1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 #include <linux/sizes.h> 44 #include <linux/module.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_range_manager.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_atomfirmware.h" 60 #include "amdgpu_res_cursor.h" 61 #include "bif/bif_4_1_d.h" 62 63 MODULE_IMPORT_NS(DMA_BUF); 64 65 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 66 67 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 68 struct ttm_tt *ttm, 69 struct ttm_resource *bo_mem); 70 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 71 struct ttm_tt *ttm); 72 73 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 74 unsigned int type, 75 uint64_t size_in_page) 76 { 77 return ttm_range_man_init(&adev->mman.bdev, type, 78 false, size_in_page); 79 } 80 81 /** 82 * amdgpu_evict_flags - Compute placement flags 83 * 84 * @bo: The buffer object to evict 85 * @placement: Possible destination(s) for evicted BO 86 * 87 * Fill in placement data when ttm_bo_evict() is called 88 */ 89 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 90 struct ttm_placement *placement) 91 { 92 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 93 struct amdgpu_bo *abo; 94 static const struct ttm_place placements = { 95 .fpfn = 0, 96 .lpfn = 0, 97 .mem_type = TTM_PL_SYSTEM, 98 .flags = 0 99 }; 100 101 /* Don't handle scatter gather BOs */ 102 if (bo->type == ttm_bo_type_sg) { 103 placement->num_placement = 0; 104 placement->num_busy_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->busy_placement = &placements; 112 placement->num_placement = 1; 113 placement->num_busy_placement = 1; 114 return; 115 } 116 117 abo = ttm_to_amdgpu_bo(bo); 118 if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) { 119 placement->num_placement = 0; 120 placement->num_busy_placement = 0; 121 return; 122 } 123 124 switch (bo->resource->mem_type) { 125 case AMDGPU_PL_GDS: 126 case AMDGPU_PL_GWS: 127 case AMDGPU_PL_OA: 128 placement->num_placement = 0; 129 placement->num_busy_placement = 0; 130 return; 131 132 case TTM_PL_VRAM: 133 if (!adev->mman.buffer_funcs_enabled) { 134 /* Move to system memory */ 135 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 136 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 137 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 138 amdgpu_bo_in_cpu_visible_vram(abo)) { 139 140 /* Try evicting to the CPU inaccessible part of VRAM 141 * first, but only set GTT as busy placement, so this 142 * BO will be evicted to GTT rather than causing other 143 * BOs to be evicted from VRAM 144 */ 145 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 146 AMDGPU_GEM_DOMAIN_GTT | 147 AMDGPU_GEM_DOMAIN_CPU); 148 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 149 abo->placements[0].lpfn = 0; 150 abo->placement.busy_placement = &abo->placements[1]; 151 abo->placement.num_busy_placement = 1; 152 } else { 153 /* Move to GTT memory */ 154 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 155 AMDGPU_GEM_DOMAIN_CPU); 156 } 157 break; 158 case TTM_PL_TT: 159 case AMDGPU_PL_PREEMPT: 160 default: 161 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 162 break; 163 } 164 *placement = abo->placement; 165 } 166 167 /** 168 * amdgpu_ttm_map_buffer - Map memory into the GART windows 169 * @bo: buffer object to map 170 * @mem: memory object to map 171 * @mm_cur: range to map 172 * @num_pages: number of pages to map 173 * @window: which GART window to use 174 * @ring: DMA ring to use for the copy 175 * @tmz: if we should setup a TMZ enabled mapping 176 * @addr: resulting address inside the MC address space 177 * 178 * Setup one of the GART windows to access a specific piece of memory or return 179 * the physical address for local memory. 180 */ 181 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 182 struct ttm_resource *mem, 183 struct amdgpu_res_cursor *mm_cur, 184 unsigned num_pages, unsigned window, 185 struct amdgpu_ring *ring, bool tmz, 186 uint64_t *addr) 187 { 188 struct amdgpu_device *adev = ring->adev; 189 struct amdgpu_job *job; 190 unsigned num_dw, num_bytes; 191 struct dma_fence *fence; 192 uint64_t src_addr, dst_addr; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT); 201 202 /* Map only what can't be accessed directly */ 203 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 204 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 205 mm_cur->start; 206 return 0; 207 } 208 209 *addr = adev->gmc.gart_start; 210 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 211 AMDGPU_GPU_PAGE_SIZE; 212 *addr += mm_cur->start & ~PAGE_MASK; 213 214 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 215 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 216 217 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 218 AMDGPU_IB_POOL_DELAYED, &job); 219 if (r) 220 return r; 221 222 src_addr = num_dw * 4; 223 src_addr += job->ibs[0].gpu_addr; 224 225 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 226 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 227 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 228 dst_addr, num_bytes, false); 229 230 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 231 WARN_ON(job->ibs[0].length_dw > num_dw); 232 233 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 234 if (tmz) 235 flags |= AMDGPU_PTE_TMZ; 236 237 cpu_addr = &job->ibs[0].ptr[num_dw]; 238 239 if (mem->mem_type == TTM_PL_TT) { 240 dma_addr_t *dma_addr; 241 242 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 243 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, 244 cpu_addr); 245 if (r) 246 goto error_free; 247 } else { 248 dma_addr_t dma_address; 249 250 dma_address = mm_cur->start; 251 dma_address += adev->vm_manager.vram_base_offset; 252 253 for (i = 0; i < num_pages; ++i) { 254 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, 255 &dma_address, flags, cpu_addr); 256 if (r) 257 goto error_free; 258 259 dma_address += PAGE_SIZE; 260 } 261 } 262 263 r = amdgpu_job_submit(job, &adev->mman.entity, 264 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 265 if (r) 266 goto error_free; 267 268 dma_fence_put(fence); 269 270 return r; 271 272 error_free: 273 amdgpu_job_free(job); 274 return r; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 300 AMDGPU_GPU_PAGE_SIZE); 301 302 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 303 struct amdgpu_res_cursor src_mm, dst_mm; 304 struct dma_fence *fence = NULL; 305 int r = 0; 306 307 if (!adev->mman.buffer_funcs_enabled) { 308 DRM_ERROR("Trying to move memory with ring turned off.\n"); 309 return -EINVAL; 310 } 311 312 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 313 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 314 315 mutex_lock(&adev->mman.gtt_window_lock); 316 while (src_mm.remaining) { 317 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK; 318 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK; 319 struct dma_fence *next; 320 uint32_t cur_size; 321 uint64_t from, to; 322 323 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 324 * begins at an offset, then adjust the size accordingly 325 */ 326 cur_size = max(src_page_offset, dst_page_offset); 327 cur_size = min(min3(src_mm.size, dst_mm.size, size), 328 (uint64_t)(GTT_MAX_BYTES - cur_size)); 329 330 /* Map src to window 0 and dst to window 1. */ 331 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 332 PFN_UP(cur_size + src_page_offset), 333 0, ring, tmz, &from); 334 if (r) 335 goto error; 336 337 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 338 PFN_UP(cur_size + dst_page_offset), 339 1, ring, tmz, &to); 340 if (r) 341 goto error; 342 343 r = amdgpu_copy_buffer(ring, from, to, cur_size, 344 resv, &next, false, true, tmz); 345 if (r) 346 goto error; 347 348 dma_fence_put(fence); 349 fence = next; 350 351 amdgpu_res_next(&src_mm, cur_size); 352 amdgpu_res_next(&dst_mm, cur_size); 353 } 354 error: 355 mutex_unlock(&adev->mman.gtt_window_lock); 356 if (f) 357 *f = dma_fence_get(fence); 358 dma_fence_put(fence); 359 return r; 360 } 361 362 /* 363 * amdgpu_move_blit - Copy an entire buffer to another buffer 364 * 