1 /* 2 * Copyright 2018 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_gmc.h" 31 #include "amdgpu_ras.h" 32 #include "amdgpu_xgmi.h" 33 34 #include <drm/drm_drv.h> 35 36 /** 37 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 38 * 39 * @adev: amdgpu_device pointer 40 * 41 * Allocate video memory for pdb0 and map it for CPU access 42 * Returns 0 for success, error for failure. 43 */ 44 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) 45 { 46 int r; 47 struct amdgpu_bo_param bp; 48 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 49 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; 50 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift; 51 52 memset(&bp, 0, sizeof(bp)); 53 bp.size = PAGE_ALIGN((npdes + 1) * 8); 54 bp.byte_align = PAGE_SIZE; 55 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 56 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 57 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 58 bp.type = ttm_bo_type_kernel; 59 bp.resv = NULL; 60 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 61 62 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); 63 if (r) 64 return r; 65 66 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); 67 if (unlikely(r != 0)) 68 goto bo_reserve_failure; 69 70 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); 71 if (r) 72 goto bo_pin_failure; 73 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); 74 if (r) 75 goto bo_kmap_failure; 76 77 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 78 return 0; 79 80 bo_kmap_failure: 81 amdgpu_bo_unpin(adev->gmc.pdb0_bo); 82 bo_pin_failure: 83 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 84 bo_reserve_failure: 85 amdgpu_bo_unref(&adev->gmc.pdb0_bo); 86 return r; 87 } 88 89 /** 90 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO 91 * 92 * @bo: the BO to get the PDE for 93 * @level: the level in the PD hirarchy 94 * @addr: resulting addr 95 * @flags: resulting flags 96 * 97 * Get the address and flags to be used for a PDE (Page Directory Entry). 98 */ 99 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, 100 uint64_t *addr, uint64_t *flags) 101 { 102 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 103 104 switch (bo->tbo.resource->mem_type) { 105 case TTM_PL_TT: 106 *addr = bo->tbo.ttm->dma_address[0]; 107 break; 108 case TTM_PL_VRAM: 109 *addr = amdgpu_bo_gpu_offset(bo); 110 break; 111 default: 112 *addr = 0; 113 break; 114 } 115 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); 116 amdgpu_gmc_get_vm_pde(adev, level, addr, flags); 117 } 118 119 /* 120 * amdgpu_gmc_pd_addr - return the address of the root directory 121 */ 122 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) 123 { 124 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 125 uint64_t pd_addr; 126 127 /* TODO: move that into ASIC specific code */ 128 if (adev->asic_type >= CHIP_VEGA10) { 129 uint64_t flags = AMDGPU_PTE_VALID; 130 131 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); 132 pd_addr |= flags; 133 } else { 134 pd_addr = amdgpu_bo_gpu_offset(bo); 135 } 136 return pd_addr; 137 } 138 139 /** 140 * amdgpu_gmc_set_pte_pde - update the page tables using CPU 141 * 142 * @adev: amdgpu_device pointer 143 * @cpu_pt_addr: cpu address of the page table 144 * @gpu_page_idx: entry in the page table to update 145 * @addr: dst addr to write into pte/pde 146 * @flags: access flags 147 * 148 * Update the page tables using CPU. 149 */ 150 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, 151 uint32_t gpu_page_idx, uint64_t addr, 152 uint64_t flags) 153 { 154 void __iomem *ptr = (void *)cpu_pt_addr; 155 uint64_t value; 156 157 /* 158 * The following is for PTE only. GART does not have PDEs. 159 */ 160 value = addr & 0x0000FFFFFFFFF000ULL; 161 value |= flags; 162 writeq(value, ptr + (gpu_page_idx * 8)); 163 164 return 0; 165 } 166 167 /** 168 * amdgpu_gmc_agp_addr - return the address in the AGP address space 169 * 170 * @bo: TTM BO which needs the address, must be in GTT domain 171 * 172 * Tries to figure out how to access the BO through the AGP aperture. Returns 173 * AMDGPU_BO_INVALID_OFFSET if that is not possible. 