1 /* 2 * Copyright 2018 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_gmc.h" 31 #include "amdgpu_ras.h" 32 #include "amdgpu_xgmi.h" 33 34 #include <drm/drm_drv.h> 35 36 /** 37 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 38 * 39 * @adev: amdgpu_device pointer 40 * 41 * Allocate video memory for pdb0 and map it for CPU access 42 * Returns 0 for success, error for failure. 43 */ 44 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) 45 { 46 int r; 47 struct amdgpu_bo_param bp; 48 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 49 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; 50 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift; 51 52 memset(&bp, 0, sizeof(bp)); 53 bp.size = PAGE_ALIGN((npdes + 1) * 8); 54 bp.byte_align = PAGE_SIZE; 55 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 56 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 57 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 58 bp.type = ttm_bo_type_kernel; 59 bp.resv = NULL; 60 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 61 62 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); 63 if (r) 64 return r; 65 66 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); 67 if (unlikely(r != 0)) 68 goto bo_reserve_failure; 69 70 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); 71 if (r) 72 goto bo_pin_failure; 73 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); 74 if (r) 75 goto bo_kmap_failure; 76 77 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 78 return 0; 79 80 bo_kmap_failure: 81 amdgpu_bo_unpin(adev->gmc.pdb0_bo); 82 bo_pin_failure: 83 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 84 bo_reserve_failure: 85 amdgpu_bo_unref(&adev->gmc.pdb0_bo); 86 return r; 87 } 88 89 /** 90 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO 91 * 92 * @bo: the BO to get the PDE for 93 * @level: the level in the PD hirarchy 94 * @addr: resulting addr 95 * @flags: resulting flags 96 * 97 * Get the address and flags to be used for a PDE (Page Directory Entry). 98 */ 99 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, 100 uint64_t *addr, uint64_t *flags) 101 { 102 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 103 104 switch (bo->tbo.resource->mem_type) { 105 case TTM_PL_TT: 106 *addr = bo->tbo.ttm->dma_address[0]; 107 break; 108 case TTM_PL_VRAM: 109 *addr = amdgpu_bo_gpu_offset(bo); 110 break; 111 default: 112 *addr = 0; 113 break; 114 } 115 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); 116 amdgpu_gmc_get_vm_pde(adev, level, addr, flags); 117 } 118 119 /* 120 * amdgpu_gmc_pd_addr - return the address of the root directory 121 */ 122 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) 123 { 124 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 125 uint64_t pd_addr; 126 127 /* TODO: move that into ASIC specific code */ 128 if (adev->asic_type >= CHIP_VEGA10) { 129 uint64_t flags = AMDGPU_PTE_VALID; 130 131 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); 132 pd_addr |= flags; 133 } else { 134 pd_addr = amdgpu_bo_gpu_offset(bo); 135 } 136 return pd_addr; 137 } 138 139 /** 140 * amdgpu_gmc_set_pte_pde - update the page tables using CPU 141 * 142 * @adev: amdgpu_device pointer 143 * @cpu_pt_addr: cpu address of the page table 144 * @gpu_page_idx: entry in the page table to update 145 * @addr: dst addr to write into pte/pde 146 * @flags: access flags 147 * 148 * Update the page tables using CPU. 149 */ 150 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, 151 uint32_t gpu_page_idx, uint64_t addr, 152 uint64_t flags) 153 { 154 void __iomem *ptr = (void *)cpu_pt_addr; 155 uint64_t value; 156 157 /* 158 * The following is for PTE only. GART does not have PDEs. 159 */ 160 value = addr & 0x0000FFFFFFFFF000ULL; 161 value |= flags; 162 writeq(value, ptr + (gpu_page_idx * 8)); 163 164 return 0; 165 } 166 167 /** 168 * amdgpu_gmc_agp_addr - return the address in the AGP address space 169 * 170 * @bo: TTM BO which needs the address, must be in GTT domain 171 * 172 * Tries to figure out how to access the BO through the AGP aperture. Returns 173 * AMDGPU_BO_INVALID_OFFSET if that is not possible. 