1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include "amdgpu_ras_eeprom.h" 25 #include "amdgpu.h" 26 #include "amdgpu_ras.h" 27 #include <linux/bits.h> 28 #include "atom.h" 29 #include "amdgpu_eeprom.h" 30 #include "amdgpu_atomfirmware.h" 31 #include <linux/debugfs.h> 32 #include <linux/uaccess.h> 33 34 #include "amdgpu_reset.h" 35 36 /* These are memory addresses as would be seen by one or more EEPROM 37 * chips strung on the I2C bus, usually by manipulating pins 1-3 of a 38 * set of EEPROM devices. They form a continuous memory space. 39 * 40 * The I2C device address includes the device type identifier, 1010b, 41 * which is a reserved value and indicates that this is an I2C EEPROM 42 * device. It also includes the top 3 bits of the 19 bit EEPROM memory 43 * address, namely bits 18, 17, and 16. This makes up the 7 bit 44 * address sent on the I2C bus with bit 0 being the direction bit, 45 * which is not represented here, and sent by the hardware directly. 46 * 47 * For instance, 48 * 50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0. 49 * 54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h. 50 * 56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h. 51 * Depending on the size of the I2C EEPROM device(s), bits 18:16 may 52 * address memory in a device or a device on the I2C bus, depending on 53 * the status of pins 1-3. See top of amdgpu_eeprom.c. 54 * 55 * The RAS table lives either at address 0 or address 40000h of EEPROM. 56 */ 57 #define EEPROM_I2C_MADDR_0 0x0 58 #define EEPROM_I2C_MADDR_4 0x40000 59 60 /* 61 * The 2 macros bellow represent the actual size in bytes that 62 * those entities occupy in the EEPROM memory. 63 * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which 64 * uses uint64 to store 6b fields such as retired_page. 65 */ 66 #define RAS_TABLE_HEADER_SIZE 20 67 #define RAS_TABLE_RECORD_SIZE 24 68 69 /* Table hdr is 'AMDR' */ 70 #define RAS_TABLE_HDR_VAL 0x414d4452 71 #define RAS_TABLE_VER 0x00010000 72 73 /* Bad GPU tag ‘BADG’ */ 74 #define RAS_TABLE_HDR_BAD 0x42414447 75 76 /* Assume 2-Mbit size EEPROM and take up the whole space. */ 77 #define RAS_TBL_SIZE_BYTES (256 * 1024) 78 #define RAS_TABLE_START 0 79 #define RAS_HDR_START RAS_TABLE_START 80 #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE) 81 #define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \ 82 / RAS_TABLE_RECORD_SIZE) 83 84 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM 85 * offset off of RAS_TABLE_START. That is, this is something you can 86 * add to control->i2c_address, and then tell I2C layer to read 87 * from/write to there. _N is the so called absolute index, 88 * because it starts right after the table header. 89 */ 90 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \ 91 (_N) * RAS_TABLE_RECORD_SIZE) 92 93 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \ 94 (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE) 95 96 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off 97 * of "fri", return the absolute record index off of the end of 98 * the table header. 99 */ 100 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \ 101 (_C)->ras_max_record_count) 102 103 #define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ 104 RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE) 105 106 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev 107 108 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) 109 { 110 switch (adev->ip_versions[MP1_HWIP][0]) { 111 case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */ 112 case IP_VERSION(11, 0, 7): /* Sienna cichlid */ 113 case IP_VERSION(13, 0, 0): 114 case IP_VERSION(13, 0, 2): /* Aldebaran */ 115 case IP_VERSION(13, 0, 10): 116 return true; 117 default: 118 return false; 119 } 120 } 121 122 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, 123 struct amdgpu_ras_eeprom_control *control) 124 { 125 struct atom_context *atom_ctx = adev->mode_info.atom_context; 126 u8 i2c_addr; 127 128 if (!control) 129 return false; 130 131 if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) { 132 /* The address given by VBIOS is an 8-bit, wire-format 133 * address, i.e. the most significant byte. 134 * 135 * Normalize it to a 19-bit EEPROM address. Remove the 136 * device type identifier and make it a 7-bit address; 137 * then make it a 19-bit EEPROM address. See top of 138 * amdgpu_eeprom.c. 139 */ 140 i2c_addr = (i2c_addr & 0x0F) >> 1; 141 control->i2c_address = ((u32) i2c_addr) << 16; 142 143 return true; 144 } 145 146 switch (adev->ip_versions[MP1_HWIP][0]) { 147 case IP_VERSION(11, 0, 2): 148 /* VEGA20 and ARCTURUS */ 149 if (adev->asic_type == CHIP_VEGA20) 150 control->i2c_address = EEPROM_I2C_MADDR_0; 151 else if (strnstr(atom_ctx->vbios_version, 152 "D342", 153 sizeof(atom_ctx->vbios_version))) 154 control->i2c_address = EEPROM_I2C_MADDR_0; 155 else 156 control->i2c_address = EEPROM_I2C_MADDR_4; 157 return true; 158 case IP_VERSION(11, 0, 7): 159 control->i2c_address = EEPROM_I2C_MADDR_0; 160 return true; 161 case IP_VERSION(13, 0, 2): 162 if (strnstr(atom_ctx->vbios_version, "D673", 163 sizeof(atom_ctx->vbios_version))) 164 control->i2c_address = EEPROM_I2C_MADDR_4; 165 else 166 control->i2c_address = EEPROM_I2C_MADDR_0; 167 return true; 168 case IP_VERSION(13, 0, 0): 169 case IP_VERSION(13, 0, 10): 170 control->i2c_address = EEPROM_I2C_MADDR_4; 171 return true; 172 default: 173 return false; 174 } 175 } 176 177 static void 178 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr, 179 unsigned char *buf) 180 { 181 u32 *pp = (uint32_t *)buf; 182 183 pp[0] = cpu_to_le32(hdr->header); 184 pp[1] = cpu_to_le32(hdr->version); 185 pp[2] = cpu_to_le32(hdr->first_rec_offset); 186 pp[3] = cpu_to_le32(hdr->tbl_size); 187 pp[4] = cpu_to_le32(hdr->checksum); 188 } 189 190 static void 191 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr, 192 unsigned char *buf) 193 { 194 u32 *pp = (uint32_t *)buf; 195 196 hdr->header = le32_to_cpu(pp[0]); 197 hdr->version = le32_to_cpu(pp[1]); 198 hdr->first_rec_offset = le32_to_cpu(pp[2]); 199 hdr->tbl_size = le32_to_cpu(pp[3]); 200 hdr->checksum = le32_to_cpu(pp[4]); 201 } 202 203 static int __write_table_header(struct amdgpu_ras_eeprom_control *control) 204 { 205 u8 buf[RAS_TABLE_HEADER_SIZE]; 206 struct amdgpu_device *adev = to_amdgpu_device(control); 207 int res; 208 209 memset(buf, 0, sizeof(buf)); 210 __encode_table_header_to_buf(&control->tbl_hdr, buf); 211 212 /* i2c may be unstable in gpu reset */ 213 down_read(&adev->reset_domain->sem); 214 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 215 control->i2c_address + 216 control->ras_header_offset, 217 buf, RAS_TABLE_HEADER_SIZE); 218 up_read(&adev->reset_domain->sem); 219 220 if (res < 0) { 221 DRM_ERROR("Failed to write EEPROM table header:%d", res); 222 } else if (res < RAS_TABLE_HEADER_SIZE) { 223 DRM_ERROR("Short write:%d out of %d\n", 224 res, RAS_TABLE_HEADER_SIZE); 225 res = -EIO; 226 } else { 227 res = 0; 228 } 229 230 return res; 231 } 232 233 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control) 234 { 235 int ii; 236 u8 *pp, csum; 237 size_t sz; 238 239 /* Header checksum, skip checksum field in the calculation */ 240 sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); 241 pp = (u8 *) &control->tbl_hdr; 242 csum = 0; 243 for (ii = 0; ii < sz; ii++, pp++) 244 csum += *pp; 245 246 return csum; 247 } 248 249 static int amdgpu_ras_eeprom_correct_header_tag( 250 struct amdgpu_ras_eeprom_control *control, 251 uint32_t header) 252 { 253 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 254 u8 *hh; 255 int res; 256 u8 csum; 257 258 csum = -hdr->checksum; 259 260 hh = (void *) &hdr->header; 261 csum -= (hh[0] + hh[1] + hh[2] + hh[3]); 262 hh = (void *) &header; 263 csum += hh[0] + hh[1] + hh[2] + hh[3]; 264 csum = -csum; 265 mutex_lock(&control->ras_tbl_mutex); 266 hdr->header = header; 267 hdr->checksum = csum; 268 res = __write_table_header(control); 269 mutex_unlock(&control->ras_tbl_mutex); 270 271 return res; 272 } 273 274 /** 275 * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table 276 * @control: pointer to control structure 277 * 278 * Reset the contents of the header of the RAS EEPROM table. 279 * Return 0 on success, -errno on error. 