174 */ 175 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) 176 { 177 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 178 179 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) 180 return AMDGPU_BO_INVALID_OFFSET; 181 182 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) 183 return AMDGPU_BO_INVALID_OFFSET; 184 185 return adev->gmc.agp_start + bo->ttm->dma_address[0]; 186 } 187 188 /** 189 * amdgpu_gmc_vram_location - try to find VRAM location 190 * 191 * @adev: amdgpu device structure holding all necessary information 192 * @mc: memory controller structure holding memory information 193 * @base: base address at which to put VRAM 194 * 195 * Function will try to place VRAM at base address provided 196 * as parameter. 197 */ 198 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 199 u64 base) 200 { 201 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; 202 203 mc->vram_start = base; 204 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 205 if (limit && limit < mc->real_vram_size) 206 mc->real_vram_size = limit; 207 208 if (mc->xgmi.num_physical_nodes == 0) { 209 mc->fb_start = mc->vram_start; 210 mc->fb_end = mc->vram_end; 211 } 212 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 213 mc->mc_vram_size >> 20, mc->vram_start, 214 mc->vram_end, mc->real_vram_size >> 20); 215 } 216 217 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture 218 * 219 * @adev: amdgpu device structure holding all necessary information 220 * @mc: memory controller structure holding memory information 221 * 222 * This function is only used if use GART for FB translation. In such 223 * case, we use sysvm aperture (vmid0 page tables) for both vram 224 * and gart (aka system memory) access. 225 * 226 * GPUVM (and our organization of vmid0 page tables) require sysvm 227 * aperture to be placed at a location aligned with 8 times of native 228 * page size. For example, if vm_context0_cntl.page_table_block_size 229 * is 12, then native page size is 8G (2M*2^12), sysvm should start 230 * with a 64G aligned address. For simplicity, we just put sysvm at 231 * address 0. So vram start at address 0 and gart is right after vram. 232 */ 233 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 234 { 235 u64 hive_vram_start = 0; 236 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; 237 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; 238 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; 239 mc->gart_start = hive_vram_end + 1; 240 mc->gart_end = mc->gart_start + mc->gart_size - 1; 241 mc->fb_start = hive_vram_start; 242 mc->fb_end = hive_vram_end; 243 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 244 mc->mc_vram_size >> 20, mc->vram_start, 245 mc->vram_end, mc->real_vram_size >> 20); 246 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 247 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 248 } 249 250 /** 251 * amdgpu_gmc_gart_location - try to find GART location 252 * 253 * @adev: amdgpu device structure holding all necessary information 254 * @mc: memory controller structure holding memory information 255 * 256 * Function will place try to place GART before or after VRAM. 257 * If GART size is bigger than space left then we ajust GART size. 258 * Thus function will never fails. 259 */ 260 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 261 { 262 const uint64_t four_gb = 0x100000000ULL; 263 u64 size_af, size_bf; 264 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ 265 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); 266 267 /* VCE doesn't like it when BOs cross a 4GB segment, so align 268 * the GART base on a 4GB boundary as well. 269 */ 270 size_bf = mc->fb_start; 271 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); 272 273 if (mc->gart_size > max(size_bf, size_af)) { 274 dev_warn(adev->dev, "limiting GART\n"); 275 mc->gart_size = max(size_bf, size_af); 276 } 277 278 if ((size_bf >= mc->gart_size && size_bf < size_af) || 279 (size_af < mc->gart_size)) 280 mc->gart_start = 0; 281 else 282 mc->gart_start = max_mc_address - mc->gart_size + 1; 283 284 mc->gart_start &= ~(four_gb - 1); 285 mc->gart_end = mc->gart_start + mc->gart_size - 1; 286 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 287 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 288 } 289 290 /** 291 * amdgpu_gmc_agp_location - try to find AGP location 292 * @adev: amdgpu device structure holding all necessary information 293 * @mc: memory controller structure holding memory information 294 * 295 * Function will place try to find a place for the AGP BAR in the MC address 296 * space. 297 * 298 * AGP BAR will be assigned the largest available hole in the address space. 