xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 06ff634c0dae791c17ceeeb60c74e14470d76898)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62 
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
64 
65 
66 /**
67  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
68  * memory request.
69  *
70  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
71  * @type: The type of memory requested
72  * @man: The memory type manager for each domain
73  *
74  * This is called by ttm_bo_init_mm() when a buffer object is being
75  * initialized.
76  */
77 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
78 				struct ttm_mem_type_manager *man)
79 {
80 	struct amdgpu_device *adev;
81 
82 	adev = amdgpu_ttm_adev(bdev);
83 
84 	switch (type) {
85 	case TTM_PL_SYSTEM:
86 		/* System memory */
87 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
88 		man->available_caching = TTM_PL_MASK_CACHING;
89 		man->default_caching = TTM_PL_FLAG_CACHED;
90 		break;
91 	case TTM_PL_TT:
92 		/* GTT memory  */
93 		man->func = &amdgpu_gtt_mgr_func;
94 		man->gpu_offset = adev->gmc.gart_start;
95 		man->available_caching = TTM_PL_MASK_CACHING;
96 		man->default_caching = TTM_PL_FLAG_CACHED;
97 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
98 		break;
99 	case TTM_PL_VRAM:
100 		/* "On-card" video ram */
101 		man->func = &amdgpu_vram_mgr_func;
102 		man->gpu_offset = adev->gmc.vram_start;
103 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
104 			     TTM_MEMTYPE_FLAG_MAPPABLE;
105 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
106 		man->default_caching = TTM_PL_FLAG_WC;
107 		break;
108 	case AMDGPU_PL_GDS:
109 	case AMDGPU_PL_GWS:
110 	case AMDGPU_PL_OA:
111 		/* On-chip GDS memory*/
112 		man->func = &ttm_bo_manager_func;
113 		man->gpu_offset = 0;
114 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
115 		man->available_caching = TTM_PL_FLAG_UNCACHED;
116 		man->default_caching = TTM_PL_FLAG_UNCACHED;
117 		break;
118 	default:
119 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
120 		return -EINVAL;
121 	}
122 	return 0;
123 }
124 
125 /**
126  * amdgpu_evict_flags - Compute placement flags
127  *
128  * @bo: The buffer object to evict
129  * @placement: Possible destination(s) for evicted BO
130  *
131  * Fill in placement data when ttm_bo_evict() is called
132  */
133 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
134 				struct ttm_placement *placement)
135 {
136 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
137 	struct amdgpu_bo *abo;
138 	static const struct ttm_place placements = {
139 		.fpfn = 0,
140 		.lpfn = 0,
141 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
142 	};
143 
144 	/* Don't handle scatter gather BOs */
145 	if (bo->type == ttm_bo_type_sg) {
146 		placement->num_placement = 0;
147 		placement->num_busy_placement = 0;
148 		return;
149 	}
150 
151 	/* Object isn't an AMDGPU object so ignore */
152 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
153 		placement->placement = &placements;
154 		placement->busy_placement = &placements;
155 		placement->num_placement = 1;
156 		placement->num_busy_placement = 1;
157 		return;
158 	}
159 
160 	abo = ttm_to_amdgpu_bo(bo);
161 	switch (bo->mem.mem_type) {
162 	case AMDGPU_PL_GDS:
163 	case AMDGPU_PL_GWS:
164 	case AMDGPU_PL_OA:
165 		placement->num_placement = 0;
166 		placement->num_busy_placement = 0;
167 		return;
168 
169 	case TTM_PL_VRAM:
170 		if (!adev->mman.buffer_funcs_enabled) {
171 			/* Move to system memory */
172 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
173 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
174 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
175 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
176 
177 			/* Try evicting to the CPU inaccessible part of VRAM
178 			 * first, but only set GTT as busy placement, so this
179 			 * BO will be evicted to GTT rather than causing other
180 			 * BOs to be evicted from VRAM
181 			 */
182 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
183 							 AMDGPU_GEM_DOMAIN_GTT);
184 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
185 			abo->placements[0].lpfn = 0;
186 			abo->placement.busy_placement = &abo->placements[1];
187 			abo->placement.num_busy_placement = 1;
188 		} else {
189 			/* Move to GTT memory */
190 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
191 		}
192 		break;
193 	case TTM_PL_TT:
194 	default:
195 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
196 		break;
197 	}
198 	*placement = abo->placement;
199 }
200 
201 /**
202  * amdgpu_verify_access - Verify access for a mmap call
203  *
204  * @bo:	The buffer object to map
205  * @filp: The file pointer from the process performing the mmap
206  *
207  * This is called by ttm_bo_mmap() to verify whether a process
208  * has the right to mmap a BO to their process space.
209  */
210 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
211 {
212 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
213 
214 	/*
215 	 * Don't verify access for KFD BOs. They don't have a GEM
216 	 * object associated with them.
217 	 */
218 	if (abo->kfd_bo)
219 		return 0;
220 
221 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
222 		return -EPERM;
223 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
224 					  filp->private_data);
225 }
226 
227 /**
228  * amdgpu_move_null - Register memory for a buffer object
229  *
230  * @bo: The bo to assign the memory to
231  * @new_mem: The memory to be assigned.
232  *
233  * Assign the memory from new_mem to the memory of the buffer object bo.
234  */
235 static void amdgpu_move_null(struct ttm_buffer_object *bo,
236 			     struct ttm_mem_reg *new_mem)
237 {
238 	struct ttm_mem_reg *old_mem = &bo->mem;
239 
240 	BUG_ON(old_mem->mm_node != NULL);
241 	*old_mem = *new_mem;
242 	new_mem->mm_node = NULL;
243 }
244 
245 /**
246  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
247  *
248  * @bo: The bo to assign the memory to.
249  * @mm_node: Memory manager node for drm allocator.
250  * @mem: The region where the bo resides.
251  *
252  */
253 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
254 				    struct drm_mm_node *mm_node,
255 				    struct ttm_mem_reg *mem)
256 {
257 	uint64_t addr = 0;
258 
259 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
260 		addr = mm_node->start << PAGE_SHIFT;
261 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
262 	}
263 	return addr;
264 }
265 
266 /**
267  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
268  * @offset. It also modifies the offset to be within the drm_mm_node returned
269  *
270  * @mem: The region where the bo resides.
271  * @offset: The offset that drm_mm_node is used for finding.
272  *
273  */
274 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
275 					       uint64_t *offset)
276 {
277 	struct drm_mm_node *mm_node = mem->mm_node;
278 
279 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
280 		*offset -= (mm_node->size << PAGE_SHIFT);
281 		++mm_node;
282 	}
283 	return mm_node;
284 }
285 
286 /**
287  * amdgpu_ttm_map_buffer - Map memory into the GART windows
288  * @bo: buffer object to map
289  * @mem: memory object to map
290  * @mm_node: drm_mm node object to map
291  * @num_pages: number of pages to map
292  * @offset: offset into @mm_node where to start
293  * @window: which GART window to use
294  * @ring: DMA ring to use for the copy
295  * @tmz: if we should setup a TMZ enabled mapping
296  * @addr: resulting address inside the MC address space
297  *
298  * Setup one of the GART windows to access a specific piece of memory or return
299  * the physical address for local memory.
300  */
301 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
302 				 struct ttm_mem_reg *mem,
303 				 struct drm_mm_node *mm_node,
304 				 unsigned num_pages, uint64_t offset,
305 				 unsigned window, struct amdgpu_ring *ring,
306 				 bool tmz, uint64_t *addr)
307 {
308 	struct amdgpu_device *adev = ring->adev;
309 	struct amdgpu_job *job;
310 	unsigned num_dw, num_bytes;
311 	struct dma_fence *fence;
312 	uint64_t src_addr, dst_addr;
313 	void *cpu_addr;
314 	uint64_t flags;
315 	unsigned int i;
316 	int r;
317 
318 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
319 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
320 
321 	/* Map only what can't be accessed directly */
322 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
323 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
324 		return 0;
325 	}
326 
327 	*addr = adev->gmc.gart_start;
328 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
329 		AMDGPU_GPU_PAGE_SIZE;
330 	*addr += offset & ~PAGE_MASK;
331 
332 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
333 	num_bytes = num_pages * 8;
334 
335 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
336 				     AMDGPU_IB_POOL_DELAYED, &job);
337 	if (r)
338 		return r;
339 
340 	src_addr = num_dw * 4;
341 	src_addr += job->ibs[0].gpu_addr;
342 
343 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
344 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
345 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
346 				dst_addr, num_bytes, false);
347 
348 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
349 	WARN_ON(job->ibs[0].length_dw > num_dw);
350 
351 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
352 	if (tmz)
353 		flags |= AMDGPU_PTE_TMZ;
354 
355 	cpu_addr = &job->ibs[0].ptr[num_dw];
356 
357 	if (mem->mem_type == TTM_PL_TT) {
358 		struct ttm_dma_tt *dma;
359 		dma_addr_t *dma_address;
360 
361 		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
362 		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
363 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
364 				    cpu_addr);
365 		if (r)
366 			goto error_free;
367 	} else {
368 		dma_addr_t dma_address;
369 
370 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
371 		dma_address += adev->vm_manager.vram_base_offset;
372 
373 		for (i = 0; i < num_pages; ++i) {
374 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
375 					    &dma_address, flags, cpu_addr);
376 			if (r)
377 				goto error_free;
378 
379 			dma_address += PAGE_SIZE;
380 		}
381 	}
382 
383 	r = amdgpu_job_submit(job, &adev->mman.entity,
384 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
385 	if (r)
386 		goto error_free;
387 
388 	dma_fence_put(fence);
389 
390 	return r;
391 
392 error_free:
393 	amdgpu_job_free(job);
394 	return r;
395 }
396 
397 /**
398  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
399  * @adev: amdgpu device
400  * @src: buffer/address where to read from
401  * @dst: buffer/address where to write to
402  * @size: number of bytes to copy
403  * @tmz: if a secure copy should be used
404  * @resv: resv object to sync to
405  * @f: Returns the last fence if multiple jobs are submitted.
