xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ras_eeprom.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include "amdgpu_ras_eeprom.h"
25 #include "amdgpu.h"
26 #include "amdgpu_ras.h"
27 #include <linux/bits.h>
28 #include "smu_v11_0_i2c.h"
29 #include "atom.h"
30 
31 #define EEPROM_I2C_TARGET_ADDR_VEGA20    	0xA0
32 #define EEPROM_I2C_TARGET_ADDR_ARCTURUS  	0xA8
33 #define EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342  	0xA0
34 
35 /*
36  * The 2 macros bellow represent the actual size in bytes that
37  * those entities occupy in the EEPROM memory.
38  * EEPROM_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
39  * uses uint64 to store 6b fields such as retired_page.
40  */
41 #define EEPROM_TABLE_HEADER_SIZE 20
42 #define EEPROM_TABLE_RECORD_SIZE 24
43 
44 #define EEPROM_ADDRESS_SIZE 0x2
45 
46 /* Table hdr is 'AMDR' */
47 #define EEPROM_TABLE_HDR_VAL 0x414d4452
48 #define EEPROM_TABLE_VER 0x00010000
49 
50 /* Assume 2 Mbit size */
51 #define EEPROM_SIZE_BYTES 256000
52 #define EEPROM_PAGE__SIZE_BYTES 256
53 #define EEPROM_HDR_START 0
54 #define EEPROM_RECORD_START (EEPROM_HDR_START + EEPROM_TABLE_HEADER_SIZE)
55 #define EEPROM_MAX_RECORD_NUM ((EEPROM_SIZE_BYTES - EEPROM_TABLE_HEADER_SIZE) / EEPROM_TABLE_RECORD_SIZE)
56 #define EEPROM_ADDR_MSB_MASK GENMASK(17, 8)
57 
58 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev
59 
60 static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev,
61 				       uint16_t *i2c_addr)
62 {
63 	struct atom_context *atom_ctx = adev->mode_info.atom_context;
64 
65 	if (!i2c_addr || !atom_ctx)
66 		return false;
67 
68 	if (strnstr(atom_ctx->vbios_version,
69 	            "D342",
70 		    sizeof(atom_ctx->vbios_version)))
71 		*i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342;
72 	else
73 		*i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS;
74 
75 	return true;
76 }
77 
78 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
79 				  uint16_t *i2c_addr)
80 {
81 	if (!i2c_addr)
82 		return false;
83 
84 	switch (adev->asic_type) {
85 	case CHIP_VEGA20:
86 		*i2c_addr = EEPROM_I2C_TARGET_ADDR_VEGA20;
87 		break;
88 
89 	case CHIP_ARCTURUS:
90 		return __get_eeprom_i2c_addr_arct(adev, i2c_addr);
91 
92 	default:
93 		return false;
94 	}
95 
96 	return true;
97 }
98 
99 static void __encode_table_header_to_buff(struct amdgpu_ras_eeprom_table_header *hdr,
100 					  unsigned char *buff)
101 {
102 	uint32_t *pp = (uint32_t *) buff;
103 
104 	pp[0] = cpu_to_le32(hdr->header);
105 	pp[1] = cpu_to_le32(hdr->version);
106 	pp[2] = cpu_to_le32(hdr->first_rec_offset);
107 	pp[3] = cpu_to_le32(hdr->tbl_size);
108 	pp[4] = cpu_to_le32(hdr->checksum);
109 }
110 
111 static void __decode_table_header_from_buff(struct amdgpu_ras_eeprom_table_header *hdr,
112 					  unsigned char *buff)
113 {
114 	uint32_t *pp = (uint32_t *)buff;
115 
116 	hdr->header 	      = le32_to_cpu(pp[0]);
117 	hdr->version 	      = le32_to_cpu(pp[1]);
118 	hdr->first_rec_offset = le32_to_cpu(pp[2]);
119 	hdr->tbl_size 	      = le32_to_cpu(pp[3]);
120 	hdr->checksum 	      = le32_to_cpu(pp[4]);
121 }
122 
123 static int __update_table_header(struct amdgpu_ras_eeprom_control *control,
124 				 unsigned char *buff)
125 {
126 	int ret = 0;
127 	struct i2c_msg msg = {
128 			.addr	= 0,
129 			.flags	= 0,
130 			.len	= EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
