1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include "amdgpu_ras_eeprom.h"
25 #include "amdgpu.h"
26 #include "amdgpu_ras.h"
27 #include <linux/bits.h>
28 #include "atom.h"
29 #include "amdgpu_eeprom.h"
30 #include "amdgpu_atomfirmware.h"
31 #include <linux/debugfs.h>
32 #include <linux/uaccess.h>
33 
34 #include "amdgpu_reset.h"
35 
36 /* These are memory addresses as would be seen by one or more EEPROM
37  * chips strung on the I2C bus, usually by manipulating pins 1-3 of a
38  * set of EEPROM devices. They form a continuous memory space.
39  *
40  * The I2C device address includes the device type identifier, 1010b,
41  * which is a reserved value and indicates that this is an I2C EEPROM
42  * device. It also includes the top 3 bits of the 19 bit EEPROM memory
43  * address, namely bits 18, 17, and 16. This makes up the 7 bit
44  * address sent on the I2C bus with bit 0 being the direction bit,
45  * which is not represented here, and sent by the hardware directly.
46  *
47  * For instance,
48  *   50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
49  *   54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
50  *   56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
51  * Depending on the size of the I2C EEPROM device(s), bits 18:16 may
52  * address memory in a device or a device on the I2C bus, depending on
53  * the status of pins 1-3. See top of amdgpu_eeprom.c.
54  *
55  * The RAS table lives either at address 0 or address 40000h of EEPROM.
56  */
57 #define EEPROM_I2C_MADDR_0      0x0
58 #define EEPROM_I2C_MADDR_4      0x40000
59 
60 /*
61  * The 2 macros bellow represent the actual size in bytes that
62  * those entities occupy in the EEPROM memory.
63  * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
64  * uses uint64 to store 6b fields such as retired_page.
65  */
66 #define RAS_TABLE_HEADER_SIZE   20
67 #define RAS_TABLE_RECORD_SIZE   24
68 
69 /* Table hdr is 'AMDR' */
70 #define RAS_TABLE_HDR_VAL       0x414d4452
71 #define RAS_TABLE_VER           0x00010000
72 
73 /* Bad GPU tag ‘BADG’ */
74 #define RAS_TABLE_HDR_BAD       0x42414447
75 
76 /* Assume 2-Mbit size EEPROM and take up the whole space. */
77 #define RAS_TBL_SIZE_BYTES      (256 * 1024)
78 #define RAS_TABLE_START         0
79 #define RAS_HDR_START           RAS_TABLE_START
80 #define RAS_RECORD_START        (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
81 #define RAS_MAX_RECORD_COUNT    ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
82 				 / RAS_TABLE_RECORD_SIZE)
83 
84 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
85  * offset off of RAS_TABLE_START.  That is, this is something you can
86  * add to control->i2c_address, and then tell I2C layer to read
87  * from/write to there. _N is the so called absolute index,
88  * because it starts right after the table header.
89  */
90 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
91 				     (_N) * RAS_TABLE_RECORD_SIZE)
92 
93 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
94 				      (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
95 
96 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
97  * of "fri", return the absolute record index off of the end of
98  * the table header.
99  */
100 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
101 			      (_C)->ras_max_record_count)
102 
103 #define RAS_NUM_RECS(_tbl_hdr)  (((_tbl_hdr)->tbl_size - \
104 				  RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
105 
106 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev
107 
108 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
109 {
110 	if (adev->asic_type == CHIP_IP_DISCOVERY) {
111 		switch (adev->ip_versions[MP1_HWIP][0]) {
112 		case IP_VERSION(13, 0, 0):
113 		case IP_VERSION(13, 0, 10):
114 			return true;
115 		default:
116 			return false;
117 		}
118 	}
119 
120 	return  adev->asic_type == CHIP_VEGA20 ||
121 		adev->asic_type == CHIP_ARCTURUS ||
122 		adev->asic_type == CHIP_SIENNA_CICHLID ||
123 		adev->asic_type == CHIP_ALDEBARAN;
124 }
125 
126 static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev,
127 				       struct amdgpu_ras_eeprom_control *control)
128 {
129 	struct atom_context *atom_ctx = adev->mode_info.atom_context;
130 
131 	if (!control || !atom_ctx)
132 		return false;
133 
134 	if (strnstr(atom_ctx->vbios_version,
135 	            "D342",
136 		    sizeof(atom_ctx->vbios_version)))
137 		control->i2c_address = EEPROM_I2C_MADDR_0;
138 	else
139 		control->i2c_address = EEPROM_I2C_MADDR_4;
140 
141 	return true;
142 }
143 
144 static bool __get_eeprom_i2c_addr_ip_discovery(struct amdgpu_device *adev,
145 				       struct amdgpu_ras_eeprom_control *control)
146 {
147 	switch (adev->ip_versions[MP1_HWIP][0]) {
148 	case IP_VERSION(13, 0, 0):
149 	case IP_VERSION(13, 0, 10):
150 		control->i2c_address = EEPROM_I2C_MADDR_4;
151 		return true;
152 	default:
153 		return false;
154 	}
155 }
156 
157 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
158 				  struct amdgpu_ras_eeprom_control *control)
159 {
160 	struct atom_context *atom_ctx = adev->mode_info.atom_context;
161 	u8 i2c_addr;
162 
163 	if (!control)
164 		return false;
165 
166 	if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
167 		/* The address given by VBIOS is an 8-bit, wire-format
168 		 * address, i.e. the most significant byte.