280 */ 281 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) 282 { 283 struct amdgpu_device *adev = to_amdgpu_device(control); 284 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 285 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 286 u8 csum; 287 int res; 288 289 mutex_lock(&control->ras_tbl_mutex); 290 291 hdr->header = RAS_TABLE_HDR_VAL; 292 hdr->version = RAS_TABLE_VER; 293 hdr->first_rec_offset = RAS_RECORD_START; 294 hdr->tbl_size = RAS_TABLE_HEADER_SIZE; 295 296 csum = __calc_hdr_byte_sum(control); 297 csum = -csum; 298 hdr->checksum = csum; 299 res = __write_table_header(control); 300 301 control->ras_num_recs = 0; 302 control->ras_fri = 0; 303 304 amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs); 305 306 control->bad_channel_bitmap = 0; 307 amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap); 308 con->update_channel_flag = false; 309 310 amdgpu_ras_debugfs_set_ret_size(control); 311 312 mutex_unlock(&control->ras_tbl_mutex); 313 314 return res; 315 } 316 317 static void 318 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control, 319 struct eeprom_table_record *record, 320 unsigned char *buf) 321 { 322 __le64 tmp = 0; 323 int i = 0; 324 325 /* Next are all record fields according to EEPROM page spec in LE foramt */ 326 buf[i++] = record->err_type; 327 328 buf[i++] = record->bank; 329 330 tmp = cpu_to_le64(record->ts); 331 memcpy(buf + i, &tmp, 8); 332 i += 8; 333 334 tmp = cpu_to_le64((record->offset & 0xffffffffffff)); 335 memcpy(buf + i, &tmp, 6); 336 i += 6; 337 338 buf[i++] = record->mem_channel; 339 buf[i++] = record->mcumc_id; 340 341 tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); 342 memcpy(buf + i, &tmp, 6); 343 } 344 345 static void 346 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control, 347 struct eeprom_table_record *record, 348 unsigned char *buf) 349 { 350 __le64 tmp = 0; 351 int i = 0; 352 353 /* Next are all record fields according to EEPROM page spec in LE foramt */ 354 record->err_type = buf[i++]; 355 356 record->bank = buf[i++]; 357 358 memcpy(&tmp, buf + i, 8); 359 record->ts = le64_to_cpu(tmp); 360 i += 8; 361 362 memcpy(&tmp, buf + i, 6); 363 record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); 364 i += 6; 365 366 record->mem_channel = buf[i++]; 367 record->mcumc_id = buf[i++]; 368 369 memcpy(&tmp, buf + i, 6); 370 record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); 371 } 372 373 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev) 374 { 375 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 376 377 if (!__is_ras_eeprom_supported(adev) || 378 !amdgpu_bad_page_threshold) 379 return false; 380 381 /* skip check eeprom table for VEGA20 Gaming */ 382 if (!con) 383 return false; 384 else 385 if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC))) 386 return false; 387 388 if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) { 389 if (amdgpu_bad_page_threshold == -1) { 390 dev_warn(adev->dev, "RAS records:%d exceed threshold:%d", 391 con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold); 392 dev_warn(adev->dev, 393 "But GPU can be operated due to bad_page_threshold = -1.\n"); 394 return false; 395 } else { 396 dev_warn(adev->dev, "This GPU is in BAD status."); 397 dev_warn(adev->dev, "Please retire it or set a larger " 398 "threshold value when reloading driver.\n"); 399 return true; 400 } 401 } 402 403 return false; 404 } 405 406 /** 407 * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM 408 * @control: pointer to control structure 409 * @buf: pointer to buffer containing data to write 410 * @fri: start writing at this index 411 * @num: number of records to write 412 * 413 * The caller must hold the table mutex in @control. 414 * Return 0 on success, -errno otherwise. 415 */ 416 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control, 417 u8 *buf, const u32 fri, const u32 num) 418 { 419 struct amdgpu_device *adev = to_amdgpu_device(control); 420 u32 buf_size; 421 int res; 422 423 /* i2c may be unstable in gpu reset */ 424 down_read(&adev->reset_domain->sem); 425 buf_size = num * RAS_TABLE_RECORD_SIZE; 426 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, 427 control->i2c_address + 428 RAS_INDEX_TO_OFFSET(control, fri), 429 buf, buf_size); 430 up_read(&adev->reset_domain->sem); 431 if (res < 0) { 432 DRM_ERROR("Writing %d EEPROM table records error:%d", 433 num, res); 434 } else if (res < buf_size) { 435 /* Short write, return error. 