1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 
49 #include <drm/amdgpu_drm.h>
50 
51 #include "amdgpu.h"
52 #include "amdgpu_object.h"
53 #include "amdgpu_trace.h"
54 #include "amdgpu_amdkfd.h"
55 #include "amdgpu_sdma.h"
56 #include "amdgpu_ras.h"
57 #include "amdgpu_atomfirmware.h"
58 #include "amdgpu_res_cursor.h"
59 #include "bif/bif_4_1_d.h"
60 
61 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
62 
63 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
64 				   struct ttm_tt *ttm,
65 				   struct ttm_resource *bo_mem);
66 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
67 				      struct ttm_tt *ttm);
68 
69 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
70 				    unsigned int type,
71 				    uint64_t size_in_page)
72 {
73 	return ttm_range_man_init(&adev->mman.bdev, type,
74 				  false, size_in_page);
75 }
76 
77 /**
78  * amdgpu_evict_flags - Compute placement flags
79  *
80  * @bo: The buffer object to evict
81  * @placement: Possible destination(s) for evicted BO
82  *
83  * Fill in placement data when ttm_bo_evict() is called
84  */
85 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
86 				struct ttm_placement *placement)
87 {
88 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
89 	struct amdgpu_bo *abo;
90 	static const struct ttm_place placements = {
91 		.fpfn = 0,
92 		.lpfn = 0,
93 		.mem_type = TTM_PL_SYSTEM,
94 		.flags = 0
95 	};
96 
97 	/* Don't handle scatter gather BOs */
98 	if (bo->type == ttm_bo_type_sg) {
99 		placement->num_placement = 0;
100 		placement->num_busy_placement = 0;
101 		return;
102 	}
103 
104 	/* Object isn't an AMDGPU object so ignore */
105 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
106 		placement->placement = &placements;
107 		placement->busy_placement = &placements;
108 		placement->num_placement = 1;
109 		placement->num_busy_placement = 1;
110 		return;
111 	}
112 
113 	abo = ttm_to_amdgpu_bo(bo);
114 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
115 		struct dma_fence *fence;
116 		struct dma_resv *resv = &bo->base._resv;
117 
118 		rcu_read_lock();
119 		fence = rcu_dereference(resv->fence_excl);
120 		if (fence && !fence->ops->signaled)
121 			dma_fence_enable_sw_signaling(fence);
122 
123 		placement->num_placement = 0;
124 		placement->num_busy_placement = 0;
125 		rcu_read_unlock();
126 		return;
127 	}
128 	switch (bo->mem.mem_type) {
129 	case AMDGPU_PL_GDS:
130 	case AMDGPU_PL_GWS:
131 	case AMDGPU_PL_OA:
132 		placement->num_placement = 0;
133 		placement->num_busy_placement = 0;
134 		return;
135 
136 	case TTM_PL_VRAM:
137 		if (!adev->mman.buffer_funcs_enabled) {
138 			/* Move to system memory */
139 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
140 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
141 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
142 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
143 
144 			/* Try evicting to the CPU inaccessible part of VRAM
145 			 * first, but only set GTT as busy placement, so this
146 			 * BO will be evicted to GTT rather than causing other
147 			 * BOs to be evicted from VRAM
148 			 */
149 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
150 							 AMDGPU_GEM_DOMAIN_GTT);
151 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
152 			abo->placements[0].lpfn = 0;
153 			abo->placement.busy_placement = &abo->placements[1];
154 			abo->placement.num_busy_placement = 1;
155 		} else {
156 			/* Move to GTT memory */
157 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	default:
162 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
163 		break;
164 	}
165 	*placement = abo->placement;
166 }
167 
168 /**
169  * amdgpu_verify_access - Verify access for a mmap call
170  *
171  * @bo:	The buffer object to map
172  * @filp: The file pointer from the process performing the mmap
173  *
174  * This is called by ttm_bo_mmap() to verify whether a process
175  * has the right to mmap a BO to their process space.
176  */
177 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
178 {
179 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
180 
181 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
182 		return -EPERM;
183 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
184 					  filp->private_data);
185 }
186 
187 /**
188  * amdgpu_ttm_map_buffer - Map memory into the GART windows
189  * @bo: buffer object to map
190  * @mem: memory object to map
191  * @mm_cur: range to map
192  * @num_pages: number of pages to map
193  * @window: which GART window to use
194  * @ring: DMA ring to use for the copy
195  * @tmz: if we should setup a TMZ enabled mapping
196  * @addr: resulting address inside the MC address space
197  *
198  * Setup one of the GART windows to access a specific piece of memory or return
199  * the physical address for local memory.
200  */
201 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
202 				 struct ttm_resource *mem,
203 				 struct amdgpu_res_cursor *mm_cur,
204 				 unsigned num_pages, unsigned window,
205 				 struct amdgpu_ring *ring, bool tmz,
206 				 uint64_t *addr)
207 {
208 	struct amdgpu_device *adev = ring->adev;
209 	struct amdgpu_job *job;
210 	unsigned num_dw, num_bytes;
211 	struct dma_fence *fence;
212 	uint64_t src_addr, dst_addr;
213 	void *cpu_addr;
214 	uint64_t flags;
215 	unsigned int i;
216 	int r;
217 
218 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
219 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
220 
221 	/* Map only what can't be accessed directly */
222 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
223 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
224 			mm_cur->start;
225 		return 0;
226 	}
227 
228 	*addr = adev->gmc.gart_start;
229 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
230 		AMDGPU_GPU_PAGE_SIZE;
231 	*addr += mm_cur->start & ~PAGE_MASK;
232 
233 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
234 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
235 
236 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
237 				     AMDGPU_IB_POOL_DELAYED, &job);
238 	if (r)
239 		return r;
240 
241 	src_addr = num_dw * 4;
242 	src_addr += job->ibs[0].gpu_addr;
243 
244 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
245 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
246 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
247 				dst_addr, num_bytes, false);
248 
249 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
250 	WARN_ON(job->ibs[0].length_dw > num_dw);
251 
252 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
253 	if (tmz)
254 		flags |= AMDGPU_PTE_TMZ;
255 
256 	cpu_addr = &job->ibs[0].ptr[num_dw];
257 
258 	if (mem->mem_type == TTM_PL_TT) {
259 		dma_addr_t *dma_addr;
260 
261 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
262 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
263 				    cpu_addr);
264 		if (r)
265 			goto error_free;
266 	} else {
267 		dma_addr_t dma_address;
268 
269 		dma_address = mm_cur->start;
270 		dma_address += adev->vm_manager.vram_base_offset;
271 
272 		for (i = 0; i < num_pages; ++i) {
273 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
274 					    &dma_address, flags, cpu_addr);
275 			if (r)
276 				goto error_free;
277 
278 			dma_address += PAGE_SIZE;
279 		}
280 	}
281 
282 	r = amdgpu_job_submit(job, &adev->mman.entity,
283 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
284 	if (r)
285 		goto error_free;
286 
287 	dma_fence_put(fence);
288 
289 	return r;
290 
291 error_free:
292 	amdgpu_job_free(job);
293 	return r;
294 }
295 
296 /**
297  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
298  * @adev: amdgpu device
299  * @src: buffer/address where to read from
300  * @dst: buffer/address where to write to
301  * @size: number of bytes to copy
302  * @tmz: if a secure copy should be used
303  * @resv: resv object to sync to
304  * @f: Returns the last fence if multiple jobs are submitted.
305  *
306  * The function copies @size bytes from {src->mem + src->offset} to
307  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
308  * move and different for a BO to BO copy.