169 		 *
170 		 * Normalize it to a 19-bit EEPROM address. Remove the
171 		 * device type identifier and make it a 7-bit address;
172 		 * then make it a 19-bit EEPROM address. See top of
173 		 * amdgpu_eeprom.c.
174 		 */
175 		i2c_addr = (i2c_addr & 0x0F) >> 1;
176 		control->i2c_address = ((u32) i2c_addr) << 16;
177 
178 		return true;
179 	}
180 
181 	switch (adev->asic_type) {
182 	case CHIP_VEGA20:
183 		control->i2c_address = EEPROM_I2C_MADDR_0;
184 		break;
185 
186 	case CHIP_ARCTURUS:
187 		return __get_eeprom_i2c_addr_arct(adev, control);
188 
189 	case CHIP_SIENNA_CICHLID:
190 		control->i2c_address = EEPROM_I2C_MADDR_0;
191 		break;
192 
193 	case CHIP_ALDEBARAN:
194 		if (strnstr(atom_ctx->vbios_version, "D673",
195 			    sizeof(atom_ctx->vbios_version)))
196 			control->i2c_address = EEPROM_I2C_MADDR_4;
197 		else
198 			control->i2c_address = EEPROM_I2C_MADDR_0;
199 		break;
200 
201 	case CHIP_IP_DISCOVERY:
202 		return __get_eeprom_i2c_addr_ip_discovery(adev, control);
203 
204 	default:
205 		return false;
206 	}
207 
208 	switch (adev->ip_versions[MP1_HWIP][0]) {
209 	case IP_VERSION(13, 0, 0):
210 		control->i2c_address = EEPROM_I2C_MADDR_4;
211 		break;
212 
213 	default:
214 		break;
215 	}
216 
217 	return true;
218 }
219 
220 static void
221 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
222 			     unsigned char *buf)
223 {
224 	u32 *pp = (uint32_t *)buf;
225 
226 	pp[0] = cpu_to_le32(hdr->header);
227 	pp[1] = cpu_to_le32(hdr->version);
228 	pp[2] = cpu_to_le32(hdr->first_rec_offset);
229 	pp[3] = cpu_to_le32(hdr->tbl_size);
230 	pp[4] = cpu_to_le32(hdr->checksum);
231 }
232 
233 static void
234 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
235 			       unsigned char *buf)
236 {
237 	u32 *pp = (uint32_t *)buf;
238 
239 	hdr->header	      = le32_to_cpu(pp[0]);
240 	hdr->version	      = le32_to_cpu(pp[1]);
241 	hdr->first_rec_offset = le32_to_cpu(pp[2]);
242 	hdr->tbl_size	      = le32_to_cpu(pp[3]);
243 	hdr->checksum	      = le32_to_cpu(pp[4]);
244 }
245 
246 static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
247 {
248 	u8 buf[RAS_TABLE_HEADER_SIZE];
249 	struct amdgpu_device *adev = to_amdgpu_device(control);
250 	int res;
251 
252 	memset(buf, 0, sizeof(buf));
253 	__encode_table_header_to_buf(&control->tbl_hdr, buf);
254 
255 	/* i2c may be unstable in gpu reset */
256 	down_read(&adev->reset_domain->sem);
257 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
258 				  control->i2c_address +
259 				  control->ras_header_offset,
260 				  buf, RAS_TABLE_HEADER_SIZE);
261 	up_read(&adev->reset_domain->sem);
262 
263 	if (res < 0) {
264 		DRM_ERROR("Failed to write EEPROM table header:%d", res);
265 	} else if (res < RAS_TABLE_HEADER_SIZE) {
266 		DRM_ERROR("Short write:%d out of %d\n",
267 			  res, RAS_TABLE_HEADER_SIZE);
268 		res = -EIO;
269 	} else {
270 		res = 0;
271 	}
272 
273 	return res;
274 }
275 
276 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
277 {
278 	int ii;
279 	u8  *pp, csum;
280 	size_t sz;
281 
282 	/* Header checksum, skip checksum field in the calculation */
283 	sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
284 	pp = (u8 *) &control->tbl_hdr;
285 	csum = 0;
286 	for (ii = 0; ii < sz; ii++, pp++)
287 		csum += *pp;
288 
289 	return csum;
290 }
291 
292 static int amdgpu_ras_eeprom_correct_header_tag(
293 	struct amdgpu_ras_eeprom_control *control,
294 	uint32_t header)
295 {
296 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
297 	u8 *hh;
298 	int res;
299 	u8 csum;
300 
301 	csum = -hdr->checksum;
302 
303 	hh = (void *) &hdr->header;
304 	csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
305 	hh = (void *) &header;
306 	csum += hh[0] + hh[1] + hh[2] + hh[3];
307 	csum = -csum;
308 	mutex_lock(&control->ras_tbl_mutex);
309 	hdr->header = header;
310 	hdr->checksum = csum;
311 	res = __write_table_header(control);
312 	mutex_unlock(&control->ras_tbl_mutex);
313 
314 	return res;
315 }
316 
317 /**
318  * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
319  * @control: pointer to control structure
320  *
321  * Reset the contents of the header of the RAS EEPROM table.