406  *
407  * The function copies @size bytes from {src->mem + src->offset} to
408  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
409  * move and different for a BO to BO copy.
410  *
411  */
412 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
413 			       const struct amdgpu_copy_mem *src,
414 			       const struct amdgpu_copy_mem *dst,
415 			       uint64_t size, bool tmz,
416 			       struct dma_resv *resv,
417 			       struct dma_fence **f)
418 {
419 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
420 					AMDGPU_GPU_PAGE_SIZE);
421 
422 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
423 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
424 	struct drm_mm_node *src_mm, *dst_mm;
425 	struct dma_fence *fence = NULL;
426 	int r = 0;
427 
428 	if (!adev->mman.buffer_funcs_enabled) {
429 		DRM_ERROR("Trying to move memory with ring turned off.\n");
430 		return -EINVAL;
431 	}
432 
433 	src_offset = src->offset;
434 	src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
435 	src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
436 
437 	dst_offset = dst->offset;
438 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
439 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
440 
441 	mutex_lock(&adev->mman.gtt_window_lock);
442 
443 	while (size) {
444 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
445 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
446 		struct dma_fence *next;
447 		uint32_t cur_size;
448 		uint64_t from, to;
449 
450 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
451 		 * begins at an offset, then adjust the size accordingly
452 		 */
453 		cur_size = max(src_page_offset, dst_page_offset);
454 		cur_size = min(min3(src_node_size, dst_node_size, size),
455 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
456 
457 		/* Map src to window 0 and dst to window 1. */
458 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
459 					  PFN_UP(cur_size + src_page_offset),
460 					  src_offset, 0, ring, tmz, &from);
461 		if (r)
462 			goto error;
463 
464 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
465 					  PFN_UP(cur_size + dst_page_offset),
466 					  dst_offset, 1, ring, tmz, &to);
467 		if (r)
468 			goto error;
469 
470 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
471 				       resv, &next, false, true, tmz);
472 		if (r)
473 			goto error;
474 
475 		dma_fence_put(fence);
476 		fence = next;
477 
478 		size -= cur_size;
479 		if (!size)
480 			break;
481 
482 		src_node_size -= cur_size;
483 		if (!src_node_size) {
484 			++src_mm;
485 			src_node_size = src_mm->size << PAGE_SHIFT;
486 			src_offset = 0;
487 		} else {
488 			src_offset += cur_size;
489 		}
490 
491 		dst_node_size -= cur_size;
492 		if (!dst_node_size) {
493 			++dst_mm;
494 			dst_node_size = dst_mm->size << PAGE_SHIFT;
495 			dst_offset = 0;
496 		} else {
497 			dst_offset += cur_size;
498 		}
499 	}
500 error:
501 	mutex_unlock(&adev->mman.gtt_window_lock);
502 	if (f)
503 		*f = dma_fence_get(fence);
504 	dma_fence_put(fence);
505 	return r;
506 }
507 
508 /**
509  * amdgpu_move_blit - Copy an entire buffer to another buffer
510  *
511  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
512  * help move buffers to and from VRAM.
513  */
514 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
515 			    bool evict, bool no_wait_gpu,
516 			    struct ttm_mem_reg *new_mem,
517 			    struct ttm_mem_reg *old_mem)
518 {
519 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
520 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
521 	struct amdgpu_copy_mem src, dst;
522 	struct dma_fence *fence = NULL;
523 	int r;
524 
525 	src.bo = bo;
526 	dst.bo = bo;
527 	src.mem = old_mem;
528 	dst.mem = new_mem;
529 	src.offset = 0;
530 	dst.offset = 0;
531 
532 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
533 				       new_mem->num_pages << PAGE_SHIFT,
534 				       amdgpu_bo_encrypted(abo),
535 				       bo->base.resv, &fence);
536 	if (r)
537 		goto error;
538 
539 	/* clear the space being freed */
540 	if (old_mem->mem_type == TTM_PL_VRAM &&
541 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
542 		struct dma_fence *wipe_fence = NULL;
543 
544 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
545 				       NULL, &wipe_fence);
546 		if (r) {
547 			goto error;
548 		} else if (wipe_fence) {
549 			dma_fence_put(fence);
550 			fence = wipe_fence;
551 		}
552 	}
553 
554 	/* Always block for VM page tables before committing the new location */
555 	if (bo->type == ttm_bo_type_kernel)
556 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
557 	else
558 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
559 	dma_fence_put(fence);
560 	return r;
561 
562 error:
563 	if (fence)
564 		dma_fence_wait(fence, false);
565 	dma_fence_put(fence);
566 	return r;
567 }
568 
569 /**
570  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
571  *
572  * Called by amdgpu_bo_move().
573  */
574 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
575 				struct ttm_operation_ctx *ctx,
576 				struct ttm_mem_reg *new_mem)
577 {
578 	struct ttm_mem_reg *old_mem = &bo->mem;
579 	struct ttm_mem_reg tmp_mem;
580 	struct ttm_place placements;
581 	struct ttm_placement placement;
582 	int r;
583 
584 	/* create space/pages for new_mem in GTT space */
585 	tmp_mem = *new_mem;
586 	tmp_mem.mm_node = NULL;
587 	placement.num_placement = 1;
588 	placement.placement = &placements;
589 	placement.num_busy_placement = 1;
590 	placement.busy_placement = &placements;
591 	placements.fpfn = 0;
592 	placements.lpfn = 0;
593 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
594 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
595 	if (unlikely(r)) {
596 		pr_err("Failed to find GTT space for blit from VRAM\n");
597 		return r;
598 	}
599 
600 	/* set caching flags */
601 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
602 	if (unlikely(r)) {
603 		goto out_cleanup;
604 	}
605 
606 	/* Bind the memory to the GTT space */
607 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
608 	if (unlikely(r)) {
609 		goto out_cleanup;
610 	}
611 
612 	/* blit VRAM to GTT */
613 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
614 	if (unlikely(r)) {
615 		goto out_cleanup;
616 	}
617 
618 	/* move BO (in tmp_mem) to new_mem */
619 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
620 out_cleanup:
621 	ttm_bo_mem_put(bo, &tmp_mem);
622 	return r;
623 }
624 
625 /**
626  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
627  *
628  * Called by amdgpu_bo_move().