131 			.buf	= buff,
132 	};
133 
134 
135 	*(uint16_t *)buff = EEPROM_HDR_START;
136 	__encode_table_header_to_buff(&control->tbl_hdr, buff + EEPROM_ADDRESS_SIZE);
137 
138 	msg.addr = control->i2c_address;
139 
140 	ret = i2c_transfer(&control->eeprom_accessor, &msg, 1);
141 	if (ret < 1)
142 		DRM_ERROR("Failed to write EEPROM table header, ret:%d", ret);
143 
144 	return ret;
145 }
146 
147 static uint32_t  __calc_hdr_byte_sum(struct amdgpu_ras_eeprom_control *control)
148 {
149 	int i;
150 	uint32_t tbl_sum = 0;
151 
152 	/* Header checksum, skip checksum field in the calculation */
153 	for (i = 0; i < sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); i++)
154 		tbl_sum += *(((unsigned char *)&control->tbl_hdr) + i);
155 
156 	return tbl_sum;
157 }
158 
159 static uint32_t  __calc_recs_byte_sum(struct eeprom_table_record *records,
160 				      int num)
161 {
162 	int i, j;
163 	uint32_t tbl_sum = 0;
164 
165 	/* Records checksum */
166 	for (i = 0; i < num; i++) {
167 		struct eeprom_table_record *record = &records[i];
168 
169 		for (j = 0; j < sizeof(*record); j++) {
170 			tbl_sum += *(((unsigned char *)record) + j);
171 		}
172 	}
173 
174 	return tbl_sum;
175 }
176 
177 static inline uint32_t  __calc_tbl_byte_sum(struct amdgpu_ras_eeprom_control *control,
178 				  struct eeprom_table_record *records, int num)
179 {
180 	return __calc_hdr_byte_sum(control) + __calc_recs_byte_sum(records, num);
181 }
182 
183 /* Checksum = 256 -((sum of all table entries) mod 256) */
184 static void __update_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
185 				  struct eeprom_table_record *records, int num,
186 				  uint32_t old_hdr_byte_sum)
187 {
188 	/*
189 	 * This will update the table sum with new records.
190 	 *
191 	 * TODO: What happens when the EEPROM table is to be wrapped around
192 	 * and old records from start will get overridden.
193 	 */
194 
195 	/* need to recalculate updated header byte sum */
196 	control->tbl_byte_sum -= old_hdr_byte_sum;
197 	control->tbl_byte_sum += __calc_tbl_byte_sum(control, records, num);
198 
199 	control->tbl_hdr.checksum = 256 - (control->tbl_byte_sum % 256);
200 }
201 
202 /* table sum mod 256 + checksum must equals 256 */
203 static bool __validate_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
204 			    struct eeprom_table_record *records, int num)
205 {
206 	control->tbl_byte_sum = __calc_tbl_byte_sum(control, records, num);
207 
208 	if (control->tbl_hdr.checksum + (control->tbl_byte_sum % 256) != 256) {
209 		DRM_WARN("Checksum mismatch, checksum: %u ", control->tbl_hdr.checksum);
210 		return false;
211 	}
212 
213 	return true;
214 }
215 
216 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
217 {
218 	unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
219 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
220 	int ret = 0;
221 
222 	mutex_lock(&control->tbl_mutex);
223 
224 	hdr->header = EEPROM_TABLE_HDR_VAL;
225 	hdr->version = EEPROM_TABLE_VER;
226 	hdr->first_rec_offset = EEPROM_RECORD_START;
227 	hdr->tbl_size = EEPROM_TABLE_HEADER_SIZE;
228 
229 	control->tbl_byte_sum = 0;
230 	__update_tbl_checksum(control, NULL, 0, 0);
231 	control->next_addr = EEPROM_RECORD_START;
232 
233 	ret = __update_table_header(control, buff);
234 
235 	mutex_unlock(&control->tbl_mutex);
236 
237 	return ret;