322  * Return 0 on success, -errno on error.
323  */
324 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
325 {
326 	struct amdgpu_device *adev = to_amdgpu_device(control);
327 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
328 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
329 	u8 csum;
330 	int res;
331 
332 	mutex_lock(&control->ras_tbl_mutex);
333 
334 	hdr->header = RAS_TABLE_HDR_VAL;
335 	hdr->version = RAS_TABLE_VER;
336 	hdr->first_rec_offset = RAS_RECORD_START;
337 	hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
338 
339 	csum = __calc_hdr_byte_sum(control);
340 	csum = -csum;
341 	hdr->checksum = csum;
342 	res = __write_table_header(control);
343 
344 	control->ras_num_recs = 0;
345 	control->ras_fri = 0;
346 
347 	amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
348 
349 	control->bad_channel_bitmap = 0;
350 	amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
351 	con->update_channel_flag = false;
352 
353 	amdgpu_ras_debugfs_set_ret_size(control);
354 
355 	mutex_unlock(&control->ras_tbl_mutex);
356 
357 	return res;
358 }
359 
360 static void
361 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
362 			     struct eeprom_table_record *record,
363 			     unsigned char *buf)
364 {
365 	__le64 tmp = 0;
366 	int i = 0;
367 
368 	/* Next are all record fields according to EEPROM page spec in LE foramt */
369 	buf[i++] = record->err_type;
370 
371 	buf[i++] = record->bank;
372 
373 	tmp = cpu_to_le64(record->ts);
374 	memcpy(buf + i, &tmp, 8);
375 	i += 8;
376 
377 	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
378 	memcpy(buf + i, &tmp, 6);
379 	i += 6;
380 
381 	buf[i++] = record->mem_channel;
382 	buf[i++] = record->mcumc_id;
383 
384 	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
385 	memcpy(buf + i, &tmp, 6);
386 }
387 
388 static void
389 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
390 			       struct eeprom_table_record *record,
391 			       unsigned char *buf)
392 {
393 	__le64 tmp = 0;
394 	int i =  0;
395 
396 	/* Next are all record fields according to EEPROM page spec in LE foramt */
397 	record->err_type = buf[i++];
398 
399 	record->bank = buf[i++];
400 
401 	memcpy(&tmp, buf + i, 8);
402 	record->ts = le64_to_cpu(tmp);
403 	i += 8;
404 
405 	memcpy(&tmp, buf + i, 6);
406 	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
407 	i += 6;
408 
409 	record->mem_channel = buf[i++];
410 	record->mcumc_id = buf[i++];
411 
412 	memcpy(&tmp, buf + i,  6);
413 	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
414 }
415 
416 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
417 {
418 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
419 
420 	if (!__is_ras_eeprom_supported(adev))
421 		return false;
422 
423 	/* skip check eeprom table for VEGA20 Gaming */
424 	if (!con)
425 		return false;
426 	else
427 		if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
428 			return false;
429 
430 	if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
431 		dev_warn(adev->dev, "This GPU is in BAD status.");
432 		dev_warn(adev->dev, "Please retire it or set a larger "
433 			 "threshold value when reloading driver.\n");
434 		return true;
435 	}
436 
437 	return false;
438 }
439 
440 /**
441  * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
442  * @control: pointer to control structure
443  * @buf: pointer to buffer containing data to write
444  * @fri: start writing at this index
445  * @num: number of records to write
446  *
447  * The caller must hold the table mutex in @control.
448  * Return 0 on success, -errno otherwise.
449  */
450 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
451 				     u8 *buf, const u32 fri, const u32 num)
452 {
453 	struct amdgpu_device *adev = to_amdgpu_device(control);
454 	u32 buf_size;
455 	int res;
456 
457 	/* i2c may be unstable in gpu reset */
458 	down_read(&adev->reset_domain->sem);
459 	buf_size = num * RAS_TABLE_RECORD_SIZE;
460 	res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
461 				  control->i2c_address +
462 				  RAS_INDEX_TO_OFFSET(control, fri),
463 				  buf, buf_size);
464 	up_read(&adev->reset_domain->sem);
465 	if (res < 0) {
466 		DRM_ERROR("Writing %d EEPROM table records error:%d",
467 			  num, res);
468 	} else if (res < buf_size) {
469 		/* Short write, return error.