309  *
310  */
311 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
312 			       const struct amdgpu_copy_mem *src,
313 			       const struct amdgpu_copy_mem *dst,
314 			       uint64_t size, bool tmz,
315 			       struct dma_resv *resv,
316 			       struct dma_fence **f)
317 {
318 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
319 					AMDGPU_GPU_PAGE_SIZE);
320 
321 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
322 	struct amdgpu_res_cursor src_mm, dst_mm;
323 	struct dma_fence *fence = NULL;
324 	int r = 0;
325 
326 	if (!adev->mman.buffer_funcs_enabled) {
327 		DRM_ERROR("Trying to move memory with ring turned off.\n");
328 		return -EINVAL;
329 	}
330 
331 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
332 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
333 
334 	mutex_lock(&adev->mman.gtt_window_lock);
335 	while (src_mm.remaining) {
336 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
337 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
338 		struct dma_fence *next;
339 		uint32_t cur_size;
340 		uint64_t from, to;
341 
342 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343 		 * begins at an offset, then adjust the size accordingly
344 		 */
345 		cur_size = max(src_page_offset, dst_page_offset);
346 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
347 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
348 
349 		/* Map src to window 0 and dst to window 1. */
350 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
351 					  PFN_UP(cur_size + src_page_offset),
352 					  0, ring, tmz, &from);
353 		if (r)
354 			goto error;
355 
356 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
357 					  PFN_UP(cur_size + dst_page_offset),
358 					  1, ring, tmz, &to);
359 		if (r)
360 			goto error;
361 
362 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
363 				       resv, &next, false, true, tmz);
364 		if (r)
365 			goto error;
366 
367 		dma_fence_put(fence);
368 		fence = next;
369 
370 		amdgpu_res_next(&src_mm, cur_size);
371 		amdgpu_res_next(&dst_mm, cur_size);
372 	}
373 error:
374 	mutex_unlock(&adev->mman.gtt_window_lock);
375 	if (f)
376 		*f = dma_fence_get(fence);
377 	dma_fence_put(fence);
378 	return r;
379 }
380 
381 /*
382  * amdgpu_move_blit - Copy an entire buffer to another buffer
383  *
384  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
385  * help move buffers to and from VRAM.
386  */
387 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
388 			    bool evict,
389 			    struct ttm_resource *new_mem,
390 			    struct ttm_resource *old_mem)
391 {
392 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
393 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
394 	struct amdgpu_copy_mem src, dst;
395 	struct dma_fence *fence = NULL;
396 	int r;
397 
398 	src.bo = bo;
399 	dst.bo = bo;
400 	src.mem = old_mem;
401 	dst.mem = new_mem;
402 	src.offset = 0;
403 	dst.offset = 0;
404 
405 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
406 				       new_mem->num_pages << PAGE_SHIFT,
407 				       amdgpu_bo_encrypted(abo),
408 				       bo->base.resv, &fence);
409 	if (r)
410 		goto error;
411 
412 	/* clear the space being freed */
413 	if (old_mem->mem_type == TTM_PL_VRAM &&
414 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
415 		struct dma_fence *wipe_fence = NULL;
416 
417 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
418 				       NULL, &wipe_fence);
419 		if (r) {
420 			goto error;
421 		} else if (wipe_fence) {
422 			dma_fence_put(fence);
423 			fence = wipe_fence;
424 		}
425 	}
426 
427 	/* Always block for VM page tables before committing the new location */
428 	if (bo->type == ttm_bo_type_kernel)
429 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
430 	else
431 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
432 	dma_fence_put(fence);
433 	return r;
434 
435 error:
436 	if (fence)
437 		dma_fence_wait(fence, false);
438 	dma_fence_put(fence);
439 	return r;
440 }
441 
442 /*
443  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
444  *
445  * Called by amdgpu_bo_move()
446  */
447 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
448 			       struct ttm_resource *mem)
449 {
450 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
451 	struct amdgpu_res_cursor cursor;
452 
453 	if (mem->mem_type == TTM_PL_SYSTEM ||
454 	    mem->mem_type == TTM_PL_TT)
455 		return true;
456 	if (mem->mem_type != TTM_PL_VRAM)
457 		return false;
458 
459 	amdgpu_res_first(mem, 0, mem_size, &cursor);
460 
461 	/* ttm_resource_ioremap only supports contiguous memory */
462 	if (cursor.size != mem_size)
463 		return false;
464 
465 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
466 }
467 
468 /*
469  * amdgpu_bo_move - Move a buffer object to a new memory location
470  *
471  * Called by ttm_bo_handle_move_mem()
472  */
473 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
474 			  struct ttm_operation_ctx *ctx,
475 			  struct ttm_resource *new_mem,
476 			  struct ttm_place *hop)
477 {
478 	struct amdgpu_device *adev;
479 	struct amdgpu_bo *abo;
480 	struct ttm_resource *old_mem = &bo->mem;
481 	int r;
482 
483 	if (new_mem->mem_type == TTM_PL_TT) {
484 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
485 		if (r)
486 			return r;
487 	}
488 
489 	/* Can't move a pinned BO */
490 	abo = ttm_to_amdgpu_bo(bo);
491 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
492 		return -EINVAL;
493 
494 	adev = amdgpu_ttm_adev(bo->bdev);
495 
496 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
497 		ttm_bo_move_null(bo, new_mem);
498 		goto out;
499 	}
500 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
501 	    new_mem->mem_type == TTM_PL_TT) {
502 		ttm_bo_move_null(bo, new_mem);
503 		goto out;
504 	}
505 	if (old_mem->mem_type == TTM_PL_TT &&
506 	    new_mem->mem_type == TTM_PL_SYSTEM) {
507 		r = ttm_bo_wait_ctx(bo, ctx);
508 		if (r)
509 			return r;
510 
511 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
512 		ttm_resource_free(bo, &bo->mem);
513 		ttm_bo_assign_mem(bo, new_mem);
514 		goto out;
515 	}
516 
517 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
518 	    old_mem->mem_type == AMDGPU_PL_GWS ||
519 	    old_mem->mem_type == AMDGPU_PL_OA ||
520 	    new_mem->mem_type == AMDGPU_PL_GDS ||
521 	    new_mem->mem_type == AMDGPU_PL_GWS ||
522 	    new_mem->mem_type == AMDGPU_PL_OA) {
523 		/* Nothing to save here */
524 		ttm_bo_move_null(bo, new_mem);
525 		goto out;
526 	}
527 
528 	if (adev->mman.buffer_funcs_enabled) {
529 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
530 		      new_mem->mem_type == TTM_PL_VRAM) ||
531 		     (old_mem->mem_type == TTM_PL_VRAM &&
532 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
533 			hop->fpfn = 0;
534 			hop->lpfn = 0;
535 			hop->mem_type = TTM_PL_TT;
536 			hop->flags = 0;
537 			return -EMULTIHOP;
538 		}
539 
540 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
541 	} else {
542 		r = -ENODEV;
543 	}
544 
545 	if (r) {
546 		/* Check that all memory is CPU accessible */
547 		if (!amdgpu_mem_visible(adev, old_mem) ||
548 		    !amdgpu_mem_visible(adev, new_mem)) {
549 			pr_err("Move buffer fallback to memcpy unavailable\n");
550 			return r;
551 		}
552 
553 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
554 		if (r)
555 			return r;
556 	}
557 
558 	if (bo->type == ttm_bo_type_device &&
559 	    new_mem->mem_type == TTM_PL_VRAM &&
560 	    old_mem->mem_type != TTM_PL_VRAM) {
561 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
562 		 * accesses the BO after it's moved.