629  */
630 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
631 				struct ttm_operation_ctx *ctx,
632 				struct ttm_mem_reg *new_mem)
633 {
634 	struct ttm_mem_reg *old_mem = &bo->mem;
635 	struct ttm_mem_reg tmp_mem;
636 	struct ttm_placement placement;
637 	struct ttm_place placements;
638 	int r;
639 
640 	/* make space in GTT for old_mem buffer */
641 	tmp_mem = *new_mem;
642 	tmp_mem.mm_node = NULL;
643 	placement.num_placement = 1;
644 	placement.placement = &placements;
645 	placement.num_busy_placement = 1;
646 	placement.busy_placement = &placements;
647 	placements.fpfn = 0;
648 	placements.lpfn = 0;
649 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
650 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
651 	if (unlikely(r)) {
652 		pr_err("Failed to find GTT space for blit to VRAM\n");
653 		return r;
654 	}
655 
656 	/* move/bind old memory to GTT space */
657 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
658 	if (unlikely(r)) {
659 		goto out_cleanup;
660 	}
661 
662 	/* copy to VRAM */
663 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
664 	if (unlikely(r)) {
665 		goto out_cleanup;
666 	}
667 out_cleanup:
668 	ttm_bo_mem_put(bo, &tmp_mem);
669 	return r;
670 }
671 
672 /**
673  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
674  *
675  * Called by amdgpu_bo_move()
676  */
677 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
678 			       struct ttm_mem_reg *mem)
679 {
680 	struct drm_mm_node *nodes = mem->mm_node;
681 
682 	if (mem->mem_type == TTM_PL_SYSTEM ||
683 	    mem->mem_type == TTM_PL_TT)
684 		return true;
685 	if (mem->mem_type != TTM_PL_VRAM)
686 		return false;
687 
688 	/* ttm_mem_reg_ioremap only supports contiguous memory */
689 	if (nodes->size != mem->num_pages)
690 		return false;
691 
692 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
693 		<= adev->gmc.visible_vram_size;
694 }
695 
696 /**
697  * amdgpu_bo_move - Move a buffer object to a new memory location
698  *
699  * Called by ttm_bo_handle_move_mem()
700  */
701 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
702 			  struct ttm_operation_ctx *ctx,
703 			  struct ttm_mem_reg *new_mem)
704 {
705 	struct amdgpu_device *adev;
706 	struct amdgpu_bo *abo;
707 	struct ttm_mem_reg *old_mem = &bo->mem;
708 	int r;
709 
710 	/* Can't move a pinned BO */
711 	abo = ttm_to_amdgpu_bo(bo);
712 	if (WARN_ON_ONCE(abo->pin_count > 0))
713 		return -EINVAL;
714 
715 	adev = amdgpu_ttm_adev(bo->bdev);
716 
717 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
718 		amdgpu_move_null(bo, new_mem);
719 		return 0;
720 	}
721 	if ((old_mem->mem_type == TTM_PL_TT &&
722 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
723 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
724 	     new_mem->mem_type == TTM_PL_TT)) {
725 		/* bind is enough */
726 		amdgpu_move_null(bo, new_mem);
727 		return 0;
728 	}
729 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
730 	    old_mem->mem_type == AMDGPU_PL_GWS ||
731 	    old_mem->mem_type == AMDGPU_PL_OA ||
732 	    new_mem->mem_type == AMDGPU_PL_GDS ||
733 	    new_mem->mem_type == AMDGPU_PL_GWS ||
734 	    new_mem->mem_type == AMDGPU_PL_OA) {
735 		/* Nothing to save here */
736 		amdgpu_move_null(bo, new_mem);
737 		return 0;
738 	}
739 
740 	if (!adev->mman.buffer_funcs_enabled) {
741 		r = -ENODEV;
742 		goto memcpy;
743 	}
744 
745 	if (old_mem->mem_type == TTM_PL_VRAM &&
746 	    new_mem->mem_type == TTM_PL_SYSTEM) {
747 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
748 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
749 		   new_mem->mem_type == TTM_PL_VRAM) {
750 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
751 	} else {
752 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
753 				     new_mem, old_mem);
754 	}
755 
756 	if (r) {
757 memcpy:
758 		/* Check that all memory is CPU accessible */
759 		if (!amdgpu_mem_visible(adev, old_mem) ||
760 		    !amdgpu_mem_visible(adev, new_mem)) {
761 			pr_err("Move buffer fallback to memcpy unavailable\n");
762 			return r;
763 		}
764 
765 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
766 		if (r)
767 			return r;
768 	}
769 
770 	if (bo->type == ttm_bo_type_device &&
771 	    new_mem->mem_type == TTM_PL_VRAM &&
772 	    old_mem->mem_type != TTM_PL_VRAM) {
773 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
774 		 * accesses the BO after it's moved.
775 		 */
776 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
777 	}
778 
779 	/* update statistics */
780 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
781 	return 0;
782 }
783 
784 /**
785  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
786  *
787  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
788  */
789 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
790 {
791 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
792 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793 	struct drm_mm_node *mm_node = mem->mm_node;
794 
795 	mem->bus.addr = NULL;
796 	mem->bus.offset = 0;
797 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
798 	mem->bus.base = 0;
799 	mem->bus.is_iomem = false;
800 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
801 		return -EINVAL;
802 	switch (mem->mem_type) {
803 	case TTM_PL_SYSTEM:
804 		/* system memory */
805 		return 0;
806 	case TTM_PL_TT:
807 		break;
808 	case TTM_PL_VRAM:
809 		mem->bus.offset = mem->start << PAGE_SHIFT;
810 		/* check if it's visible */
811 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
812 			return -EINVAL;
813 		/* Only physically contiguous buffers apply. In a contiguous
814 		 * buffer, size of the first mm_node would match the number of
815 		 * pages in ttm_mem_reg.
816 		 */
817 		if (adev->mman.aper_base_kaddr &&
818 		    (mm_node->size == mem->num_pages))
819 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
820 					mem->bus.offset;
821 
822 		mem->bus.base = adev->gmc.aper_base;
823 		mem->bus.is_iomem = true;
824 		break;
825 	default:
826 		return -EINVAL;
827 	}
828 	return 0;
829 }
830 
831 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
832 {
833 }
834 
835 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
836 					   unsigned long page_offset)
837 {
838 	uint64_t offset = (page_offset << PAGE_SHIFT);
839 	struct drm_mm_node *mm;
840 
841 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
842 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
843 		(offset >> PAGE_SHIFT);
844 }
845 
846 /*
847  * TTM backend functions.
848  */
849 struct amdgpu_ttm_tt {
850 	struct ttm_dma_tt	ttm;
851 	struct drm_gem_object	*gobj;
852 	u64			offset;
853 	uint64_t		userptr;
854 	struct task_struct	*usertask;
855 	uint32_t		userflags;
856 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
857 	struct hmm_range	*range;
858 #endif
859 };
860 
861 #ifdef CONFIG_DRM_AMDGPU_USERPTR
862 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
863 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
864 	(1 << 0), /* HMM_PFN_VALID */
865 	(1 << 1), /* HMM_PFN_WRITE */
866 };
867 
868 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
869 	0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
870 	0, /* HMM_PFN_NONE */
871 	0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
872 };
873 
874 /**
875  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
876  * memory and start HMM tracking CPU page table update
877  *
878  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
879  * once afterwards to stop HMM tracking
880  */
881 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
882 {
883 	struct ttm_tt *ttm = bo->tbo.ttm;
884 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
885 	unsigned long start = gtt->userptr;
886 	struct vm_area_struct *vma;
887 	struct hmm_range *range;
888 	unsigned long timeout;
889 	struct mm_struct *mm;
890 	unsigned long i;
891 	int r = 0;
892 
893 	mm = bo->notifier.mm;
894 	if (unlikely(!mm)) {
895 		DRM_DEBUG_DRIVER("BO is not registered?\n");
896 		return -EFAULT;
897 	}
898 
899 	/* Another get_user_pages is running at the same time?? */
900 	if (WARN_ON(gtt->range))
901 		return -EFAULT;
902 
903 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
904 		return -ESRCH;
905 
906 	range = kzalloc(sizeof(*range), GFP_KERNEL);
907 	if (unlikely(!range)) {
908 		r = -ENOMEM;
909 		goto out;
910 	}
911 	range->notifier = &bo->notifier;
912 	range->flags = hmm_range_flags;
913 	range->values = hmm_range_values;
914 	range->pfn_shift = PAGE_SHIFT;
915 	range->start = bo->notifier.interval_tree.start;
916 	range->end = bo->notifier.interval_tree.last + 1;
917 	range->default_flags = hmm_range_flags[HMM_PFN_VALID];
918 	if (!amdgpu_ttm_tt_is_readonly(ttm))
919 		range->default_flags |= range->flags[HMM_PFN_WRITE];
920 
921 	range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
922 				     GFP_KERNEL);
923 	if (unlikely(!range->pfns)) {
924 		r = -ENOMEM;
925 		goto out_free_ranges;
926 	}
927 
928 	down_read(&mm->mmap_sem);
929 	vma = find_vma(mm, start);
930 	if (unlikely(!vma || start < vma->vm_start)) {
931 		r = -EFAULT;
932 		goto out_unlock;
933 	}
934 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
935 		vma->vm_file)) {
936 		r = -EPERM;
937 		goto out_unlock;
938 	}
939 	up_read(&mm->mmap_sem);
940 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
941 
942 retry:
943 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
944 
945 	down_read(&mm->mmap_sem);
946 	r = hmm_range_fault(range);
947 	up_read(&mm->mmap_sem);
948 	if (unlikely(r <= 0)) {
949 		/*
950 		 * FIXME: This timeout should encompass the retry from
951 		 * mmu_interval_read_retry() as well.
