1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include "amdgpu_ras_eeprom.h" 25 #include "amdgpu.h" 26 #include "amdgpu_ras.h" 27 #include <linux/bits.h> 28 #include "atom.h" 29 #include "amdgpu_eeprom.h" 30 #include "amdgpu_atomfirmware.h" 31 #include <linux/debugfs.h> 32 #include <linux/uaccess.h> 33 34 #define EEPROM_I2C_MADDR_VEGA20 0x0 35 #define EEPROM_I2C_MADDR_ARCTURUS 0x40000 36 #define EEPROM_I2C_MADDR_ARCTURUS_D342 0x0 37 #define EEPROM_I2C_MADDR_SIENNA_CICHLID 0x0 38 #define EEPROM_I2C_MADDR_ALDEBARAN 0x0 39 40 /* 41 * The 2 macros bellow represent the actual size in bytes that 42 * those entities occupy in the EEPROM memory. 43 * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which 44 * uses uint64 to store 6b fields such as retired_page. 45 */ 46 #define RAS_TABLE_HEADER_SIZE 20 47 #define RAS_TABLE_RECORD_SIZE 24 48 49 /* Table hdr is 'AMDR' */ 50 #define RAS_TABLE_HDR_VAL 0x414d4452 51 #define RAS_TABLE_VER 0x00010000 52 53 /* Bad GPU tag ‘BADG’ */ 54 #define RAS_TABLE_HDR_BAD 0x42414447 55 56 /* Assume 2-Mbit size EEPROM and take up the whole space. */ 57 #define RAS_TBL_SIZE_BYTES (256 * 1024) 58 #define RAS_TABLE_START 0 59 #define RAS_HDR_START RAS_TABLE_START 60 #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE) 61 #define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \ 62 / RAS_TABLE_RECORD_SIZE) 63 64 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM 65 * offset off of RAS_TABLE_START. That is, this is something you can 66 * add to control->i2c_address, and then tell I2C layer to read 67 * from/write to there. _N is the so called absolute index, 68 * because it starts right after the table header. 69 */ 70 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \ 71 (_N) * RAS_TABLE_RECORD_SIZE) 72 73 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \ 74 (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE) 75 76 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off 77 * of "fri", return the absolute record index off of the end of 78 * the table header. 79 */ 80 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \ 81 (_C)->ras_max_record_count) 82 83 #define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ 84 RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE) 85 86 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev 87 88 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) 89 { 90 return adev->asic_type == CHIP_VEGA20 || 91 adev->asic_type == CHIP_ARCTURUS || 92 adev->asic_type == CHIP_SIENNA_CICHLID || 93 adev->asic_type == CHIP_ALDEBARAN; 94 } 95 96 static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev, 97 struct amdgpu_ras_eeprom_control *control) 98 { 99 struct atom_context *atom_ctx = adev->mode_info.atom_context; 100 101 if (!control || !atom_ctx) 102 return false; 103 104 if (strnstr(atom_ctx->vbios_version, 105 "D342", 106 sizeof(atom_ctx->vbios_version))) 107 control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS_D342; 108 else 109 control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS; 110 111 return true; 112 } 113 114 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, 115 struct amdgpu_ras_eeprom_control *control) 116 { 117 u8 i2c_addr; 118 119 if (!control) 120 return false; 121 122 if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) { 123 /* The address given by VBIOS is an 8-bit, wire-format 124 * address, i.e. the most significant byte. 125 * 126 * Normalize it to a 19-bit EEPROM address. Remove the 127 * device type identifier and make it a 7-bit address; 128 * then make it a 19-bit EEPROM address. See top of 129 * amdgpu_eeprom.c. 130 */ 131 i2c_addr = (i2c_addr & 0x0F) >> 1; 132 control->i2c_address = ((u32) i2c_addr) << 16; 133 134 return true; 135 } 136 137 switch (adev->asic_type) { 138 case CHIP_VEGA20: 139 control->i2c_address = EEPROM_I2C_MADDR_VEGA20; 140 break; 141 142 case CHIP_ARCTURUS: 143 return __get_eeprom_i2c_addr_arct(adev, control); 144 145 case CHIP_SIENNA_CICHLID: 146 control->i2c_address = EEPROM_I2C_MADDR_SIENNA_CICHLID; 147 break; 148 149 case CHIP_ALDEBARAN: 