563 		 */
564 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
565 	}
566 
567 out:
568 	/* update statistics */
569 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
570 	amdgpu_bo_move_notify(bo, evict, new_mem);
571 	return 0;
572 }
573 
574 /*
575  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
576  *
577  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
578  */
579 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
580 				     struct ttm_resource *mem)
581 {
582 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
583 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
584 
585 	switch (mem->mem_type) {
586 	case TTM_PL_SYSTEM:
587 		/* system memory */
588 		return 0;
589 	case TTM_PL_TT:
590 		break;
591 	case TTM_PL_VRAM:
592 		mem->bus.offset = mem->start << PAGE_SHIFT;
593 		/* check if it's visible */
594 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
595 			return -EINVAL;
596 
597 		if (adev->mman.aper_base_kaddr &&
598 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
599 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
600 					mem->bus.offset;
601 
602 		mem->bus.offset += adev->gmc.aper_base;
603 		mem->bus.is_iomem = true;
604 		if (adev->gmc.xgmi.connected_to_cpu)
605 			mem->bus.caching = ttm_cached;
606 		else
607 			mem->bus.caching = ttm_write_combined;
608 		break;
609 	default:
610 		return -EINVAL;
611 	}
612 	return 0;
613 }
614 
615 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
616 					   unsigned long page_offset)
617 {
618 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
619 	struct amdgpu_res_cursor cursor;
620 
621 	amdgpu_res_first(&bo->mem, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
622 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
623 }
624 
625 /**
626  * amdgpu_ttm_domain_start - Returns GPU start address
627  * @adev: amdgpu device object
628  * @type: type of the memory
629  *
630  * Returns:
631  * GPU start address of a memory domain
632  */
633 
634 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
635 {
636 	switch (type) {
637 	case TTM_PL_TT:
638 		return adev->gmc.gart_start;
639 	case TTM_PL_VRAM:
640 		return adev->gmc.vram_start;
641 	}
642 
643 	return 0;
644 }
645 
646 /*
647  * TTM backend functions.
648  */
649 struct amdgpu_ttm_tt {
650 	struct ttm_tt	ttm;
651 	struct drm_gem_object	*gobj;
652 	u64			offset;
653 	uint64_t		userptr;
654 	struct task_struct	*usertask;
655 	uint32_t		userflags;
656 	bool			bound;
657 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
658 	struct hmm_range	*range;
659 #endif
660 };
661 
662 #ifdef CONFIG_DRM_AMDGPU_USERPTR
663 /*
664  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
665  * memory and start HMM tracking CPU page table update
666  *
667  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
668  * once afterwards to stop HMM tracking
669  */
670 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
671 {
672 	struct ttm_tt *ttm = bo->tbo.ttm;
673 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
674 	unsigned long start = gtt->userptr;
675 	struct vm_area_struct *vma;
676 	struct mm_struct *mm;
677 	bool readonly;
678 	int r = 0;
679 
680 	mm = bo->notifier.mm;
681 	if (unlikely(!mm)) {
682 		DRM_DEBUG_DRIVER("BO is not registered?\n");
683 		return -EFAULT;
684 	}
685 
686 	/* Another get_user_pages is running at the same time?? */
687 	if (WARN_ON(gtt->range))
688 		return -EFAULT;
689 
690 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
691 		return -ESRCH;
692 
693 	mmap_read_lock(mm);
694 	vma = find_vma(mm, start);
695 	mmap_read_unlock(mm);
696 	if (unlikely(!vma || start < vma->vm_start)) {
697 		r = -EFAULT;
698 		goto out_putmm;
699 	}
700 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
701 		vma->vm_file)) {
702 		r = -EPERM;
703 		goto out_putmm;
704 	}
705 
706 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
707 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
708 				       ttm->num_pages, &gtt->range, readonly,
709 				       false);
710 out_putmm:
711 	mmput(mm);
712 
713 	return r;
714 }
715 
716 /*
717  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
718  * Check if the pages backing this ttm range have been invalidated
719  *
720  * Returns: true if pages are still valid
721  */
722 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
723 {
724 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
725 	bool r = false;
726 
727 	if (!gtt || !gtt->userptr)
728 		return false;
729 
730 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
731 		gtt->userptr, ttm->num_pages);
732 
733 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
734 		"No user pages to check\n");
735 
736 	if (gtt->range) {
737 		/*
738 		 * FIXME: Must always hold notifier_lock for this, and must
739 		 * not ignore the return code.
740 		 */
741 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
742 		gtt->range = NULL;
743 	}
744 
745 	return !r;
746 }
747 #endif
748 
749 /*
750  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
751  *
752  * Called by amdgpu_cs_list_validate(). This creates the page list
753  * that backs user memory and will ultimately be mapped into the device
754  * address space.
755  */
756 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
757 {
758 	unsigned long i;
759 
760 	for (i = 0; i < ttm->num_pages; ++i)
761 		ttm->pages[i] = pages ? pages[i] : NULL;
762 }
763 
764 /*
765  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
766  *
767  * Called by amdgpu_ttm_backend_bind()
768  **/
769 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
770 				     struct ttm_tt *ttm)
771 {
772 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
773 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
774 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
775 	enum dma_data_direction direction = write ?
776 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
777 	int r;
778 
779 	/* Allocate an SG array and squash pages into it */
780 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
781 				      (u64)ttm->num_pages << PAGE_SHIFT,
782 				      GFP_KERNEL);
783 	if (r)
784 		goto release_sg;
785 
786 	/* Map SG to device */
787 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
788 	if (r)
789 		goto release_sg;
790 
791 	/* convert SG to linear array of pages and dma addresses */
792 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
793 				       ttm->num_pages);
794 
795 	return 0;
796 
797 release_sg:
798 	kfree(ttm->sg);
799 	ttm->sg = NULL;
800 	return r;
801 }
802 
803 /*
804  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
805  */
806 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
807 					struct ttm_tt *ttm)
808 {
809 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
810 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
811 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
812 	enum dma_data_direction direction = write ?
813 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
814 
815 	/* double check that we don't free the table twice */
816 	if (!ttm->sg || !ttm->sg->sgl)
817 		return;
818 
819 	/* unmap the pages mapped to the device */
820 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
821 	sg_free_table(ttm->sg);
822 
823 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
824 	if (gtt->range) {
825 		unsigned long i;
826 
827 		for (i = 0; i < ttm->num_pages; i++) {
828 			if (ttm->pages[i] !=
829 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
830 				break;
831 		}
832 
833 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
834 	}
835 #endif
836 }
837 
838 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
839 				struct ttm_buffer_object *tbo,
840 				uint64_t flags)
841 {
842 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
843 	struct ttm_tt *ttm = tbo->ttm;
844 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
845 	int r;
846 
847 	if (amdgpu_bo_encrypted(abo))
848 		flags |= AMDGPU_PTE_TMZ;
849 
850 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
851 		uint64_t page_idx = 1;
852 
853 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
854 				ttm->pages, gtt->ttm.dma_address, flags);
855 		if (r)
856 			goto gart_bind_fail;
857 
858 		/* The memory type of the first page defaults to UC. Now
859 		 * modify the memory type to NC from the second page of
860 		 * the BO onward.
861 		 */
862 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
863 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
864 
865 		r = amdgpu_gart_bind(adev,
866 				gtt->offset + (page_idx << PAGE_SHIFT),
867 				ttm->num_pages - page_idx,
868 				&ttm->pages[page_idx],
869 				&(gtt->ttm.dma_address[page_idx]), flags);
870 	} else {
871 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
872 				     ttm->pages, gtt->ttm.dma_address, flags);
873 	}
874 
875 gart_bind_fail:
876 	if (r)
877 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
878 			  ttm->num_pages, gtt->offset);
879 
880 	return r;
881 }
882 
883 /*
884  * amdgpu_ttm_backend_bind - Bind GTT memory
885  *
886  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
887  * This handles binding GTT memory to the device address space.