174 */ 175 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) 176 { 177 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 178 179 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) 180 return AMDGPU_BO_INVALID_OFFSET; 181 182 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) 183 return AMDGPU_BO_INVALID_OFFSET; 184 185 return adev->gmc.agp_start + bo->ttm->dma_address[0]; 186 } 187 188 /** 189 * amdgpu_gmc_vram_location - try to find VRAM location 190 * 191 * @adev: amdgpu device structure holding all necessary information 192 * @mc: memory controller structure holding memory information 193 * @base: base address at which to put VRAM 194 * 195 * Function will try to place VRAM at base address provided 196 * as parameter. 197 */ 198 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 199 u64 base) 200 { 201 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; 202 203 mc->vram_start = base; 204 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 205 if (limit && limit < mc->real_vram_size) 206 mc->real_vram_size = limit; 207 208 if (mc->xgmi.num_physical_nodes == 0) { 209 mc->fb_start = mc->vram_start; 210 mc->fb_end = mc->vram_end; 211 } 212 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 213 mc->mc_vram_size >> 20, mc->vram_start, 214 mc->vram_end, mc->real_vram_size >> 20); 215 } 216 217 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture 218 * 219 * @adev: amdgpu device structure holding all necessary information 220 * @mc: memory controller structure holding memory information 221 * 222 * This function is only used if use GART for FB translation. In such 223 * case, we use sysvm aperture (vmid0 page tables) for both vram 224 * and gart (aka system memory) access. 225 * 226 * GPUVM (and our organization of vmid0 page tables) require sysvm 227 * aperture to be placed at a location aligned with 8 times of native 228 * page size. For example, if vm_context0_cntl.page_table_block_size 229 * is 12, then native page size is 8G (2M*2^12), sysvm should start 230 * with a 64G aligned address. For simplicity, we just put sysvm at 231 * address 0. So vram start at address 0 and gart is right after vram. 232 */ 233 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 234 { 235 u64 hive_vram_start = 0; 236 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; 237 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; 238 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; 239 mc->gart_start = hive_vram_end + 1; 240 mc->gart_end = mc->gart_start + mc->gart_size - 1; 241 mc->fb_start = hive_vram_start; 242 mc->fb_end = hive_vram_end; 243 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 244 mc->mc_vram_size >> 20, mc->vram_start, 245 mc->vram_end, mc->real_vram_size >> 20); 246 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 247 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 248 } 249 250 /** 251 * amdgpu_gmc_gart_location - try to find GART location 252 * 253 * @adev: amdgpu device structure holding all necessary information 254 * @mc: memory controller structure holding memory information 255 * 256 * Function will place try to place GART before or after VRAM. 257 * If GART size is bigger than space left then we ajust GART size. 258 * Thus function will never fails. 