150 control->i2c_address = EEPROM_I2C_MADDR_ALDEBARAN; 151 break; 152 153 default: 154 return false; 155 } 156 157 return true; 158 } 159 160 static void 161 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr, 162 unsigned char *buf) 163 { 164 u32 *pp = (uint32_t *)buf; 165 166 pp[0] = cpu_to_le32(hdr->header); 167 pp[1] = cpu_to_le32(hdr->version); 168 pp[2] = cpu_to_le32(hdr->first_rec_offset); 169 pp[3] = cpu_to_le32(hdr->tbl_size); 170 pp[4] = cpu_to_le32(hdr->checksum); 171 } 172 173 static void 174 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr, 175 unsigned char *buf) 176 { 177 u32 *pp = (uint32_t *)buf; 178 179 hdr->header = le32_to_cpu(pp[0]); 180 hdr->version = le32_to_cpu(pp[1]); 181 hdr->first_rec_offset = le32_to_cpu(pp[2]); 182 hdr->tbl_size = le32_to_cpu(pp[3]); 183 hdr->checksum = le32_to_cpu(pp[4]); 184 } 185 186 static int __write_table_header(struct amdgpu_ras_eeprom_control *control) 187 { 188 u8 buf[RAS_TABLE_HEADER_SIZE]; 189 struct amdgpu_device *adev = to_amdgpu_device(control); 190 int res; 191 192 memset(buf, 0, sizeof(buf)); 193 __encode_table_header_to_buf(&control->tbl_hdr, buf); 194 195 /* i2c may be unstable in gpu reset */ 196 down_read(&adev->reset_sem); 197 res = amdgpu_eeprom_write(&adev->pm.smu_i2c, 198 control->i2c_address + 199 control->ras_header_offset, 200 buf, RAS_TABLE_HEADER_SIZE); 201 up_read(&adev->reset_sem); 202 203 if (res < 0) { 204 DRM_ERROR("Failed to write EEPROM table header:%d", res); 205 } else if (res < RAS_TABLE_HEADER_SIZE) { 206 DRM_ERROR("Short write:%d out of %d\n", 207 res, RAS_TABLE_HEADER_SIZE); 208 res = -EIO; 209 } else { 210 res = 0; 211 } 212 213 return res; 214 } 215 216 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control) 217 { 218 int ii; 219 u8 *pp, csum; 220 size_t sz; 221 222 /* Header checksum, skip checksum field in the calculation */ 223 sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); 224 pp = (u8 *) &control->tbl_hdr; 225 csum = 0; 226 for (ii = 0; ii < sz; ii++, pp++) 227 csum += *pp; 228 229 return csum; 230 } 231 232 static int amdgpu_ras_eeprom_correct_header_tag( 233 struct amdgpu_ras_eeprom_control *control, 234 uint32_t header) 235 { 236 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 237 u8 *hh; 238 int res; 239 u8 csum; 240 241 csum = -hdr->checksum; 242 243 hh = (void *) &hdr->header; 244 csum -= (hh[0] + hh[1] + hh[2] + hh[3]); 245 hh = (void *) &header; 246 csum += hh[0] + hh[1] + hh[2] + hh[3]; 247 csum = -csum; 248 mutex_lock(&control->ras_tbl_mutex); 249 hdr->header = header; 250 hdr->checksum = csum; 251 res = __write_table_header(control); 252 mutex_unlock(&control->ras_tbl_mutex); 253 254 return res; 255 } 256 257 /** 258 * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table 259 * @control: pointer to control structure 260 * 261 * Reset the contents of the header of the RAS EEPROM table. 262 * Return 0 on success, -errno on error. 263 */ 264 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) 265 { 266 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 267 u8 csum; 268 int res; 269 270 mutex_lock(&control->ras_tbl_mutex); 271 272 hdr->header = RAS_TABLE_HDR_VAL; 273 hdr->version = RAS_TABLE_VER; 274 hdr->first_rec_offset = RAS_RECORD_START; 275 hdr->tbl_size = RAS_TABLE_HEADER_SIZE; 276 277 csum = __calc_hdr_byte_sum(control); 278 csum = -csum; 279 hdr->checksum = csum; 280 res = __write_table_header(control); 281 282 control->ras_num_recs = 0; 283 control->ras_fri = 0; 284 285 amdgpu_ras_debugfs_set_ret_size(control); 286 287 mutex_unlock(&control->ras_tbl_mutex); 288 289 return res; 290 } 291 292 static void 293 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control, 294 struct eeprom_table_record *record, 295 unsigned char *buf) 296 { 297 __le64 tmp = 0; 298 int i = 0; 299 300 /* Next are all record fields according to EEPROM page spec in LE foramt */ 301 buf[i++] = record->err_type; 302 303 buf[i++] = record->bank; 304 305 tmp = cpu_to_le64(record->ts); 306 memcpy(buf + i, &tmp, 8); 307 i += 8; 308 309 tmp = cpu_to_le64((record->offset & 0xffffffffffff)); 