888  */
889 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
890 				   struct ttm_tt *ttm,
891 				   struct ttm_resource *bo_mem)
892 {
893 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
894 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
895 	uint64_t flags;
896 	int r = 0;
897 
898 	if (!bo_mem)
899 		return -EINVAL;
900 
901 	if (gtt->bound)
902 		return 0;
903 
904 	if (gtt->userptr) {
905 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
906 		if (r) {
907 			DRM_ERROR("failed to pin userptr\n");
908 			return r;
909 		}
910 	}
911 	if (!ttm->num_pages) {
912 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
913 		     ttm->num_pages, bo_mem, ttm);
914 	}
915 
916 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
917 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
918 	    bo_mem->mem_type == AMDGPU_PL_OA)
919 		return -EINVAL;
920 
921 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
922 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
923 		return 0;
924 	}
925 
926 	/* compute PTE flags relevant to this BO memory */
927 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
928 
929 	/* bind pages into GART page tables */
930 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
931 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
932 		ttm->pages, gtt->ttm.dma_address, flags);
933 
934 	if (r)
935 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
936 			  ttm->num_pages, gtt->offset);
937 	gtt->bound = true;
938 	return r;
939 }
940 
941 /*
942  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
943  * through AGP or GART aperture.
944  *
945  * If bo is accessible through AGP aperture, then use AGP aperture
946  * to access bo; otherwise allocate logical space in GART aperture
947  * and map bo to GART aperture.
948  */
949 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
950 {
951 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
952 	struct ttm_operation_ctx ctx = { false, false };
953 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
954 	struct ttm_resource tmp;
955 	struct ttm_placement placement;
956 	struct ttm_place placements;
957 	uint64_t addr, flags;
958 	int r;
959 
960 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
961 		return 0;
962 
963 	addr = amdgpu_gmc_agp_addr(bo);
964 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
965 		bo->mem.start = addr >> PAGE_SHIFT;
966 	} else {
967 
968 		/* allocate GART space */
969 		tmp = bo->mem;
970 		tmp.mm_node = NULL;
971 		placement.num_placement = 1;
972 		placement.placement = &placements;
973 		placement.num_busy_placement = 1;
974 		placement.busy_placement = &placements;
975 		placements.fpfn = 0;
976 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
977 		placements.mem_type = TTM_PL_TT;
978 		placements.flags = bo->mem.placement;
979 
980 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
981 		if (unlikely(r))
982 			return r;
983 
984 		/* compute PTE flags for this buffer object */
985 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
986 
987 		/* Bind pages */
988 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
989 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
990 		if (unlikely(r)) {
991 			ttm_resource_free(bo, &tmp);
992 			return r;
993 		}
994 
995 		ttm_resource_free(bo, &bo->mem);
996 		bo->mem = tmp;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 /*
1003  * amdgpu_ttm_recover_gart - Rebind GTT pages
1004  *
1005  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1006  * rebind GTT pages during a GPU reset.
1007  */
1008 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1009 {
1010 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1011 	uint64_t flags;
1012 	int r;
1013 
1014 	if (!tbo->ttm)
1015 		return 0;
1016 
1017 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1018 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1019 
1020 	return r;
1021 }
1022 
1023 /*
1024  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1025  *
1026  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1027  * ttm_tt_destroy().
1028  */
1029 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1030 				      struct ttm_tt *ttm)
1031 {
1032 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1033 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1034 	int r;
1035 
1036 	/* if the pages have userptr pinning then clear that first */
1037 	if (gtt->userptr)
1038 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1039 
1040 	if (!gtt->bound)
1041 		return;
1042 
1043 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1044 		return;
1045 
1046 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1047 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1048 	if (r)
1049 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1050 			  gtt->ttm.num_pages, gtt->offset);
1051 	gtt->bound = false;
1052 }
1053 
1054 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1055 				       struct ttm_tt *ttm)
1056 {
1057 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1058 
1059 	amdgpu_ttm_backend_unbind(bdev, ttm);
1060 	ttm_tt_destroy_common(bdev, ttm);
1061 	if (gtt->usertask)
1062 		put_task_struct(gtt->usertask);
1063 
1064 	ttm_tt_fini(&gtt->ttm);
1065 	kfree(gtt);
1066 }
1067 
1068 /**
1069  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1070  *
1071  * @bo: The buffer object to create a GTT ttm_tt object around
1072  * @page_flags: Page flags to be added to the ttm_tt object
1073  *
1074  * Called by ttm_tt_create().
1075  */
1076 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1077 					   uint32_t page_flags)
1078 {
1079 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1080 	struct amdgpu_ttm_tt *gtt;
1081 	enum ttm_caching caching;
1082 
1083 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1084 	if (gtt == NULL) {
1085 		return NULL;
1086 	}
1087 	gtt->gobj = &bo->base;
1088 
1089 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1090 		caching = ttm_write_combined;
1091 	else
1092 		caching = ttm_cached;
1093 
1094 	/* allocate space for the uninitialized page entries */
1095 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1096 		kfree(gtt);
1097 		return NULL;
1098 	}
1099 	return &gtt->ttm;
1100 }
1101 
1102 /*
1103  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1104  *
1105  * Map the pages of a ttm_tt object to an address space visible
1106  * to the underlying device.
1107  */
1108 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1109 				  struct ttm_tt *ttm,
1110 				  struct ttm_operation_ctx *ctx)
1111 {
1112 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1113 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1114 
1115 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1116 	if (gtt && gtt->userptr) {
1117 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1118 		if (!ttm->sg)
1119 			return -ENOMEM;
1120 
1121 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1122 		return 0;
1123 	}
1124 
1125 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1126 		if (!ttm->sg) {
1127 			struct dma_buf_attachment *attach;
1128 			struct sg_table *sgt;
1129 
1130 			attach = gtt->gobj->import_attach;
1131 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1132 			if (IS_ERR(sgt))
1133 				return PTR_ERR(sgt);
1134 
1135 			ttm->sg = sgt;
1136 		}
1137 
1138 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
1139 					       ttm->num_pages);
1140 		return 0;
1141 	}
1142 
1143 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1144 }
1145 
1146 /*
1147  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1148  *
1149  * Unmaps pages of a ttm_tt object from the device address space and
1150  * unpopulates the page array backing it.
1151  */
1152 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1153 				     struct ttm_tt *ttm)
1154 {
1155 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1156 	struct amdgpu_device *adev;
1157 
1158 	if (gtt && gtt->userptr) {
1159 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1160 		kfree(ttm->sg);
1161 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1162 		return;
1163 	}
1164 
1165 	if (ttm->sg && gtt->gobj->import_attach) {
1166 		struct dma_buf_attachment *attach;
1167 
1168 		attach = gtt->gobj->import_attach;
1169 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1170 		ttm->sg = NULL;
1171 		return;
1172 	}
1173 
1174 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1175 		return;
1176 
1177 	adev = amdgpu_ttm_adev(bdev);
1178 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1179 }
1180 
1181 /**
1182  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1183  * task
1184  *
1185  * @bo: The ttm_buffer_object to bind this userptr to
1186  * @addr:  The address in the current tasks VM space to use
1187  * @flags: Requirements of userptr object.
1188  *
1189  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1190  * to current task
1191  */
1192 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1193 			      uint64_t addr, uint32_t flags)
1194 {
1195 	struct amdgpu_ttm_tt *gtt;
1196 
1197 	if (!bo->ttm) {
1198 		/* TODO: We want a separate TTM object type for userptrs */
1199 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1200 		if (bo->ttm == NULL)
1201 			return -ENOMEM;
1202 	}
1203 
1204 	gtt = (void *)bo->ttm;
1205 	gtt->userptr = addr;
1206 	gtt->userflags = flags;
1207 
1208 	if (gtt->usertask)
1209 		put_task_struct(gtt->usertask);
1210 	gtt->usertask = current->group_leader;
1211 	get_task_struct(gtt->usertask);
1212 
1213 	return 0;
1214 }
1215 
1216 /*
1217  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1218  */
1219 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1220 {
1221 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1222 
1223 	if (gtt == NULL)
1224 		return NULL;
1225 
1226 	if (gtt->usertask == NULL)
1227 		return NULL;
1228 
1229 	return gtt->usertask->mm;
1230 }
1231 
1232 /*
1233  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1234  * address range for the current task.