365 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 366 * help move buffers to and from VRAM. 367 */ 368 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 369 bool evict, 370 struct ttm_resource *new_mem, 371 struct ttm_resource *old_mem) 372 { 373 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 374 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 375 struct amdgpu_copy_mem src, dst; 376 struct dma_fence *fence = NULL; 377 int r; 378 379 src.bo = bo; 380 dst.bo = bo; 381 src.mem = old_mem; 382 dst.mem = new_mem; 383 src.offset = 0; 384 dst.offset = 0; 385 386 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 387 new_mem->num_pages << PAGE_SHIFT, 388 amdgpu_bo_encrypted(abo), 389 bo->base.resv, &fence); 390 if (r) 391 goto error; 392 393 /* clear the space being freed */ 394 if (old_mem->mem_type == TTM_PL_VRAM && 395 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 396 struct dma_fence *wipe_fence = NULL; 397 398 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 399 NULL, &wipe_fence); 400 if (r) { 401 goto error; 402 } else if (wipe_fence) { 403 dma_fence_put(fence); 404 fence = wipe_fence; 405 } 406 } 407 408 /* Always block for VM page tables before committing the new location */ 409 if (bo->type == ttm_bo_type_kernel) 410 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 411 else 412 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 413 dma_fence_put(fence); 414 return r; 415 416 error: 417 if (fence) 418 dma_fence_wait(fence, false); 419 dma_fence_put(fence); 420 return r; 421 } 422 423 /* 424 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 425 * 426 * Called by amdgpu_bo_move() 427 */ 428 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 429 struct ttm_resource *mem) 430 { 431 uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT; 432 struct amdgpu_res_cursor cursor; 433 434 if (mem->mem_type == TTM_PL_SYSTEM || 435 mem->mem_type == TTM_PL_TT) 436 return true; 437 if (mem->mem_type != TTM_PL_VRAM) 438 return false; 439 440 amdgpu_res_first(mem, 0, mem_size, &cursor); 441 442 /* ttm_resource_ioremap only supports contiguous memory */ 443 if (cursor.size != mem_size) 444 return false; 445 446 return cursor.start + cursor.size <= adev->gmc.visible_vram_size; 447 } 448 449 /* 450 * amdgpu_bo_move - Move a buffer object to a new memory location 451 * 452 * Called by ttm_bo_handle_move_mem() 453 */ 454 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 455 struct ttm_operation_ctx *ctx, 456 struct ttm_resource *new_mem, 457 struct ttm_place *hop) 458 { 459 struct amdgpu_device *adev; 460 struct amdgpu_bo *abo; 461 struct ttm_resource *old_mem = bo->resource; 462 int r; 463 464 if (new_mem->mem_type == TTM_PL_TT || 465 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 466 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 467 if (r) 468 return r; 469 } 470 471 /* Can't move a pinned BO */ 472 abo = ttm_to_amdgpu_bo(bo); 473 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 474 return -EINVAL; 475 476 adev = amdgpu_ttm_adev(bo->bdev); 477 478 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 479 ttm_bo_move_null(bo, new_mem); 480 goto out; 481 } 482 if (old_mem->mem_type == TTM_PL_SYSTEM && 483 (new_mem->mem_type == TTM_PL_TT || 484 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 485 ttm_bo_move_null(bo, new_mem); 486 goto out; 487 } 488 if ((old_mem->mem_type == TTM_PL_TT || 489 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 490 new_mem->mem_type == TTM_PL_SYSTEM) { 491 r = ttm_bo_wait_ctx(bo, ctx); 492 if (r) 493 return r; 494 495 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 496 ttm_resource_free(bo, &bo->resource); 497 ttm_bo_assign_mem(bo, new_mem); 498 goto out; 499 } 500 501 if (old_mem->mem_type == AMDGPU_PL_GDS || 502 old_mem->mem_type == AMDGPU_PL_GWS || 503 old_mem->mem_type == AMDGPU_PL_OA || 504 new_mem->mem_type == AMDGPU_PL_GDS || 505 new_mem->mem_type == AMDGPU_PL_GWS || 506 new_mem->mem_type == AMDGPU_PL_OA) { 507 /* Nothing to save here */ 508 ttm_bo_move_null(bo, new_mem); 509 goto out; 510 } 511 512 if (bo->type == ttm_bo_type_device && 513 new_mem->mem_type == TTM_PL_VRAM && 514 old_mem->mem_type != TTM_PL_VRAM) { 515 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 516 * accesses the BO after it's moved. 517 */ 518 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 519 } 520 521 if (adev->mman.buffer_funcs_enabled) { 522 if (((old_mem->mem_type == TTM_PL_SYSTEM && 523 new_mem->mem_type == TTM_PL_VRAM) || 524 (old_mem->mem_type == TTM_PL_VRAM && 525 new_mem->mem_type == TTM_PL_SYSTEM))) { 526 hop->fpfn = 0; 527 hop->lpfn = 0; 528 hop->mem_type = TTM_PL_TT; 529 hop->flags = TTM_PL_FLAG_TEMPORARY; 530 return -EMULTIHOP; 531 } 532 533 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 534 } else { 535 r = -ENODEV; 536 } 537 538 if (r) { 539 /* Check that all memory is CPU accessible */ 540 if (!amdgpu_mem_visible(adev, old_mem) || 541 !amdgpu_mem_visible(adev, new_mem)) { 542 pr_err("Move buffer fallback to memcpy unavailable\n"); 543 return r; 544 } 545 546 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 547 if (r) 548 return r; 549 } 550 551 out: 552 /* update statistics */ 553 atomic64_add(bo->base.size, &adev->num_bytes_moved); 554 amdgpu_bo_move_notify(bo, evict, new_mem); 555 return 0; 556 } 557 558 /* 559 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 560 * 561 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 562 */ 563 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 564 struct ttm_resource *mem) 565 { 566 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 567 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 568 569 switch (mem->mem_type) { 570 case TTM_PL_SYSTEM: 571 /* system memory */ 572 return 0; 573 case TTM_PL_TT: 574 case AMDGPU_PL_PREEMPT: 575 break; 576 case TTM_PL_VRAM: 577 mem->bus.offset = mem->start << PAGE_SHIFT; 578 /* check if it's visible */ 579 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 580 return -EINVAL; 581 582 if (adev->mman.aper_base_kaddr && 583 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 584 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 585 mem->bus.offset; 586 587 mem->bus.offset += adev->gmc.aper_base; 588 mem->bus.is_iomem = true; 589 break; 590 default: 591 return -EINVAL; 592 } 593 return 0; 594 } 595 596 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 597 unsigned long page_offset) 598 { 599 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 600 struct amdgpu_res_cursor cursor; 601 602 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 603 &cursor); 604 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 605 } 606 607 /** 608 * amdgpu_ttm_domain_start - Returns GPU start address 609 * @adev: amdgpu device object 610 * @type: type of the memory 611 * 612 * Returns: 613 * GPU start address of a memory domain 614 */ 615 616 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 617 { 618 switch (type) { 619 case TTM_PL_TT: 620 return adev->gmc.gart_start; 621 case TTM_PL_VRAM: 622 return adev->gmc.vram_start; 623 } 624 625 return 0; 626 } 627 628 /* 629 * TTM backend functions. 630 */ 631 struct amdgpu_ttm_tt { 632 struct ttm_tt ttm; 633 struct drm_gem_object *gobj; 634 u64 offset; 635 uint64_t userptr; 636 struct task_struct *usertask; 637 uint32_t userflags; 638 bool bound; 639 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 640 struct hmm_range *range; 641 #endif 642 }; 643 644 #ifdef CONFIG_DRM_AMDGPU_USERPTR 645 /* 646 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 647 * memory and start HMM tracking CPU page table update 648 * 649 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 650 * once afterwards to stop HMM tracking 651 */ 652 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 653 { 654 struct ttm_tt *ttm = bo->tbo.ttm; 655 struct amdgpu_ttm_tt *gtt = (void *)ttm; 656 unsigned long start = gtt->userptr; 657 struct vm_area_struct *vma; 658 struct mm_struct *mm; 659 bool readonly; 660 int r = 0; 661 662 mm = bo->notifier.mm; 663 if (unlikely(!mm)) { 664 DRM_DEBUG_DRIVER("BO is not registered?