310 memcpy(buf + i, &tmp, 6); 311 i += 6; 312 313 buf[i++] = record->mem_channel; 314 buf[i++] = record->mcumc_id; 315 316 tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); 317 memcpy(buf + i, &tmp, 6); 318 } 319 320 static void 321 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control, 322 struct eeprom_table_record *record, 323 unsigned char *buf) 324 { 325 __le64 tmp = 0; 326 int i = 0; 327 328 /* Next are all record fields according to EEPROM page spec in LE foramt */ 329 record->err_type = buf[i++]; 330 331 record->bank = buf[i++]; 332 333 memcpy(&tmp, buf + i, 8); 334 record->ts = le64_to_cpu(tmp); 335 i += 8; 336 337 memcpy(&tmp, buf + i, 6); 338 record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); 339 i += 6; 340 341 record->mem_channel = buf[i++]; 342 record->mcumc_id = buf[i++]; 343 344 memcpy(&tmp, buf + i, 6); 345 record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); 346 } 347 348 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev) 349 { 350 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 351 352 if (!__is_ras_eeprom_supported(adev)) 353 return false; 354 355 /* skip check eeprom table for VEGA20 Gaming */ 356 if (!con) 357 return false; 358 else 359 if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC))) 360 return false; 361 362 if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) { 363 dev_warn(adev->dev, "This GPU is in BAD status."); 364 dev_warn(adev->dev, "Please retire it or set a larger " 365 "threshold value when reloading driver.\n"); 366 return true; 367 } 368 369 return false; 370 } 371 372 /** 373 * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM 374 * @control: pointer to control structure 375 * @buf: pointer to buffer containing data to write 376 * @fri: start writing at this index 377 * @num: number of records to write 378 * 379 * The caller must hold the table mutex in @control. 380 * Return 0 on success, -errno otherwise. 381 */ 382 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control, 383 u8 *buf, const u32 fri, const u32 num) 384 { 385 struct amdgpu_device *adev = to_amdgpu_device(control); 386 u32 buf_size; 387 int res; 388 389 /* i2c may be unstable in gpu reset */ 390 down_read(&adev->reset_sem); 391 buf_size = num * RAS_TABLE_RECORD_SIZE; 392 res = amdgpu_eeprom_write(&adev->pm.smu_i2c, 393 control->i2c_address + 394 RAS_INDEX_TO_OFFSET(control, fri), 395 buf, buf_size); 396 up_read(&adev->reset_sem); 397 if (res < 0) { 398 DRM_ERROR("Writing %d EEPROM table records error:%d", 399 num, res); 400 } else if (res < buf_size) { 401 /* Short write, return error. 402 */ 403 DRM_ERROR("Wrote %d records out of %d", 404 res / RAS_TABLE_RECORD_SIZE, num); 405 res = -EIO; 406 } else { 407 res = 0; 408 } 409 410 return res; 411 } 412 413 static int 414 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control, 415 struct eeprom_table_record *record, 416 const u32 num) 417 { 418 u32 a, b, i; 419 u8 *buf, *pp; 420 int res; 421 422 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 423 if (!buf) 424 return -ENOMEM; 425 426 /* Encode all of them in one go. 427 */ 428 pp = buf; 429 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) 430 __encode_table_record_to_buf(control, &record[i], pp); 431 432 /* a, first record index to write into. 433 * b, last record index to write into. 434 * a = first index to read (fri) + number of records in the table, 435 * b = a + @num - 1. 436 * Let N = control->ras_max_num_record_count, then we have, 437 * case 0: 0 <= a <= b < N, 438 * just append @num records starting at a; 439 * case 1: 0 <= a < N <= b, 440 * append (N - a) records starting at a, and 441 * append the remainder, b % N + 1, starting at 0. 442 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases, 443 * case 2a: 0 <= a <= b < N 444 * append num records starting at a; and fix fri if b overwrote it, 445 * and since a <= b, if b overwrote it then a must've also, 446 * and if b didn't overwrite it, then a didn't also. 447 * case 2b: 0 <= b < a < N 448 * write num records starting at a, which wraps around 0=N 449 * and overwrite fri unconditionally. Now from case 2a, 450 * this means that b eclipsed fri to overwrite it and wrap 451 * around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally 452 * set fri = b + 1 (mod N). 