952 		 */
953 		if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
954 			goto retry;
955 		goto out_free_pfns;
956 	}
957 
958 	for (i = 0; i < ttm->num_pages; i++) {
959 		/* FIXME: The pages cannot be touched outside the notifier_lock */
960 		pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
961 		if (unlikely(!pages[i])) {
962 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
963 			       i, range->pfns[i]);
964 			r = -ENOMEM;
965 
966 			goto out_free_pfns;
967 		}
968 	}
969 
970 	gtt->range = range;
971 	mmput(mm);
972 
973 	return 0;
974 
975 out_unlock:
976 	up_read(&mm->mmap_sem);
977 out_free_pfns:
978 	kvfree(range->pfns);
979 out_free_ranges:
980 	kfree(range);
981 out:
982 	mmput(mm);
983 	return r;
984 }
985 
986 /**
987  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
988  * Check if the pages backing this ttm range have been invalidated
989  *
990  * Returns: true if pages are still valid
991  */
992 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
993 {
994 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
995 	bool r = false;
996 
997 	if (!gtt || !gtt->userptr)
998 		return false;
999 
1000 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
1001 		gtt->userptr, ttm->num_pages);
1002 
1003 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
1004 		"No user pages to check\n");
1005 
1006 	if (gtt->range) {
1007 		/*
1008 		 * FIXME: Must always hold notifier_lock for this, and must
1009 		 * not ignore the return code.
1010 		 */
1011 		r = mmu_interval_read_retry(gtt->range->notifier,
1012 					 gtt->range->notifier_seq);
1013 		kvfree(gtt->range->pfns);
1014 		kfree(gtt->range);
1015 		gtt->range = NULL;
1016 	}
1017 
1018 	return !r;
1019 }
1020 #endif
1021 
1022 /**
1023  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1024  *
1025  * Called by amdgpu_cs_list_validate(). This creates the page list
1026  * that backs user memory and will ultimately be mapped into the device
1027  * address space.
1028  */
1029 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1030 {
1031 	unsigned long i;
1032 
1033 	for (i = 0; i < ttm->num_pages; ++i)
1034 		ttm->pages[i] = pages ? pages[i] : NULL;
1035 }
1036 
1037 /**
1038  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
1039  *
1040  * Called by amdgpu_ttm_backend_bind()
1041  **/
1042 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
1043 {
1044 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1045 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1046 	unsigned nents;
1047 	int r;
1048 
1049 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1050 	enum dma_data_direction direction = write ?
1051 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1052 
1053 	/* Allocate an SG array and squash pages into it */
1054 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1055 				      ttm->num_pages << PAGE_SHIFT,
1056 				      GFP_KERNEL);
1057 	if (r)
1058 		goto release_sg;
1059 
1060 	/* Map SG to device */
1061 	r = -ENOMEM;
1062 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1063 	if (nents == 0)
1064 		goto release_sg;
1065 
1066 	/* convert SG to linear array of pages and dma addresses */
1067 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1068 					 gtt->ttm.dma_address, ttm->num_pages);
1069 
1070 	return 0;
1071 
1072 release_sg:
1073 	kfree(ttm->sg);
1074 	return r;
1075 }
1076 
1077 /**
1078  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1079  */
1080 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1081 {
1082 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1083 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1084 
1085 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1086 	enum dma_data_direction direction = write ?
1087 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1088 
1089 	/* double check that we don't free the table twice */
1090 	if (!ttm->sg->sgl)
1091 		return;
1092 
1093 	/* unmap the pages mapped to the device */
1094 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1095 
1096 	sg_free_table(ttm->sg);
1097 
1098 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1099 	if (gtt->range) {
1100 		unsigned long i;
1101 
1102 		for (i = 0; i < ttm->num_pages; i++) {
1103 			if (ttm->pages[i] !=
1104 				hmm_device_entry_to_page(gtt->range,
1105 					      gtt->range->pfns[i]))
1106 				break;
1107 		}
1108 
1109 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1110 	}
1111 #endif
1112 }
1113 
1114 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1115 				struct ttm_buffer_object *tbo,
1116 				uint64_t flags)
1117 {
1118 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1119 	struct ttm_tt *ttm = tbo->ttm;
1120 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1121 	int r;
1122 
1123 	if (amdgpu_bo_encrypted(abo))
1124 		flags |= AMDGPU_PTE_TMZ;
1125 
1126 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1127 		uint64_t page_idx = 1;
1128 
1129 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1130 				ttm->pages, gtt->ttm.dma_address, flags);
1131 		if (r)
1132 			goto gart_bind_fail;
1133 
1134 		/* The memory type of the first page defaults to UC. Now
1135 		 * modify the memory type to NC from the second page of
1136 		 * the BO onward.
1137 		 */
1138 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1139 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1140 
1141 		r = amdgpu_gart_bind(adev,
1142 				gtt->offset + (page_idx << PAGE_SHIFT),
1143 				ttm->num_pages - page_idx,
1144 				&ttm->pages[page_idx],
1145 				&(gtt->ttm.dma_address[page_idx]), flags);
1146 	} else {
1147 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1148 				     ttm->pages, gtt->ttm.dma_address, flags);
1149 	}
1150 
1151 gart_bind_fail:
1152 	if (r)
1153 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1154 			  ttm->num_pages, gtt->offset);
1155 
1156 	return r;
1157 }
1158 
1159 /**
1160  * amdgpu_ttm_backend_bind - Bind GTT memory
1161  *
1162  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1163  * This handles binding GTT memory to the device address space.
1164  */
1165 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1166 				   struct ttm_mem_reg *bo_mem)
1167 {
1168 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1169 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1170 	uint64_t flags;
1171 	int r = 0;
1172 
1173 	if (gtt->userptr) {
1174 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1175 		if (r) {
1176 			DRM_ERROR("failed to pin userptr\n");
1177 			return r;
1178 		}
1179 	}
1180 	if (!ttm->num_pages) {
1181 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1182 		     ttm->num_pages, bo_mem, ttm);
1183 	}
1184 
1185 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1186 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1187 	    bo_mem->mem_type == AMDGPU_PL_OA)
1188 		return -EINVAL;
1189 
1190 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1191 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1192 		return 0;
1193 	}
1194 
1195 	/* compute PTE flags relevant to this BO memory */
1196 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1197 
1198 	/* bind pages into GART page tables */
1199 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1200 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1201 		ttm->pages, gtt->ttm.dma_address, flags);
1202 
1203 	if (r)
1204 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1205 			  ttm->num_pages, gtt->offset);
1206 	return r;
1207 }
1208 
1209 /**
1210  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1211  */
1212 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1213 {
1214 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1215 	struct ttm_operation_ctx ctx = { false, false };
1216 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1217 	struct ttm_mem_reg tmp;
1218 	struct ttm_placement placement;
1219 	struct ttm_place placements;
1220 	uint64_t addr, flags;
1221 	int r;
1222 
1223 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1224 		return 0;
1225 
1226 	addr = amdgpu_gmc_agp_addr(bo);
1227 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1228 		bo->mem.start = addr >> PAGE_SHIFT;
1229 	} else {
1230 
1231 		/* allocate GART space */
1232 		tmp = bo->mem;
1233 		tmp.mm_node = NULL;
1234 		placement.num_placement = 1;
1235 		placement.placement = &placements;
1236 		placement.num_busy_placement = 1;
1237 		placement.busy_placement = &placements;
1238 		placements.fpfn = 0;
1239 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1240 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1241 			TTM_PL_FLAG_TT;
1242 
1243 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1244 		if (unlikely(r))
1245 			return r;
1246 
1247 		/* compute PTE flags for this buffer object */
1248 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1249 
1250 		/* Bind pages */
1251 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1252 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1253 		if (unlikely(r)) {
1254 			ttm_bo_mem_put(bo, &tmp);
1255 			return r;
1256 		}
1257 
1258 		ttm_bo_mem_put(bo, &bo->mem);
1259 		bo->mem = tmp;
1260 	}
1261 
1262 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1263 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1264 
1265 	return 0;
1266 }
1267 
1268 /**
1269  * amdgpu_ttm_recover_gart - Rebind GTT pages
1270  *
1271  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1272  * rebind GTT pages during a GPU reset.
1273  */
1274 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1275 {
1276 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1277 	uint64_t flags;
1278 	int r;
1279 
1280 	if (!tbo->ttm)
1281 		return 0;
1282 
1283 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1284 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1285 
1286 	return r;
1287 }
1288 
1289 /**
1290  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1291  *
1292  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1293  * ttm_tt_destroy().
1294  */
1295 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1296 {
1297 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1298 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1299 	int r;
1300 
1301 	/* if the pages have userptr pinning then clear that first */
1302 	if (gtt->userptr)
1303 		amdgpu_ttm_tt_unpin_userptr(ttm);
1304 
1305 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1306 		return 0;
1307 
1308 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1309 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1310 	if (r)
1311 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1312 			  gtt->ttm.ttm.num_pages, gtt->offset);
1313 	return r;
1314 }
1315 
1316 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1317 {
1318 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1319 
1320 	if (gtt->usertask)
1321 		put_task_struct(gtt->usertask);
1322 
1323 	ttm_dma_tt_fini(&gtt->ttm);
1324 	kfree(gtt);
1325 }
1326 
1327 static struct ttm_backend_func amdgpu_backend_func = {
1328 	.bind = &amdgpu_ttm_backend_bind,
1329 	.unbind = &amdgpu_ttm_backend_unbind,
1330 	.destroy = &amdgpu_ttm_backend_destroy,
1331 };
1332 
1333 /**
1334  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1335  *
1336  * @bo: The buffer object to create a GTT ttm_tt object around
1337  *
1338  * Called by ttm_tt_create().