\n"); 665 return -EFAULT; 666 } 667 668 /* Another get_user_pages is running at the same time?? */ 669 if (WARN_ON(gtt->range)) 670 return -EFAULT; 671 672 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 673 return -ESRCH; 674 675 mmap_read_lock(mm); 676 vma = vma_lookup(mm, start); 677 if (unlikely(!vma)) { 678 r = -EFAULT; 679 goto out_unlock; 680 } 681 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 682 vma->vm_file)) { 683 r = -EPERM; 684 goto out_unlock; 685 } 686 687 readonly = amdgpu_ttm_tt_is_readonly(ttm); 688 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start, 689 ttm->num_pages, >t->range, readonly, 690 true, NULL); 691 out_unlock: 692 mmap_read_unlock(mm); 693 if (r) 694 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 695 696 mmput(mm); 697 698 return r; 699 } 700 701 /* 702 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 703 * Check if the pages backing this ttm range have been invalidated 704 * 705 * Returns: true if pages are still valid 706 */ 707 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 708 { 709 struct amdgpu_ttm_tt *gtt = (void *)ttm; 710 bool r = false; 711 712 if (!gtt || !gtt->userptr) 713 return false; 714 715 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 716 gtt->userptr, ttm->num_pages); 717 718 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 719 "No user pages to check\n"); 720 721 if (gtt->range) { 722 /* 723 * FIXME: Must always hold notifier_lock for this, and must 724 * not ignore the return code. 725 */ 726 r = amdgpu_hmm_range_get_pages_done(gtt->range); 727 gtt->range = NULL; 728 } 729 730 return !r; 731 } 732 #endif 733 734 /* 735 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 736 * 737 * Called by amdgpu_cs_list_validate(). This creates the page list 738 * that backs user memory and will ultimately be mapped into the device 739 * address space. 740 */ 741 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 742 { 743 unsigned long i; 744 745 for (i = 0; i < ttm->num_pages; ++i) 746 ttm->pages[i] = pages ? pages[i] : NULL; 747 } 748 749 /* 750 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 751 * 752 * Called by amdgpu_ttm_backend_bind() 753 **/ 754 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 755 struct ttm_tt *ttm) 756 { 757 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 758 struct amdgpu_ttm_tt *gtt = (void *)ttm; 759 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 760 enum dma_data_direction direction = write ? 761 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 762 int r; 763 764 /* Allocate an SG array and squash pages into it */ 765 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 766 (u64)ttm->num_pages << PAGE_SHIFT, 767 GFP_KERNEL); 768 if (r) 769 goto release_sg; 770 771 /* Map SG to device */ 772 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 773 if (r) 774 goto release_sg; 775 776 /* convert SG to linear array of pages and dma addresses */ 777 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 778 ttm->num_pages); 779 780 return 0; 781 782 release_sg: 783 kfree(ttm->sg); 784 ttm->sg = NULL; 785 return r; 786 } 787 788 /* 789 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 790 */ 791 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 792 struct ttm_tt *ttm) 793 { 794 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 795 struct amdgpu_ttm_tt *gtt = (void *)ttm; 796 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 797 enum dma_data_direction direction = write ? 798 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 799 800 /* double check that we don't free the table twice */ 801 if (!ttm->sg || !ttm->sg->sgl) 802 return; 803 804 /* unmap the pages mapped to the device */ 805 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 806 sg_free_table(ttm->sg); 807 808 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 809 if (gtt->range) { 810 unsigned long i; 811 812 for (i = 0; i < ttm->num_pages; i++) { 813 if (ttm->pages[i] != 814 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 815 break; 816 } 817 818 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 819 } 820 #endif 821 } 822 823 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 824 struct ttm_buffer_object *tbo, 825 uint64_t flags) 826 { 827 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 828 struct ttm_tt *ttm = tbo->ttm; 829 struct amdgpu_ttm_tt *gtt = (void *)ttm; 830 int r; 831 832 if (amdgpu_bo_encrypted(abo)) 833 flags |= AMDGPU_PTE_TMZ; 834 835 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 836 uint64_t page_idx = 1; 837 838 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 839 gtt->ttm.dma_address, flags); 840 if (r) 841 goto gart_bind_fail; 842 843 /* The memory type of the first page defaults to UC. Now 844 * modify the memory type to NC from the second page of 845 * the BO onward. 846 */ 847 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 848 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 849 850 r = amdgpu_gart_bind(adev, 851 gtt->offset + (page_idx << PAGE_SHIFT), 852 ttm->num_pages - page_idx, 853 &(gtt->ttm.dma_address[page_idx]), flags); 854 } else { 855 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 856 gtt->ttm.dma_address, flags); 857 } 858 859 gart_bind_fail: 860 if (r) 861 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 862 ttm->num_pages, gtt->offset); 863 864 return r; 865 } 866 867 /* 868 * amdgpu_ttm_backend_bind - Bind GTT memory 869 * 870 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 871 * This handles binding GTT memory to the device address space. 872 */ 873 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 874 struct ttm_tt *ttm, 875 struct ttm_resource *bo_mem) 876 { 877 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 878 struct amdgpu_ttm_tt *gtt = (void*)ttm; 879 uint64_t flags; 880 int r = 0; 881 882 if (!bo_mem) 883 return -EINVAL; 884 885 if (gtt->bound) 886 return 0; 887 888 if (gtt->userptr) { 889 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 890 if (r) { 891 DRM_ERROR("failed to pin userptr\n"); 892 return r; 893 } 894 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 895 if (!ttm->sg) { 896 struct dma_buf_attachment *attach; 897 struct sg_table *sgt; 898 899 attach = gtt->gobj->import_attach; 900 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 901 if (IS_ERR(sgt)) 902 return PTR_ERR(sgt); 903 904 ttm->sg = sgt; 905 } 906 907 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 908 ttm->num_pages); 909 } 910 911 if (!ttm->num_pages) { 912 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 913 ttm->num_pages, bo_mem, ttm); 914 } 915 916 if (bo_mem->mem_type != TTM_PL_TT || 917 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 918 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 919 return 0; 920 } 921 922 /* compute PTE flags relevant to this BO memory */ 923 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 924 925 /* bind pages into GART page tables */ 926 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 927 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 928 gtt->ttm.dma_address, flags); 929 930 if (r) 931 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 932 ttm->num_pages, gtt->offset); 933 gtt->bound = true; 934 return r; 935 } 936 937 /* 938 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 939 * through AGP or GART aperture. 940 * 941 * If bo is accessible through AGP aperture, then use AGP aperture 942 * to access bo; otherwise allocate logical space in GART aperture 943 * and map bo to GART aperture. 