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1516 		NULL, &adev->mman.fw_vram_usage_va);
1517 }
1518 
1519 /**
1520  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1521  *
1522  * @adev: amdgpu_device pointer
1523  *
1524  * create bo vram reservation from fw.
1525  */
1526 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1527 {
1528 	uint64_t vram_size = adev->gmc.visible_vram_size;
1529 
1530 	adev->mman.fw_vram_usage_va = NULL;
1531 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1532 
1533 	if (adev->mman.fw_vram_usage_size == 0 ||
1534 	    adev->mman.fw_vram_usage_size > vram_size)
1535 		return 0;
1536 
1537 	return amdgpu_bo_create_kernel_at(adev,
1538 					  adev->mman.fw_vram_usage_start_offset,
1539 					  adev->mman.fw_vram_usage_size,
1540 					  AMDGPU_GEM_DOMAIN_VRAM,
1541 					  &adev->mman.fw_vram_usage_reserved_bo,
1542 					  &adev->mman.fw_vram_usage_va);
1543 }
1544 
1545 /*
1546  * Memoy training reservation functions
1547  */
1548 
1549 /**
1550  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1551  *
1552  * @adev: amdgpu_device pointer
1553  *
1554  * free memory training reserved vram if it has been reserved.
1555  */
1556 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1557 {
1558 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1559 
1560 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1561 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1562 	ctx->c2p_bo = NULL;
1563 
1564 	return 0;
1565 }
1566 
1567 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1568 {
1569 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1570 
1571 	memset(ctx, 0, sizeof(*ctx));
1572 
1573 	ctx->c2p_train_data_offset =
1574 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1575 	ctx->p2c_train_data_offset =
1576 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1577 	ctx->train_data_size =
1578 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1579 
1580 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1581 			ctx->train_data_size,
1582 			ctx->p2c_train_data_offset,
1583 			ctx->c2p_train_data_offset);
1584 }
1585 
1586 /*
1587  * reserve TMR memory at the top of VRAM which holds
1588  * IP Discovery data and is protected by PSP.
1589  */
1590 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1591 {
1592 	int ret;
1593 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1594 	bool mem_train_support = false;
1595 
1596 	if (!amdgpu_sriov_vf(adev)) {
1597 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1598 			mem_train_support = true;
1599 		else
1600 			DRM_DEBUG("memory training does not support!\n");
1601 	}
1602 
1603 	/*
1604 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1605 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1606 	 *
1607 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1608 	 * discovery data and G6 memory training data respectively
1609 	 */
1610 	adev->mman.discovery_tmr_size =
1611 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1612 	if (!adev->mman.discovery_tmr_size)
1613 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1614 
1615 	if (mem_train_support) {
1616 		/* reserve vram for mem train according to TMR location */
1617 		amdgpu_ttm_training_data_block_init(adev);
1618 		ret = amdgpu_bo_create_kernel_at(adev,
1619 					 ctx->c2p_train_data_offset,
1620 					 ctx->train_data_size,
1621 					 AMDGPU_GEM_DOMAIN_VRAM,
1622 					 &ctx->c2p_bo,
1623 					 NULL);
1624 		if (ret) {
1625 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1626 			amdgpu_ttm_training_reserve_vram_fini(adev);
1627 			return ret;
1628 		}
1629 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1630 	}
1631 
1632 	ret = amdgpu_bo_create_kernel_at(adev,
1633 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1634 				adev->mman.discovery_tmr_size,
1635 				AMDGPU_GEM_DOMAIN_VRAM,
1636 				&adev->mman.discovery_memory,
1637 				NULL);
1638 	if (ret) {
1639 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1640 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1641 		return ret;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 /*
1648  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1649  * gtt/vram related fields.
1650  *
1651  * This initializes all of the memory space pools that the TTM layer
1652  * will need such as the GTT space (system memory mapped to the device),
1653  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1654  * can be mapped per VMID.