1235  *
1236  */
1237 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1238 				  unsigned long end)
1239 {
1240 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1241 	unsigned long size;
1242 
1243 	if (gtt == NULL || !gtt->userptr)
1244 		return false;
1245 
1246 	/* Return false if no part of the ttm_tt object lies within
1247 	 * the range
1248 	 */
1249 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1250 	if (gtt->userptr > end || gtt->userptr + size <= start)
1251 		return false;
1252 
1253 	return true;
1254 }
1255 
1256 /*
1257  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1258  */
1259 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1260 {
1261 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1262 
1263 	if (gtt == NULL || !gtt->userptr)
1264 		return false;
1265 
1266 	return true;
1267 }
1268 
1269 /*
1270  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1271  */
1272 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1273 {
1274 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1275 
1276 	if (gtt == NULL)
1277 		return false;
1278 
1279 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1280 }
1281 
1282 /**
1283  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1284  *
1285  * @ttm: The ttm_tt object to compute the flags for
1286  * @mem: The memory registry backing this ttm_tt object
1287  *
1288  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1289  */
1290 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1291 {
1292 	uint64_t flags = 0;
1293 
1294 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1295 		flags |= AMDGPU_PTE_VALID;
1296 
1297 	if (mem && mem->mem_type == TTM_PL_TT) {
1298 		flags |= AMDGPU_PTE_SYSTEM;
1299 
1300 		if (ttm->caching == ttm_cached)
1301 			flags |= AMDGPU_PTE_SNOOPED;
1302 	}
1303 
1304 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1305 			mem->bus.caching == ttm_cached)
1306 		flags |= AMDGPU_PTE_SNOOPED;
1307 
1308 	return flags;
1309 }
1310 
1311 /**
1312  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1313  *
1314  * @adev: amdgpu_device pointer
1315  * @ttm: The ttm_tt object to compute the flags for
1316  * @mem: The memory registry backing this ttm_tt object
1317  *
1318  * Figure out the flags to use for a VM PTE (Page Table Entry).
1319  */
1320 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1321 				 struct ttm_resource *mem)
1322 {
1323 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1324 
1325 	flags |= adev->gart.gart_pte_flags;
1326 	flags |= AMDGPU_PTE_READABLE;
1327 
1328 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1329 		flags |= AMDGPU_PTE_WRITEABLE;
1330 
1331 	return flags;
1332 }
1333 
1334 /*
1335  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1336  * object.
1337  *
1338  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1339  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1340  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1341  * used to clean out a memory space.
1342  */
1343 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1344 					    const struct ttm_place *place)
1345 {
1346 	unsigned long num_pages = bo->mem.num_pages;
1347 	struct amdgpu_res_cursor cursor;
1348 	struct dma_resv_list *flist;
1349 	struct dma_fence *f;
1350 	int i;
1351 
1352 	if (bo->type == ttm_bo_type_kernel &&
1353 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1354 		return false;
1355 
1356 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1357 	 * If true, then return false as any KFD process needs all its BOs to
1358 	 * be resident to run successfully
1359 	 */
1360 	flist = dma_resv_get_list(bo->base.resv);
1361 	if (flist) {
1362 		for (i = 0; i < flist->shared_count; ++i) {
1363 			f = rcu_dereference_protected(flist->shared[i],
1364 				dma_resv_held(bo->base.resv));
1365 			if (amdkfd_fence_check_mm(f, current->mm))
1366 				return false;
1367 		}
1368 	}
1369 
1370 	switch (bo->mem.mem_type) {
1371 	case TTM_PL_TT:
1372 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1373 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1374 			return false;
1375 		return true;
1376 
1377 	case TTM_PL_VRAM:
1378 		/* Check each drm MM node individually */
1379 		amdgpu_res_first(&bo->mem, 0, (u64)num_pages << PAGE_SHIFT,
1380 				 &cursor);
1381 		while (cursor.remaining) {
1382 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1383 			    && !(place->lpfn &&
1384 				 place->lpfn <= PFN_DOWN(cursor.start)))
1385 				return true;
1386 
1387 			amdgpu_res_next(&cursor, cursor.size);
1388 		}
1389 		return false;
1390 
1391 	default:
1392 		break;
1393 	}
1394 
1395 	return ttm_bo_eviction_valuable(bo, place);
1396 }
1397 
1398 /**
1399  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1400  *
1401  * @bo:  The buffer object to read/write
1402  * @offset:  Offset into buffer object
1403  * @buf:  Secondary buffer to write/read from
1404  * @len: Length in bytes of access
1405  * @write:  true if writing
1406  *
1407  * This is used to access VRAM that backs a buffer object via MMIO
1408  * access for debugging purposes.
1409  */
1410 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1411 				    unsigned long offset, void *buf, int len,
1412 				    int write)
1413 {
1414 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1415 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1416 	struct amdgpu_res_cursor cursor;
1417 	unsigned long flags;
1418 	uint32_t value = 0;
1419 	int ret = 0;
1420 
1421 	if (bo->mem.mem_type != TTM_PL_VRAM)
1422 		return -EIO;
1423 
1424 	amdgpu_res_first(&bo->mem, offset, len, &cursor);
1425 	while (cursor.remaining) {
1426 		uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1427 		uint64_t bytes = 4 - (cursor.start & 3);
1428 		uint32_t shift = (cursor.start & 3) * 8;
1429 		uint32_t mask = 0xffffffff << shift;
1430 
1431 		if (cursor.size < bytes) {
1432 			mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1433 			bytes = cursor.size;
1434 		}
1435 
1436 		if (mask != 0xffffffff) {
1437 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1438 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1439 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1440 			value = RREG32_NO_KIQ(mmMM_DATA);
1441 			if (write) {
1442 				value &= ~mask;
1443 				value |= (*(uint32_t *)buf << shift) & mask;
1444 				WREG32_NO_KIQ(mmMM_DATA, value);
1445 			}
1446 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1447 			if (!write) {
1448 				value = (value & mask) >> shift;
1449 				memcpy(buf, &value, bytes);
1450 			}
1451 		} else {
1452 			bytes = cursor.size & ~0x3ULL;
1453 			amdgpu_device_vram_access(adev, cursor.start,
1454 						  (uint32_t *)buf, bytes,
1455 						  write);
1456 		}
1457 
1458 		ret += bytes;
1459 		buf = (uint8_t *)buf + bytes;
1460 		amdgpu_res_next(&cursor, bytes);
1461 	}
1462 
1463 	return ret;
1464 }
1465 
1466 static void
1467 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1468 {
1469 	amdgpu_bo_move_notify(bo, false, NULL);
1470 }
1471 
1472 static struct ttm_device_funcs amdgpu_bo_driver = {
1473 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1474 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1475 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1476 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1477 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1478 	.evict_flags = &amdgpu_evict_flags,
1479 	.move = &amdgpu_bo_move,
1480 	.verify_access = &amdgpu_verify_access,
1481 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1482 	.release_notify = &amdgpu_bo_release_notify,
1483 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1484 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1485 	.access_memory = &amdgpu_ttm_access_memory,
1486 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1487 };
1488 
1489 /*
1490  * Firmware Reservation functions
1491  */
1492 /**
1493  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1494  *
1495  * @adev: amdgpu_device pointer
1496  *
1497  * free fw reserved vram if it has been reserved.
1498  */
1499 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1500 {
1501 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1502 		NULL, &adev->mman.fw_vram_usage_va);
1503 }
1504 
1505 /**
1506  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1507  *
1508  * @adev: amdgpu_device pointer
1509  *
1510  * create bo vram reservation from fw.