944 */ 945 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 946 { 947 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 948 struct ttm_operation_ctx ctx = { false, false }; 949 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 950 struct ttm_placement placement; 951 struct ttm_place placements; 952 struct ttm_resource *tmp; 953 uint64_t addr, flags; 954 int r; 955 956 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 957 return 0; 958 959 addr = amdgpu_gmc_agp_addr(bo); 960 if (addr != AMDGPU_BO_INVALID_OFFSET) { 961 bo->resource->start = addr >> PAGE_SHIFT; 962 return 0; 963 } 964 965 /* allocate GART space */ 966 placement.num_placement = 1; 967 placement.placement = &placements; 968 placement.num_busy_placement = 1; 969 placement.busy_placement = &placements; 970 placements.fpfn = 0; 971 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 972 placements.mem_type = TTM_PL_TT; 973 placements.flags = bo->resource->placement; 974 975 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 976 if (unlikely(r)) 977 return r; 978 979 /* compute PTE flags for this buffer object */ 980 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 981 982 /* Bind pages */ 983 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 984 r = amdgpu_ttm_gart_bind(adev, bo, flags); 985 if (unlikely(r)) { 986 ttm_resource_free(bo, &tmp); 987 return r; 988 } 989 990 amdgpu_gart_invalidate_tlb(adev); 991 ttm_resource_free(bo, &bo->resource); 992 ttm_bo_assign_mem(bo, tmp); 993 994 return 0; 995 } 996 997 /* 998 * amdgpu_ttm_recover_gart - Rebind GTT pages 999 * 1000 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1001 * rebind GTT pages during a GPU reset. 1002 */ 1003 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1004 { 1005 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1006 uint64_t flags; 1007 int r; 1008 1009 if (!tbo->ttm) 1010 return 0; 1011 1012 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1013 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1014 1015 return r; 1016 } 1017 1018 /* 1019 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1020 * 1021 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1022 * ttm_tt_destroy(). 1023 */ 1024 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1025 struct ttm_tt *ttm) 1026 { 1027 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1028 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1029 int r; 1030 1031 /* if the pages have userptr pinning then clear that first */ 1032 if (gtt->userptr) { 1033 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1034 } else if (ttm->sg && gtt->gobj->import_attach) { 1035 struct dma_buf_attachment *attach; 1036 1037 attach = gtt->gobj->import_attach; 1038 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1039 ttm->sg = NULL; 1040 } 1041 1042 if (!gtt->bound) 1043 return; 1044 1045 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1046 return; 1047 1048 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1049 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1050 if (r) 1051 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n", 1052 gtt->ttm.num_pages, gtt->offset); 1053 gtt->bound = false; 1054 } 1055 1056 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1057 struct ttm_tt *ttm) 1058 { 1059 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1060 1061 if (gtt->usertask) 1062 put_task_struct(gtt->usertask); 1063 1064 ttm_tt_fini(>t->ttm); 1065 kfree(gtt); 1066 } 1067 1068 /** 1069 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1070 * 1071 * @bo: The buffer object to create a GTT ttm_tt object around 1072 * @page_flags: Page flags to be added to the ttm_tt object 1073 * 1074 * Called by ttm_tt_create(). 1075 */ 1076 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1077 uint32_t page_flags) 1078 { 1079 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1080 struct amdgpu_ttm_tt *gtt; 1081 enum ttm_caching caching; 1082 1083 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1084 if (gtt == NULL) { 1085 return NULL; 1086 } 1087 gtt->gobj = &bo->base; 1088 1089 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1090 caching = ttm_write_combined; 1091 else 1092 caching = ttm_cached; 1093 1094 /* allocate space for the uninitialized page entries */ 1095 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1096 kfree(gtt); 1097 return NULL; 1098 } 1099 return >t->ttm; 1100 } 1101 1102 /* 1103 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1104 * 1105 * Map the pages of a ttm_tt object to an address space visible 1106 * to the underlying device. 1107 */ 1108 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1109 struct ttm_tt *ttm, 1110 struct ttm_operation_ctx *ctx) 1111 { 1112 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1113 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1114 pgoff_t i; 1115 int ret; 1116 1117 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1118 if (gtt->userptr) { 1119 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1120 if (!ttm->sg) 1121 return -ENOMEM; 1122 return 0; 1123 } 1124 1125 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1126 return 0; 1127 1128 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1129 if (ret) 1130 return ret; 1131 1132 for (i = 0; i < ttm->num_pages; ++i) 1133 ttm->pages[i]->mapping = bdev->dev_mapping; 1134 1135 return 0; 1136 } 1137 1138 /* 1139 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1140 * 1141 * Unmaps pages of a ttm_tt object from the device address space and 1142 * unpopulates the page array backing it. 1143 */ 1144 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1145 struct ttm_tt *ttm) 1146 { 1147 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1148 struct amdgpu_device *adev; 1149 pgoff_t i; 1150 1151 amdgpu_ttm_backend_unbind(bdev, ttm); 1152 1153 if (gtt->userptr) { 1154 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1155 kfree(ttm->sg); 1156 ttm->sg = NULL; 1157 return; 1158 } 1159 1160 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1161 return; 1162 1163 for (i = 0; i < ttm->num_pages; ++i) 1164 ttm->pages[i]->mapping = NULL; 1165 1166 adev = amdgpu_ttm_adev(bdev); 1167 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1168 } 1169 1170 /** 1171 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1172 * task 1173 * 1174 * @bo: The ttm_buffer_object to bind this userptr to 1175 * @addr: The address in the current tasks VM space to use 1176 * @flags: Requirements of userptr object. 1177 * 1178 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1179 * to current task 1180 */ 1181 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1182 uint64_t addr, uint32_t flags) 1183 { 1184 struct amdgpu_ttm_tt *gtt; 1185 1186 if (!bo->ttm) { 1187 /* TODO: We want a separate TTM object type for userptrs */ 1188 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1189 if (bo->ttm == NULL) 1190 return -ENOMEM; 1191 } 1192 1193 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1194 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1195 1196 gtt = (void *)bo->ttm; 1197 gtt->userptr = addr; 1198 gtt->userflags = flags; 1199 1200 if (gtt->usertask) 1201 put_task_struct(gtt->usertask); 1202 gtt->usertask = current->group_leader; 1203 get_task_struct(gtt->usertask); 1204 1205 return 0; 1206 } 1207 1208 /* 1209 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1210 */ 1211 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1212 { 1213 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1214 1215 if (gtt == NULL) 1216 return NULL; 1217 1218 if (gtt->usertask == NULL) 1219 return NULL; 1220 1221 return gtt->usertask->mm; 1222 } 1223 1224 /* 1225 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1226 * address range for the current task. 1227 * 1228 */ 1229 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1230 unsigned long end, unsigned long *userptr) 1231 { 1232 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1233 unsigned long size; 1234 1235 if (gtt == NULL || !gtt->userptr) 1236 return false; 1237 1238 /* Return false if no part of the ttm_tt object lies within 1239 * the range 1240 */ 1241 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1242 if (gtt->userptr > end || gtt->userptr + size <= start) 1243 return false; 1244 1245 if (userptr) 1246 *userptr = gtt->userptr; 1247 return true; 1248 } 1249 1250 /* 1251 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1252 */ 1253 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1254 { 1255 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1256 1257 if (gtt == NULL || !gtt->userptr) 