453 * Now, since fri is updated in every case, except the trivial case 0, 454 * the number of records present in the table after writing, is, 455 * num_recs - 1 = b - fri (mod N), and we take the positive value, 456 * by adding an arbitrary multiple of N before taking the modulo N 457 * as shown below. 458 */ 459 a = control->ras_fri + control->ras_num_recs; 460 b = a + num - 1; 461 if (b < control->ras_max_record_count) { 462 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 463 } else if (a < control->ras_max_record_count) { 464 u32 g0, g1; 465 466 g0 = control->ras_max_record_count - a; 467 g1 = b % control->ras_max_record_count + 1; 468 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 469 if (res) 470 goto Out; 471 res = __amdgpu_ras_eeprom_write(control, 472 buf + g0 * RAS_TABLE_RECORD_SIZE, 473 0, g1); 474 if (res) 475 goto Out; 476 if (g1 > control->ras_fri) 477 control->ras_fri = g1 % control->ras_max_record_count; 478 } else { 479 a %= control->ras_max_record_count; 480 b %= control->ras_max_record_count; 481 482 if (a <= b) { 483 /* Note that, b - a + 1 = num. */ 484 res = __amdgpu_ras_eeprom_write(control, buf, a, num); 485 if (res) 486 goto Out; 487 if (b >= control->ras_fri) 488 control->ras_fri = (b + 1) % control->ras_max_record_count; 489 } else { 490 u32 g0, g1; 491 492 /* b < a, which means, we write from 493 * a to the end of the table, and from 494 * the start of the table to b. 495 */ 496 g0 = control->ras_max_record_count - a; 497 g1 = b + 1; 498 res = __amdgpu_ras_eeprom_write(control, buf, a, g0); 499 if (res) 500 goto Out; 501 res = __amdgpu_ras_eeprom_write(control, 502 buf + g0 * RAS_TABLE_RECORD_SIZE, 503 0, g1); 504 if (res) 505 goto Out; 506 control->ras_fri = g1 % control->ras_max_record_count; 507 } 508 } 509 control->ras_num_recs = 1 + (control->ras_max_record_count + b 510 - control->ras_fri) 511 % control->ras_max_record_count; 512 Out: 513 kfree(buf); 514 return res; 515 } 516 517 static int 518 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control) 519 { 520 struct amdgpu_device *adev = to_amdgpu_device(control); 521 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 522 u8 *buf, *pp, csum; 523 u32 buf_size; 524 int res; 525 526 /* Modify the header if it exceeds. 527 */ 528 if (amdgpu_bad_page_threshold != 0 && 529 control->ras_num_recs >= ras->bad_page_cnt_threshold) { 530 dev_warn(adev->dev, 531 "Saved bad pages %d reaches threshold value %d\n", 532 control->ras_num_recs, ras->bad_page_cnt_threshold); 533 control->tbl_hdr.header = RAS_TABLE_HDR_BAD; 534 } 535 536 control->tbl_hdr.version = RAS_TABLE_VER; 537 control->tbl_hdr.first_rec_offset = RAS_INDEX_TO_OFFSET(control, control->ras_fri); 538 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 539 control->tbl_hdr.checksum = 0; 540 541 buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 542 buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 543 if (!buf) { 544 DRM_ERROR("allocating memory for table of size %d bytes failed\n", 545 control->tbl_hdr.tbl_size); 546 res = -ENOMEM; 547 goto Out; 548 } 549 550 down_read(&adev->reset_sem); 551 res = amdgpu_eeprom_read(&adev->pm.smu_i2c, 552 control->i2c_address + 553 control->ras_record_offset, 554 buf, buf_size); 555 up_read(&adev->reset_sem); 556 if (res < 0) { 557 DRM_ERROR("EEPROM failed reading records:%d\n", 558 res); 559 goto Out; 560 } else if (res < buf_size) { 561 DRM_ERROR("EEPROM read %d out of %d bytes\n", 562 res, buf_size); 563 res = -EIO; 564 goto Out; 565 } 566 567 /* Recalc the checksum. 