436 */ 437 DRM_ERROR("Wrote %d records out of %d", 438 res / RAS_TABLE_RECORD_SIZE, num); 439 res = -EIO; 440 } else { 441 res = 0; 442 } 443 444 return res; 445 } 446 447 static int 448 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control, 449 struct eeprom_table_record *record, 450 const u32 num) 451 { 452 struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control)); 453 u32 a, b, i; 454 u8 *buf, *pp; 455 int res; 456 457 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 458 if (!buf) 459 return -ENOMEM; 460 461 /* Encode all of them in one go. 462 */ 463 pp = buf; 464 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 465 __encode_table_record_to_buf(control, &record[i], pp); 466 467 /* update bad channel bitmap */ 468 if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 469 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 470 con->update_channel_flag = true; 471 } 472 } 473 474 /* a, first record index to write into. 475 * b, last record index to write into. 476 * a = first index to read (fri) + number of records in the table, 477 * b = a + @num - 1. 478 * Let N = control->ras_max_num_record_count, then we have, 479 * case 0: 0 <= a <= b < N, 480 * just append @num records starting at a; 481 * case 1: 0 <= a < N <= b, 482 * append (N - a) records starting at a, and 483 * append the remainder, b % N + 1, starting at 0. 484 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases, 485 * case 2a: 0 <= a <= b < N 486 * append num records starting at a; and fix fri if b overwrote it, 487 * and since a <= b, if b overwrote it then a must've also, 488 * and if b didn't overwrite it, then a didn't also. 489 * case 2b: 0 <= b < a < N 490 * write num records starting at a, which wraps around 0=N 491 * and overwrite fri unconditionally. Now from case 2a, 492 * this means that b eclipsed fri to overwrite it and wrap 493 * around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally 494 * set fri = b + 1 (mod N). 495 * Now, since fri is updated in every case, except the trivial case 0, 496 * the number of records present in the table after writing, is, 497 * num_recs - 1 = b - fri (mod N), and we take the positive value, 498 * by adding an arbitrary multiple of N before taking the modulo N 499 * as shown below. 500 */ 501 a = control->ras_fri + control->ras_num_recs; 502 b = a + num - 1; 503 if (b < control->ras_max_record_count) { 504 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 505 } else if (a < control->ras_max_record_count) { 506 u32 g0, g1; 507 508 g0 = control->ras_max_record_count - a; 509 g1 = b % control->ras_max_record_count + 1; 510 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 511 if (res) 512 goto Out; 513 res = __amdgpu_ras_eeprom_write(control, 514 buf + g0 * RAS_TABLE_RECORD_SIZE, 515 0, g1); 516 if (res) 517 goto Out; 518 if (g1 > control->ras_fri) 519 control->ras_fri = g1 % control->ras_max_record_count; 520 } else { 521 a %= control->ras_max_record_count; 522 b %= control->ras_max_record_count; 523 524 if (a <= b) { 525 /* Note that, b - a + 1 = num. */ 526 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 527 if (res) 528 goto Out; 529 if (b >= control->ras_fri) 530 control->ras_fri = (b + 1) % control->ras_max_record_count; 531 } else { 532 u32 g0, g1; 533 534 /* b < a, which means, we write from 535 * a to the end of the table, and from 536 * the start of the table to b. 537 */ 538 g0 = control->ras_max_record_count - a; 539 g1 = b + 1; 540 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 541 if (res) 542 goto Out; 543 res = __amdgpu_ras_eeprom_write(control, 544 buf + g0 * RAS_TABLE_RECORD_SIZE, 545 0, g1); 546 if (res) 547 goto Out; 548 control->ras_fri = g1 % control->ras_max_record_count; 549 } 550 } 551 control->ras_num_recs = 1 + (control->ras_max_record_count + b 552 - control->ras_fri) 553 % control->ras_max_record_count; 554 Out: 555 kfree(buf); 556 return res; 557 } 558 559 static int 560 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control) 561 { 562 struct amdgpu_device *adev = to_amdgpu_device(control); 563 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 564 u8 *buf, *pp, csum; 565 u32 buf_size; 566 int res; 567 568 /* Modify the header if it exceeds. 569 */ 570 if (amdgpu_bad_page_threshold != 0 && 571 control->ras_num_recs >= ras->bad_page_cnt_threshold) { 572 dev_warn(adev->dev, 573 "Saved bad pages %d reaches threshold value %d\n", 574 control->ras_num_recs, ras->bad_page_cnt_threshold); 575 control->tbl_hdr.header = RAS_TABLE_HDR_BAD; 576 } 577 578 control->tbl_hdr.version = RAS_TABLE_VER; 579 control->tbl_hdr.first_rec_offset = RAS_INDEX_TO_OFFSET(control, control->ras_fri); 580 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 581 control->tbl_hdr.checksum = 0; 582 583 buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 584 buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 585 if (!buf) { 586 DRM_ERROR("allocating memory for table of size %d bytes failed\n", 587 control->tbl_hdr.tbl_size); 588 res = -ENOMEM; 589 goto Out; 590 } 591 592 down_read(&adev->reset_domain->sem); 593 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 594 control->i2c_address + 595 control->ras_record_offset, 596 buf, buf_size); 597 up_read(&adev->reset_domain->sem); 598 if (res < 0) { 599 DRM_ERROR("EEPROM failed reading records:%d\n", 600 res); 601 goto Out; 602 } else if (res < buf_size) { 603 DRM_ERROR("EEPROM read %d out of %d bytes\n", 604 res, buf_size); 605 res = -EIO; 606 goto Out; 607 } 608 609 /* Recalc the checksum. 