1339  */
1340 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1341 					   uint32_t page_flags)
1342 {
1343 	struct amdgpu_ttm_tt *gtt;
1344 
1345 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1346 	if (gtt == NULL) {
1347 		return NULL;
1348 	}
1349 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1350 	gtt->gobj = &bo->base;
1351 
1352 	/* allocate space for the uninitialized page entries */
1353 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1354 		kfree(gtt);
1355 		return NULL;
1356 	}
1357 	return &gtt->ttm.ttm;
1358 }
1359 
1360 /**
1361  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1362  *
1363  * Map the pages of a ttm_tt object to an address space visible
1364  * to the underlying device.
1365  */
1366 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1367 			struct ttm_operation_ctx *ctx)
1368 {
1369 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1370 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1371 
1372 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1373 	if (gtt && gtt->userptr) {
1374 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1375 		if (!ttm->sg)
1376 			return -ENOMEM;
1377 
1378 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1379 		ttm->state = tt_unbound;
1380 		return 0;
1381 	}
1382 
1383 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1384 		if (!ttm->sg) {
1385 			struct dma_buf_attachment *attach;
1386 			struct sg_table *sgt;
1387 
1388 			attach = gtt->gobj->import_attach;
1389 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1390 			if (IS_ERR(sgt))
1391 				return PTR_ERR(sgt);
1392 
1393 			ttm->sg = sgt;
1394 		}
1395 
1396 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1397 						 gtt->ttm.dma_address,
1398 						 ttm->num_pages);
1399 		ttm->state = tt_unbound;
1400 		return 0;
1401 	}
1402 
1403 #ifdef CONFIG_SWIOTLB
1404 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1405 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1406 	}
1407 #endif
1408 
1409 	/* fall back to generic helper to populate the page array
1410 	 * and map them to the device */
1411 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1412 }
1413 
1414 /**
1415  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1416  *
1417  * Unmaps pages of a ttm_tt object from the device address space and
1418  * unpopulates the page array backing it.
1419  */
1420 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1421 {
1422 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1423 	struct amdgpu_device *adev;
1424 
1425 	if (gtt && gtt->userptr) {
1426 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1427 		kfree(ttm->sg);
1428 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1429 		return;
1430 	}
1431 
1432 	if (ttm->sg && gtt->gobj->import_attach) {
1433 		struct dma_buf_attachment *attach;
1434 
1435 		attach = gtt->gobj->import_attach;
1436 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1437 		ttm->sg = NULL;
1438 		return;
1439 	}
1440 
1441 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1442 		return;
1443 
1444 	adev = amdgpu_ttm_adev(ttm->bdev);
1445 
1446 #ifdef CONFIG_SWIOTLB
1447 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1448 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1449 		return;
1450 	}
1451 #endif
1452 
1453 	/* fall back to generic helper to unmap and unpopulate array */
1454 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1455 }
1456 
1457 /**
1458  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1459  * task
1460  *
1461  * @ttm: The ttm_tt object to bind this userptr object to
1462  * @addr:  The address in the current tasks VM space to use
1463  * @flags: Requirements of userptr object.
1464  *
1465  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1466  * to current task
1467  */
1468 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1469 			      uint32_t flags)
1470 {
1471 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1472 
1473 	if (gtt == NULL)
1474 		return -EINVAL;
1475 
1476 	gtt->userptr = addr;
1477 	gtt->userflags = flags;
1478 
1479 	if (gtt->usertask)
1480 		put_task_struct(gtt->usertask);
1481 	gtt->usertask = current->group_leader;
1482 	get_task_struct(gtt->usertask);
1483 
1484 	return 0;
1485 }
1486 
1487 /**
1488  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1489  */
1490 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1491 {
1492 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1493 
1494 	if (gtt == NULL)
1495 		return NULL;
1496 
1497 	if (gtt->usertask == NULL)
1498 		return NULL;
1499 
1500 	return gtt->usertask->mm;
1501 }
1502 
1503 /**
1504  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1505  * address range for the current task.
1506  *
1507  */
1508 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1509 				  unsigned long end)
1510 {
1511 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1512 	unsigned long size;
1513 
1514 	if (gtt == NULL || !gtt->userptr)
1515 		return false;
1516 
1517 	/* Return false if no part of the ttm_tt object lies within
1518 	 * the range
1519 	 */
1520 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1521 	if (gtt->userptr > end || gtt->userptr + size <= start)
1522 		return false;
1523 
1524 	return true;
1525 }
1526 
1527 /**
1528  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1529  */
1530 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1531 {
1532 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1533 
1534 	if (gtt == NULL || !gtt->userptr)
1535 		return false;
1536 
1537 	return true;
1538 }
1539 
1540 /**
1541  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1542  */
1543 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1544 {
1545 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1546 
1547 	if (gtt == NULL)
1548 		return false;
1549 
1550 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1551 }
1552 
1553 /**
1554  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1555  *
1556  * @ttm: The ttm_tt object to compute the flags for
1557  * @mem: The memory registry backing this ttm_tt object
1558  *
1559  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1560  */
1561 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1562 {
1563 	uint64_t flags = 0;
1564 
1565 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1566 		flags |= AMDGPU_PTE_VALID;
1567 
1568 	if (mem && mem->mem_type == TTM_PL_TT) {
1569 		flags |= AMDGPU_PTE_SYSTEM;
1570 
1571 		if (ttm->caching_state == tt_cached)
1572 			flags |= AMDGPU_PTE_SNOOPED;
1573 	}
1574 
1575 	return flags;
1576 }
1577 
1578 /**
1579  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1580  *
1581  * @ttm: The ttm_tt object to compute the flags for
1582  * @mem: The memory registry backing this ttm_tt object
1583 
1584  * Figure out the flags to use for a VM PTE (Page Table Entry).
1585  */
1586 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1587 				 struct ttm_mem_reg *mem)
1588 {
1589 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1590 
1591 	flags |= adev->gart.gart_pte_flags;
1592 	flags |= AMDGPU_PTE_READABLE;
1593 
1594 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1595 		flags |= AMDGPU_PTE_WRITEABLE;
1596 
1597 	return flags;
1598 }
1599 
1600 /**
1601  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1602  * object.
1603  *
1604  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1605  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1606  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1607  * used to clean out a memory space.
1608  */
1609 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1610 					    const struct ttm_place *place)
1611 {
1612 	unsigned long num_pages = bo->mem.num_pages;
1613 	struct drm_mm_node *node = bo->mem.mm_node;
1614 	struct dma_resv_list *flist;
1615 	struct dma_fence *f;
1616 	int i;
1617 
1618 	if (bo->type == ttm_bo_type_kernel &&
1619 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1620 		return false;
1621 
1622 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1623 	 * If true, then return false as any KFD process needs all its BOs to
1624 	 * be resident to run successfully
1625 	 */
1626 	flist = dma_resv_get_list(bo->base.resv);
1627 	if (flist) {
1628 		for (i = 0; i < flist->shared_count; ++i) {
1629 			f = rcu_dereference_protected(flist->shared[i],
1630 				dma_resv_held(bo->base.resv));
1631 			if (amdkfd_fence_check_mm(f, current->mm))
1632 				return false;
1633 		}
1634 	}
1635 
1636 	switch (bo->mem.mem_type) {
1637 	case TTM_PL_TT:
1638 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1639 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1640 			return false;
1641 		return true;
1642 
1643 	case TTM_PL_VRAM:
1644 		/* Check each drm MM node individually */
1645 		while (num_pages) {
1646 			if (place->fpfn < (node->start + node->size) &&
1647 			    !(place->lpfn && place->lpfn <= node->start))
1648 				return true;
1649 
1650 			num_pages -= node->size;
1651 			++node;
1652 		}
1653 		return false;
1654 
1655 	default:
1656 		break;
1657 	}
1658 
1659 	return ttm_bo_eviction_valuable(bo, place);
1660 }
1661 
1662 /**
1663  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1664  *
1665  * @bo:  The buffer object to read/write
1666  * @offset:  Offset into buffer object
1667  * @buf:  Secondary buffer to write/read from
1668  * @len: Length in bytes of access
1669  * @write:  true if writing
1670  *
1671  * This is used to access VRAM that backs a buffer object via MMIO
1672  * access for debugging purposes.