470 		 */
471 		DRM_ERROR("Wrote %d records out of %d",
472 			  res / RAS_TABLE_RECORD_SIZE, num);
473 		res = -EIO;
474 	} else {
475 		res = 0;
476 	}
477 
478 	return res;
479 }
480 
481 static int
482 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
483 			       struct eeprom_table_record *record,
484 			       const u32 num)
485 {
486 	struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
487 	u32 a, b, i;
488 	u8 *buf, *pp;
489 	int res;
490 
491 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
492 	if (!buf)
493 		return -ENOMEM;
494 
495 	/* Encode all of them in one go.
496 	 */
497 	pp = buf;
498 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
499 		__encode_table_record_to_buf(control, &record[i], pp);
500 
501 		/* update bad channel bitmap */
502 		if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
503 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
504 			con->update_channel_flag = true;
505 		}
506 	}
507 
508 	/* a, first record index to write into.
509 	 * b, last record index to write into.
510 	 * a = first index to read (fri) + number of records in the table,
511 	 * b = a + @num - 1.
512 	 * Let N = control->ras_max_num_record_count, then we have,
513 	 * case 0: 0 <= a <= b < N,
514 	 *   just append @num records starting at a;
515 	 * case 1: 0 <= a < N <= b,
516 	 *   append (N - a) records starting at a, and
517 	 *   append the remainder,  b % N + 1, starting at 0.
518 	 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
519 	 * case 2a: 0 <= a <= b < N
520 	 *   append num records starting at a; and fix fri if b overwrote it,
521 	 *   and since a <= b, if b overwrote it then a must've also,
522 	 *   and if b didn't overwrite it, then a didn't also.
523 	 * case 2b: 0 <= b < a < N
524 	 *   write num records starting at a, which wraps around 0=N
525 	 *   and overwrite fri unconditionally. Now from case 2a,
526 	 *   this means that b eclipsed fri to overwrite it and wrap
527 	 *   around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
528 	 *   set fri = b + 1 (mod N).
529 	 * Now, since fri is updated in every case, except the trivial case 0,
530 	 * the number of records present in the table after writing, is,
531 	 * num_recs - 1 = b - fri (mod N), and we take the positive value,
532 	 * by adding an arbitrary multiple of N before taking the modulo N
533 	 * as shown below.
534 	 */
535 	a = control->ras_fri + control->ras_num_recs;
536 	b = a + num  - 1;
537 	if (b < control->ras_max_record_count) {
538 		res = __amdgpu_ras_eeprom_write(control, buf, a, num);
539 	} else if (a < control->ras_max_record_count) {
540 		u32 g0, g1;
541 
542 		g0 = control->ras_max_record_count - a;
543 		g1 = b % control->ras_max_record_count + 1;
544 		res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
545 		if (res)
546 			goto Out;
547 		res = __amdgpu_ras_eeprom_write(control,
548 						buf + g0 * RAS_TABLE_RECORD_SIZE,
549 						0, g1);
550 		if (res)
551 			goto Out;
552 		if (g1 > control->ras_fri)
553 			control->ras_fri = g1 % control->ras_max_record_count;
554 	} else {
555 		a %= control->ras_max_record_count;
556 		b %= control->ras_max_record_count;
557 
558 		if (a <= b) {
559 			/* Note that, b - a + 1 = num. */
560 			res = __amdgpu_ras_eeprom_write(control, buf, a, num);
561 			if (res)
562 				goto Out;
563 			if (b >= control->ras_fri)
564 				control->ras_fri = (b + 1) % control->ras_max_record_count;
565 		} else {
566 			u32 g0, g1;
567 
568 			/* b < a, which means, we write from
569 			 * a to the end of the table, and from
570 			 * the start of the table to b.
571 			 */
572 			g0 = control->ras_max_record_count - a;
573 			g1 = b + 1;
574 			res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
575 			if (res)
576 				goto Out;
577 			res = __amdgpu_ras_eeprom_write(control,
578 							buf + g0 * RAS_TABLE_RECORD_SIZE,
579 							0, g1);
580 			if (res)
581 				goto Out;
582 			control->ras_fri = g1 % control->ras_max_record_count;
583 		}
584 	}
585 	control->ras_num_recs = 1 + (control->ras_max_record_count + b
586 				     - control->ras_fri)
587 		% control->ras_max_record_count;
588 Out:
589 	kfree(buf);
590 	return res;
591 }
592 
593 static int
594 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
595 {
596 	struct amdgpu_device *adev = to_amdgpu_device(control);
597 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
598 	u8 *buf, *pp, csum;
599 	u32 buf_size;
600 	int res;
601 
602 	/* Modify the header if it exceeds.