1258 return false; 1259 1260 return true; 1261 } 1262 1263 /* 1264 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1265 */ 1266 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1267 { 1268 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1269 1270 if (gtt == NULL) 1271 return false; 1272 1273 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1274 } 1275 1276 /** 1277 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1278 * 1279 * @ttm: The ttm_tt object to compute the flags for 1280 * @mem: The memory registry backing this ttm_tt object 1281 * 1282 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1283 */ 1284 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1285 { 1286 uint64_t flags = 0; 1287 1288 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1289 flags |= AMDGPU_PTE_VALID; 1290 1291 if (mem && (mem->mem_type == TTM_PL_TT || 1292 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1293 flags |= AMDGPU_PTE_SYSTEM; 1294 1295 if (ttm->caching == ttm_cached) 1296 flags |= AMDGPU_PTE_SNOOPED; 1297 } 1298 1299 if (mem && mem->mem_type == TTM_PL_VRAM && 1300 mem->bus.caching == ttm_cached) 1301 flags |= AMDGPU_PTE_SNOOPED; 1302 1303 return flags; 1304 } 1305 1306 /** 1307 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1308 * 1309 * @adev: amdgpu_device pointer 1310 * @ttm: The ttm_tt object to compute the flags for 1311 * @mem: The memory registry backing this ttm_tt object 1312 * 1313 * Figure out the flags to use for a VM PTE (Page Table Entry). 1314 */ 1315 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1316 struct ttm_resource *mem) 1317 { 1318 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1319 1320 flags |= adev->gart.gart_pte_flags; 1321 flags |= AMDGPU_PTE_READABLE; 1322 1323 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1324 flags |= AMDGPU_PTE_WRITEABLE; 1325 1326 return flags; 1327 } 1328 1329 /* 1330 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1331 * object. 1332 * 1333 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1334 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1335 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1336 * used to clean out a memory space. 1337 */ 1338 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1339 const struct ttm_place *place) 1340 { 1341 unsigned long num_pages = bo->resource->num_pages; 1342 struct dma_resv_iter resv_cursor; 1343 struct amdgpu_res_cursor cursor; 1344 struct dma_fence *f; 1345 1346 /* Swapout? */ 1347 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1348 return true; 1349 1350 if (bo->type == ttm_bo_type_kernel && 1351 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1352 return false; 1353 1354 /* If bo is a KFD BO, check if the bo belongs to the current process. 1355 * If true, then return false as any KFD process needs all its BOs to 1356 * be resident to run successfully 1357 */ 1358 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, true, f) { 1359 if (amdkfd_fence_check_mm(f, current->mm)) 1360 return false; 1361 } 1362 1363 switch (bo->resource->mem_type) { 1364 case AMDGPU_PL_PREEMPT: 1365 /* Preemptible BOs don't own system resources managed by the 1366 * driver (pages, VRAM, GART space). They point to resources 1367 * owned by someone else (e.g. pageable memory in user mode 1368 * or a DMABuf). They are used in a preemptible context so we 1369 * can guarantee no deadlocks and good QoS in case of MMU 1370 * notifiers or DMABuf move notifiers from the resource owner. 1371 */ 1372 return false; 1373 case TTM_PL_TT: 1374 if (amdgpu_bo_is_amdgpu_bo(bo) && 1375 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1376 return false; 1377 return true; 1378 1379 case TTM_PL_VRAM: 1380 /* Check each drm MM node individually */ 1381 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT, 1382 &cursor); 1383 while (cursor.remaining) { 1384 if (place->fpfn < PFN_DOWN(cursor.start + cursor.size) 1385 && !(place->lpfn && 1386 place->lpfn <= PFN_DOWN(cursor.start))) 1387 return true; 1388 1389 amdgpu_res_next(&cursor, cursor.size); 1390 } 1391 return false; 1392 1393 default: 1394 break; 1395 } 1396 1397 return ttm_bo_eviction_valuable(bo, place); 1398 } 1399 1400 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1401 void *buf, size_t size, bool write) 1402 { 1403 while (size) { 1404 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1405 uint64_t bytes = 4 - (pos & 0x3); 1406 uint32_t shift = (pos & 0x3) * 8; 1407 uint32_t mask = 0xffffffff << shift; 1408 uint32_t value = 0; 1409 1410 if (size < bytes) { 1411 mask &= 0xffffffff >> (bytes - size) * 8; 1412 bytes = size; 1413 } 1414 1415 if (mask != 0xffffffff) { 1416 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1417 if (write) { 1418 value &= ~mask; 1419 value |= (*(uint32_t *)buf << shift) & mask; 1420 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1421 } else { 1422 value = (value & mask) >> shift; 1423 memcpy(buf, &value, bytes); 1424 } 1425 } else { 1426 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1427 } 1428 1429 pos += bytes; 1430 buf += bytes; 1431 size -= bytes; 1432 } 1433 } 1434 1435 /** 1436 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1437 * 1438 * @bo: The buffer object to read/write 1439 * @offset: Offset into buffer object 1440 * @buf: Secondary buffer to write/read from 1441 * @len: Length in bytes of access 1442 * @write: true if writing 1443 * 1444 * This is used to access VRAM that backs a buffer object via MMIO 1445 * access for debugging purposes. 1446 */ 1447 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1448 unsigned long offset, void *buf, int len, 1449 int write) 1450 { 1451 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1452 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1453 struct amdgpu_res_cursor cursor; 1454 int ret = 0; 1455 1456 if (bo->resource->mem_type != TTM_PL_VRAM) 1457 return -EIO; 1458 1459 amdgpu_res_first(bo->resource, offset, len, &cursor); 1460 while (cursor.remaining) { 1461 size_t count, size = cursor.size; 1462 loff_t pos = cursor.start; 1463 1464 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1465 size -= count; 1466 if (size) { 1467 /* using MM to access rest vram and handle un-aligned address */ 1468 pos += count; 1469 buf += count; 1470 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1471 } 1472 1473 ret += cursor.size; 1474 buf += cursor.size; 1475 amdgpu_res_next(&cursor, cursor.size); 1476 } 1477 1478 return ret; 1479 } 1480 1481 static void 1482 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1483 { 1484 amdgpu_bo_move_notify(bo, false, NULL); 1485 } 1486 1487 static struct ttm_device_funcs amdgpu_bo_driver = { 1488 .ttm_tt_create = &amdgpu_ttm_tt_create, 1489 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1490 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1491 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1492 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1493 .evict_flags = &amdgpu_evict_flags, 1494 .move = &amdgpu_bo_move, 1495 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1496 .release_notify = &amdgpu_bo_release_notify, 1497 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1498 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1499 .access_memory = &amdgpu_ttm_access_memory, 1500 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1501 }; 1502 1503 /* 1504 * Firmware Reservation functions 1505 */ 1506 /** 1507 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1508 * 1509 * @adev: amdgpu_device pointer 1510 * 1511 * free fw reserved vram if it has been reserved. 