1655  */
1656 int amdgpu_ttm_init(struct amdgpu_device *adev)
1657 {
1658 	uint64_t gtt_size;
1659 	int r;
1660 	u64 vis_vram_limit;
1661 
1662 	mutex_init(&adev->mman.gtt_window_lock);
1663 
1664 	/* No others user of address space so set it to 0 */
1665 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1666 			       adev_to_drm(adev)->anon_inode->i_mapping,
1667 			       adev_to_drm(adev)->vma_offset_manager,
1668 			       adev->need_swiotlb,
1669 			       dma_addressing_limited(adev->dev));
1670 	if (r) {
1671 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1672 		return r;
1673 	}
1674 	adev->mman.initialized = true;
1675 
1676 	/* Initialize VRAM pool with all of VRAM divided into pages */
1677 	r = amdgpu_vram_mgr_init(adev);
1678 	if (r) {
1679 		DRM_ERROR("Failed initializing VRAM heap.\n");
1680 		return r;
1681 	}
1682 
1683 	/* Reduce size of CPU-visible VRAM if requested */
1684 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1685 	if (amdgpu_vis_vram_limit > 0 &&
1686 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1687 		adev->gmc.visible_vram_size = vis_vram_limit;
1688 
1689 	/* Change the size here instead of the init above so only lpfn is affected */
1690 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1691 #ifdef CONFIG_64BIT
1692 #ifdef CONFIG_X86
1693 	if (adev->gmc.xgmi.connected_to_cpu)
1694 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1695 				adev->gmc.visible_vram_size);
1696 
1697 	else
1698 #endif
1699 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1700 				adev->gmc.visible_vram_size);
1701 #endif
1702 
1703 	/*
1704 	 *The reserved vram for firmware must be pinned to the specified
1705 	 *place on the VRAM, so reserve it early.
1706 	 */
1707 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1708 	if (r) {
1709 		return r;
1710 	}
1711 
1712 	/*
1713 	 * only NAVI10 and onwards ASIC support for IP discovery.
1714 	 * If IP discovery enabled, a block of memory should be
1715 	 * reserved for IP discovey.
1716 	 */
1717 	if (adev->mman.discovery_bin) {
1718 		r = amdgpu_ttm_reserve_tmr(adev);
1719 		if (r)
1720 			return r;
1721 	}
1722 
1723 	/* allocate memory as required for VGA
1724 	 * This is used for VGA emulation and pre-OS scanout buffers to
1725 	 * avoid display artifacts while transitioning between pre-OS
1726 	 * and driver.  */
1727 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1728 				       AMDGPU_GEM_DOMAIN_VRAM,
1729 				       &adev->mman.stolen_vga_memory,
1730 				       NULL);
1731 	if (r)
1732 		return r;
1733 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1734 				       adev->mman.stolen_extended_size,
1735 				       AMDGPU_GEM_DOMAIN_VRAM,
1736 				       &adev->mman.stolen_extended_memory,
1737 				       NULL);
1738 	if (r)
1739 		return r;
1740 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1741 				       adev->mman.stolen_reserved_size,
1742 				       AMDGPU_GEM_DOMAIN_VRAM,
1743 				       &adev->mman.stolen_reserved_memory,
1744 				       NULL);
1745 	if (r)
1746 		return r;
1747 
1748 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1749 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1750 
1751 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1752 	 * or whatever the user passed on module init */
1753 	if (amdgpu_gtt_size == -1) {
1754 		struct sysinfo si;
1755 
1756 		si_meminfo(&si);
1757 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1758 			       adev->gmc.mc_vram_size),
1759 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1760 	}
1761 	else
1762 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1763 
1764 	/* Initialize GTT memory pool */
1765 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1766 	if (r) {
1767 		DRM_ERROR("Failed initializing GTT heap.\n");
1768 		return r;
1769 	}
1770 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1771 		 (unsigned)(gtt_size / (1024 * 1024)));
1772 
1773 	/* Initialize preemptible memory pool */
1774 	r = amdgpu_preempt_mgr_init(adev);
1775 	if (r) {
1776 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1777 		return r;
1778 	}
1779 