603 	 */
604 	if (amdgpu_bad_page_threshold != 0 &&
605 	    control->ras_num_recs >= ras->bad_page_cnt_threshold) {
606 		dev_warn(adev->dev,
607 			"Saved bad pages %d reaches threshold value %d\n",
608 			control->ras_num_recs, ras->bad_page_cnt_threshold);
609 		control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
610 	}
611 
612 	control->tbl_hdr.version = RAS_TABLE_VER;
613 	control->tbl_hdr.first_rec_offset = RAS_INDEX_TO_OFFSET(control, control->ras_fri);
614 	control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
615 	control->tbl_hdr.checksum = 0;
616 
617 	buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
618 	buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
619 	if (!buf) {
620 		DRM_ERROR("allocating memory for table of size %d bytes failed\n",
621 			  control->tbl_hdr.tbl_size);
622 		res = -ENOMEM;
623 		goto Out;
624 	}
625 
626 	down_read(&adev->reset_domain->sem);
627 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
628 				 control->i2c_address +
629 				 control->ras_record_offset,
630 				 buf, buf_size);
631 	up_read(&adev->reset_domain->sem);
632 	if (res < 0) {
633 		DRM_ERROR("EEPROM failed reading records:%d\n",
634 			  res);
635 		goto Out;
636 	} else if (res < buf_size) {
637 		DRM_ERROR("EEPROM read %d out of %d bytes\n",
638 			  res, buf_size);
639 		res = -EIO;
640 		goto Out;
641 	}
642 
643 	/* Recalc the checksum.
644 	 */
645 	csum = 0;
646 	for (pp = buf; pp < buf + buf_size; pp++)
647 		csum += *pp;
648 
649 	csum += __calc_hdr_byte_sum(control);
650 	/* avoid sign extension when assigning to "checksum" */
651 	csum = -csum;
652 	control->tbl_hdr.checksum = csum;
653 	res = __write_table_header(control);
654 Out:
655 	kfree(buf);
656 	return res;
657 }
658 
659 /**
660  * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
661  * @control: pointer to control structure
662  * @record: array of records to append
663  * @num: number of records in @record array
664  *
665  * Append @num records to the table, calculate the checksum and write
666  * the table back to EEPROM. The maximum number of records that
667  * can be appended is between 1 and control->ras_max_record_count,
668  * regardless of how many records are already stored in the table.
669  *
670  * Return 0 on success or if EEPROM is not supported, -errno on error.
671  */
672 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
673 			     struct eeprom_table_record *record,
674 			     const u32 num)
675 {
676 	struct amdgpu_device *adev = to_amdgpu_device(control);
677 	int res;
678 
679 	if (!__is_ras_eeprom_supported(adev))
680 		return 0;
681 
682 	if (num == 0) {
683 		DRM_ERROR("will not append 0 records\n");
684 		return -EINVAL;
685 	} else if (num > control->ras_max_record_count) {
686 		DRM_ERROR("cannot append %d records than the size of table %d\n",
687 			  num, control->ras_max_record_count);
688 		return -EINVAL;
689 	}
690 
691 	mutex_lock(&control->ras_tbl_mutex);
692 
693 	res = amdgpu_ras_eeprom_append_table(control, record, num);
694 	if (!res)
695 		res = amdgpu_ras_eeprom_update_header(control);
696 	if (!res)
697 		amdgpu_ras_debugfs_set_ret_size(control);
698 
699 	mutex_unlock(&control->ras_tbl_mutex);
700 	return res;
701 }
702 
703 /**
704  * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
705  * @control: pointer to control structure
706  * @buf: pointer to buffer to read into
707  * @fri: first record index, start reading at this index, absolute index
708  * @num: number of records to read
709  *
710  * The caller must hold the table mutex in @control.
711  * Return 0 on success, -errno otherwise.
712  */
713 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
714 				    u8 *buf, const u32 fri, const u32 num)
715 {
716 	struct amdgpu_device *adev = to_amdgpu_device(control);
717 	u32 buf_size;
718 	int res;
719 
720 	/* i2c may be unstable in gpu reset */
721 	down_read(&adev->reset_domain->sem);
722 	buf_size = num * RAS_TABLE_RECORD_SIZE;
723 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
724 				 control->i2c_address +
725 				 RAS_INDEX_TO_OFFSET(control, fri),
726 				 buf, buf_size);
727 	up_read(&adev->reset_domain->sem);
728 	if (res < 0) {
729 		DRM_ERROR("Reading %d EEPROM table records error:%d",
730 			  num, res);
731 	} else if (res < buf_size) {
732 		/* Short read, return error.
733 		 */
734 		DRM_ERROR("Read %d records out of %d",
735 			  res / RAS_TABLE_RECORD_SIZE, num);
736 		res = -EIO;
737 	} else {
738 		res = 0;
739 	}
740 
741 	return res;
742 }
743 
744 /**
745  * amdgpu_ras_eeprom_read -- read EEPROM
746  * @control: pointer to control structure
747  * @record: array of records to read into
748  * @num: number of records in @record
749  *
750  * Reads num records from the RAS table in EEPROM and
751  * writes the data into @record array.