1673  */
1674 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1675 				    unsigned long offset,
1676 				    void *buf, int len, int write)
1677 {
1678 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1679 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1680 	struct drm_mm_node *nodes;
1681 	uint32_t value = 0;
1682 	int ret = 0;
1683 	uint64_t pos;
1684 	unsigned long flags;
1685 
1686 	if (bo->mem.mem_type != TTM_PL_VRAM)
1687 		return -EIO;
1688 
1689 	pos = offset;
1690 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1691 	pos += (nodes->start << PAGE_SHIFT);
1692 
1693 	while (len && pos < adev->gmc.mc_vram_size) {
1694 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1695 		uint64_t bytes = 4 - (pos & 3);
1696 		uint32_t shift = (pos & 3) * 8;
1697 		uint32_t mask = 0xffffffff << shift;
1698 
1699 		if (len < bytes) {
1700 			mask &= 0xffffffff >> (bytes - len) * 8;
1701 			bytes = len;
1702 		}
1703 
1704 		if (mask != 0xffffffff) {
1705 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1706 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1707 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1708 			if (!write || mask != 0xffffffff)
1709 				value = RREG32_NO_KIQ(mmMM_DATA);
1710 			if (write) {
1711 				value &= ~mask;
1712 				value |= (*(uint32_t *)buf << shift) & mask;
1713 				WREG32_NO_KIQ(mmMM_DATA, value);
1714 			}
1715 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1716 			if (!write) {
1717 				value = (value & mask) >> shift;
1718 				memcpy(buf, &value, bytes);
1719 			}
1720 		} else {
1721 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1722 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1723 
1724 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1725 						  bytes, write);
1726 		}
1727 
1728 		ret += bytes;
1729 		buf = (uint8_t *)buf + bytes;
1730 		pos += bytes;
1731 		len -= bytes;
1732 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1733 			++nodes;
1734 			pos = (nodes->start << PAGE_SHIFT);
1735 		}
1736 	}
1737 
1738 	return ret;
1739 }
1740 
1741 static struct ttm_bo_driver amdgpu_bo_driver = {
1742 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1743 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1744 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1745 	.init_mem_type = &amdgpu_init_mem_type,
1746 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1747 	.evict_flags = &amdgpu_evict_flags,
1748 	.move = &amdgpu_bo_move,
1749 	.verify_access = &amdgpu_verify_access,
1750 	.move_notify = &amdgpu_bo_move_notify,
1751 	.release_notify = &amdgpu_bo_release_notify,
1752 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1753 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1754 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1755 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1756 	.access_memory = &amdgpu_ttm_access_memory,
1757 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1758 };
1759 
1760 /*
1761  * Firmware Reservation functions
1762  */
1763 /**
1764  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1765  *
1766  * @adev: amdgpu_device pointer
1767  *
1768  * free fw reserved vram if it has been reserved.
1769  */
1770 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1771 {
1772 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1773 		NULL, &adev->fw_vram_usage.va);
1774 }
1775 
1776 /**
1777  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1778  *
1779  * @adev: amdgpu_device pointer
1780  *
1781  * create bo vram reservation from fw.
1782  */
1783 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1784 {
1785 	uint64_t vram_size = adev->gmc.visible_vram_size;
1786 
1787 	adev->fw_vram_usage.va = NULL;
1788 	adev->fw_vram_usage.reserved_bo = NULL;
1789 
1790 	if (adev->fw_vram_usage.size == 0 ||
1791 	    adev->fw_vram_usage.size > vram_size)
1792 		return 0;
1793 
1794 	return amdgpu_bo_create_kernel_at(adev,
1795 					  adev->fw_vram_usage.start_offset,
1796 					  adev->fw_vram_usage.size,
1797 					  AMDGPU_GEM_DOMAIN_VRAM,
1798 					  &adev->fw_vram_usage.reserved_bo,
1799 					  &adev->fw_vram_usage.va);
1800 }
1801 
1802 /*
1803  * Memoy training reservation functions
1804  */
1805 
1806 /**
1807  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1808  *
1809  * @adev: amdgpu_device pointer
1810  *
1811  * free memory training reserved vram if it has been reserved.
1812  */
1813 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1814 {
1815 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1816 
1817 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1818 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1819 	ctx->c2p_bo = NULL;
1820 
1821 	return 0;
1822 }
1823 
1824 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1825 {
1826        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1827                vram_size -= SZ_1M;
1828 
1829        return ALIGN(vram_size, SZ_1M);
1830 }
1831 
1832 /**
1833  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1834  *
1835  * @adev: amdgpu_device pointer
1836  *
1837  * create bo vram reservation from memory training.
1838  */
1839 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1840 {
1841 	int ret;
1842 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1843 
1844 	memset(ctx, 0, sizeof(*ctx));
1845 	if (!adev->fw_vram_usage.mem_train_support) {
1846 		DRM_DEBUG("memory training does not support!\n");
1847 		return 0;
1848 	}
1849 
1850 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1851 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1852 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1853 
1854 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1855 		  ctx->train_data_size,
1856 		  ctx->p2c_train_data_offset,
1857 		  ctx->c2p_train_data_offset);
1858 
1859 	ret = amdgpu_bo_create_kernel_at(adev,
1860 					 ctx->c2p_train_data_offset,
1861 					 ctx->train_data_size,
1862 					 AMDGPU_GEM_DOMAIN_VRAM,
1863 					 &ctx->c2p_bo,
1864 					 NULL);
1865 	if (ret) {
1866 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1867 		amdgpu_ttm_training_reserve_vram_fini(adev);
1868 		return ret;
1869 	}
1870 
1871 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1872 	return 0;
1873 }
1874 
1875 /**
1876  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1877  * gtt/vram related fields.
1878  *
1879  * This initializes all of the memory space pools that the TTM layer
1880  * will need such as the GTT space (system memory mapped to the device),
1881  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1882  * can be mapped per VMID.
1883  */
1884 int amdgpu_ttm_init(struct amdgpu_device *adev)
1885 {
1886 	uint64_t gtt_size;
1887 	int r;
1888 	u64 vis_vram_limit;
1889 	void *stolen_vga_buf;
1890 
1891 	mutex_init(&adev->mman.gtt_window_lock);
1892 
1893 	/* No others user of address space so set it to 0 */
1894 	r = ttm_bo_device_init(&adev->mman.bdev,
1895 			       &amdgpu_bo_driver,
1896 			       adev->ddev->anon_inode->i_mapping,
1897 			       adev->ddev->vma_offset_manager,
1898 			       dma_addressing_limited(adev->dev));
1899 	if (r) {
1900 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1901 		return r;
1902 	}
1903 	adev->mman.initialized = true;
1904 
1905 	/* We opt to avoid OOM on system pages allocations */
1906 	adev->mman.bdev.no_retry = true;
1907 
1908 	/* Initialize VRAM pool with all of VRAM divided into pages */
1909 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1910 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1911 	if (r) {
1912 		DRM_ERROR("Failed initializing VRAM heap.\n");
1913 		return r;
1914 	}
1915 
1916 	/* Reduce size of CPU-visible VRAM if requested */
1917 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1918 	if (amdgpu_vis_vram_limit > 0 &&
1919 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1920 		adev->gmc.visible_vram_size = vis_vram_limit;
1921 
1922 	/* Change the size here instead of the init above so only lpfn is affected */
1923 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1924 #ifdef CONFIG_64BIT
1925 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1926 						adev->gmc.visible_vram_size);
1927 #endif
1928 
1929 	/*
1930 	 *The reserved vram for firmware must be pinned to the specified
1931 	 *place on the VRAM, so reserve it early.
1932 	 */
1933 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1934 	if (r) {
1935 		return r;
1936 	}
1937 
1938 	/*
1939 	 *The reserved vram for memory training must be pinned to the specified
1940 	 *place on the VRAM, so reserve it early.
1941 	 */
1942 	if (!amdgpu_sriov_vf(adev)) {
1943 		r = amdgpu_ttm_training_reserve_vram_init(adev);
1944 		if (r)
1945 			return r;
1946 	}
1947 
1948 	/* allocate memory as required for VGA
1949 	 * This is used for VGA emulation and pre-OS scanout buffers to
1950 	 * avoid display artifacts while transitioning between pre-OS
1951 	 * and driver.  */
1952 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1953 				    AMDGPU_GEM_DOMAIN_VRAM,
1954 				    &adev->stolen_vga_memory,
1955 				    NULL, &stolen_vga_buf);
1956 	if (r)
1957 		return r;
1958 
1959 	/*
1960 	 * reserve TMR memory at the top of VRAM which holds
1961 	 * IP Discovery data and is protected by PSP.