568 */ 569 csum = 0; 570 for (pp = buf; pp < buf + buf_size; pp++) 571 csum += *pp; 572 573 csum += __calc_hdr_byte_sum(control); 574 /* avoid sign extension when assigning to "checksum" */ 575 csum = -csum; 576 control->tbl_hdr.checksum = csum; 577 res = __write_table_header(control); 578 Out: 579 kfree(buf); 580 return res; 581 } 582 583 /** 584 * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table 585 * @control: pointer to control structure 586 * @record: array of records to append 587 * @num: number of records in @record array 588 * 589 * Append @num records to the table, calculate the checksum and write 590 * the table back to EEPROM. The maximum number of records that 591 * can be appended is between 1 and control->ras_max_record_count, 592 * regardless of how many records are already stored in the table. 593 * 594 * Return 0 on success or if EEPROM is not supported, -errno on error. 595 */ 596 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control, 597 struct eeprom_table_record *record, 598 const u32 num) 599 { 600 struct amdgpu_device *adev = to_amdgpu_device(control); 601 int res; 602 603 if (!__is_ras_eeprom_supported(adev)) 604 return 0; 605 606 if (num == 0) { 607 DRM_ERROR("will not append 0 records\n"); 608 return -EINVAL; 609 } else if (num > control->ras_max_record_count) { 610 DRM_ERROR("cannot append %d records than the size of table %d\n", 611 num, control->ras_max_record_count); 612 return -EINVAL; 613 } 614 615 mutex_lock(&control->ras_tbl_mutex); 616 617 res = amdgpu_ras_eeprom_append_table(control, record, num); 618 if (!res) 619 res = amdgpu_ras_eeprom_update_header(control); 620 if (!res) 621 amdgpu_ras_debugfs_set_ret_size(control); 622 623 mutex_unlock(&control->ras_tbl_mutex); 624 return res; 625 } 626 627 /** 628 * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer 629 * @control: pointer to control structure 630 * @buf: pointer to buffer to read into 631 * @fri: first record index, start reading at this index, absolute index 632 * @num: number of records to read 633 * 634 * The caller must hold the table mutex in @control. 635 * Return 0 on success, -errno otherwise. 636 */ 637 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 638 u8 *buf, const u32 fri, const u32 num) 639 { 640 struct amdgpu_device *adev = to_amdgpu_device(control); 641 u32 buf_size; 642 int res; 643 644 /* i2c may be unstable in gpu reset */ 645 down_read(&adev->reset_sem); 646 buf_size = num * RAS_TABLE_RECORD_SIZE; 647 res = amdgpu_eeprom_read(&adev->pm.smu_i2c, 648 control->i2c_address + 649 RAS_INDEX_TO_OFFSET(control, fri), 650 buf, buf_size); 651 up_read(&adev->reset_sem); 652 if (res < 0) { 653 DRM_ERROR("Reading %d EEPROM table records error:%d", 654 num, res); 655 } else if (res < buf_size) { 656 /* Short read, return error. 657 */ 658 DRM_ERROR("Read %d records out of %d", 659 res / RAS_TABLE_RECORD_SIZE, num); 660 res = -EIO; 661 } else { 662 res = 0; 663 } 664 665 return res; 666 } 667 668 /** 669 * amdgpu_ras_eeprom_read -- read EEPROM 670 * @control: pointer to control structure 671 * @record: array of records to read into 672 * @num: number of records in @record 673 * 674 * Reads num records from the RAS table in EEPROM and 675 * writes the data into @record array. 676 * 677 * Returns 0 on success, -errno on error. 678 */ 679 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, 680 struct eeprom_table_record *record, 681 const u32 num) 682 { 683 struct amdgpu_device *adev = to_amdgpu_device(control); 684 int i, res; 685 u8 *buf, *pp; 686 u32 g0, g1; 687 688 if (!__is_ras_eeprom_supported(adev)) 689 return 0; 690 691 if (num == 0) { 692 DRM_ERROR("will not read 0 records\n"); 693 return -EINVAL; 694 } else if (num > control->ras_num_recs) { 695 DRM_ERROR("too many records to read:%d available:%d\n", 696 num, control->ras_num_recs); 697 return -EINVAL; 698 } 699 700 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); 701 if (!buf) 702 return -ENOMEM; 703 704 /* Determine how many records to read, from the first record 705 * index, fri, to the end of the table, and from the beginning 706 * of the table, such that the total number of records is 707 * @num, and we handle wrap around when fri > 0 and 708 * fri + num > RAS_MAX_RECORD_COUNT. 709 * 710 * First we compute the index of the last element 711 * which would be fetched from each region, 712 * g0 is in [fri, fri + num - 1], and 713 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1]. 