299 * Should be called after VRAM and GART locations are setup. 300 */ 301 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 302 { 303 const uint64_t sixteen_gb = 1ULL << 34; 304 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); 305 u64 size_af, size_bf; 306 307 if (amdgpu_sriov_vf(adev)) { 308 mc->agp_start = 0xffffffffffff; 309 mc->agp_end = 0x0; 310 mc->agp_size = 0; 311 312 return; 313 } 314 315 if (mc->fb_start > mc->gart_start) { 316 size_bf = (mc->fb_start & sixteen_gb_mask) - 317 ALIGN(mc->gart_end + 1, sixteen_gb); 318 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); 319 } else { 320 size_bf = mc->fb_start & sixteen_gb_mask; 321 size_af = (mc->gart_start & sixteen_gb_mask) - 322 ALIGN(mc->fb_end + 1, sixteen_gb); 323 } 324 325 if (size_bf > size_af) { 326 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; 327 mc->agp_size = size_bf; 328 } else { 329 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); 330 mc->agp_size = size_af; 331 } 332 333 mc->agp_end = mc->agp_start + mc->agp_size - 1; 334 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", 335 mc->agp_size >> 20, mc->agp_start, mc->agp_end); 336 } 337 338 /** 339 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid 340 * 341 * @addr: 48 bit physical address, page aligned (36 significant bits) 342 * @pasid: 16 bit process address space identifier 343 */ 344 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) 345 { 346 return addr << 4 | pasid; 347 } 348 349 /** 350 * amdgpu_gmc_filter_faults - filter VM faults 351 * 352 * @adev: amdgpu device structure 353 * @ih: interrupt ring that the fault received from 354 * @addr: address of the VM fault 355 * @pasid: PASID of the process causing the fault 356 * @timestamp: timestamp of the fault 357 * 358 * Returns: 359 * True if the fault was filtered and should not be processed further. 360 * False if the fault is a new one and needs to be handled. 361 */ 362 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, 363 struct amdgpu_ih_ring *ih, uint64_t addr, 364 uint16_t pasid, uint64_t timestamp) 365 { 366 struct amdgpu_gmc *gmc = &adev->gmc; 367 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); 368 struct amdgpu_gmc_fault *fault; 369 uint32_t hash; 370 371 /* Stale retry fault if timestamp goes backward */ 372 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) 373 return true; 374 375 /* If we don't have space left in the ring buffer return immediately */ 376 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - 377 AMDGPU_GMC_FAULT_TIMEOUT; 378 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) 379 return true; 380 381 /* Try to find the fault in the hash */ 382 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 383 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 384 while (fault->timestamp >= stamp) { 385 uint64_t tmp; 386 387 if (atomic64_read(&fault->key) == key) 388 return true; 389 390 tmp = fault->timestamp; 391 fault = &gmc->fault_ring[fault->next]; 392 393 /* Check if the entry was reused */ 394 if (fault->timestamp >= tmp) 395 break; 396 } 397 398 /* Add the fault to the ring */ 399 fault = &gmc->fault_ring[gmc->last_fault]; 400 atomic64_set(&fault->key, key); 401 fault->timestamp = timestamp; 402 403 /* And update the hash */ 404 fault->next = gmc->fault_hash[hash].idx; 405 gmc->fault_hash[hash].idx = gmc->last_fault++; 406 return false; 407 } 408 409 /** 410 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter 411 * 412 * @adev: amdgpu device structure 413 * @addr: address of the VM fault 414 * @pasid: PASID of the process causing the fault 415 * 416 * Remove the address from fault filter, then future vm fault on this address 417 * will pass to retry fault handler to recover. 418 */ 419 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, 420 uint16_t pasid) 421 { 422 struct amdgpu_gmc *gmc = &adev->gmc; 423 uint64_t key = amdgpu_gmc_fault_key(addr, pasid); 424 struct amdgpu_gmc_fault *fault; 425 uint32_t hash; 426 uint64_t tmp; 427 428 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 429 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 430 do { 431 if (atomic64_cmpxchg(&fault->key, key, 0) == key) 432 break; 433 434 tmp = fault->timestamp; 435 fault = &gmc->fault_ring[fault->next]; 436 } while (fault->timestamp < tmp); 437 } 438 439 int amdgpu_gmc_ras_early_init(struct amdgpu_device *adev) 440 { 441 if (!adev->gmc.xgmi.connected_to_cpu) { 442 adev->gmc.xgmi.ras = &xgmi_ras; 