1512 */ 1513 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1514 { 1515 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1516 NULL, &adev->mman.fw_vram_usage_va); 1517 } 1518 1519 /** 1520 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1521 * 1522 * @adev: amdgpu_device pointer 1523 * 1524 * create bo vram reservation from fw. 1525 */ 1526 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1527 { 1528 uint64_t vram_size = adev->gmc.visible_vram_size; 1529 1530 adev->mman.fw_vram_usage_va = NULL; 1531 adev->mman.fw_vram_usage_reserved_bo = NULL; 1532 1533 if (adev->mman.fw_vram_usage_size == 0 || 1534 adev->mman.fw_vram_usage_size > vram_size) 1535 return 0; 1536 1537 return amdgpu_bo_create_kernel_at(adev, 1538 adev->mman.fw_vram_usage_start_offset, 1539 adev->mman.fw_vram_usage_size, 1540 AMDGPU_GEM_DOMAIN_VRAM, 1541 &adev->mman.fw_vram_usage_reserved_bo, 1542 &adev->mman.fw_vram_usage_va); 1543 } 1544 1545 /* 1546 * Memoy training reservation functions 1547 */ 1548 1549 /** 1550 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1551 * 1552 * @adev: amdgpu_device pointer 1553 * 1554 * free memory training reserved vram if it has been reserved. 1555 */ 1556 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1557 { 1558 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1559 1560 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1561 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1562 ctx->c2p_bo = NULL; 1563 1564 return 0; 1565 } 1566 1567 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1568 { 1569 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1570 1571 memset(ctx, 0, sizeof(*ctx)); 1572 1573 ctx->c2p_train_data_offset = 1574 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1575 ctx->p2c_train_data_offset = 1576 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1577 ctx->train_data_size = 1578 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1579 1580 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1581 ctx->train_data_size, 1582 ctx->p2c_train_data_offset, 1583 ctx->c2p_train_data_offset); 1584 } 1585 1586 /* 1587 * reserve TMR memory at the top of VRAM which holds 1588 * IP Discovery data and is protected by PSP. 1589 */ 1590 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1591 { 1592 int ret; 1593 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1594 bool mem_train_support = false; 1595 1596 if (!amdgpu_sriov_vf(adev)) { 1597 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1598 mem_train_support = true; 1599 else 1600 DRM_DEBUG("memory training does not support!\n"); 1601 } 1602 1603 /* 1604 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1605 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1606 * 1607 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1608 * discovery data and G6 memory training data respectively 1609 */ 1610 adev->mman.discovery_tmr_size = 1611 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1612 if (!adev->mman.discovery_tmr_size) 1613 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1614 1615 if (mem_train_support) { 1616 /* reserve vram for mem train according to TMR location */ 1617 amdgpu_ttm_training_data_block_init(adev); 1618 ret = amdgpu_bo_create_kernel_at(adev, 1619 ctx->c2p_train_data_offset, 1620 ctx->train_data_size, 1621 AMDGPU_GEM_DOMAIN_VRAM, 1622 &ctx->c2p_bo, 1623 NULL); 1624 if (ret) { 1625 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1626 amdgpu_ttm_training_reserve_vram_fini(adev); 1627 return ret; 1628 } 1629 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1630 } 1631 1632 ret = amdgpu_bo_create_kernel_at(adev, 1633 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1634 adev->mman.discovery_tmr_size, 1635 AMDGPU_GEM_DOMAIN_VRAM, 1636 &adev->mman.discovery_memory, 1637 NULL); 1638 if (ret) { 1639 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1640 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1641 return ret; 1642 } 1643 1644 return 0; 1645 } 1646 1647 /* 1648 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1649 * gtt/vram related fields. 1650 * 1651 * This initializes all of the memory space pools that the TTM layer 1652 * will need such as the GTT space (system memory mapped to the device), 1653 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1654 * can be mapped per VMID. 1655 */ 1656 int amdgpu_ttm_init(struct amdgpu_device *adev) 1657 { 1658 uint64_t gtt_size; 1659 int r; 1660 u64 vis_vram_limit; 1661 1662 mutex_init(&adev->mman.gtt_window_lock); 1663 1664 /* No others user of address space so set it to 0 */ 1665 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1666 adev_to_drm(adev)->anon_inode->i_mapping, 1667 adev_to_drm(adev)->vma_offset_manager, 1668 adev->need_swiotlb, 1669 dma_addressing_limited(adev->dev)); 1670 if (r) { 1671 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1672 return r; 1673 } 1674 adev->mman.initialized = true; 1675 1676 /* Initialize VRAM pool with all of VRAM divided into pages */ 1677 r = amdgpu_vram_mgr_init(adev); 1678 if (r) { 1679 DRM_ERROR("Failed initializing VRAM heap.\n"); 1680 return r; 1681 } 1682 1683 /* Reduce size of CPU-visible VRAM if requested */ 1684 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1685 if (amdgpu_vis_vram_limit > 0 && 1686 vis_vram_limit <= adev->gmc.visible_vram_size) 1687 adev->gmc.visible_vram_size = vis_vram_limit; 1688 1689 /* Change the size here instead of the init above so only lpfn is affected */ 1690 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1691 #ifdef CONFIG_64BIT 1692 #ifdef CONFIG_X86 1693 if (adev->gmc.xgmi.connected_to_cpu) 1694 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1695 adev->gmc.visible_vram_size); 1696 1697 else 1698 #endif 1699 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1700 adev->gmc.visible_vram_size); 1701 #endif 1702 1703 /* 1704 *The reserved vram for firmware must be pinned to the specified 1705 *place on the VRAM, so reserve it early. 1706 */ 1707 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1708 if (r) { 1709 return r; 1710 } 1711 1712 /* 1713 * only NAVI10 and onwards ASIC support for IP discovery. 1714 * If IP discovery enabled, a block of memory should be 1715 * reserved for IP discovey. 1716 */ 1717 if (adev->mman.discovery_bin) { 1718 r = amdgpu_ttm_reserve_tmr(adev); 1719 if (r) 1720 return r; 1721 } 1722 1723 /* allocate memory as required for VGA 1724 * This is used for VGA emulation and pre-OS scanout buffers to 1725 * avoid display artifacts while transitioning between pre-OS 1726 * and driver. */ 1727 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1728 AMDGPU_GEM_DOMAIN_VRAM, 1729 &adev->mman.stolen_vga_memory, 1730 NULL); 1731 if (r) 1732 return r; 1733 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1734 adev->mman.stolen_extended_size, 1735 AMDGPU_GEM_DOMAIN_VRAM, 1736 &adev->mman.stolen_extended_memory, 1737 NULL); 1738 if (r) 1739 return r; 1740 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, 1741 adev->mman.stolen_reserved_size, 1742 AMDGPU_GEM_DOMAIN_VRAM, 1743 &adev->mman.stolen_reserved_memory, 1744 NULL); 1745 if (r) 1746 return r; 1747 1748 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1749 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1750 1751 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1752 * or whatever the user passed on module init */ 1753 if (amdgpu_gtt_size == -1) { 1754 struct sysinfo si; 1755 1756 si_meminfo(&si); 1757 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1758 adev->gmc.mc_vram_size), 1759 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1760 } 1761 else 1762 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1763 1764 /* Initialize GTT memory pool */ 1765 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1766 if (r) { 1767 DRM_ERROR("Failed initializing GTT heap.\n"); 1768 return r; 1769 } 1770 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1771 (unsigned)(gtt_size / (1024 * 1024))); 1772 1773 /* Initialize preemptible memory pool */ 1774 r = amdgpu_preempt_mgr_init(adev); 1775 if (r) { 1776 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1777 return r; 1778 } 1779 1780 /* Initialize various on-chip memory pools */ 1781 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1782 if (r) { 1783 DRM_ERROR("Failed initializing GDS heap.\n"); 1784 return r; 1785 } 1786 1787 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1788 if (r) { 1789 DRM_ERROR("Failed initializing gws heap.\n"); 1790 return r; 1791 } 1792 1793 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1794 if (r) { 1795 DRM_ERROR("Failed initializing oa heap.