1780 	/* Initialize various on-chip memory pools */
1781 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1782 	if (r) {
1783 		DRM_ERROR("Failed initializing GDS heap.\n");
1784 		return r;
1785 	}
1786 
1787 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1788 	if (r) {
1789 		DRM_ERROR("Failed initializing gws heap.\n");
1790 		return r;
1791 	}
1792 
1793 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1794 	if (r) {
1795 		DRM_ERROR("Failed initializing oa heap.\n");
1796 		return r;
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 /*
1803  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1804  */
1805 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1806 {
1807 	if (!adev->mman.initialized)
1808 		return;
1809 
1810 	amdgpu_ttm_training_reserve_vram_fini(adev);
1811 	/* return the stolen vga memory back to VRAM */
1812 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1813 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1814 	/* return the IP Discovery TMR memory back to VRAM */
1815 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1816 	if (adev->mman.stolen_reserved_size)
1817 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1818 				      NULL, NULL);
1819 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1820 
1821 	amdgpu_vram_mgr_fini(adev);
1822 	amdgpu_gtt_mgr_fini(adev);
1823 	amdgpu_preempt_mgr_fini(adev);
1824 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1825 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1826 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1827 	ttm_device_fini(&adev->mman.bdev);
1828 	adev->mman.initialized = false;
1829 	DRM_INFO("amdgpu: ttm finalized\n");
1830 }
1831 
1832 /**
1833  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1834  *
1835  * @adev: amdgpu_device pointer
1836  * @enable: true when we can use buffer functions.
1837  *
1838  * Enable/disable use of buffer functions during suspend/resume. This should
1839  * only be called at bootup or when userspace isn't running.
1840  */
1841 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1842 {
1843 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1844 	uint64_t size;
1845 	int r;
1846 
1847 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1848 	    adev->mman.buffer_funcs_enabled == enable)
1849 		return;
1850 
1851 	if (enable) {
1852 		struct amdgpu_ring *ring;
1853 		struct drm_gpu_scheduler *sched;
1854 
1855 		ring = adev->mman.buffer_funcs_ring;
1856 		sched = &ring->sched;
1857 		r = drm_sched_entity_init(&adev->mman.entity,
1858 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1859 					  1, NULL);
1860 		if (r) {
1861 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1862 				  r);
1863 			return;
1864 		}
1865 	} else {
1866 		drm_sched_entity_destroy(&adev->mman.entity);
1867 		dma_fence_put(man->move);
1868 		man->move = NULL;
1869 	}
1870 
1871 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1872 	if (enable)
1873 		size = adev->gmc.real_vram_size;
1874 	else
1875 		size = adev->gmc.visible_vram_size;
1876 	man->size = size >> PAGE_SHIFT;
1877 	adev->mman.buffer_funcs_enabled = enable;
1878 }
1879 
1880 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1881 		       uint64_t dst_offset, uint32_t byte_count,
1882 		       struct dma_resv *resv,
1883 		       struct dma_fence **fence, bool direct_submit,
1884 		       bool vm_needs_flush, bool tmz)
1885 {
1886 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1887 		AMDGPU_IB_POOL_DELAYED;
1888 	struct amdgpu_device *adev = ring->adev;
1889 	struct amdgpu_job *job;
1890 
1891 	uint32_t max_bytes;
1892 	unsigned num_loops, num_dw;
1893 	unsigned i;
1894 	int r;
1895 
1896 	if (direct_submit && !ring->sched.ready) {
1897 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1898 		return -EINVAL;
1899 	}
1900 
1901 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1902 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1903 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1904 
1905 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1906 	if (r)
1907 		return r;
1908 
1909 	if (vm_needs_flush) {