714 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of 715 * the last element to fetch, we set g0 to _the number_ 716 * of elements to fetch, @num, since we know that the last 717 * indexed to be fetched does not exceed the table. 718 * 719 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then 720 * we set g0 to the number of elements to read 721 * until the end of the table, and g1 to the number of 722 * elements to read from the beginning of the table. 723 */ 724 g0 = control->ras_fri + num - 1; 725 g1 = g0 % control->ras_max_record_count; 726 if (g0 < control->ras_max_record_count) { 727 g0 = num; 728 g1 = 0; 729 } else { 730 g0 = control->ras_max_record_count - control->ras_fri; 731 g1 += 1; 732 } 733 734 mutex_lock(&control->ras_tbl_mutex); 735 res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0); 736 if (res) 737 goto Out; 738 if (g1) { 739 res = __amdgpu_ras_eeprom_read(control, 740 buf + g0 * RAS_TABLE_RECORD_SIZE, 741 0, g1); 742 if (res) 743 goto Out; 744 } 745 746 res = 0; 747 748 /* Read up everything? Then transform. 749 */ 750 pp = buf; 751 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) 752 __decode_table_record_from_buf(control, &record[i], pp); 753 Out: 754 kfree(buf); 755 mutex_unlock(&control->ras_tbl_mutex); 756 757 return res; 758 } 759 760 uint32_t amdgpu_ras_eeprom_max_record_count(void) 761 { 762 return RAS_MAX_RECORD_COUNT; 763 } 764 765 static ssize_t 766 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf, 767 size_t size, loff_t *pos) 768 { 769 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 770 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 771 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 772 u8 data[50]; 773 int res; 774 775 if (!size) 776 return size; 777 778 if (!ras || !control) { 779 res = snprintf(data, sizeof(data), "Not supported\n"); 780 } else { 781 res = snprintf(data, sizeof(data), "%d bytes or %d records\n", 782 RAS_TBL_SIZE_BYTES, control->ras_max_record_count); 783 } 784 785 if (*pos >= res) 786 return 0; 787 788 res -= *pos; 789 res = min_t(size_t, res, size); 790 791 if (copy_to_user(buf, &data[*pos], res)) 792 return -EFAULT; 793 794 *pos += res; 795 796 return res; 797 } 798 799 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = { 800 .owner = THIS_MODULE, 801 .read = amdgpu_ras_debugfs_eeprom_size_read, 802 .write = NULL, 803 .llseek = default_llseek, 804 }; 805 806 static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n"; 807 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n"; 808 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1) 809 static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n"; 810 static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n"; 811 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1) 812 813 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = { 814 "ignore", 815 "re", 816 "ue", 817 }; 818 819 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control) 820 { 821 return strlen(tbl_hdr_str) + tbl_hdr_fmt_size + 822 strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs; 823 } 824 825 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control) 826 { 827 struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras, 828 eeprom_control); 829 struct dentry *de = ras->de_ras_eeprom_table; 830 831 if (de) 832 d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control); 833 } 834 835 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf, 836 size_t size, loff_t *pos) 837 { 838 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 839 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 840 struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control; 841 const size_t orig_size = size; 842 int res = -EFAULT; 843 size_t data_len; 844 845 mutex_lock(&control->ras_tbl_mutex); 846 847 /* We want *pos - data_len > 0, which means there's 848 * bytes to be printed from data. 849 */ 850 data_len = strlen(tbl_hdr_str); 851 if (*pos < data_len) { 852 data_len -= *pos; 853 data_len = min_t(size_t, data_len, size); 