610 */ 611 csum = 0; 612 for (pp = buf; pp < buf + buf_size; pp++) 613 csum += *pp; 614 615 csum += __calc_hdr_byte_sum(control); 616 /* avoid sign extension when assigning to "checksum" */ 617 csum = -csum; 618 control->tbl_hdr.checksum = csum; 619 res = __write_table_header(control); 620 Out: 621 kfree(buf); 622 return res; 623 } 624 625 /** 626 * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table 627 * @control: pointer to control structure 628 * @record: array of records to append 629 * @num: number of records in @record array 630 * 631 * Append @num records to the table, calculate the checksum and write 632 * the table back to EEPROM. The maximum number of records that 633 * can be appended is between 1 and control->ras_max_record_count, 634 * regardless of how many records are already stored in the table. 635 * 636 * Return 0 on success or if EEPROM is not supported, -errno on error. 637 */ 638 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control, 639 struct eeprom_table_record *record, 640 const u32 num) 641 { 642 struct amdgpu_device *adev = to_amdgpu_device(control); 643 int res; 644 645 if (!__is_ras_eeprom_supported(adev)) 646 return 0; 647 648 if (num == 0) { 649 DRM_ERROR("will not append 0 records\n"); 650 return -EINVAL; 651 } else if (num > control->ras_max_record_count) { 652 DRM_ERROR("cannot append %d records than the size of table %d\n", 653 num, control->ras_max_record_count); 654 return -EINVAL; 655 } 656 657 mutex_lock(&control->ras_tbl_mutex); 658 659 res = amdgpu_ras_eeprom_append_table(control, record, num); 660 if (!res) 661 res = amdgpu_ras_eeprom_update_header(control); 662 if (!res) 663 amdgpu_ras_debugfs_set_ret_size(control); 664 665 mutex_unlock(&control->ras_tbl_mutex); 666 return res; 667 } 668 669 /** 670 * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer 671 * @control: pointer to control structure 672 * @buf: pointer to buffer to read into 673 * @fri: first record index, start reading at this index, absolute index 674 * @num: number of records to read 675 * 676 * The caller must hold the table mutex in @control. 677 * Return 0 on success, -errno otherwise. 678 */ 679 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 680 u8 *buf, const u32 fri, const u32 num) 681 { 682 struct amdgpu_device *adev = to_amdgpu_device(control); 683 u32 buf_size; 684 int res; 685 686 /* i2c may be unstable in gpu reset */ 687 down_read(&adev->reset_domain->sem); 688 buf_size = num * RAS_TABLE_RECORD_SIZE; 689 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 690 control->i2c_address + 691 RAS_INDEX_TO_OFFSET(control, fri), 692 buf, buf_size); 693 up_read(&adev->reset_domain->sem); 694 if (res < 0) { 695 DRM_ERROR("Reading %d EEPROM table records error:%d", 696 num, res); 697 } else if (res < buf_size) { 698 /* Short read, return error. 699 */ 700 DRM_ERROR("Read %d records out of %d", 701 res / RAS_TABLE_RECORD_SIZE, num); 702 res = -EIO; 703 } else { 704 res = 0; 705 } 706 707 return res; 708 } 709 710 /** 711 * amdgpu_ras_eeprom_read -- read EEPROM 712 * @control: pointer to control structure 713 * @record: array of records to read into 714 * @num: number of records in @record 715 * 716 * Reads num records from the RAS table in EEPROM and 717 * writes the data into @record array. 718 * 719 * Returns 0 on success, -errno on error. 720 */ 721 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 722 struct eeprom_table_record *record, 723 const u32 num) 724 { 725 struct amdgpu_device *adev = to_amdgpu_device(control); 726 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 727 int i, res; 728 u8 *buf, *pp; 729 u32 g0, g1; 730 731 if (!