1962 	 */
1963 	if (adev->discovery_tmr_size > 0) {
1964 		r = amdgpu_bo_create_kernel_at(adev,
1965 			adev->gmc.real_vram_size - adev->discovery_tmr_size,
1966 			adev->discovery_tmr_size,
1967 			AMDGPU_GEM_DOMAIN_VRAM,
1968 			&adev->discovery_memory,
1969 			NULL);
1970 		if (r)
1971 			return r;
1972 	}
1973 
1974 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1975 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1976 
1977 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1978 	 * or whatever the user passed on module init */
1979 	if (amdgpu_gtt_size == -1) {
1980 		struct sysinfo si;
1981 
1982 		si_meminfo(&si);
1983 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1984 			       adev->gmc.mc_vram_size),
1985 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1986 	}
1987 	else
1988 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1989 
1990 	/* Initialize GTT memory pool */
1991 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1992 	if (r) {
1993 		DRM_ERROR("Failed initializing GTT heap.\n");
1994 		return r;
1995 	}
1996 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1997 		 (unsigned)(gtt_size / (1024 * 1024)));
1998 
1999 	/* Initialize various on-chip memory pools */
2000 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
2001 			   adev->gds.gds_size);
2002 	if (r) {
2003 		DRM_ERROR("Failed initializing GDS heap.\n");
2004 		return r;
2005 	}
2006 
2007 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2008 			   adev->gds.gws_size);
2009 	if (r) {
2010 		DRM_ERROR("Failed initializing gws heap.\n");
2011 		return r;
2012 	}
2013 
2014 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2015 			   adev->gds.oa_size);
2016 	if (r) {
2017 		DRM_ERROR("Failed initializing oa heap.\n");
2018 		return r;
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 /**
2025  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2026  */
2027 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2028 {
2029 	void *stolen_vga_buf;
2030 	/* return the VGA stolen memory (if any) back to VRAM */
2031 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2032 }
2033 
2034 /**
2035  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2036  */
2037 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2038 {
2039 	if (!adev->mman.initialized)
2040 		return;
2041 
2042 	amdgpu_ttm_training_reserve_vram_fini(adev);
2043 	/* return the IP Discovery TMR memory back to VRAM */
2044 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2045 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2046 
2047 	if (adev->mman.aper_base_kaddr)
2048 		iounmap(adev->mman.aper_base_kaddr);
2049 	adev->mman.aper_base_kaddr = NULL;
2050 
2051 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2052 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2053 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2054 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2055 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2056 	ttm_bo_device_release(&adev->mman.bdev);
2057 	adev->mman.initialized = false;
2058 	DRM_INFO("amdgpu: ttm finalized\n");
2059 }
2060 
2061 /**
2062  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2063  *
2064  * @adev: amdgpu_device pointer
2065  * @enable: true when we can use buffer functions.
2066  *
2067  * Enable/disable use of buffer functions during suspend/resume. This should
2068  * only be called at bootup or when userspace isn't running.
2069  */
2070 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2071 {
2072 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2073 	uint64_t size;
2074 	int r;
2075 
2076 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2077 	    adev->mman.buffer_funcs_enabled == enable)
2078 		return;
2079 
2080 	if (enable) {
2081 		struct amdgpu_ring *ring;
2082 		struct drm_gpu_scheduler *sched;
2083 
2084 		ring = adev->mman.buffer_funcs_ring;
2085 		sched = &ring->sched;
2086 		r = drm_sched_entity_init(&adev->mman.entity,
2087 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2088 					  1, NULL);
2089 		if (r) {
2090 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2091 				  r);
2092 			return;
2093 		}
2094 	} else {
2095 		drm_sched_entity_destroy(&adev->mman.entity);
2096 		dma_fence_put(man->move);
2097 		man->move = NULL;
2098 	}
2099 
2100 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2101 	if (enable)
2102 		size = adev->gmc.real_vram_size;
2103 	else
2104 		size = adev->gmc.visible_vram_size;
2105 	man->size = size >> PAGE_SHIFT;
2106 	adev->mman.buffer_funcs_enabled = enable;
2107 }
2108 
2109 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2110 {
2111 	struct drm_file *file_priv = filp->private_data;
2112 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2113 
2114 	if (adev == NULL)
2115 		return -EINVAL;
2116 
2117 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2118 }
2119 
2120 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2121 		       uint64_t dst_offset, uint32_t byte_count,
2122 		       struct dma_resv *resv,
2123 		       struct dma_fence **fence, bool direct_submit,
2124 		       bool vm_needs_flush, bool tmz)
2125 {
2126 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2127 		AMDGPU_IB_POOL_DELAYED;
2128 	struct amdgpu_device *adev = ring->adev;
2129 	struct amdgpu_job *job;
2130 
2131 	uint32_t max_bytes;
2132 	unsigned num_loops, num_dw;
2133 	unsigned i;
2134 	int r;
2135 
2136 	if (direct_submit && !ring->sched.ready) {
2137 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2138 		return -EINVAL;
2139 	}
2140 
2141 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2142 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2143 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2144 
2145 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2146 	if (r)
2147 		return r;
2148 
2149 	if (vm_needs_flush) {
2150 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2151 		job->vm_needs_flush = true;
2152 	}
2153 	if (resv) {
2154 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2155 				     AMDGPU_SYNC_ALWAYS,
2156 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2157 		if (r) {
2158 			DRM_ERROR("sync failed (%d).\n", r);
2159 			goto error_free;
2160 		}
2161 	}
2162 
2163 	for (i = 0; i < num_loops; i++) {
2164 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2165 
2166 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2167 					dst_offset, cur_size_in_bytes, tmz);
2168 
2169 		src_offset += cur_size_in_bytes;
2170 		dst_offset += cur_size_in_bytes;
2171 		byte_count -= cur_size_in_bytes;
2172 	}
2173 
2174 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2175 	WARN_ON(job->ibs[0].length_dw > num_dw);
2176 	if (direct_submit)
2177 		r = amdgpu_job_submit_direct(job, ring, fence);
2178 	else
2179 		r = amdgpu_job_submit(job, &adev->mman.entity,
2180 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2181 	if (r)
2182 		goto error_free;
2183 
2184 	return r;
2185 
2186 error_free:
2187 	amdgpu_job_free(job);
2188 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2189 	return r;
2190 }
2191 
2192 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2193 		       uint32_t src_data,
2194 		       struct dma_resv *resv,
2195 		       struct dma_fence **fence)
2196 {
2197 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2198 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2199 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2200 
2201 	struct drm_mm_node *mm_node;
2202 	unsigned long num_pages;
2203 	unsigned int num_loops, num_dw;
2204 
2205 	struct amdgpu_job *job;
2206 	int r;
2207 
2208 	if (!adev->mman.buffer_funcs_enabled) {
2209 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2210 		return -EINVAL;
2211 	}
2212 
2213 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2214 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2215 		if (r)
2216 			return r;
2217 	}
2218 
2219 	num_pages = bo->tbo.num_pages;
2220 	mm_node = bo->tbo.mem.mm_node;
2221 	num_loops = 0;
2222 	while (num_pages) {
2223 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2224 
2225 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2226 		num_pages -= mm_node->size;
2227 		++mm_node;
2228 	}
2229 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2230 
2231 	/* for IB padding */
2232 	num_dw += 64;
2233 
2234 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2235 				     &job);
2236 	if (r)
2237 		return r;
2238 
2239 	if (resv) {
2240 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2241 				     AMDGPU_SYNC_ALWAYS,
2242 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2243 		if (r) {
2244 			DRM_ERROR("sync failed (%d).\n", r);
2245 			goto error_free;
2246 		}
2247 	}
2248 
2249 	num_pages = bo->tbo.num_pages;
2250 	mm_node = bo->tbo.mem.mm_node;
2251 
2252 	while (num_pages) {
2253 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2254 		uint64_t dst_addr;
2255 
2256 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2257 		while (byte_count) {
2258 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2259 							   max_bytes);
2260 
2261 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2262 						dst_addr, cur_size_in_bytes);
2263 
2264 			dst_addr += cur_size_in_bytes;
2265 			byte_count -= cur_size_in_bytes;
2266 		}
2267 
2268 		num_pages -= mm_node->size;
2269 		++mm_node;
2270 	}
2271 
2272 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2273 	WARN_ON(job->ibs[0].length_dw > num_dw);
2274 	r = amdgpu_job_submit(job, &adev->mman.entity,
2275 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2276 	if (r)
2277 		goto error_free;
2278 
2279 	return 0;
2280 
2281 error_free:
2282 	amdgpu_job_free(job);
2283 	return r;
2284 }
2285 
2286 #if defined(CONFIG_DEBUG_FS)
2287 
2288 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2289 {
2290 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2291 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2292 	struct drm_device *dev = node->minor->dev;
2293 	struct amdgpu_device *adev = dev->dev_private;
2294 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2295 	struct drm_printer p = drm_seq_file_printer(m);
2296 
2297 	man->func->debug(man, &p);
2298 	return 0;
2299 }
2300 
2301 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2302 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2303 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2304 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2305 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2306 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2307 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2308 #ifdef CONFIG_SWIOTLB
2309 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2310 #endif
2311 };
2312 
2313 /**
2314  * amdgpu_ttm_vram_read - Linear read access to VRAM
2315  *
2316  * Accesses VRAM via MMIO for debugging purposes.