238 
239 }
240 
241 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control)
242 {
243 	int ret = 0;
244 	struct amdgpu_device *adev = to_amdgpu_device(control);
245 	unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
246 	struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
247 	struct i2c_msg msg = {
248 			.addr	= 0,
249 			.flags	= I2C_M_RD,
250 			.len	= EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
251 			.buf	= buff,
252 	};
253 
254 	if (!__get_eeprom_i2c_addr(adev, &control->i2c_address))
255 		return -EINVAL;
256 
257 	mutex_init(&control->tbl_mutex);
258 
259 	switch (adev->asic_type) {
260 	case CHIP_VEGA20:
261 		ret = smu_v11_0_i2c_eeprom_control_init(&control->eeprom_accessor);
262 		break;
263 
264 	case CHIP_ARCTURUS:
265 		ret = smu_i2c_eeprom_init(&adev->smu, &control->eeprom_accessor);
266 		break;
267 
268 	default:
269 		return 0;
270 	}
271 
272 	if (ret) {
273 		DRM_ERROR("Failed to init I2C controller, ret:%d", ret);
274 		return ret;
275 	}
276 
277 	msg.addr = control->i2c_address;
278 
279 	/* Read/Create table header from EEPROM address 0 */
280 	ret = i2c_transfer(&control->eeprom_accessor, &msg, 1);
281 	if (ret < 1) {
282 		DRM_ERROR("Failed to read EEPROM table header, ret:%d", ret);
283 		return ret;
284 	}
285 
286 	__decode_table_header_from_buff(hdr, &buff[2]);
287 
288 	if (hdr->header == EEPROM_TABLE_HDR_VAL) {
289 		control->num_recs = (hdr->tbl_size - EEPROM_TABLE_HEADER_SIZE) /
290 				    EEPROM_TABLE_RECORD_SIZE;
291 		control->tbl_byte_sum = __calc_hdr_byte_sum(control);
292 		control->next_addr = EEPROM_RECORD_START;
293 
294 		DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
295 				 control->num_recs);
296 
297 	} else {
298 		DRM_INFO("Creating new EEPROM table");
299 
300 		ret = amdgpu_ras_eeprom_reset_table(control);
301 	}
302 
303 	return ret == 1 ? 0 : -EIO;
304 }
305 
306 void amdgpu_ras_eeprom_fini(struct amdgpu_ras_eeprom_control *control)
307 {
308 	struct amdgpu_device *adev = to_amdgpu_device(control);
309 
310 	switch (adev->asic_type) {
311 	case CHIP_VEGA20:
312 		smu_v11_0_i2c_eeprom_control_fini(&control->eeprom_accessor);
313 		break;
314 	case CHIP_ARCTURUS:
315 		smu_i2c_eeprom_fini(&adev->smu, &control->eeprom_accessor);
316 		break;
317 
318 	default:
319 		return;
320 	}
321 }
322 
323 static void __encode_table_record_to_buff(struct amdgpu_ras_eeprom_control *control,
324 					  struct eeprom_table_record *record,
325 					  unsigned char *buff)
326 {
327 	__le64 tmp = 0;
328 	int i = 0;
329 
330 	/* Next are all record fields according to EEPROM page spec in LE foramt */
331 	buff[i++] = record->err_type;
332 
333 	buff[i++] = record->bank;
334 
335 	tmp = cpu_to_le64(record->ts);
336 	memcpy(buff + i, &tmp, 8);
337 	i += 8;
338 
339 	tmp = cpu_to_le64((record->offset & 0xffffffffffff));
340 	memcpy(buff + i, &tmp, 6);
341 	i += 6;
342 
343 	buff[i++] = record->mem_channel;
344 	buff[i++] = record->mcumc_id;
345 
346 	tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
347 	memcpy(buff + i, &tmp, 6);
348 }
349 
350 static void __decode_table_record_from_buff(struct amdgpu_ras_eeprom_control *control,
351 					    struct eeprom_table_record *record,
352 					    unsigned char *buff)
353 {
354 	__le64 tmp = 0;
355 	int i =  0;
356 
357 	/* Next are all record fields according to EEPROM page spec in LE foramt */