__is_ras_eeprom_supported(adev)) 732 return 0; 733 734 if (num == 0) { 735 DRM_ERROR("will not read 0 records\n"); 736 return -EINVAL; 737 } else if (num > control->ras_num_recs) { 738 DRM_ERROR("too many records to read:%d available:%d\n", 739 num, control->ras_num_recs); 740 return -EINVAL; 741 } 742 743 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 744 if (!buf) 745 return -ENOMEM; 746 747 /* Determine how many records to read, from the first record 748 * index, fri, to the end of the table, and from the beginning 749 * of the table, such that the total number of records is 750 * @num, and we handle wrap around when fri > 0 and 751 * fri + num > RAS_MAX_RECORD_COUNT. 752 * 753 * First we compute the index of the last element 754 * which would be fetched from each region, 755 * g0 is in [fri, fri + num - 1], and 756 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1]. 757 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of 758 * the last element to fetch, we set g0 to _the number_ 759 * of elements to fetch, @num, since we know that the last 760 * indexed to be fetched does not exceed the table. 761 * 762 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then 763 * we set g0 to the number of elements to read 764 * until the end of the table, and g1 to the number of 765 * elements to read from the beginning of the table. 766 */ 767 g0 = control->ras_fri + num - 1; 768 g1 = g0 % control->ras_max_record_count; 769 if (g0 < control->ras_max_record_count) { 770 g0 = num; 771 g1 = 0; 772 } else { 773 g0 = control->ras_max_record_count - control->ras_fri; 774 g1 += 1; 775 } 776 777 mutex_lock(&control->ras_tbl_mutex); 778 res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0); 779 if (res) 780 goto Out; 781 if (g1) { 782 res = __amdgpu_ras_eeprom_read(control, 783 buf + g0 * RAS_TABLE_RECORD_SIZE, 784 0, g1); 785 if (res) 786 goto Out; 787 } 788 789 res = 0; 790 791 /* Read up everything? Then transform. 792 */ 793 pp = buf; 794 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { 795 __decode_table_record_from_buf(control, &record[i], pp); 796 797 /* update bad channel bitmap */ 798 if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { 799 control->bad_channel_bitmap |= 1 << record[i].mem_channel; 800 con->update_channel_flag = true; 801 } 802 } 803 Out: 804 kfree(buf); 805 mutex_unlock(&control->ras_tbl_mutex); 806 807 return res; 808 } 809 810 uint32_t amdgpu_ras_eeprom_max_record_count(void) 811 { 812 return RAS_MAX_RECORD_COUNT; 813 } 814 815 static ssize_t 816 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf, 817 size_t size, loff_t *pos) 818 { 819 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 820 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 821 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 822 u8 data[50]; 823 int res; 824 825 if (!size) 826 return size; 827 828 if (!ras || !control) { 829 res = snprintf(data, sizeof(data), "Not supported\n"); 830 } else { 831 res = snprintf(data, sizeof(data), "%d bytes or %d records\n", 832 RAS_TBL_SIZE_BYTES, control->ras_max_record_count); 833 } 834 835 if (*pos >= res) 836 return 0; 837 838 res -= *pos; 839 res = min_t(size_t, res, size); 840 841 if (copy_to_user(buf, &data[*pos], res)) 842 return -EFAULT; 843 844 *pos += res; 845 846 return res; 847 } 848 849 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = { 850 .owner = THIS_MODULE, 851 .read = amdgpu_ras_debugfs_eeprom_size_read, 852 .write = NULL, 853 .llseek = default_llseek, 854 }; 855 856 static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n"; 857 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n"; 858 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1) 859 static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n"; 860 static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n"; 861 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1) 862 863 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = { 864 "ignore", 865 "re", 866 "ue", 867 }; 868 869 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control) 870 { 871 return strlen(tbl_hdr_str) + tbl_hdr_fmt_size + 872 strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs; 873 } 874 875 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control) 876 { 877 struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras, 878 eeprom_control); 879 struct dentry *de = ras->de_ras_eeprom_table; 880 881 if (de) 882 d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control); 883 } 884 885 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf, 886 size_t