854 if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len)) 855 goto Out; 856 buf += data_len; 857 size -= data_len; 858 *pos += data_len; 859 } 860 861 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size; 862 if (*pos < data_len && size > 0) { 863 u8 data[tbl_hdr_fmt_size + 1]; 864 loff_t lpos; 865 866 snprintf(data, sizeof(data), tbl_hdr_fmt, 867 control->tbl_hdr.header, 868 control->tbl_hdr.version, 869 control->tbl_hdr.first_rec_offset, 870 control->tbl_hdr.tbl_size, 871 control->tbl_hdr.checksum); 872 873 data_len -= *pos; 874 data_len = min_t(size_t, data_len, size); 875 lpos = *pos - strlen(tbl_hdr_str); 876 if (copy_to_user(buf, &data[lpos], data_len)) 877 goto Out; 878 buf += data_len; 879 size -= data_len; 880 *pos += data_len; 881 } 882 883 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str); 884 if (*pos < data_len && size > 0) { 885 loff_t lpos; 886 887 data_len -= *pos; 888 data_len = min_t(size_t, data_len, size); 889 lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size; 890 if (copy_to_user(buf, &rec_hdr_str[lpos], data_len)) 891 goto Out; 892 buf += data_len; 893 size -= data_len; 894 *pos += data_len; 895 } 896 897 data_len = amdgpu_ras_debugfs_table_size(control); 898 if (*pos < data_len && size > 0) { 899 u8 dare[RAS_TABLE_RECORD_SIZE]; 900 u8 data[rec_hdr_fmt_size + 1]; 901 struct eeprom_table_record record; 902 int s, r; 903 904 /* Find the starting record index 905 */ 906 s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 907 strlen(rec_hdr_str); 908 s = s / rec_hdr_fmt_size; 909 r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - 910 strlen(rec_hdr_str); 911 r = r % rec_hdr_fmt_size; 912 913 for ( ; size > 0 && s < control->ras_num_recs; s++) { 914 u32 ai = RAS_RI_TO_AI(control, s); 915 /* Read a single record 916 */ 917 res = __amdgpu_ras_eeprom_read(control, dare, ai, 1); 918 if (res) 919 goto Out; 920 __decode_table_record_from_buf(control, &record, dare); 921 snprintf(data, sizeof(data), rec_hdr_fmt, 922 s, 923 RAS_INDEX_TO_OFFSET(control, ai), 924 record_err_type_str[record.err_type], 925 record.bank, 926 record.ts, 927 record.offset, 928 record.mem_channel, 929 record.mcumc_id, 930 record.retired_page); 931 932 data_len = min_t(size_t, rec_hdr_fmt_size - r, size); 933 if (copy_to_user(buf, &data[r], data_len)) { 934 res = -EFAULT; 935 goto Out; 936 } 937 buf += data_len; 938 size -= data_len; 939 *pos += data_len; 940 r = 0; 941 } 942 } 943 res = 0; 944 Out: 945 mutex_unlock(&control->ras_tbl_mutex); 946 return res < 0 ? res : orig_size - size; 947 } 948 949 static ssize_t 950 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf, 951 size_t size, loff_t *pos) 952 { 953 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; 954 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 955 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; 956 u8 data[81]; 957 int res; 958 959 if (!size) 960 return size; 961 962 if (!ras || !control) { 963 res = snprintf(data, sizeof(data), "Not supported\n"); 964 if (*pos >= res) 965 return 0; 966 967 res -= *pos; 968 res = min_t(size_t, res, size); 969 970 if (copy_to_user(buf, &data[*pos], res)) 971 return -EFAULT; 972 973 *pos += res; 974 975 return res; 976 } else { 977 return amdgpu_ras_debugfs_table_read(f, buf, size, pos); 978 } 979 } 980 981 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = { 982 .owner = THIS_MODULE, 983 .read = amdgpu_ras_debugfs_eeprom_table_read, 984 .write = NULL, 985 .llseek = default_llseek, 986 }; 987 988 /** 989 * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum 990 * @control: pointer to control structure 991 * 992 * Check the checksum of the stored in EEPROM RAS table. 993 * 994 * Return 0 if the checksum is correct, 995 * positive if it is not correct, and 996 * -errno on I/O error. 997 */ 998 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control) 999 { 1000 struct amdgpu_device *adev = to_amdgpu_device(control); 1001 int buf_size, res; 1002 u8 csum, *buf, *pp; 1003 1004 buf_size = RAS_TABLE_HEADER_SIZE + 1005 control->ras_num_recs * RAS_TABLE_RECORD_SIZE; 1006 buf = kzalloc(buf_size, GFP_KERNEL); 1007 if (!buf) { 1008 DRM_ERROR("Out of memory checking RAS table checksum.