443 amdgpu_ras_register_ras_block(adev, &adev->gmc.xgmi.ras->ras_block); 444 } 445 446 return 0; 447 } 448 449 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) 450 { 451 int r; 452 453 if (adev->umc.ras && adev->umc.ras->ras_block.ras_late_init) { 454 r = adev->umc.ras->ras_block.ras_late_init(adev, NULL); 455 if (r) 456 return r; 457 } 458 459 if (adev->mmhub.ras && adev->mmhub.ras->ras_block.ras_late_init) { 460 r = adev->mmhub.ras->ras_block.ras_late_init(adev, NULL); 461 if (r) 462 return r; 463 } 464 465 if (adev->gmc.xgmi.ras && adev->gmc.xgmi.ras->ras_block.ras_late_init) { 466 r = adev->gmc.xgmi.ras->ras_block.ras_late_init(adev, NULL); 467 if (r) 468 return r; 469 } 470 471 if (adev->hdp.ras && adev->hdp.ras->ras_block.ras_late_init) { 472 r = adev->hdp.ras->ras_block.ras_late_init(adev, NULL); 473 if (r) 474 return r; 475 } 476 477 if (adev->mca.mp0.ras && adev->mca.mp0.ras->ras_block.ras_late_init) { 478 r = adev->mca.mp0.ras->ras_block.ras_late_init(adev, NULL); 479 if (r) 480 return r; 481 } 482 483 if (adev->mca.mp1.ras && adev->mca.mp1.ras->ras_block.ras_late_init) { 484 r = adev->mca.mp1.ras->ras_block.ras_late_init(adev, NULL); 485 if (r) 486 return r; 487 } 488 489 if (adev->mca.mpio.ras && adev->mca.mpio.ras->ras_block.ras_late_init) { 490 r = adev->mca.mpio.ras->ras_block.ras_late_init(adev, NULL); 491 if (r) 492 return r; 493 } 494 495 return 0; 496 } 497 498 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) 499 { 500 if (adev->umc.ras && adev->umc.ras->ras_block.ras_fini) 501 adev->umc.ras->ras_block.ras_fini(adev); 502 503 if (adev->mmhub.ras && adev->mmhub.ras->ras_block.ras_fini) 504 adev->mmhub.ras->ras_block.ras_fini(adev); 505 506 if (adev->gmc.xgmi.ras && adev->gmc.xgmi.ras->ras_block.ras_fini) 507 adev->gmc.xgmi.ras->ras_block.ras_fini(adev); 508 509 if (adev->hdp.ras && adev->hdp.ras->ras_block.ras_fini) 510 adev->hdp.ras->ras_block.ras_fini(adev); 511 } 512 513 /* 514 * The latest engine allocation on gfx9/10 is: 515 * Engine 2, 3: firmware 516 * Engine 0, 1, 4~16: amdgpu ring, 517 * subject to change when ring number changes 518 * Engine 17: Gart flushes 519 */ 520 #define GFXHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3 521 #define MMHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3 522 523 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) 524 { 525 struct amdgpu_ring *ring; 526 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = 527 {GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP, 528 GFXHUB_FREE_VM_INV_ENGS_BITMAP}; 529 unsigned i; 530 unsigned vmhub, inv_eng; 531 532 for (i = 0; i < adev->num_rings; ++i) { 533 ring = adev->rings[i]; 534 vmhub = ring->funcs->vmhub; 535 536 if (ring == &adev->mes.ring) 537 continue; 538 539 inv_eng = ffs(vm_inv_engs[vmhub]); 540 if (!inv_eng) { 541 dev_err(adev->dev, "no VM inv eng for ring %s\n", 542 ring->name); 543 return -EINVAL; 544 } 545 546 ring->vm_inv_eng = inv_eng - 1; 547 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); 548 549 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", 550 ring->name, ring->vm_inv_eng, ring->funcs->vmhub); 551 } 552 553 return 0; 554 } 555 556 /** 557 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ 558 * @adev: amdgpu_device pointer 559 * 560 * Check and set if an the device @adev supports Trusted Memory 561 * Zones (TMZ). 562 */ 563 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) 564 { 565 switch (adev->asic_type) { 566 case CHIP_RAVEN: 567 case CHIP_RENOIR: 568 if (amdgpu_tmz == 0) { 569 adev->gmc.tmz_enabled = false; 570 dev_info(adev->dev, 571 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); 572 } else { 573 adev->gmc.tmz_enabled = true; 574 dev_info(adev->dev, 575 "Trusted Memory Zone (TMZ) feature enabled\n"); 576 } 577 break; 578 case CHIP_NAVI10: 579 case CHIP_NAVI14: 580 case CHIP_NAVI12: 581 case CHIP_VANGOGH: 582 case CHIP_YELLOW_CARP: 583 /* Don't enable it by default yet. 584 */ 585 if (amdgpu_tmz < 1) { 586 adev->gmc.tmz_enabled = false; 587 dev_info(adev->dev, 588 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); 589 } else { 590 adev->gmc.tmz_enabled = true; 591 dev_info(adev->dev, 592 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); 593 } 594 break; 595 default: 596 adev->gmc.tmz_enabled = false; 597 dev_info(adev->dev, 598 "Trusted Memory Zone (TMZ) feature not supported\n"); 599 break; 600 } 601 } 602 603 /** 604 * amdgpu_gmc_noretry_set -- set per asic noretry defaults 605 * @adev: amdgpu_device pointer 606 * 607 * Set a per asic default for the no-retry parameter. 