size, loff_t *pos) 887 { 888 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 889 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 890 struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control; 891 const size_t orig_size = size; 892 int res = -EFAULT; 893 size_t data_len; 894 895 mutex_lock(&control->ras_tbl_mutex); 896 897 /* We want *pos - data_len > 0, which means there's 898 * bytes to be printed from data. 899 */ 900 data_len = strlen(tbl_hdr_str); 901 if (*pos < data_len) { 902 data_len -= *pos; 903 data_len = min_t(size_t, data_len, size); 904 if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len)) 905 goto Out; 906 buf += data_len; 907 size -= data_len; 908 *pos += data_len; 909 } 910 911 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size; 912 if (*pos < data_len && size > 0) { 913 u8 data[tbl_hdr_fmt_size + 1]; 914 loff_t lpos; 915 916 snprintf(data, sizeof(data), tbl_hdr_fmt, 917 control->tbl_hdr.header, 918 control->tbl_hdr.version, 919 control->tbl_hdr.first_rec_offset, 920 control->tbl_hdr.tbl_size, 921 control->tbl_hdr.checksum); 922 923 data_len -= *pos; 924 data_len = min_t(size_t, data_len, size); 925 lpos = *pos - strlen(tbl_hdr_str); 926 if (copy_to_user(buf, &data[lpos], data_len)) 927 goto Out; 928 buf += data_len; 929 size -= data_len; 930 *pos += data_len; 931 } 932 933 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str); 934 if (*pos < data_len && size > 0) { 935 loff_t lpos; 936 937 data_len -= *pos; 938 data_len = min_t(size_t, data_len, size); 939 lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size; 940 if (copy_to_user(buf, &rec_hdr_str[lpos], data_len)) 941 goto Out; 942 buf += data_len; 943 size -= data_len; 944 *pos += data_len; 945 } 946 947 data_len = amdgpu_ras_debugfs_table_size(control); 948 if (*pos < data_len && size > 0) { 949 u8 dare[RAS_TABLE_RECORD_SIZE]; 950 u8 data[rec_hdr_fmt_size + 1]; 951 struct eeprom_table_record record; 952 int s, r; 953 954 /* Find the starting record index 955 */ 956 s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 957 strlen(rec_hdr_str); 958 s = s / rec_hdr_fmt_size; 959 r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 960 strlen(rec_hdr_str); 961 r = r % rec_hdr_fmt_size; 962 963 for ( ; size > 0 && s < control->ras_num_recs; s++) { 964 u32 ai = RAS_RI_TO_AI(control, s); 965 /* Read a single record 966 */ 967 res = __amdgpu_ras_eeprom_read(control, dare, ai, 1); 968 if (res) 969 goto Out; 970 __decode_table_record_from_buf(control, &record, dare); 971 snprintf(data, sizeof(data), rec_hdr_fmt, 972 s, 973 RAS_INDEX_TO_OFFSET(control, ai), 974 record_err_type_str[record.err_type], 975 record.bank, 976 record.ts, 977 record.offset, 978 record.mem_channel, 979 record.mcumc_id, 980 record.retired_page); 981 982 data_len = min_t(size_t, rec_hdr_fmt_size - r, size); 983 if (copy_to_user(buf, &data[r], data_len)) { 984 res = -EFAULT; 985 goto Out; 986 } 987 buf += data_len; 988 size -= data_len; 989 *pos += data_len; 990 r = 0; 991 } 992 } 993 res = 0; 994 Out: 995 mutex_unlock(&control->ras_tbl_mutex); 996 return res < 0 ? res : orig_size - size; 997 } 998 999 static ssize_t 1000 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf, 1001 size_t size, loff_t *pos) 1002 { 1003 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 1004 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1005 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 1006 u8 data[81]; 1007 int res; 1008 1009 if (!size) 1010 return size; 1011 1012 if (!ras || !control) { 1013 res = snprintf(data, sizeof(data), "Not supported\n"); 1014 if (*pos >= res) 1015 return 0; 1016 1017 res -= *pos; 1018 res = min_t(size_t, res, size); 1019 1020 if (copy_to_user(buf, &data[*pos], res)) 1021 return -EFAULT; 1022 1023 *pos += res; 1024 1025 return res; 1026 } else { 1027 return amdgpu_ras_debugfs_table_read(f, buf, size, pos); 1028 } 1029 } 1030 1031 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = { 1032 .owner = THIS_MODULE, 1033 .read = amdgpu_ras_debugfs_eeprom_table_read, 1034 .write = NULL, 1035 .llseek = default_llseek, 1036 }; 1037 1038 /** 1039 * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum 1040 * @control: pointer to control structure 1041 * 1042 * Check the checksum of the stored in EEPROM RAS table. 1043 * 1044 * Return 0 if the checksum is correct, 1045 * positive if it is not correct, and 1046 * -errno on I/O error. 