358 	record->err_type = buff[i++];
359 
360 	record->bank = buff[i++];
361 
362 	memcpy(&tmp, buff + i, 8);
363 	record->ts = le64_to_cpu(tmp);
364 	i += 8;
365 
366 	memcpy(&tmp, buff + i, 6);
367 	record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
368 	i += 6;
369 
370 	record->mem_channel = buff[i++];
371 	record->mcumc_id = buff[i++];
372 
373 	memcpy(&tmp, buff + i,  6);
374 	record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
375 }
376 
377 /*
378  * When reaching end of EEPROM memory jump back to 0 record address
379  * When next record access will go beyond EEPROM page boundary modify bits A17/A8
380  * in I2C selector to go to next page
381  */
382 static uint32_t __correct_eeprom_dest_address(uint32_t curr_address)
383 {
384 	uint32_t next_address = curr_address + EEPROM_TABLE_RECORD_SIZE;
385 
386 	/* When all EEPROM memory used jump back to 0 address */
387 	if (next_address > EEPROM_SIZE_BYTES) {
388 		DRM_INFO("Reached end of EEPROM memory, jumping to 0 "
389 			 "and overriding old record");
390 		return EEPROM_RECORD_START;
391 	}
392 
393 	/*
394 	 * To check if we overflow page boundary  compare next address with
395 	 * current and see if bits 17/8 of the EEPROM address will change
396 	 * If they do start from the next 256b page
397 	 *
398 	 * https://www.st.com/resource/en/datasheet/m24m02-dr.pdf sec. 5.1.2
399 	 */
400 	if ((curr_address & EEPROM_ADDR_MSB_MASK) != (next_address & EEPROM_ADDR_MSB_MASK)) {
401 		DRM_DEBUG_DRIVER("Reached end of EEPROM memory page, jumping to next: %lx",
402 				(next_address & EEPROM_ADDR_MSB_MASK));
403 
404 		return  (next_address & EEPROM_ADDR_MSB_MASK);
405 	}
406 
407 	return curr_address;
408 }
409 
410 int amdgpu_ras_eeprom_process_recods(struct amdgpu_ras_eeprom_control *control,
411 					    struct eeprom_table_record *records,
412 					    bool write,
413 					    int num)
414 {
415 	int i, ret = 0;
416 	struct i2c_msg *msgs, *msg;
417 	unsigned char *buffs, *buff;
418 	struct eeprom_table_record *record;
419 	struct amdgpu_device *adev = to_amdgpu_device(control);
420 
421 	if (adev->asic_type != CHIP_VEGA20 && adev->asic_type != CHIP_ARCTURUS)
422 		return 0;
423 
424 	buffs = kcalloc(num, EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE,
425 			 GFP_KERNEL);
426 	if (!buffs)
427 		return -ENOMEM;
428 
429 	mutex_lock(&control->tbl_mutex);
430 
431 	msgs = kcalloc(num, sizeof(*msgs), GFP_KERNEL);
432 	if (!msgs) {
433 		ret = -ENOMEM;
434 		goto free_buff;
435 	}
436 
437 	/* In case of overflow just start from beginning to not lose newest records */
438 	if (write && (control->next_addr + EEPROM_TABLE_RECORD_SIZE * num > EEPROM_SIZE_BYTES))
439 		control->next_addr = EEPROM_RECORD_START;
440 
441 
442 	/*
443 	 * TODO Currently makes EEPROM writes for each record, this creates
444 	 * internal fragmentation. Optimized the code to do full page write of
445 	 * 256b
446 	 */
447 	for (i = 0; i < num; i++) {
448 		buff = &buffs[i * (EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
449 		record = &records[i];
450 		msg = &msgs[i];
451 
452 		control->next_addr = __correct_eeprom_dest_address(control->next_addr);
453 
454 		/*
455 		 * Update bits 16,17 of EEPROM address in I2C address by setting them
456 		 * to bits 1,2 of Device address byte
457 		 */