1910 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1911 					adev->gmc.pdb0_bo : adev->gart.bo);
1912 		job->vm_needs_flush = true;
1913 	}
1914 	if (resv) {
1915 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1916 				     AMDGPU_SYNC_ALWAYS,
1917 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1918 		if (r) {
1919 			DRM_ERROR("sync failed (%d).\n", r);
1920 			goto error_free;
1921 		}
1922 	}
1923 
1924 	for (i = 0; i < num_loops; i++) {
1925 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1926 
1927 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1928 					dst_offset, cur_size_in_bytes, tmz);
1929 
1930 		src_offset += cur_size_in_bytes;
1931 		dst_offset += cur_size_in_bytes;
1932 		byte_count -= cur_size_in_bytes;
1933 	}
1934 
1935 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1936 	WARN_ON(job->ibs[0].length_dw > num_dw);
1937 	if (direct_submit)
1938 		r = amdgpu_job_submit_direct(job, ring, fence);
1939 	else
1940 		r = amdgpu_job_submit(job, &adev->mman.entity,
1941 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1942 	if (r)
1943 		goto error_free;
1944 
1945 	return r;
1946 
1947 error_free:
1948 	amdgpu_job_free(job);
1949 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1950 	return r;
1951 }
1952 
1953 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1954 		       uint32_t src_data,
1955 		       struct dma_resv *resv,
1956 		       struct dma_fence **fence)
1957 {
1958 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1959 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1960 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1961 
1962 	struct amdgpu_res_cursor cursor;
1963 	unsigned int num_loops, num_dw;
1964 	uint64_t num_bytes;
1965 
1966 	struct amdgpu_job *job;
1967 	int r;
1968 
1969 	if (!adev->mman.buffer_funcs_enabled) {
1970 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1971 		return -EINVAL;
1972 	}
1973 
1974 	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1975 		DRM_ERROR("Trying to clear preemptible memory.\n");
1976 		return -EINVAL;
1977 	}
1978 
1979 	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1980 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1981 		if (r)
1982 			return r;
1983 	}
1984 
1985 	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1986 	num_loops = 0;
1987 
1988 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1989 	while (cursor.remaining) {
1990 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1991 		amdgpu_res_next(&cursor, cursor.size);
1992 	}
1993 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1994 
1995 	/* for IB padding */
1996 	num_dw += 64;
1997 
1998 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1999 				     &job);
2000 	if (r)
2001 		return r;
2002 
2003 	if (resv) {
2004 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2005 				     AMDGPU_SYNC_ALWAYS,
2006 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2007 		if (r) {
2008 			DRM_ERROR("sync failed (%d).\n", r);
2009 			goto error_free;
2010 		}
2011 	}
2012 
2013 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2014 	while (cursor.remaining) {
2015 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2016 		uint64_t dst_addr = cursor.start;
2017 
2018 		dst_addr += amdgpu_ttm_domain_start(adev,
2019 						    bo->tbo.resource->mem_type);
2020 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2021 					cur_size);
2022 
2023 		amdgpu_res_next(&cursor, cur_size);
2024 	}
2025 
2026 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2027 	WARN_ON(job->ibs[0].length_dw > num_dw);
2028 	r = amdgpu_job_submit(job, &adev->mman.entity,
2029 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2030 	if (r)
2031 		goto error_free;
2032 
2033 	return 0;
2034 
2035 error_free:
2036 	amdgpu_job_free(job);
2037 	return r;
2038 }
2039 
2040 /**
2041  * amdgpu_ttm_evict_resources - evict memory buffers
2042  * @adev: amdgpu device object
2043  * @mem_type: evicted BO's memory type
2044  *
2045  * Evicts all @mem_type buffers on the lru list of the memory type.
2046  *
2047  * Returns:
2048  * 0 for success or a negative error code on failure.