1047 */ 1048 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control) 1049 { 1050 struct amdgpu_device *adev = to_amdgpu_device(control); 1051 int buf_size, res; 1052 u8 csum, *buf, *pp; 1053 1054 buf_size = RAS_TABLE_HEADER_SIZE + 1055 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 1056 buf = kzalloc(buf_size, GFP_KERNEL); 1057 if (!buf) { 1058 DRM_ERROR("Out of memory checking RAS table checksum.\n"); 1059 return -ENOMEM; 1060 } 1061 1062 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1063 control->i2c_address + 1064 control->ras_header_offset, 1065 buf, buf_size); 1066 if (res < buf_size) { 1067 DRM_ERROR("Partial read for checksum, res:%d\n", res); 1068 /* On partial reads, return -EIO. 1069 */ 1070 if (res >= 0) 1071 res = -EIO; 1072 goto Out; 1073 } 1074 1075 csum = 0; 1076 for (pp = buf; pp < buf + buf_size; pp++) 1077 csum += *pp; 1078 Out: 1079 kfree(buf); 1080 return res < 0 ? res : csum; 1081 } 1082 1083 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control, 1084 bool *exceed_err_limit) 1085 { 1086 struct amdgpu_device *adev = to_amdgpu_device(control); 1087 unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 }; 1088 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1089 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1090 int res; 1091 1092 *exceed_err_limit = false; 1093 1094 if (!__is_ras_eeprom_supported(adev)) 1095 return 0; 1096 1097 /* Verify i2c adapter is initialized */ 1098 if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) 1099 return -ENOENT; 1100 1101 if (!__get_eeprom_i2c_addr(adev, control)) 1102 return -EINVAL; 1103 1104 control->ras_header_offset = RAS_HDR_START; 1105 control->ras_record_offset = RAS_RECORD_START; 1106 control->ras_max_record_count = RAS_MAX_RECORD_COUNT; 1107 mutex_init(&control->ras_tbl_mutex); 1108 1109 /* Read the table header from EEPROM address */ 1110 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, 1111 control->i2c_address + control->ras_header_offset, 1112 buf, RAS_TABLE_HEADER_SIZE); 1113 if (res < RAS_TABLE_HEADER_SIZE) { 1114 DRM_ERROR("Failed to read EEPROM table header, res:%d", res); 1115 return res >= 0 ? -EIO : res; 1116 } 1117 1118 __decode_table_header_from_buf(hdr, buf); 1119 1120 control->ras_num_recs = RAS_NUM_RECS(hdr); 1121 control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset); 1122 1123 if (hdr->header == RAS_TABLE_HDR_VAL) { 1124 DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records", 1125 control->ras_num_recs); 1126 res = __verify_ras_table_checksum(control); 1127 if (res) 1128 DRM_ERROR("RAS table incorrect checksum or error:%d\n", 1129 res); 1130 1131 /* Warn if we are at 90% of the threshold or above 1132 */ 1133 if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold) 1134 dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d", 1135 control->ras_num_recs, 1136 ras->bad_page_cnt_threshold); 1137 } else if (hdr->header == RAS_TABLE_HDR_BAD && 1138 amdgpu_bad_page_threshold != 0) { 1139 res = __verify_ras_table_checksum(control); 1140 if (res) 1141 DRM_ERROR("RAS Table incorrect checksum or error:%d\n", 1142 res); 1143 if (ras->bad_page_cnt_threshold > control->ras_num_recs) { 1144 /* This means that, the threshold was increased since 1145 * the last time the system was booted, and now, 1146 * ras->bad_page_cnt_threshold - control->num_recs > 0, 1147 * so that at least one more record can be saved, 1148 * before the page count threshold is reached. 1149 */ 1150 dev_info(adev->dev, 1151 "records:%d threshold:%d, resetting " 1152 "RAS table header signature", 1153 control->ras_num_recs, 1154 ras->bad_page_cnt_threshold); 1155 res = amdgpu_ras_eeprom_correct_header_tag(control, 1156 RAS_TABLE_HDR_VAL); 1157 } else { 1158 dev_err(adev->dev, "RAS records:%d exceed threshold:%d", 1159 control->ras_num_recs, ras->bad_page_cnt_threshold); 1160 if (amdgpu_bad_page_threshold == -1) { 1161 dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1."); 1162 res = 0; 1163 } else { 1164 *exceed_err_limit = true; 1165 dev_err(adev->dev, 1166 "RAS records:%d exceed threshold:%d, " 1167 "GPU will not be initialized. Replace this GPU or increase the threshold", 1168 control->ras_num_recs, ras->bad_page_cnt_threshold); 1169 } 1170 } 1171 } else { 1172 DRM_INFO("Creating a new EEPROM table"); 1173 1174 res = amdgpu_ras_eeprom_reset_table(control); 1175 } 1176 1177 return res < 0 ? res : 0; 1178 } 1179