2317  */
2318 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2319 				    size_t size, loff_t *pos)
2320 {
2321 	struct amdgpu_device *adev = file_inode(f)->i_private;
2322 	ssize_t result = 0;
2323 
2324 	if (size & 0x3 || *pos & 0x3)
2325 		return -EINVAL;
2326 
2327 	if (*pos >= adev->gmc.mc_vram_size)
2328 		return -ENXIO;
2329 
2330 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2331 	while (size) {
2332 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2333 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2334 
2335 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2336 		if (copy_to_user(buf, value, bytes))
2337 			return -EFAULT;
2338 
2339 		result += bytes;
2340 		buf += bytes;
2341 		*pos += bytes;
2342 		size -= bytes;
2343 	}
2344 
2345 	return result;
2346 }
2347 
2348 /**
2349  * amdgpu_ttm_vram_write - Linear write access to VRAM
2350  *
2351  * Accesses VRAM via MMIO for debugging purposes.
2352  */
2353 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2354 				    size_t size, loff_t *pos)
2355 {
2356 	struct amdgpu_device *adev = file_inode(f)->i_private;
2357 	ssize_t result = 0;
2358 	int r;
2359 
2360 	if (size & 0x3 || *pos & 0x3)
2361 		return -EINVAL;
2362 
2363 	if (*pos >= adev->gmc.mc_vram_size)
2364 		return -ENXIO;
2365 
2366 	while (size) {
2367 		unsigned long flags;
2368 		uint32_t value;
2369 
2370 		if (*pos >= adev->gmc.mc_vram_size)
2371 			return result;
2372 
2373 		r = get_user(value, (uint32_t *)buf);
2374 		if (r)
2375 			return r;
2376 
2377 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2378 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2379 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2380 		WREG32_NO_KIQ(mmMM_DATA, value);
2381 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2382 
2383 		result += 4;
2384 		buf += 4;
2385 		*pos += 4;
2386 		size -= 4;
2387 	}
2388 
2389 	return result;
2390 }
2391 
2392 static const struct file_operations amdgpu_ttm_vram_fops = {
2393 	.owner = THIS_MODULE,
2394 	.read = amdgpu_ttm_vram_read,
2395 	.write = amdgpu_ttm_vram_write,
2396 	.llseek = default_llseek,
2397 };
2398 
2399 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2400 
2401 /**
2402  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2403  */
2404 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2405 				   size_t size, loff_t *pos)
2406 {
2407 	struct amdgpu_device *adev = file_inode(f)->i_private;
2408 	ssize_t result = 0;
2409 	int r;
2410 
2411 	while (size) {
2412 		loff_t p = *pos / PAGE_SIZE;
2413 		unsigned off = *pos & ~PAGE_MASK;
2414 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2415 		struct page *page;
2416 		void *ptr;
2417 
2418 		if (p >= adev->gart.num_cpu_pages)
2419 			return result;
2420 
2421 		page = adev->gart.pages[p];
2422 		if (page) {
2423 			ptr = kmap(page);
2424 			ptr += off;
2425 
2426 			r = copy_to_user(buf, ptr, cur_size);
2427 			kunmap(adev->gart.pages[p]);
2428 		} else
2429 			r = clear_user(buf, cur_size);
2430 
2431 		if (r)
2432 			return -EFAULT;
2433 
2434 		result += cur_size;
2435 		buf += cur_size;
2436 		*pos += cur_size;
2437 		size -= cur_size;
2438 	}
2439 
2440 	return result;
2441 }
2442 
2443 static const struct file_operations amdgpu_ttm_gtt_fops = {
2444 	.owner = THIS_MODULE,
2445 	.read = amdgpu_ttm_gtt_read,
2446 	.llseek = default_llseek
2447 };
2448 
2449 #endif
2450 
2451 /**
2452  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2453  *
2454  * This function is used to read memory that has been mapped to the
2455  * GPU and the known addresses are not physical addresses but instead
2456  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2457  */
2458 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2459 				 size_t size, loff_t *pos)
2460 {
2461 	struct amdgpu_device *adev = file_inode(f)->i_private;
2462 	struct iommu_domain *dom;
2463 	ssize_t result = 0;
2464 	int r;
2465 
2466 	/* retrieve the IOMMU domain if any for this device */
2467 	dom = iommu_get_domain_for_dev(adev->dev);
2468 
2469 	while (size) {
2470 		phys_addr_t addr = *pos & PAGE_MASK;
2471 		loff_t off = *pos & ~PAGE_MASK;
2472 		size_t bytes = PAGE_SIZE - off;
2473 		unsigned long pfn;
2474 		struct page *p;
2475 		void *ptr;
2476 
2477 		bytes = bytes < size ? bytes : size;
2478 
2479 		/* Translate the bus address to a physical address.  If
2480 		 * the domain is NULL it means there is no IOMMU active
2481 		 * and the address translation is the identity
2482 		 */
2483 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2484 
2485 		pfn = addr >> PAGE_SHIFT;
2486 		if (!pfn_valid(pfn))
2487 			return -EPERM;
2488 
2489 		p = pfn_to_page(pfn);
2490 		if (p->mapping != adev->mman.bdev.dev_mapping)
2491 			return -EPERM;
2492 
2493 		ptr = kmap(p);
2494 		r = copy_to_user(buf, ptr + off, bytes);
2495 		kunmap(p);
2496 		if (r)
2497 			return -EFAULT;
2498 
2499 		size -= bytes;
2500 		*pos += bytes;
2501 		result += bytes;
2502 	}
2503 
2504 	return result;
2505 }
2506 
2507 /**
2508  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2509  *
2510  * This function is used to write memory that has been mapped to the
2511  * GPU and the known addresses are not physical addresses but instead
2512  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2513  */
2514 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2515 				 size_t size, loff_t *pos)
2516 {
2517 	struct amdgpu_device *adev = file_inode(f)->i_private;
2518 	struct iommu_domain *dom;
2519 	ssize_t result = 0;
2520 	int r;
2521 
2522 	dom = iommu_get_domain_for_dev(adev->dev);
2523 
2524 	while (size) {
2525 		phys_addr_t addr = *pos & PAGE_MASK;
2526 		loff_t off = *pos & ~PAGE_MASK;
2527 		size_t bytes = PAGE_SIZE - off;
2528 		unsigned long pfn;
2529 		struct page *p;
2530 		void *ptr;
2531 
2532 		bytes = bytes < size ? bytes : size;
2533 
2534 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2535 
2536 		pfn = addr >> PAGE_SHIFT;
2537 		if (!pfn_valid(pfn))
2538 			return -EPERM;
2539 
2540 		p = pfn_to_page(pfn);
2541 		if (p->mapping != adev->mman.bdev.dev_mapping)
2542 			return -EPERM;
2543 
2544 		ptr = kmap(p);
2545 		r = copy_from_user(ptr + off, buf, bytes);
2546 		kunmap(p);
2547 		if (r)
2548 			return -EFAULT;
2549 
2550 		size -= bytes;
2551 		*pos += bytes;
2552 		result += bytes;
2553 	}
2554 
2555 	return result;
2556 }
2557 
2558 static const struct file_operations amdgpu_ttm_iomem_fops = {
2559 	.owner = THIS_MODULE,
2560 	.read = amdgpu_iomem_read,
2561 	.write = amdgpu_iomem_write,
2562 	.llseek = default_llseek
2563 };
2564 
2565 static const struct {
2566 	char *name;
2567 	const struct file_operations *fops;
2568 	int domain;
2569 } ttm_debugfs_entries[] = {
2570 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2571 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2572 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2573 #endif
2574 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2575 };
2576 
2577 #endif
2578 
2579 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2580 {
2581 #if defined(CONFIG_DEBUG_FS)
2582 	unsigned count;
2583 
2584 	struct drm_minor *minor = adev->ddev->primary;
2585 	struct dentry *ent, *root = minor->debugfs_root;
2586 
2587 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2588 		ent = debugfs_create_file(
2589 				ttm_debugfs_entries[count].name,
2590 				S_IFREG | S_IRUGO, root,
2591 				adev,
2592 				ttm_debugfs_entries[count].fops);
2593 		if (IS_ERR(ent))
2594 			return PTR_ERR(ent);
2595 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2596 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2597 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2598 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2599 		adev->mman.debugfs_entries[count] = ent;
2600 	}
2601 
2602 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2603 
2604 #ifdef CONFIG_SWIOTLB
2605 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2606 		--count;
2607 #endif
2608 
2609 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2610 #else
2611 	return 0;
2612 #endif
2613 }
2614