1511  */
1512 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1513 {
1514 	uint64_t vram_size = adev->gmc.visible_vram_size;
1515 
1516 	adev->mman.fw_vram_usage_va = NULL;
1517 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1518 
1519 	if (adev->mman.fw_vram_usage_size == 0 ||
1520 	    adev->mman.fw_vram_usage_size > vram_size)
1521 		return 0;
1522 
1523 	return amdgpu_bo_create_kernel_at(adev,
1524 					  adev->mman.fw_vram_usage_start_offset,
1525 					  adev->mman.fw_vram_usage_size,
1526 					  AMDGPU_GEM_DOMAIN_VRAM,
1527 					  &adev->mman.fw_vram_usage_reserved_bo,
1528 					  &adev->mman.fw_vram_usage_va);
1529 }
1530 
1531 /*
1532  * Memoy training reservation functions
1533  */
1534 
1535 /**
1536  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1537  *
1538  * @adev: amdgpu_device pointer
1539  *
1540  * free memory training reserved vram if it has been reserved.
1541  */
1542 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1543 {
1544 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1545 
1546 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1547 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1548 	ctx->c2p_bo = NULL;
1549 
1550 	return 0;
1551 }
1552 
1553 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1554 {
1555 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1556 
1557 	memset(ctx, 0, sizeof(*ctx));
1558 
1559 	ctx->c2p_train_data_offset =
1560 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1561 	ctx->p2c_train_data_offset =
1562 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1563 	ctx->train_data_size =
1564 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1565 
1566 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1567 			ctx->train_data_size,
1568 			ctx->p2c_train_data_offset,
1569 			ctx->c2p_train_data_offset);
1570 }
1571 
1572 /*
1573  * reserve TMR memory at the top of VRAM which holds
1574  * IP Discovery data and is protected by PSP.
1575  */
1576 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1577 {
1578 	int ret;
1579 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1580 	bool mem_train_support = false;
1581 
1582 	if (!amdgpu_sriov_vf(adev)) {
1583 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1584 			mem_train_support = true;
1585 		else
1586 			DRM_DEBUG("memory training does not support!\n");
1587 	}
1588 
1589 	/*
1590 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1591 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1592 	 *
1593 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1594 	 * discovery data and G6 memory training data respectively
1595 	 */
1596 	adev->mman.discovery_tmr_size =
1597 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1598 	if (!adev->mman.discovery_tmr_size)
1599 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1600 
1601 	if (mem_train_support) {
1602 		/* reserve vram for mem train according to TMR location */
1603 		amdgpu_ttm_training_data_block_init(adev);
1604 		ret = amdgpu_bo_create_kernel_at(adev,
1605 					 ctx->c2p_train_data_offset,
1606 					 ctx->train_data_size,
1607 					 AMDGPU_GEM_DOMAIN_VRAM,
1608 					 &ctx->c2p_bo,
1609 					 NULL);
1610 		if (ret) {
1611 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1612 			amdgpu_ttm_training_reserve_vram_fini(adev);
1613 			return ret;
1614 		}
1615 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1616 	}
1617 
1618 	ret = amdgpu_bo_create_kernel_at(adev,
1619 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1620 				adev->mman.discovery_tmr_size,
1621 				AMDGPU_GEM_DOMAIN_VRAM,
1622 				&adev->mman.discovery_memory,
1623 				NULL);
1624 	if (ret) {
1625 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1626 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1627 		return ret;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 /*
1634  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1635  * gtt/vram related fields.
1636  *
1637  * This initializes all of the memory space pools that the TTM layer
1638  * will need such as the GTT space (system memory mapped to the device),
1639  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1640  * can be mapped per VMID.
1641  */
1642 int amdgpu_ttm_init(struct amdgpu_device *adev)
1643 {
1644 	uint64_t gtt_size;
1645 	int r;
1646 	u64 vis_vram_limit;
1647 
1648 	mutex_init(&adev->mman.gtt_window_lock);
1649 
1650 	/* No others user of address space so set it to 0 */
1651 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1652 			       adev_to_drm(adev)->anon_inode->i_mapping,
1653 			       adev_to_drm(adev)->vma_offset_manager,
1654 			       adev->need_swiotlb,
1655 			       dma_addressing_limited(adev->dev));
1656 	if (r) {
1657 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1658 		return r;
1659 	}
1660 	adev->mman.initialized = true;
1661 
1662 	/* Initialize VRAM pool with all of VRAM divided into pages */
1663 	r = amdgpu_vram_mgr_init(adev);
1664 	if (r) {
1665 		DRM_ERROR("Failed initializing VRAM heap.\n");
1666 		return r;
1667 	}
1668 
1669 	/* Reduce size of CPU-visible VRAM if requested */
1670 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1671 	if (amdgpu_vis_vram_limit > 0 &&
1672 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1673 		adev->gmc.visible_vram_size = vis_vram_limit;
1674 
1675 	/* Change the size here instead of the init above so only lpfn is affected */
1676 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1677 #ifdef CONFIG_64BIT
1678 #ifdef CONFIG_X86
1679 	if (adev->gmc.xgmi.connected_to_cpu)
1680 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1681 				adev->gmc.visible_vram_size);
1682 
1683 	else
1684 #endif
1685 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1686 				adev->gmc.visible_vram_size);
1687 #endif
1688 
1689 	/*
1690 	 *The reserved vram for firmware must be pinned to the specified
1691 	 *place on the VRAM, so reserve it early.
1692 	 */
1693 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1694 	if (r) {
1695 		return r;
1696 	}
1697 
1698 	/*
1699 	 * only NAVI10 and onwards ASIC support for IP discovery.
1700 	 * If IP discovery enabled, a block of memory should be
1701 	 * reserved for IP discovey.
1702 	 */
1703 	if (adev->mman.discovery_bin) {
1704 		r = amdgpu_ttm_reserve_tmr(adev);
1705 		if (r)
1706 			return r;
1707 	}
1708 
1709 	/* allocate memory as required for VGA
1710 	 * This is used for VGA emulation and pre-OS scanout buffers to
1711 	 * avoid display artifacts while transitioning between pre-OS
1712 	 * and driver.  */
1713 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1714 				       AMDGPU_GEM_DOMAIN_VRAM,
1715 				       &adev->mman.stolen_vga_memory,
1716 				       NULL);
1717 	if (r)
1718 		return r;
1719 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1720 				       adev->mman.stolen_extended_size,
1721 				       AMDGPU_GEM_DOMAIN_VRAM,
1722 				       &adev->mman.stolen_extended_memory,
1723 				       NULL);
1724 	if (r)
1725 		return r;
1726 
1727 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1728 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1729 
1730 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1731 	 * or whatever the user passed on module init */
1732 	if (amdgpu_gtt_size == -1) {
1733 		struct sysinfo si;
1734 
1735 		si_meminfo(&si);
1736 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1737 			       adev->gmc.mc_vram_size),
1738 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1739 	}
1740 	else
1741 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1742 
1743 	/* Initialize GTT memory pool */
1744 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1745 	if (r) {
1746 		DRM_ERROR("Failed initializing GTT heap.\n");
1747 		return r;
1748 	}
1749 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1750 		 (unsigned)(gtt_size / (1024 * 1024)));
1751 
1752 	/* Initialize various on-chip memory pools */
1753 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1754 	if (r) {
1755 		DRM_ERROR("Failed initializing GDS heap.\n");
1756 		return r;
1757 	}
1758 
1759 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1760 	if (r) {
1761 		DRM_ERROR("Failed initializing gws heap.\n");
1762 		return r;
1763 	}
1764 
1765 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1766 	if (r) {
1767 		DRM_ERROR("Failed initializing oa heap.\n");
1768 		return r;
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 /*
1775  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1776  */
1777 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1778 {
1779 	if (!adev->mman.initialized)
1780 		return;
1781 
1782 	amdgpu_ttm_training_reserve_vram_fini(adev);
1783 	/* return the stolen vga memory back to VRAM */
1784 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1785 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1786 	/* return the IP Discovery TMR memory back to VRAM */
1787 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1788 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1789 
1790 	if (adev->mman.aper_base_kaddr)
1791 		iounmap(adev->mman.aper_base_kaddr);
1792 	adev->mman.aper_base_kaddr = NULL;
1793 
1794 	amdgpu_vram_mgr_fini(adev);
1795 	amdgpu_gtt_mgr_fini(adev);
1796 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1797 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1798 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1799 	ttm_device_fini(&adev->mman.bdev);
1800 	adev->mman.initialized = false;
1801 	DRM_INFO("amdgpu: ttm finalized\n");
1802 }
1803 
1804 /**
1805  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1806  *
1807  * @adev: amdgpu_device pointer
1808  * @enable: true when we can use buffer functions.