752  *
753  * Returns 0 on success, -errno on error.
754  */
755 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
756 			   struct eeprom_table_record *record,
757 			   const u32 num)
758 {
759 	struct amdgpu_device *adev = to_amdgpu_device(control);
760 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
761 	int i, res;
762 	u8 *buf, *pp;
763 	u32 g0, g1;
764 
765 	if (!__is_ras_eeprom_supported(adev))
766 		return 0;
767 
768 	if (num == 0) {
769 		DRM_ERROR("will not read 0 records\n");
770 		return -EINVAL;
771 	} else if (num > control->ras_num_recs) {
772 		DRM_ERROR("too many records to read:%d available:%d\n",
773 			  num, control->ras_num_recs);
774 		return -EINVAL;
775 	}
776 
777 	buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
778 	if (!buf)
779 		return -ENOMEM;
780 
781 	/* Determine how many records to read, from the first record
782 	 * index, fri, to the end of the table, and from the beginning
783 	 * of the table, such that the total number of records is
784 	 * @num, and we handle wrap around when fri > 0 and
785 	 * fri + num > RAS_MAX_RECORD_COUNT.
786 	 *
787 	 * First we compute the index of the last element
788 	 * which would be fetched from each region,
789 	 * g0 is in [fri, fri + num - 1], and
790 	 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
791 	 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
792 	 * the last element to fetch, we set g0 to _the number_
793 	 * of elements to fetch, @num, since we know that the last
794 	 * indexed to be fetched does not exceed the table.
795 	 *
796 	 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then
797 	 * we set g0 to the number of elements to read
798 	 * until the end of the table, and g1 to the number of
799 	 * elements to read from the beginning of the table.
800 	 */
801 	g0 = control->ras_fri + num - 1;
802 	g1 = g0 % control->ras_max_record_count;
803 	if (g0 < control->ras_max_record_count) {
804 		g0 = num;
805 		g1 = 0;
806 	} else {
807 		g0 = control->ras_max_record_count - control->ras_fri;
808 		g1 += 1;
809 	}
810 
811 	mutex_lock(&control->ras_tbl_mutex);
812 	res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
813 	if (res)
814 		goto Out;
815 	if (g1) {
816 		res = __amdgpu_ras_eeprom_read(control,
817 					       buf + g0 * RAS_TABLE_RECORD_SIZE,
818 					       0, g1);
819 		if (res)
820 			goto Out;
821 	}
822 
823 	res = 0;
824 
825 	/* Read up everything? Then transform.
826 	 */
827 	pp = buf;
828 	for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
829 		__decode_table_record_from_buf(control, &record[i], pp);
830 
831 		/* update bad channel bitmap */
832 		if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
833 			control->bad_channel_bitmap |= 1 << record[i].mem_channel;
834 			con->update_channel_flag = true;
835 		}
836 	}
837 Out:
838 	kfree(buf);
839 	mutex_unlock(&control->ras_tbl_mutex);
840 
841 	return res;
842 }
843 
844 uint32_t amdgpu_ras_eeprom_max_record_count(void)
845 {
846 	return RAS_MAX_RECORD_COUNT;
847 }
848 
849 static ssize_t
850 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
851 				    size_t size, loff_t *pos)
852 {
853 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
854 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
855 	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
856 	u8 data[50];
857 	int res;
858 
859 	if (!size)
860 		return size;
861 
862 	if (!ras || !control) {
863 		res = snprintf(data, sizeof(data), "Not supported\n");
864 	} else {
865 		res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
866 			       RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
867 	}
868 
869 	if (*pos >= res)
870 		return 0;
871 
872 	res -= *pos;
873 	res = min_t(size_t, res, size);
874 
875 	if (copy_to_user(buf, &data[*pos], res))
876 		return -EFAULT;
877 
878 	*pos += res;
879 
880 	return res;
881 }
882 
883 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
884 	.owner = THIS_MODULE,
885 	.read = amdgpu_ras_debugfs_eeprom_size_read,
886 	.write = NULL,
887 	.llseek = default_llseek,
888 };
889 
890 static const char *tbl_hdr_str = " Signature    Version  FirstOffs       Size   Checksum\n";
891 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
892 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
893 static const char *rec_hdr_str = "Index  Offset ErrType Bank/CU          TimeStamp      Offs/Addr MemChl MCUMCID    RetiredPage\n";
894 static const char *rec_hdr_fmt = "%5d 0x%05X %7s    0x%02X 0x%016llX 0x%012llX   0x%02X    0x%02X 0x%012llX\n";
895 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
896 
897 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
898 	"ignore",
899 	"re",
900 	"ue",
901 };
902 
903 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
904 {
905 	return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
906 		strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
907 }
908 
909 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
910 {
911 	struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
912 					      eeprom_control);
913 	struct dentry *de = ras->de_ras_eeprom_table;
914 
915 	if (de)
916 		d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
917 }
918 
919 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
920 					     size_t size, loff_t *pos)
921 {
922 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
923 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
924 	struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
925 	const size_t orig_size = size;
926 	int res = -EFAULT;
927 	size_t data_len;
928 
929 	mutex_lock(&control->ras_tbl_mutex);
930 
931 	/* We want *pos - data_len > 0, which means there's
932 	 * bytes to be printed from data.