2049  */
2050 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2051 {
2052 	struct ttm_resource_manager *man;
2053 
2054 	switch (mem_type) {
2055 	case TTM_PL_VRAM:
2056 	case TTM_PL_TT:
2057 	case AMDGPU_PL_GWS:
2058 	case AMDGPU_PL_GDS:
2059 	case AMDGPU_PL_OA:
2060 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2061 		break;
2062 	default:
2063 		DRM_ERROR("Trying to evict invalid memory type\n");
2064 		return -EINVAL;
2065 	}
2066 
2067 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2068 }
2069 
2070 #if defined(CONFIG_DEBUG_FS)
2071 
2072 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2073 {
2074 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2075 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2076 							    TTM_PL_VRAM);
2077 	struct drm_printer p = drm_seq_file_printer(m);
2078 
2079 	ttm_resource_manager_debug(man, &p);
2080 	return 0;
2081 }
2082 
2083 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2084 {
2085 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2086 
2087 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2088 }
2089 
2090 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2091 {
2092 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2093 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2094 							    TTM_PL_TT);
2095 	struct drm_printer p = drm_seq_file_printer(m);
2096 
2097 	ttm_resource_manager_debug(man, &p);
2098 	return 0;
2099 }
2100 
2101 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2102 {
2103 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2104 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2105 							    AMDGPU_PL_GDS);
2106 	struct drm_printer p = drm_seq_file_printer(m);
2107 
2108 	ttm_resource_manager_debug(man, &p);
2109 	return 0;
2110 }
2111 
2112 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2113 {
2114 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2115 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2116 							    AMDGPU_PL_GWS);
2117 	struct drm_printer p = drm_seq_file_printer(m);
2118 
2119 	ttm_resource_manager_debug(man, &p);
2120 	return 0;
2121 }
2122 
2123 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2124 {
2125 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2126 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2127 							    AMDGPU_PL_OA);
2128 	struct drm_printer p = drm_seq_file_printer(m);
2129 
2130 	ttm_resource_manager_debug(man, &p);
2131 	return 0;
2132 }
2133 
2134 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2135 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2136 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2137 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2138 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2139 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2140 
2141 /*
2142  * amdgpu_ttm_vram_read - Linear read access to VRAM
2143  *
2144  * Accesses VRAM via MMIO for debugging purposes.
2145  */
2146 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2147 				    size_t size, loff_t *pos)
2148 {
2149 	struct amdgpu_device *adev = file_inode(f)->i_private;
2150 	ssize_t result = 0;
2151 
2152 	if (size & 0x3 || *pos & 0x3)
2153 		return -EINVAL;
2154 
2155 	if (*pos >= adev->gmc.mc_vram_size)
2156 		return -ENXIO;
2157 
2158 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2159 	while (size) {
2160 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2161 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2162 
2163 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2164 		if (copy_to_user(buf, value, bytes))
2165 			return -EFAULT;
2166 
2167 		result += bytes;
2168 		buf += bytes;
2169 		*pos += bytes;
2170 		size -= bytes;
2171 	}
2172 
2173 	return result;
2174 }
2175 
2176 /*
2177  * amdgpu_ttm_vram_write - Linear write access to VRAM
2178  *
2179  * Accesses VRAM via MMIO for debugging purposes.
2180  */
2181 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2182 				    size_t size, loff_t *pos)
2183 {
2184 	struct amdgpu_device *adev = file_inode(f)->i_private;
2185 	ssize_t result = 0;
2186 	int r;
2187 
2188 	if (size & 0x3 || *pos & 0x3)
2189 		return -EINVAL;
2190 
2191 	if (*pos >= adev->gmc.mc_vram_size)
2192 		return -ENXIO;
2193 
2194 	while (size) {
2195 		uint32_t value;
2196 
2197 		if (*pos >= adev->gmc.mc_vram_size)
2198 			return result;
2199 
2200 		r = get_user(value, (uint32_t *)buf);
2201 		if (r)
2202 			return r;
2203 
2204 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2205 
2206 		result += 4;