259 */ 260 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 261 { 262 const uint64_t four_gb = 0x100000000ULL; 263 u64 size_af, size_bf; 264 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ 265 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); 266 267 /* VCE doesn't like it when BOs cross a 4GB segment, so align 268 * the GART base on a 4GB boundary as well. 269 */ 270 size_bf = mc->fb_start; 271 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); 272 273 if (mc->gart_size > max(size_bf, size_af)) { 274 dev_warn(adev->dev, "limiting GART\n"); 275 mc->gart_size = max(size_bf, size_af); 276 } 277 278 if ((size_bf >= mc->gart_size && size_bf < size_af) || 279 (size_af < mc->gart_size)) 280 mc->gart_start = 0; 281 else 282 mc->gart_start = max_mc_address - mc->gart_size + 1; 283 284 mc->gart_start &= ~(four_gb - 1); 285 mc->gart_end = mc->gart_start + mc->gart_size - 1; 286 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 287 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 288 } 289 290 /** 291 * amdgpu_gmc_agp_location - try to find AGP location 292 * @adev: amdgpu device structure holding all necessary information 293 * @mc: memory controller structure holding memory information 294 * 295 * Function will place try to find a place for the AGP BAR in the MC address 296 * space. 297 * 298 * AGP BAR will be assigned the largest available hole in the address space. 299 * Should be called after VRAM and GART locations are setup. 300 */ 301 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 302 { 303 const uint64_t sixteen_gb = 1ULL << 34; 304 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); 305 u64 size_af, size_bf; 306 307 if (amdgpu_sriov_vf(adev)) { 308 mc->agp_start = 0xffffffffffff; 309 mc->agp_end = 0x0; 310 mc->agp_size = 0; 311 312 return; 313 } 314 315 if (mc->fb_start > mc->gart_start) { 316 size_bf = (mc->fb_start & sixteen_gb_mask) - 317 ALIGN(mc->gart_end + 1, sixteen_gb); 318 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); 319 } else { 320 size_bf = mc->fb_start & sixteen_gb_mask; 321 size_af = (mc->gart_start & sixteen_gb_mask) - 322 ALIGN(mc->fb_end + 1, sixteen_gb); 323 } 324 325 if (size_bf > size_af) { 326 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; 327 mc->agp_size = size_bf; 328 } else { 329 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); 330 mc->agp_size = size_af; 331 } 332 333 mc->agp_end = mc->agp_start + mc->agp_size - 1; 334 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", 335 mc->agp_size >> 20, mc->agp_start, mc->agp_end); 336 } 337 338 /** 339 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid 340 * 341 * @addr: 48 bit physical address, page aligned (36 significant bits) 342 * @pasid: 16 bit process address space identifier 343 */ 344 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) 345 { 346 return addr << 4 | pasid; 347 } 348 349 /** 350 * amdgpu_gmc_filter_faults - filter VM faults 351 * 352 * @adev: amdgpu device structure 353 * @addr: address of the VM fault 354 * @pasid: PASID of the process causing the fault 355 * @timestamp: timestamp of the fault 356 * 357 * Returns: 358 * True if the fault was filtered and should not be processed further. 359 * False if the fault is a new one and needs to be handled. 360 */ 361 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, uint64_t addr, 362 uint16_t pasid, uint64_t timestamp) 363 { 364 struct amdgpu_gmc *gmc = &adev->gmc; 365 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); 366 struct amdgpu_gmc_fault *fault; 367 uint32_t hash; 368 369 /* If we don't have space left in the ring buffer return immediately */ 370 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - 371 AMDGPU_GMC_FAULT_TIMEOUT; 372 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) 373 return true; 374 375 /* Try to find the fault in the hash */ 376 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 377 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 378 while (fault->timestamp >= stamp) { 379 uint64_t tmp; 380 381 if (atomic64_read(&fault->key) == key) 382 return true; 383 384 tmp = fault->timestamp; 385 fault = &gmc->fault_ring[fault->next]; 386 387 /* Check if the entry was reused */ 388 if (fault->timestamp >= tmp) 389 break; 390 } 391 392 /* Add the fault to the ring */ 393 fault = &gmc->fault_ring[gmc->last_fault]; 394 atomic64_set(&fault->key, key); 395 fault->timestamp = timestamp; 396 397 /* And update the hash */ 398 fault->next = gmc->fault_hash[hash].idx; 399 gmc->fault_hash[hash].idx = gmc->last_fault++; 400 return false; 401 } 402 403 /** 404 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter 405 * 406 * @adev: amdgpu device structure 407 * @addr: address of the VM fault 408 * @pasid: PASID of the process causing the fault 409 * 410 * Remove the address from fault filter, then future vm fault on this address 411 * will pass to retry fault handler to recover. 