933 	 */
934 	data_len = strlen(tbl_hdr_str);
935 	if (*pos < data_len) {
936 		data_len -= *pos;
937 		data_len = min_t(size_t, data_len, size);
938 		if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
939 			goto Out;
940 		buf += data_len;
941 		size -= data_len;
942 		*pos += data_len;
943 	}
944 
945 	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
946 	if (*pos < data_len && size > 0) {
947 		u8 data[tbl_hdr_fmt_size + 1];
948 		loff_t lpos;
949 
950 		snprintf(data, sizeof(data), tbl_hdr_fmt,
951 			 control->tbl_hdr.header,
952 			 control->tbl_hdr.version,
953 			 control->tbl_hdr.first_rec_offset,
954 			 control->tbl_hdr.tbl_size,
955 			 control->tbl_hdr.checksum);
956 
957 		data_len -= *pos;
958 		data_len = min_t(size_t, data_len, size);
959 		lpos = *pos - strlen(tbl_hdr_str);
960 		if (copy_to_user(buf, &data[lpos], data_len))
961 			goto Out;
962 		buf += data_len;
963 		size -= data_len;
964 		*pos += data_len;
965 	}
966 
967 	data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
968 	if (*pos < data_len && size > 0) {
969 		loff_t lpos;
970 
971 		data_len -= *pos;
972 		data_len = min_t(size_t, data_len, size);
973 		lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
974 		if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
975 			goto Out;
976 		buf += data_len;
977 		size -= data_len;
978 		*pos += data_len;
979 	}
980 
981 	data_len = amdgpu_ras_debugfs_table_size(control);
982 	if (*pos < data_len && size > 0) {
983 		u8 dare[RAS_TABLE_RECORD_SIZE];
984 		u8 data[rec_hdr_fmt_size + 1];
985 		struct eeprom_table_record record;
986 		int s, r;
987 
988 		/* Find the starting record index
989 		 */
990 		s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
991 			strlen(rec_hdr_str);
992 		s = s / rec_hdr_fmt_size;
993 		r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
994 			strlen(rec_hdr_str);
995 		r = r % rec_hdr_fmt_size;
996 
997 		for ( ; size > 0 && s < control->ras_num_recs; s++) {
998 			u32 ai = RAS_RI_TO_AI(control, s);
999 			/* Read a single record
1000 			 */
1001 			res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
1002 			if (res)
1003 				goto Out;
1004 			__decode_table_record_from_buf(control, &record, dare);
1005 			snprintf(data, sizeof(data), rec_hdr_fmt,
1006 				 s,
1007 				 RAS_INDEX_TO_OFFSET(control, ai),
1008 				 record_err_type_str[record.err_type],
1009 				 record.bank,
1010 				 record.ts,
1011 				 record.offset,
1012 				 record.mem_channel,
1013 				 record.mcumc_id,
1014 				 record.retired_page);
1015 
1016 			data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
1017 			if (copy_to_user(buf, &data[r], data_len)) {
1018 				res = -EFAULT;
1019 				goto Out;
1020 			}
1021 			buf += data_len;
1022 			size -= data_len;
1023 			*pos += data_len;
1024 			r = 0;
1025 		}
1026 	}
1027 	res = 0;
1028 Out:
1029 	mutex_unlock(&control->ras_tbl_mutex);
1030 	return res < 0 ? res : orig_size - size;
1031 }
1032 
1033 static ssize_t
1034 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
1035 				     size_t size, loff_t *pos)
1036 {
1037 	struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1038 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1039 	struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1040 	u8 data[81];
1041 	int res;
1042 
1043 	if (!size)
1044 		return size;
1045 
1046 	if (!ras || !control) {
1047 		res = snprintf(data, sizeof(data), "Not supported\n");
1048 		if (*pos >= res)
1049 			return 0;
1050 
1051 		res -= *pos;
1052 		res = min_t(size_t, res, size);
1053 
1054 		if (copy_to_user(buf, &data[*pos], res))
1055 			return -EFAULT;
1056 
1057 		*pos += res;
1058 
1059 		return res;
1060 	} else {
1061 		return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
1062 	}
1063 }
1064 
1065 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
1066 	.owner = THIS_MODULE,
1067 	.read = amdgpu_ras_debugfs_eeprom_table_read,
1068 	.write = NULL,
1069 	.llseek = default_llseek,
1070 };
1071 
1072 /**
1073  * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
1074  * @control: pointer to control structure
1075  *
1076  * Check the checksum of the stored in EEPROM RAS table.
1077  *
1078  * Return 0 if the checksum is correct,
1079  * positive if it is not correct, and
1080  * -errno on I/O error.