1809  *
1810  * Enable/disable use of buffer functions during suspend/resume. This should
1811  * only be called at bootup or when userspace isn't running.
1812  */
1813 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1814 {
1815 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1816 	uint64_t size;
1817 	int r;
1818 
1819 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1820 	    adev->mman.buffer_funcs_enabled == enable)
1821 		return;
1822 
1823 	if (enable) {
1824 		struct amdgpu_ring *ring;
1825 		struct drm_gpu_scheduler *sched;
1826 
1827 		ring = adev->mman.buffer_funcs_ring;
1828 		sched = &ring->sched;
1829 		r = drm_sched_entity_init(&adev->mman.entity,
1830 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1831 					  1, NULL);
1832 		if (r) {
1833 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1834 				  r);
1835 			return;
1836 		}
1837 	} else {
1838 		drm_sched_entity_destroy(&adev->mman.entity);
1839 		dma_fence_put(man->move);
1840 		man->move = NULL;
1841 	}
1842 
1843 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1844 	if (enable)
1845 		size = adev->gmc.real_vram_size;
1846 	else
1847 		size = adev->gmc.visible_vram_size;
1848 	man->size = size >> PAGE_SHIFT;
1849 	adev->mman.buffer_funcs_enabled = enable;
1850 }
1851 
1852 static vm_fault_t amdgpu_ttm_fault(struct vm_fault *vmf)
1853 {
1854 	struct ttm_buffer_object *bo = vmf->vma->vm_private_data;
1855 	vm_fault_t ret;
1856 
1857 	ret = ttm_bo_vm_reserve(bo, vmf);
1858 	if (ret)
1859 		return ret;
1860 
1861 	ret = amdgpu_bo_fault_reserve_notify(bo);
1862 	if (ret)
1863 		goto unlock;
1864 
1865 	ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1866 				       TTM_BO_VM_NUM_PREFAULT, 1);
1867 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1868 		return ret;
1869 
1870 unlock:
1871 	dma_resv_unlock(bo->base.resv);
1872 	return ret;
1873 }
1874 
1875 static const struct vm_operations_struct amdgpu_ttm_vm_ops = {
1876 	.fault = amdgpu_ttm_fault,
1877 	.open = ttm_bo_vm_open,
1878 	.close = ttm_bo_vm_close,
1879 	.access = ttm_bo_vm_access
1880 };
1881 
1882 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1883 {
1884 	struct drm_file *file_priv = filp->private_data;
1885 	struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
1886 	int r;
1887 
1888 	r = ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1889 	if (unlikely(r != 0))
1890 		return r;
1891 
1892 	vma->vm_ops = &amdgpu_ttm_vm_ops;
1893 	return 0;
1894 }
1895 
1896 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1897 		       uint64_t dst_offset, uint32_t byte_count,
1898 		       struct dma_resv *resv,
1899 		       struct dma_fence **fence, bool direct_submit,
1900 		       bool vm_needs_flush, bool tmz)
1901 {
1902 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1903 		AMDGPU_IB_POOL_DELAYED;
1904 	struct amdgpu_device *adev = ring->adev;
1905 	struct amdgpu_job *job;
1906 
1907 	uint32_t max_bytes;
1908 	unsigned num_loops, num_dw;
1909 	unsigned i;
1910 	int r;
1911 
1912 	if (direct_submit && !ring->sched.ready) {
1913 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1914 		return -EINVAL;
1915 	}
1916 
1917 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1918 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1919 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1920 
1921 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1922 	if (r)
1923 		return r;
1924 
1925 	if (vm_needs_flush) {
1926 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1927 					adev->gmc.pdb0_bo : adev->gart.bo);
1928 		job->vm_needs_flush = true;
1929 	}
1930 	if (resv) {
1931 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1932 				     AMDGPU_SYNC_ALWAYS,
1933 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1934 		if (r) {
1935 			DRM_ERROR("sync failed (%d).\n", r);
1936 			goto error_free;
1937 		}
1938 	}
1939 
1940 	for (i = 0; i < num_loops; i++) {
1941 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1942 
1943 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1944 					dst_offset, cur_size_in_bytes, tmz);
1945 
1946 		src_offset += cur_size_in_bytes;
1947 		dst_offset += cur_size_in_bytes;
1948 		byte_count -= cur_size_in_bytes;
1949 	}
1950 
1951 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1952 	WARN_ON(job->ibs[0].length_dw > num_dw);
1953 	if (direct_submit)
1954 		r = amdgpu_job_submit_direct(job, ring, fence);
1955 	else
1956 		r = amdgpu_job_submit(job, &adev->mman.entity,
1957 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1958 	if (r)
1959 		goto error_free;
1960 
1961 	return r;
1962 
1963 error_free:
1964 	amdgpu_job_free(job);
1965 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1966 	return r;
1967 }
1968 
1969 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1970 		       uint32_t src_data,
1971 		       struct dma_resv *resv,
1972 		       struct dma_fence **fence)
1973 {
1974 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1975 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1976 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1977 
1978 	struct amdgpu_res_cursor cursor;
1979 	unsigned int num_loops, num_dw;
1980 	uint64_t num_bytes;
1981 
1982 	struct amdgpu_job *job;
1983 	int r;
1984 
1985 	if (!adev->mman.buffer_funcs_enabled) {
1986 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1987 		return -EINVAL;
1988 	}
1989 
1990 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
1991 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1992 		if (r)
1993 			return r;
1994 	}
1995 
1996 	num_bytes = bo->tbo.mem.num_pages << PAGE_SHIFT;
1997 	num_loops = 0;
1998 
1999 	amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
2000 	while (cursor.remaining) {
2001 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
2002 		amdgpu_res_next(&cursor, cursor.size);
2003 	}
2004 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2005 
2006 	/* for IB padding */
2007 	num_dw += 64;
2008 
2009 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2010 				     &job);
2011 	if (r)
2012 		return r;
2013 
2014 	if (resv) {
2015 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2016 				     AMDGPU_SYNC_ALWAYS,
2017 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2018 		if (r) {
2019 			DRM_ERROR("sync failed (%d).\n", r);
2020 			goto error_free;
2021 		}
2022 	}
2023 
2024 	amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
2025 	while (cursor.remaining) {
2026 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2027 		uint64_t dst_addr = cursor.start;
2028 
2029 		dst_addr += amdgpu_ttm_domain_start(adev, bo->tbo.mem.mem_type);
2030 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2031 					cur_size);
2032 
2033 		amdgpu_res_next(&cursor, cur_size);
2034 	}
2035 
2036 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2037 	WARN_ON(job->ibs[0].length_dw > num_dw);
2038 	r = amdgpu_job_submit(job, &adev->mman.entity,
2039 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2040 	if (r)
2041 		goto error_free;
2042 
2043 	return 0;
2044 
2045 error_free:
2046 	amdgpu_job_free(job);
2047 	return r;
2048 }
2049 
2050 #if defined(CONFIG_DEBUG_FS)
2051 
2052 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2053 {
2054 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2055 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2056 							    TTM_PL_VRAM);
2057 	struct drm_printer p = drm_seq_file_printer(m);
2058 
2059 	man->func->debug(man, &p);
2060 	return 0;
2061 }
2062 
2063 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2064 {
2065 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2066 
2067 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2068 }
2069 
2070 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2071 {
2072 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2073 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2074 							    TTM_PL_TT);
2075 	struct drm_printer p = drm_seq_file_printer(m);
2076 
2077 	man->func->debug(man, &p);
2078 	return 0;
2079 }
2080 
2081 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2082 {
2083 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2084 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2085 							    AMDGPU_PL_GDS);
2086 	struct drm_printer p = drm_seq_file_printer(m);
2087 
2088 	man->func->debug(man, &p);
2089 	return 0;
2090 }
2091 
2092 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2093 {
2094 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2095 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2096 							    AMDGPU_PL_GWS);
2097 	struct drm_printer p = drm_seq_file_printer(m);
2098 
2099 	man->func->debug(man, &p);
2100 	return 0;
2101 }
2102 
2103 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2104 {
2105 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2106 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2107 							    AMDGPU_PL_OA);
2108 	struct drm_printer p = drm_seq_file_printer(m);
2109 
2110 	man->func->debug(man, &p);
2111 	return 0;
2112 }
2113 
2114 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2115 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2116 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2117 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2118 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2119 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2120 
2121 /*
2122  * amdgpu_ttm_vram_read - Linear read access to VRAM
2123  *
2124  * Accesses VRAM via MMIO for debugging purposes.