412 */ 413 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, 414 uint16_t pasid) 415 { 416 struct amdgpu_gmc *gmc = &adev->gmc; 417 uint64_t key = amdgpu_gmc_fault_key(addr, pasid); 418 struct amdgpu_gmc_fault *fault; 419 uint32_t hash; 420 uint64_t tmp; 421 422 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 423 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 424 do { 425 if (atomic64_cmpxchg(&fault->key, key, 0) == key) 426 break; 427 428 tmp = fault->timestamp; 429 fault = &gmc->fault_ring[fault->next]; 430 } while (fault->timestamp < tmp); 431 } 432 433 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) 434 { 435 int r; 436 437 if (adev->umc.ras_funcs && 438 adev->umc.ras_funcs->ras_late_init) { 439 r = adev->umc.ras_funcs->ras_late_init(adev); 440 if (r) 441 return r; 442 } 443 444 if (adev->mmhub.ras_funcs && 445 adev->mmhub.ras_funcs->ras_late_init) { 446 r = adev->mmhub.ras_funcs->ras_late_init(adev); 447 if (r) 448 return r; 449 } 450 451 if (!adev->gmc.xgmi.connected_to_cpu) 452 adev->gmc.xgmi.ras_funcs = &xgmi_ras_funcs; 453 454 if (adev->gmc.xgmi.ras_funcs && 455 adev->gmc.xgmi.ras_funcs->ras_late_init) { 456 r = adev->gmc.xgmi.ras_funcs->ras_late_init(adev); 457 if (r) 458 return r; 459 } 460 461 if (adev->hdp.ras_funcs && 462 adev->hdp.ras_funcs->ras_late_init) { 463 r = adev->hdp.ras_funcs->ras_late_init(adev); 464 if (r) 465 return r; 466 } 467 468 if (adev->mca.mp0.ras_funcs && 469 adev->mca.mp0.ras_funcs->ras_late_init) { 470 r = adev->mca.mp0.ras_funcs->ras_late_init(adev); 471 if (r) 472 return r; 473 } 474 475 if (adev->mca.mp1.ras_funcs && 476 adev->mca.mp1.ras_funcs->ras_late_init) { 477 r = adev->mca.mp1.ras_funcs->ras_late_init(adev); 478 if (r) 479 return r; 480 } 481 482 if (adev->mca.mpio.ras_funcs && 483 adev->mca.mpio.ras_funcs->ras_late_init) { 484 r = adev->mca.mpio.ras_funcs->ras_late_init(adev); 485 if (r) 486 return r; 487 } 488 489 return 0; 490 } 491 492 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) 493 { 494 if (adev->umc.ras_funcs && 495 adev->umc.ras_funcs->ras_fini) 496 adev->umc.ras_funcs->ras_fini(adev); 497 498 if (adev->mmhub.ras_funcs && 499 adev->mmhub.ras_funcs->ras_fini) 500 adev->mmhub.ras_funcs->ras_fini(adev); 501 502 if (adev->gmc.xgmi.ras_funcs && 503 adev->gmc.xgmi.ras_funcs->ras_fini) 504 adev->gmc.xgmi.ras_funcs->ras_fini(adev); 505 506 if (adev->hdp.ras_funcs && 507 adev->hdp.ras_funcs->ras_fini) 508 adev->hdp.ras_funcs->ras_fini(adev); 509 } 510 511 /* 512 * The latest engine allocation on gfx9/10 is: 513 * Engine 2, 3: firmware 514 * Engine 0, 1, 4~16: amdgpu ring, 515 * subject to change when ring number changes 516 * Engine 17: Gart flushes 517 */ 518 #define GFXHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3 519 #define MMHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3 520 521 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) 522 { 523 struct amdgpu_ring *ring; 524 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = 525 {GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP, 526 GFXHUB_FREE_VM_INV_ENGS_BITMAP}; 527 unsigned i; 528 unsigned vmhub, inv_eng; 529 530 for (i = 0; i < adev->num_rings; ++i) { 531 ring = adev->rings[i]; 532 vmhub = ring->funcs->vmhub; 533 534 if (ring == &adev->mes.ring) 535 continue; 536 537 inv_eng = ffs(vm_inv_engs[vmhub]); 538 if (!inv_eng) { 539 dev_err(adev->dev, "no VM inv eng for ring %s\n", 540 ring->name); 541 return -EINVAL; 542 } 543 544 ring->vm_inv_eng = inv_eng - 1; 545 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); 546 547 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", 548 ring->name, ring->vm_inv_eng, ring->funcs->vmhub); 549 } 550 551 return 0; 552 } 553 554 /** 555 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ 556 * @adev: amdgpu_device pointer 557 * 558 * Check and set if an the device @adev supports Trusted Memory 559 * Zones (TMZ). 