458 		msg->addr = control->i2c_address |
459 			        ((control->next_addr & EEPROM_ADDR_MSB_MASK) >> 15);
460 		msg->flags	= write ? 0 : I2C_M_RD;
461 		msg->len	= EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE;
462 		msg->buf	= buff;
463 
464 		/* Insert the EEPROM dest addess, bits 0-15 */
465 		buff[0] = ((control->next_addr >> 8) & 0xff);
466 		buff[1] = (control->next_addr & 0xff);
467 
468 		/* EEPROM table content is stored in LE format */
469 		if (write)
470 			__encode_table_record_to_buff(control, record, buff + EEPROM_ADDRESS_SIZE);
471 
472 		/*
473 		 * The destination EEPROM address might need to be corrected to account
474 		 * for page or entire memory wrapping
475 		 */
476 		control->next_addr += EEPROM_TABLE_RECORD_SIZE;
477 	}
478 
479 	ret = i2c_transfer(&control->eeprom_accessor, msgs, num);
480 	if (ret < 1) {
481 		DRM_ERROR("Failed to process EEPROM table records, ret:%d", ret);
482 
483 		/* TODO Restore prev next EEPROM address ? */
484 		goto free_msgs;
485 	}
486 
487 
488 	if (!write) {
489 		for (i = 0; i < num; i++) {
490 			buff = &buffs[i*(EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
491 			record = &records[i];
492 
493 			__decode_table_record_from_buff(control, record, buff + EEPROM_ADDRESS_SIZE);
494 		}
495 	}
496 
497 	if (write) {
498 		uint32_t old_hdr_byte_sum = __calc_hdr_byte_sum(control);
499 
500 		/*
501 		 * Update table header with size and CRC and account for table
502 		 * wrap around where the assumption is that we treat it as empty
503 		 * table
504 		 *
505 		 * TODO - Check the assumption is correct
506 		 */
507 		control->num_recs += num;
508 		control->num_recs %= EEPROM_MAX_RECORD_NUM;
509 		control->tbl_hdr.tbl_size += EEPROM_TABLE_RECORD_SIZE * num;
510 		if (control->tbl_hdr.tbl_size > EEPROM_SIZE_BYTES)
511 			control->tbl_hdr.tbl_size = EEPROM_TABLE_HEADER_SIZE +
512 			control->num_recs * EEPROM_TABLE_RECORD_SIZE;
513 
514 		__update_tbl_checksum(control, records, num, old_hdr_byte_sum);
515 
516 		__update_table_header(control, buffs);
517 	} else if (!__validate_tbl_checksum(control, records, num)) {
518 		DRM_WARN("EEPROM Table checksum mismatch!");
519 		/* TODO Uncomment when EEPROM read/write is relliable */
520 		/* ret = -EIO; */
521 	}
522 
523 free_msgs:
524 	kfree(msgs);
525 
526 free_buff:
527 	kfree(buffs);
528 
529 	mutex_unlock(&control->tbl_mutex);
530 
531 	return ret == num ? 0 : -EIO;
532 }
533 
534 /* Used for testing if bugs encountered */
535 #if 0
536 void amdgpu_ras_eeprom_test(struct amdgpu_ras_eeprom_control *control)
537 {
538 	int i;
539 	struct eeprom_table_record *recs = kcalloc(1, sizeof(*recs), GFP_KERNEL);
540 
541 	if (!recs)
542 		return;
543 
544 	for (i = 0; i < 1 ; i++) {
545 		recs[i].address = 0xdeadbeef;
546 		recs[i].retired_page = i;
547 	}
548 
549 	if (!amdgpu_ras_eeprom_process_recods(control, recs, true, 1)) {
550 
551 		memset(recs, 0, sizeof(*recs) * 1);
552 
553 		control->next_addr = EEPROM_RECORD_START;
554 
555 		if (!amdgpu_ras_eeprom_process_recods(control, recs, false, 1)) {
556 			for (i = 0; i < 1; i++)
557 				DRM_INFO("rec.address :0x%llx, rec.retired_page :%llu",
558 					 recs[i].address, recs[i].retired_page);
559 		} else
560 			DRM_ERROR("Failed in reading from table");
561 
562 	} else
563 		DRM_ERROR("Failed in writing to table");
564 }
565 #endif
566