1081  */
1082 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
1083 {
1084 	struct amdgpu_device *adev = to_amdgpu_device(control);
1085 	int buf_size, res;
1086 	u8  csum, *buf, *pp;
1087 
1088 	buf_size = RAS_TABLE_HEADER_SIZE +
1089 		control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1090 	buf = kzalloc(buf_size, GFP_KERNEL);
1091 	if (!buf) {
1092 		DRM_ERROR("Out of memory checking RAS table checksum.\n");
1093 		return -ENOMEM;
1094 	}
1095 
1096 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1097 				 control->i2c_address +
1098 				 control->ras_header_offset,
1099 				 buf, buf_size);
1100 	if (res < buf_size) {
1101 		DRM_ERROR("Partial read for checksum, res:%d\n", res);
1102 		/* On partial reads, return -EIO.
1103 		 */
1104 		if (res >= 0)
1105 			res = -EIO;
1106 		goto Out;
1107 	}
1108 
1109 	csum = 0;
1110 	for (pp = buf; pp < buf + buf_size; pp++)
1111 		csum += *pp;
1112 Out:
1113 	kfree(buf);
1114 	return res < 0 ? res : csum;
1115 }
1116 
1117 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control,
1118 			   bool *exceed_err_limit)
1119 {
1120 	struct amdgpu_device *adev = to_amdgpu_device(control);
1121 	unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
1122 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
1123 	struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1124 	int res;
1125 
1126 	*exceed_err_limit = false;
1127 
1128 	if (!__is_ras_eeprom_supported(adev))
1129 		return 0;
1130 
1131 	/* Verify i2c adapter is initialized */
1132 	if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
1133 		return -ENOENT;
1134 
1135 	if (!__get_eeprom_i2c_addr(adev, control))
1136 		return -EINVAL;
1137 
1138 	control->ras_header_offset = RAS_HDR_START;
1139 	control->ras_record_offset = RAS_RECORD_START;
1140 	control->ras_max_record_count  = RAS_MAX_RECORD_COUNT;
1141 	mutex_init(&control->ras_tbl_mutex);
1142 
1143 	/* Read the table header from EEPROM address */
1144 	res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1145 				 control->i2c_address + control->ras_header_offset,
1146 				 buf, RAS_TABLE_HEADER_SIZE);
1147 	if (res < RAS_TABLE_HEADER_SIZE) {
1148 		DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
1149 		return res >= 0 ? -EIO : res;
1150 	}
1151 
1152 	__decode_table_header_from_buf(hdr, buf);
1153 
1154 	control->ras_num_recs = RAS_NUM_RECS(hdr);
1155 	control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
1156 
1157 	if (hdr->header == RAS_TABLE_HDR_VAL) {
1158 		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
1159 				 control->ras_num_recs);
1160 		res = __verify_ras_table_checksum(control);
1161 		if (res)
1162 			DRM_ERROR("RAS table incorrect checksum or error:%d\n",
1163 				  res);
1164 
1165 		/* Warn if we are at 90% of the threshold or above
1166 		 */
1167 		if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
1168 			dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
1169 					control->ras_num_recs,
1170 					ras->bad_page_cnt_threshold);
1171 	} else if (hdr->header == RAS_TABLE_HDR_BAD &&
1172 		   amdgpu_bad_page_threshold != 0) {
1173 		res = __verify_ras_table_checksum(control);
1174 		if (res)
1175 			DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
1176 				  res);
1177 		if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
1178 			/* This means that, the threshold was increased since
1179 			 * the last time the system was booted, and now,
1180 			 * ras->bad_page_cnt_threshold - control->num_recs > 0,
1181 			 * so that at least one more record can be saved,
1182 			 * before the page count threshold is reached.
1183 			 */
1184 			dev_info(adev->dev,
1185 				 "records:%d threshold:%d, resetting "
1186 				 "RAS table header signature",
1187 				 control->ras_num_recs,
1188 				 ras->bad_page_cnt_threshold);
1189 			res = amdgpu_ras_eeprom_correct_header_tag(control,
1190 								   RAS_TABLE_HDR_VAL);
1191 		} else {
1192 			dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
1193 				control->ras_num_recs, ras->bad_page_cnt_threshold);
1194 			if (amdgpu_bad_page_threshold == -2) {
1195 				dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -2.");
1196 				res = 0;
1197 			} else {
1198 				*exceed_err_limit = true;
1199 				dev_err(adev->dev,
1200 					"RAS records:%d exceed threshold:%d, "
1201 					"GPU will not be initialized. Replace this GPU or increase the threshold",
1202 					control->ras_num_recs, ras->bad_page_cnt_threshold);
1203 			}
1204 		}
1205 	} else {
1206 		DRM_INFO("Creating a new EEPROM table");
1207 
1208 		res = amdgpu_ras_eeprom_reset_table(control);
1209 	}
1210 
1211 	return res < 0 ? res : 0;
1212 }
1213