560 */ 561 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) 562 { 563 switch (adev->asic_type) { 564 case CHIP_RAVEN: 565 case CHIP_RENOIR: 566 if (amdgpu_tmz == 0) { 567 adev->gmc.tmz_enabled = false; 568 dev_info(adev->dev, 569 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); 570 } else { 571 adev->gmc.tmz_enabled = true; 572 dev_info(adev->dev, 573 "Trusted Memory Zone (TMZ) feature enabled\n"); 574 } 575 break; 576 case CHIP_NAVI10: 577 case CHIP_NAVI14: 578 case CHIP_NAVI12: 579 case CHIP_VANGOGH: 580 case CHIP_YELLOW_CARP: 581 /* Don't enable it by default yet. 582 */ 583 if (amdgpu_tmz < 1) { 584 adev->gmc.tmz_enabled = false; 585 dev_info(adev->dev, 586 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); 587 } else { 588 adev->gmc.tmz_enabled = true; 589 dev_info(adev->dev, 590 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); 591 } 592 break; 593 default: 594 adev->gmc.tmz_enabled = false; 595 dev_info(adev->dev, 596 "Trusted Memory Zone (TMZ) feature not supported\n"); 597 break; 598 } 599 } 600 601 /** 602 * amdgpu_gmc_noretry_set -- set per asic noretry defaults 603 * @adev: amdgpu_device pointer 604 * 605 * Set a per asic default for the no-retry parameter. 606 * 607 */ 608 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) 609 { 610 struct amdgpu_gmc *gmc = &adev->gmc; 611 612 switch (adev->asic_type) { 613 case CHIP_VEGA10: 614 case CHIP_VEGA20: 615 case CHIP_ARCTURUS: 616 case CHIP_ALDEBARAN: 617 /* 618 * noretry = 0 will cause kfd page fault tests fail 619 * for some ASICs, so set default to 1 for these ASICs. 620 */ 621 if (amdgpu_noretry == -1) 622 gmc->noretry = 1; 623 else 624 gmc->noretry = amdgpu_noretry; 625 break; 626 case CHIP_RAVEN: 627 default: 628 /* Raven currently has issues with noretry 629 * regardless of what we decide for other 630 * asics, we should leave raven with 631 * noretry = 0 until we root cause the 632 * issues. 633 * 634 * default this to 0 for now, but we may want 635 * to change this in the future for certain 636 * GPUs as it can increase performance in 637 * certain cases. 638 */ 639 if (amdgpu_noretry == -1) 640 gmc->noretry = 0; 641 else 642 gmc->noretry = amdgpu_noretry; 643 break; 644 } 645 } 646 647 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, 648 bool enable) 649 { 650 struct amdgpu_vmhub *hub; 651 u32 tmp, reg, i; 652 653 hub = &adev->vmhub[hub_type]; 654 for (i = 0; i < 16; i++) { 655 reg = hub->vm_context0_cntl + hub->ctx_distance * i; 656 657 tmp = (hub_type == AMDGPU_GFXHUB_0) ? 658 RREG32_SOC15_IP(GC, reg) : 659 RREG32_SOC15_IP(MMHUB, reg); 660 661 if (enable) 662 tmp |= hub->vm_cntx_cntl_vm_fault; 663 else 664 tmp &= ~hub->vm_cntx_cntl_vm_fault; 665 666 (hub_type == AMDGPU_GFXHUB_0) ? 667 WREG32_SOC15_IP(GC, reg, tmp) : 668 WREG32_SOC15_IP(MMHUB, reg, tmp); 669 } 670 } 671 672 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) 673 { 674 unsigned size; 675 676 /* 677 * TODO: 678 * Currently there is a bug where some memory client outside 679 * of the driver writes to first 8M of VRAM on S3 resume, 680 * this overrides GART which by default gets placed in first 8M and 681 * causes VM_FAULTS once GTT is accessed. 682 * Keep the stolen memory reservation until the while this is not solved. 