2207 		buf += 4;
2208 		*pos += 4;
2209 		size -= 4;
2210 	}
2211 
2212 	return result;
2213 }
2214 
2215 static const struct file_operations amdgpu_ttm_vram_fops = {
2216 	.owner = THIS_MODULE,
2217 	.read = amdgpu_ttm_vram_read,
2218 	.write = amdgpu_ttm_vram_write,
2219 	.llseek = default_llseek,
2220 };
2221 
2222 /*
2223  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2224  *
2225  * This function is used to read memory that has been mapped to the
2226  * GPU and the known addresses are not physical addresses but instead
2227  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2228  */
2229 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2230 				 size_t size, loff_t *pos)
2231 {
2232 	struct amdgpu_device *adev = file_inode(f)->i_private;
2233 	struct iommu_domain *dom;
2234 	ssize_t result = 0;
2235 	int r;
2236 
2237 	/* retrieve the IOMMU domain if any for this device */
2238 	dom = iommu_get_domain_for_dev(adev->dev);
2239 
2240 	while (size) {
2241 		phys_addr_t addr = *pos & PAGE_MASK;
2242 		loff_t off = *pos & ~PAGE_MASK;
2243 		size_t bytes = PAGE_SIZE - off;
2244 		unsigned long pfn;
2245 		struct page *p;
2246 		void *ptr;
2247 
2248 		bytes = bytes < size ? bytes : size;
2249 
2250 		/* Translate the bus address to a physical address.  If
2251 		 * the domain is NULL it means there is no IOMMU active
2252 		 * and the address translation is the identity
2253 		 */
2254 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2255 
2256 		pfn = addr >> PAGE_SHIFT;
2257 		if (!pfn_valid(pfn))
2258 			return -EPERM;
2259 
2260 		p = pfn_to_page(pfn);
2261 		if (p->mapping != adev->mman.bdev.dev_mapping)
2262 			return -EPERM;
2263 
2264 		ptr = kmap(p);
2265 		r = copy_to_user(buf, ptr + off, bytes);
2266 		kunmap(p);
2267 		if (r)
2268 			return -EFAULT;
2269 
2270 		size -= bytes;
2271 		*pos += bytes;
2272 		result += bytes;
2273 	}
2274 
2275 	return result;
2276 }
2277 
2278 /*
2279  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2280  *
2281  * This function is used to write memory that has been mapped to the
2282  * GPU and the known addresses are not physical addresses but instead
2283  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2284  */
2285 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2286 				 size_t size, loff_t *pos)
2287 {
2288 	struct amdgpu_device *adev = file_inode(f)->i_private;
2289 	struct iommu_domain *dom;
2290 	ssize_t result = 0;
2291 	int r;
2292 
2293 	dom = iommu_get_domain_for_dev(adev->dev);
2294 
2295 	while (size) {
2296 		phys_addr_t addr = *pos & PAGE_MASK;
2297 		loff_t off = *pos & ~PAGE_MASK;
2298 		size_t bytes = PAGE_SIZE - off;
2299 		unsigned long pfn;
2300 		struct page *p;
2301 		void *ptr;
2302 
2303 		bytes = bytes < size ? bytes : size;
2304 
2305 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2306 
2307 		pfn = addr >> PAGE_SHIFT;
2308 		if (!pfn_valid(pfn))
2309 			return -EPERM;
2310 
2311 		p = pfn_to_page(pfn);
2312 		if (p->mapping != adev->mman.bdev.dev_mapping)
2313 			return -EPERM;
2314 
2315 		ptr = kmap(p);
2316 		r = copy_from_user(ptr + off, buf, bytes);
2317 		kunmap(p);
2318 		if (r)
2319 			return -EFAULT;
2320 
2321 		size -= bytes;
2322 		*pos += bytes;
2323 		result += bytes;
2324 	}
2325 
2326 	return result;
2327 }
2328 
2329 static const struct file_operations amdgpu_ttm_iomem_fops = {
2330 	.owner = THIS_MODULE,
2331 	.read = amdgpu_iomem_read,
2332 	.write = amdgpu_iomem_write,
2333 	.llseek = default_llseek
2334 };
2335 
2336 #endif
2337 
2338 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2339 {
2340 #if defined(CONFIG_DEBUG_FS)
2341 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2342 	struct dentry *root = minor->debugfs_root;
2343 
2344 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2345 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2346 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2347 			    &amdgpu_ttm_iomem_fops);
2348 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2349 			    &amdgpu_mm_vram_table_fops);
2350 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2351 			    &amdgpu_mm_tt_table_fops);
2352 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2353 			    &amdgpu_mm_gds_table_fops);
2354 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2355 			    &amdgpu_mm_gws_table_fops);
2356 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2357 			    &amdgpu_mm_oa_table_fops);
2358 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2359 			    &amdgpu_ttm_page_pool_fops);
2360 #endif
2361 }
2362