\n"); 1796 return r; 1797 } 1798 1799 return 0; 1800 } 1801 1802 /* 1803 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1804 */ 1805 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1806 { 1807 if (!adev->mman.initialized) 1808 return; 1809 1810 amdgpu_ttm_training_reserve_vram_fini(adev); 1811 /* return the stolen vga memory back to VRAM */ 1812 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1813 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1814 /* return the IP Discovery TMR memory back to VRAM */ 1815 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1816 if (adev->mman.stolen_reserved_size) 1817 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1818 NULL, NULL); 1819 amdgpu_ttm_fw_reserve_vram_fini(adev); 1820 1821 amdgpu_vram_mgr_fini(adev); 1822 amdgpu_gtt_mgr_fini(adev); 1823 amdgpu_preempt_mgr_fini(adev); 1824 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1825 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1826 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1827 ttm_device_fini(&adev->mman.bdev); 1828 adev->mman.initialized = false; 1829 DRM_INFO("amdgpu: ttm finalized\n"); 1830 } 1831 1832 /** 1833 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1834 * 1835 * @adev: amdgpu_device pointer 1836 * @enable: true when we can use buffer functions. 1837 * 1838 * Enable/disable use of buffer functions during suspend/resume. This should 1839 * only be called at bootup or when userspace isn't running. 1840 */ 1841 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1842 { 1843 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1844 uint64_t size; 1845 int r; 1846 1847 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1848 adev->mman.buffer_funcs_enabled == enable) 1849 return; 1850 1851 if (enable) { 1852 struct amdgpu_ring *ring; 1853 struct drm_gpu_scheduler *sched; 1854 1855 ring = adev->mman.buffer_funcs_ring; 1856 sched = &ring->sched; 1857 r = drm_sched_entity_init(&adev->mman.entity, 1858 DRM_SCHED_PRIORITY_KERNEL, &sched, 1859 1, NULL); 1860 if (r) { 1861 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1862 r); 1863 return; 1864 } 1865 } else { 1866 drm_sched_entity_destroy(&adev->mman.entity); 1867 dma_fence_put(man->move); 1868 man->move = NULL; 1869 } 1870 1871 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1872 if (enable) 1873 size = adev->gmc.real_vram_size; 1874 else 1875 size = adev->gmc.visible_vram_size; 1876 man->size = size >> PAGE_SHIFT; 1877 adev->mman.buffer_funcs_enabled = enable; 1878 } 1879 1880 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1881 uint64_t dst_offset, uint32_t byte_count, 1882 struct dma_resv *resv, 1883 struct dma_fence **fence, bool direct_submit, 1884 bool vm_needs_flush, bool tmz) 1885 { 1886 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : 1887 AMDGPU_IB_POOL_DELAYED; 1888 struct amdgpu_device *adev = ring->adev; 1889 struct amdgpu_job *job; 1890 1891 uint32_t max_bytes; 1892 unsigned num_loops, num_dw; 1893 unsigned i; 1894 int r; 1895 1896 if (direct_submit && !ring->sched.ready) { 1897 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1898 return -EINVAL; 1899 } 1900 1901 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 1902 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 1903 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 1904 1905 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); 1906 if (r) 1907 return r; 1908 1909 if (vm_needs_flush) { 1910 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1911 adev->gmc.pdb0_bo : adev->gart.bo); 1912 job->vm_needs_flush = true; 1913 } 1914 if (resv) { 1915 r = amdgpu_sync_resv(adev, &job->sync, resv, 1916 AMDGPU_SYNC_ALWAYS, 1917 AMDGPU_FENCE_OWNER_UNDEFINED); 1918 if (r) { 1919 DRM_ERROR("sync failed (%d).\n", r); 1920 goto error_free; 1921 } 1922 } 1923 1924 for (i = 0; i < num_loops; i++) { 1925 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 1926 1927 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 1928 dst_offset, cur_size_in_bytes, tmz); 1929 1930 src_offset += cur_size_in_bytes; 1931 dst_offset += cur_size_in_bytes; 1932 byte_count -= cur_size_in_bytes; 1933 } 1934 1935 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1936 WARN_ON(job->ibs[0].length_dw > num_dw); 1937 if (direct_submit) 1938 r = amdgpu_job_submit_direct(job, ring, fence); 1939 else 1940 r = amdgpu_job_submit(job, &adev->mman.entity, 1941 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 1942 if (r) 1943 goto error_free; 1944 1945 return r; 1946 1947 error_free: 1948 amdgpu_job_free(job); 1949 DRM_ERROR("Error scheduling IBs (%d)\n", r); 1950 return r; 1951 } 1952 1953 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 1954 uint32_t src_data, 1955 struct dma_resv *resv, 1956 struct dma_fence **fence) 1957 { 1958 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 1959 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 1960 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 1961 1962 struct amdgpu_res_cursor cursor; 1963 unsigned int num_loops, num_dw; 1964 uint64_t num_bytes; 1965 1966 struct amdgpu_job *job; 1967 int r; 1968 1969 if (!adev->mman.buffer_funcs_enabled) { 1970 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 1971 return -EINVAL; 1972 } 1973 1974 if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) { 1975 DRM_ERROR("Trying to clear preemptible memory.\n"); 1976 return -EINVAL; 1977 } 1978 1979 if (bo->tbo.resource->mem_type == TTM_PL_TT) { 1980 r = amdgpu_ttm_alloc_gart(&bo->tbo); 1981 if (r) 1982 return r; 1983 } 1984 1985 num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT; 1986 num_loops = 0; 1987 1988 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor); 1989 while (cursor.remaining) { 1990 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes); 1991 amdgpu_res_next(&cursor, cursor.size); 1992 } 1993 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 1994 1995 /* for IB padding */ 1996 num_dw += 64; 1997 1998 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1999 &job); 2000 if (r) 2001 return r; 2002 2003 if (resv) { 2004 r = amdgpu_sync_resv(adev, &job->sync, resv, 2005 AMDGPU_SYNC_ALWAYS, 2006 AMDGPU_FENCE_OWNER_UNDEFINED); 2007 if (r) { 2008 DRM_ERROR("sync failed (%d).\n", r); 2009 goto error_free; 2010 } 2011 } 2012 2013 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor); 2014 while (cursor.remaining) { 2015 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes); 2016 uint64_t dst_addr = cursor.start; 2017 2018 dst_addr += amdgpu_ttm_domain_start(adev, 2019 bo->tbo.resource->mem_type); 2020 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2021 cur_size); 2022 2023 amdgpu_res_next(&cursor, cur_size); 2024 } 2025 2026 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2027 WARN_ON(job->ibs[0].length_dw > num_dw); 2028 r = amdgpu_job_submit(job, &adev->mman.entity, 2029 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2030 if (r) 2031 goto error_free; 2032 2033 return 0; 2034 2035 error_free: 2036 amdgpu_job_free(job); 2037 return r; 2038 } 2039 2040 /** 2041 * amdgpu_ttm_evict_resources - evict memory buffers 2042 * @adev: amdgpu device object 2043 * @mem_type: evicted BO's memory type 2044 * 2045 * Evicts all @mem_type buffers on the lru list of the memory type. 2046 * 2047 * Returns: 2048 * 0 for success or a negative error code on failure. 