683 */ 684 switch (adev->asic_type) { 685 case CHIP_VEGA10: 686 case CHIP_RAVEN: 687 case CHIP_RENOIR: 688 adev->mman.keep_stolen_vga_memory = true; 689 break; 690 default: 691 adev->mman.keep_stolen_vga_memory = false; 692 break; 693 } 694 695 if (amdgpu_sriov_vf(adev) || 696 !amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) { 697 size = 0; 698 } else { 699 size = amdgpu_gmc_get_vbios_fb_size(adev); 700 701 if (adev->mman.keep_stolen_vga_memory) 702 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); 703 } 704 705 /* set to 0 if the pre-OS buffer uses up most of vram */ 706 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) 707 size = 0; 708 709 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { 710 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; 711 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; 712 } else { 713 adev->mman.stolen_vga_size = size; 714 adev->mman.stolen_extended_size = 0; 715 } 716 } 717 718 /** 719 * amdgpu_gmc_init_pdb0 - initialize PDB0 720 * 721 * @adev: amdgpu_device pointer 722 * 723 * This function is only used when GART page table is used 724 * for FB address translatioin. In such a case, we construct 725 * a 2-level system VM page table: PDB0->PTB, to cover both 726 * VRAM of the hive and system memory. 727 * 728 * PDB0 is static, initialized once on driver initialization. 729 * The first n entries of PDB0 are used as PTE by setting 730 * P bit to 1, pointing to VRAM. The n+1'th entry points 731 * to a big PTB covering system memory. 732 * 733 */ 734 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) 735 { 736 int i; 737 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? 738 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M 739 */ 740 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 741 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21; 742 u64 vram_addr = adev->vm_manager.vram_base_offset - 743 adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; 744 u64 vram_end = vram_addr + vram_size; 745 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); 746 int idx; 747 748 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 749 return; 750 751 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 752 flags |= AMDGPU_PTE_WRITEABLE; 753 flags |= AMDGPU_PTE_SNOOPED; 754 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); 755 flags |= AMDGPU_PDE_PTE; 756 757 /* The first n PDE0 entries are used as PTE, 758 * pointing to vram 759 */ 760 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) 761 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); 762 763 /* The n+1'th PDE0 entry points to a huge 764 * PTB who has more than 512 entries each 765 * pointing to a 4K system page 766 */ 767 flags = AMDGPU_PTE_VALID; 768 flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED; 769 /* Requires gart_ptb_gpu_pa to be 4K aligned */ 770 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); 771 drm_dev_exit(idx); 772 } 773 774 /** 775 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC 776 * address 777 * 778 * @adev: amdgpu_device pointer 779 * @mc_addr: MC address of buffer 780 */ 781 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) 782 { 783 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; 784 } 785 786 /** 787 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from 788 * GPU's view 789 * 790 * @adev: amdgpu_device pointer 791 * @bo: amdgpu buffer object 792 */ 793 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 794 { 795 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); 796 } 797 798 /** 799 * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address 800 * from CPU's view 801 * 802 * @adev: amdgpu_device pointer 803 * @bo: amdgpu buffer object 804 */ 805 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 806 { 807 return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base; 808 } 809 810 void amdgpu_gmc_get_reserved_allocation(struct amdgpu_device *adev) 811 { 812 /* Some ASICs need to reserve a region of video memory to avoid access 813 * from driver */ 814 adev->mman.stolen_reserved_offset = 0; 815 adev->mman.stolen_reserved_size = 0; 816 817 switch (adev->asic_type) { 818 case CHIP_YELLOW_CARP: 819 if (amdgpu_discovery == 0) { 820 adev->mman.stolen_reserved_offset = 0x1ffb0000; 821 adev->mman.stolen_reserved_size = 64 * PAGE_SIZE; 822 } 823 break; 824 default: 825 break; 826 } 827 } 828