2125  */
2126 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2127 				    size_t size, loff_t *pos)
2128 {
2129 	struct amdgpu_device *adev = file_inode(f)->i_private;
2130 	ssize_t result = 0;
2131 
2132 	if (size & 0x3 || *pos & 0x3)
2133 		return -EINVAL;
2134 
2135 	if (*pos >= adev->gmc.mc_vram_size)
2136 		return -ENXIO;
2137 
2138 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2139 	while (size) {
2140 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2141 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2142 
2143 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2144 		if (copy_to_user(buf, value, bytes))
2145 			return -EFAULT;
2146 
2147 		result += bytes;
2148 		buf += bytes;
2149 		*pos += bytes;
2150 		size -= bytes;
2151 	}
2152 
2153 	return result;
2154 }
2155 
2156 /*
2157  * amdgpu_ttm_vram_write - Linear write access to VRAM
2158  *
2159  * Accesses VRAM via MMIO for debugging purposes.
2160  */
2161 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2162 				    size_t size, loff_t *pos)
2163 {
2164 	struct amdgpu_device *adev = file_inode(f)->i_private;
2165 	ssize_t result = 0;
2166 	int r;
2167 
2168 	if (size & 0x3 || *pos & 0x3)
2169 		return -EINVAL;
2170 
2171 	if (*pos >= adev->gmc.mc_vram_size)
2172 		return -ENXIO;
2173 
2174 	while (size) {
2175 		unsigned long flags;
2176 		uint32_t value;
2177 
2178 		if (*pos >= adev->gmc.mc_vram_size)
2179 			return result;
2180 
2181 		r = get_user(value, (uint32_t *)buf);
2182 		if (r)
2183 			return r;
2184 
2185 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2186 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2187 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2188 		WREG32_NO_KIQ(mmMM_DATA, value);
2189 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2190 
2191 		result += 4;
2192 		buf += 4;
2193 		*pos += 4;
2194 		size -= 4;
2195 	}
2196 
2197 	return result;
2198 }
2199 
2200 static const struct file_operations amdgpu_ttm_vram_fops = {
2201 	.owner = THIS_MODULE,
2202 	.read = amdgpu_ttm_vram_read,
2203 	.write = amdgpu_ttm_vram_write,
2204 	.llseek = default_llseek,
2205 };
2206 
2207 /*
2208  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2209  *
2210  * This function is used to read memory that has been mapped to the
2211  * GPU and the known addresses are not physical addresses but instead
2212  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2213  */
2214 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2215 				 size_t size, loff_t *pos)
2216 {
2217 	struct amdgpu_device *adev = file_inode(f)->i_private;
2218 	struct iommu_domain *dom;
2219 	ssize_t result = 0;
2220 	int r;
2221 
2222 	/* retrieve the IOMMU domain if any for this device */
2223 	dom = iommu_get_domain_for_dev(adev->dev);
2224 
2225 	while (size) {
2226 		phys_addr_t addr = *pos & PAGE_MASK;
2227 		loff_t off = *pos & ~PAGE_MASK;
2228 		size_t bytes = PAGE_SIZE - off;
2229 		unsigned long pfn;
2230 		struct page *p;
2231 		void *ptr;
2232 
2233 		bytes = bytes < size ? bytes : size;
2234 
2235 		/* Translate the bus address to a physical address.  If
2236 		 * the domain is NULL it means there is no IOMMU active
2237 		 * and the address translation is the identity
2238 		 */
2239 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2240 
2241 		pfn = addr >> PAGE_SHIFT;
2242 		if (!pfn_valid(pfn))
2243 			return -EPERM;
2244 
2245 		p = pfn_to_page(pfn);
2246 		if (p->mapping != adev->mman.bdev.dev_mapping)
2247 			return -EPERM;
2248 
2249 		ptr = kmap(p);
2250 		r = copy_to_user(buf, ptr + off, bytes);
2251 		kunmap(p);
2252 		if (r)
2253 			return -EFAULT;
2254 
2255 		size -= bytes;
2256 		*pos += bytes;
2257 		result += bytes;
2258 	}
2259 
2260 	return result;
2261 }
2262 
2263 /*
2264  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2265  *
2266  * This function is used to write memory that has been mapped to the
2267  * GPU and the known addresses are not physical addresses but instead
2268  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2269  */
2270 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2271 				 size_t size, loff_t *pos)
2272 {
2273 	struct amdgpu_device *adev = file_inode(f)->i_private;
2274 	struct iommu_domain *dom;
2275 	ssize_t result = 0;
2276 	int r;
2277 
2278 	dom = iommu_get_domain_for_dev(adev->dev);
2279 
2280 	while (size) {
2281 		phys_addr_t addr = *pos & PAGE_MASK;
2282 		loff_t off = *pos & ~PAGE_MASK;
2283 		size_t bytes = PAGE_SIZE - off;
2284 		unsigned long pfn;
2285 		struct page *p;
2286 		void *ptr;
2287 
2288 		bytes = bytes < size ? bytes : size;
2289 
2290 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2291 
2292 		pfn = addr >> PAGE_SHIFT;
2293 		if (!pfn_valid(pfn))
2294 			return -EPERM;
2295 
2296 		p = pfn_to_page(pfn);
2297 		if (p->mapping != adev->mman.bdev.dev_mapping)
2298 			return -EPERM;
2299 
2300 		ptr = kmap(p);
2301 		r = copy_from_user(ptr + off, buf, bytes);
2302 		kunmap(p);
2303 		if (r)
2304 			return -EFAULT;
2305 
2306 		size -= bytes;
2307 		*pos += bytes;
2308 		result += bytes;
2309 	}
2310 
2311 	return result;
2312 }
2313 
2314 static const struct file_operations amdgpu_ttm_iomem_fops = {
2315 	.owner = THIS_MODULE,
2316 	.read = amdgpu_iomem_read,
2317 	.write = amdgpu_iomem_write,
2318 	.llseek = default_llseek
2319 };
2320 
2321 #endif
2322 
2323 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2324 {
2325 #if defined(CONFIG_DEBUG_FS)
2326 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2327 	struct dentry *root = minor->debugfs_root;
2328 
2329 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2330 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2331 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2332 			    &amdgpu_ttm_iomem_fops);
2333 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2334 			    &amdgpu_mm_vram_table_fops);
2335 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2336 			    &amdgpu_mm_tt_table_fops);
2337 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2338 			    &amdgpu_mm_gds_table_fops);
2339 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2340 			    &amdgpu_mm_gws_table_fops);
2341 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2342 			    &amdgpu_mm_oa_table_fops);
2343 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2344 			    &amdgpu_ttm_page_pool_fops);
2345 #endif
2346 }
2347