\n"); 1009 return -ENOMEM; 1010 } 1011 1012 res = amdgpu_eeprom_read(&adev->pm.smu_i2c, 1013 control->i2c_address + 1014 control->ras_header_offset, 1015 buf, buf_size); 1016 if (res < buf_size) { 1017 DRM_ERROR("Partial read for checksum, res:%d\n", res); 1018 /* On partial reads, return -EIO. 1019 */ 1020 if (res >= 0) 1021 res = -EIO; 1022 goto Out; 1023 } 1024 1025 csum = 0; 1026 for (pp = buf; pp < buf + buf_size; pp++) 1027 csum += *pp; 1028 Out: 1029 kfree(buf); 1030 return res < 0 ? res : csum; 1031 } 1032 1033 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control, 1034 bool *exceed_err_limit) 1035 { 1036 struct amdgpu_device *adev = to_amdgpu_device(control); 1037 unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 }; 1038 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; 1039 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); 1040 int res; 1041 1042 *exceed_err_limit = false; 1043 1044 if (!__is_ras_eeprom_supported(adev)) 1045 return 0; 1046 1047 /* Verify i2c adapter is initialized */ 1048 if (!adev->pm.smu_i2c.algo) 1049 return -ENOENT; 1050 1051 if (!__get_eeprom_i2c_addr(adev, control)) 1052 return -EINVAL; 1053 1054 control->ras_header_offset = RAS_HDR_START; 1055 control->ras_record_offset = RAS_RECORD_START; 1056 control->ras_max_record_count = RAS_MAX_RECORD_COUNT; 1057 mutex_init(&control->ras_tbl_mutex); 1058 1059 /* Read the table header from EEPROM address */ 1060 res = amdgpu_eeprom_read(&adev->pm.smu_i2c, 1061 control->i2c_address + control->ras_header_offset, 1062 buf, RAS_TABLE_HEADER_SIZE); 1063 if (res < RAS_TABLE_HEADER_SIZE) { 1064 DRM_ERROR("Failed to read EEPROM table header, res:%d", res); 1065 return res >= 0 ? -EIO : res; 1066 } 1067 1068 __decode_table_header_from_buf(hdr, buf); 1069 1070 control->ras_num_recs = RAS_NUM_RECS(hdr); 1071 control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset); 1072 1073 if (hdr->header == RAS_TABLE_HDR_VAL) { 1074 DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records", 1075 control->ras_num_recs); 1076 res = __verify_ras_table_checksum(control); 1077 if (res) 1078 DRM_ERROR("RAS table incorrect checksum or error:%d\n", 1079 res); 1080 1081 /* Warn if we are at 90% of the threshold or above 1082 */ 1083 if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold) 1084 dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d", 1085 control->ras_num_recs, 1086 ras->bad_page_cnt_threshold); 1087 } else if (hdr->header == RAS_TABLE_HDR_BAD && 1088 amdgpu_bad_page_threshold != 0) { 1089 res = __verify_ras_table_checksum(control); 1090 if (res) 1091 DRM_ERROR("RAS Table incorrect checksum or error:%d\n", 1092 res); 1093 if (ras->bad_page_cnt_threshold > control->ras_num_recs) { 1094 /* This means that, the threshold was increased since 1095 * the last time the system was booted, and now, 1096 * ras->bad_page_cnt_threshold - control->num_recs > 0, 1097 * so that at least one more record can be saved, 1098 * before the page count threshold is reached. 1099 */ 1100 dev_info(adev->dev, 1101 "records:%d threshold:%d, resetting " 1102 "RAS table header signature", 1103 control->ras_num_recs, 1104 ras->bad_page_cnt_threshold); 1105 res = amdgpu_ras_eeprom_correct_header_tag(control, 1106 RAS_TABLE_HDR_VAL); 1107 } else { 1108 dev_err(adev->dev, "RAS records:%d exceed threshold:%d", 1109 control->ras_num_recs, ras->bad_page_cnt_threshold); 1110 if (amdgpu_bad_page_threshold == -2) { 1111 dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -2."); 1112 res = 0; 1113 } else { 1114 *exceed_err_limit = true; 1115 dev_err(adev->dev, 1116 "RAS records:%d exceed threshold:%d, " 1117 "GPU will not be initialized. Replace this GPU or increase the threshold", 1118 control->ras_num_recs, ras->bad_page_cnt_threshold); 1119 } 1120 } 1121 } else { 1122 DRM_INFO("Creating a new EEPROM table"); 1123 1124 res = amdgpu_ras_eeprom_reset_table(control); 1125 } 1126 1127 return res < 0 ? res : 0; 1128 } 1129