2049 */ 2050 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2051 { 2052 struct ttm_resource_manager *man; 2053 2054 switch (mem_type) { 2055 case TTM_PL_VRAM: 2056 case TTM_PL_TT: 2057 case AMDGPU_PL_GWS: 2058 case AMDGPU_PL_GDS: 2059 case AMDGPU_PL_OA: 2060 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2061 break; 2062 default: 2063 DRM_ERROR("Trying to evict invalid memory type\n"); 2064 return -EINVAL; 2065 } 2066 2067 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2068 } 2069 2070 #if defined(CONFIG_DEBUG_FS) 2071 2072 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused) 2073 { 2074 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2075 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2076 TTM_PL_VRAM); 2077 struct drm_printer p = drm_seq_file_printer(m); 2078 2079 ttm_resource_manager_debug(man, &p); 2080 return 0; 2081 } 2082 2083 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2084 { 2085 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2086 2087 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2088 } 2089 2090 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused) 2091 { 2092 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2093 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2094 TTM_PL_TT); 2095 struct drm_printer p = drm_seq_file_printer(m); 2096 2097 ttm_resource_manager_debug(man, &p); 2098 return 0; 2099 } 2100 2101 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused) 2102 { 2103 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2104 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2105 AMDGPU_PL_GDS); 2106 struct drm_printer p = drm_seq_file_printer(m); 2107 2108 ttm_resource_manager_debug(man, &p); 2109 return 0; 2110 } 2111 2112 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused) 2113 { 2114 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2115 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2116 AMDGPU_PL_GWS); 2117 struct drm_printer p = drm_seq_file_printer(m); 2118 2119 ttm_resource_manager_debug(man, &p); 2120 return 0; 2121 } 2122 2123 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused) 2124 { 2125 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2126 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2127 AMDGPU_PL_OA); 2128 struct drm_printer p = drm_seq_file_printer(m); 2129 2130 ttm_resource_manager_debug(man, &p); 2131 return 0; 2132 } 2133 2134 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table); 2135 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table); 2136 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table); 2137 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table); 2138 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table); 2139 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2140 2141 /* 2142 * amdgpu_ttm_vram_read - Linear read access to VRAM 2143 * 2144 * Accesses VRAM via MMIO for debugging purposes. 2145 */ 2146 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2147 size_t size, loff_t *pos) 2148 { 2149 struct amdgpu_device *adev = file_inode(f)->i_private; 2150 ssize_t result = 0; 2151 2152 if (size & 0x3 || *pos & 0x3) 2153 return -EINVAL; 2154 2155 if (*pos >= adev->gmc.mc_vram_size) 2156 return -ENXIO; 2157 2158 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2159 while (size) { 2160 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2161 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2162 2163 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2164 if (copy_to_user(buf, value, bytes)) 2165 return -EFAULT; 2166 2167 result += bytes; 2168 buf += bytes; 2169 *pos += bytes; 2170 size -= bytes; 2171 } 2172 2173 return result; 2174 } 2175 2176 /* 2177 * amdgpu_ttm_vram_write - Linear write access to VRAM 2178 * 2179 * Accesses VRAM via MMIO for debugging purposes. 2180 */ 2181 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2182 size_t size, loff_t *pos) 2183 { 2184 struct amdgpu_device *adev = file_inode(f)->i_private; 2185 ssize_t result = 0; 2186 int r; 2187 2188 if (size & 0x3 || *pos & 0x3) 2189 return -EINVAL; 2190 2191 if (*pos >= adev->gmc.mc_vram_size) 2192 return -ENXIO; 2193 2194 while (size) { 2195 uint32_t value; 2196 2197 if (*pos >= adev->gmc.mc_vram_size) 2198 return result; 2199 2200 r = get_user(value, (uint32_t *)buf); 2201 if (r) 2202 return r; 2203 2204 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2205 2206 result += 4; 2207 buf += 4; 2208 *pos += 4; 2209 size -= 4; 2210 } 2211 2212 return result; 2213 } 2214 2215 static const struct file_operations amdgpu_ttm_vram_fops = { 2216 .owner = THIS_MODULE, 2217 .read = amdgpu_ttm_vram_read, 2218 .write = amdgpu_ttm_vram_write, 2219 .llseek = default_llseek, 2220 }; 2221 2222 /* 2223 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2224 * 2225 * This function is used to read memory that has been mapped to the 2226 * GPU and the known addresses are not physical addresses but instead 2227 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2228 */ 2229 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2230 size_t size, loff_t *pos) 2231 { 2232 struct amdgpu_device *adev = file_inode(f)->i_private; 2233 struct iommu_domain *dom; 2234 ssize_t result = 0; 2235 int r; 2236 2237 /* retrieve the IOMMU domain if any for this device */ 2238 dom = iommu_get_domain_for_dev(adev->dev); 2239 2240 while (size) { 2241 phys_addr_t addr = *pos & PAGE_MASK; 2242 loff_t off = *pos & ~PAGE_MASK; 2243 size_t bytes = PAGE_SIZE - off; 2244 unsigned long pfn; 2245 struct page *p; 2246 void *ptr; 2247 2248 bytes = bytes < size ? bytes : size; 2249 2250 /* Translate the bus address to a physical address. If 2251 * the domain is NULL it means there is no IOMMU active 2252 * and the address translation is the identity 2253 */ 2254 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2255 2256 pfn = addr >> PAGE_SHIFT; 2257 if (!pfn_valid(pfn)) 2258 return -EPERM; 2259 2260 p = pfn_to_page(pfn); 2261 if (p->mapping != adev->mman.bdev.dev_mapping) 2262 return -EPERM; 2263 2264 ptr = kmap(p); 2265 r = copy_to_user(buf, ptr + off, bytes); 2266 kunmap(p); 2267 if (r) 2268 return -EFAULT; 2269 2270 size -= bytes; 2271 *pos += bytes; 2272 result += bytes; 2273 } 2274 2275 return result; 2276 } 2277 2278 /* 2279 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2280 * 2281 * This function is used to write memory that has been mapped to the 2282 * GPU and the known addresses are not physical addresses but instead 2283 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2284 */ 2285 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2286 size_t size, loff_t *pos) 2287 { 2288 struct amdgpu_device *adev = file_inode(f)->i_private; 2289 struct iommu_domain *dom; 2290 ssize_t result = 0; 2291 int r; 2292 2293 dom = iommu_get_domain_for_dev(adev->dev); 2294 2295 while (size) { 2296 phys_addr_t addr = *pos & PAGE_MASK; 2297 loff_t off = *pos & ~PAGE_MASK; 2298 size_t bytes = PAGE_SIZE - off; 2299 unsigned long pfn; 2300 struct page *p; 2301 void *ptr; 2302 2303 bytes = bytes < size ? bytes : size; 2304 2305 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2306 2307 pfn = addr >> PAGE_SHIFT; 2308 if (!pfn_valid(pfn)) 2309 return -EPERM; 2310 2311 p = pfn_to_page(pfn); 2312 if (p->mapping != adev->mman.bdev.dev_mapping) 2313 return -EPERM; 2314 2315 ptr = kmap(p); 2316 r = copy_from_user(ptr + off, buf, bytes); 2317 kunmap(p); 2318 if (r) 2319 return -EFAULT; 2320 2321 size -= bytes; 2322 *pos += bytes; 2323 result += bytes; 2324 } 2325 2326 return result; 2327 } 2328 2329 static const struct file_operations amdgpu_ttm_iomem_fops = { 2330 .owner = THIS_MODULE, 2331 .read = amdgpu_iomem_read, 2332 .write = amdgpu_iomem_write, 2333 .llseek = default_llseek 2334 }; 2335 2336 #endif 2337 2338 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2339 { 2340 #if defined(CONFIG_DEBUG_FS) 2341 struct drm_minor *minor = adev_to_drm(adev)->primary; 2342 struct dentry *root = minor->debugfs_root; 2343 2344 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2345 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2346 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2347 &amdgpu_ttm_iomem_fops); 2348 debugfs_create_file("amdgpu_vram_mm", 0444, root, adev, 2349 &amdgpu_mm_vram_table_fops); 2350 debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev, 2351 &amdgpu_mm_tt_table_fops); 2352 debugfs_create_file("amdgpu_gds_mm", 0444, root, adev, 2353 &amdgpu_mm_gds_table_fops); 2354 debugfs_create_file("amdgpu_gws_mm", 0444, root, adev, 2355 &amdgpu_mm_gws_table_fops); 2356 debugfs_create_file("amdgpu_oa_mm", 0444, root, adev, 2357 &amdgpu_mm_oa_table_fops); 2358 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2359 &amdgpu_ttm_page_pool_fops); 2360 #endif 2361 } 2362