608 * 609 */ 610 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) 611 { 612 struct amdgpu_gmc *gmc = &adev->gmc; 613 614 switch (adev->asic_type) { 615 case CHIP_VEGA10: 616 case CHIP_VEGA20: 617 case CHIP_ARCTURUS: 618 case CHIP_ALDEBARAN: 619 /* 620 * noretry = 0 will cause kfd page fault tests fail 621 * for some ASICs, so set default to 1 for these ASICs. 622 */ 623 if (amdgpu_noretry == -1) 624 gmc->noretry = 1; 625 else 626 gmc->noretry = amdgpu_noretry; 627 break; 628 case CHIP_RAVEN: 629 default: 630 /* Raven currently has issues with noretry 631 * regardless of what we decide for other 632 * asics, we should leave raven with 633 * noretry = 0 until we root cause the 634 * issues. 635 * 636 * default this to 0 for now, but we may want 637 * to change this in the future for certain 638 * GPUs as it can increase performance in 639 * certain cases. 640 */ 641 if (amdgpu_noretry == -1) 642 gmc->noretry = 0; 643 else 644 gmc->noretry = amdgpu_noretry; 645 break; 646 } 647 } 648 649 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, 650 bool enable) 651 { 652 struct amdgpu_vmhub *hub; 653 u32 tmp, reg, i; 654 655 hub = &adev->vmhub[hub_type]; 656 for (i = 0; i < 16; i++) { 657 reg = hub->vm_context0_cntl + hub->ctx_distance * i; 658 659 tmp = (hub_type == AMDGPU_GFXHUB_0) ? 660 RREG32_SOC15_IP(GC, reg) : 661 RREG32_SOC15_IP(MMHUB, reg); 662 663 if (enable) 664 tmp |= hub->vm_cntx_cntl_vm_fault; 665 else 666 tmp &= ~hub->vm_cntx_cntl_vm_fault; 667 668 (hub_type == AMDGPU_GFXHUB_0) ? 669 WREG32_SOC15_IP(GC, reg, tmp) : 670 WREG32_SOC15_IP(MMHUB, reg, tmp); 671 } 672 } 673 674 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) 675 { 676 unsigned size; 677 678 /* 679 * TODO: 680 * Currently there is a bug where some memory client outside 681 * of the driver writes to first 8M of VRAM on S3 resume, 682 * this overrides GART which by default gets placed in first 8M and 683 * causes VM_FAULTS once GTT is accessed. 684 * Keep the stolen memory reservation until the while this is not solved. 685 */ 686 switch (adev->asic_type) { 687 case CHIP_VEGA10: 688 case CHIP_RAVEN: 689 case CHIP_RENOIR: 690 adev->mman.keep_stolen_vga_memory = true; 691 break; 692 default: 693 adev->mman.keep_stolen_vga_memory = false; 694 break; 695 } 696 697 if (amdgpu_sriov_vf(adev) || 698 !amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) { 699 size = 0; 700 } else { 701 size = amdgpu_gmc_get_vbios_fb_size(adev); 702 703 if (adev->mman.keep_stolen_vga_memory) 704 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); 705 } 706 707 /* set to 0 if the pre-OS buffer uses up most of vram */ 708 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) 709 size = 0; 710 711 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { 712 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; 713 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; 714 } else { 715 adev->mman.stolen_vga_size = size; 716 adev->mman.stolen_extended_size = 0; 717 } 718 } 719 720 /** 721 * amdgpu_gmc_init_pdb0 - initialize PDB0 722 * 723 * @adev: amdgpu_device pointer 724 * 725 * This function is only used when GART page table is used 726 * for FB address translatioin. In such a case, we construct 727 * a 2-level system VM page table: PDB0->PTB, to cover both 728 * VRAM of the hive and system memory. 729 * 730 * PDB0 is static, initialized once on driver initialization. 731 * The first n entries of PDB0 are used as PTE by setting 732 * P bit to 1, pointing to VRAM. The n+1'th entry points 733 * to a big PTB covering system memory. 734 * 735 */ 736 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) 737 { 738 int i; 739 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? 740 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M 741 */ 742 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 743 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21; 744 u64 vram_addr = adev->vm_manager.vram_base_offset - 745 adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; 746 u64 vram_end = vram_addr + vram_size; 747 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); 748 int idx; 749 750 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 751 return; 752 753 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 754 flags |= AMDGPU_PTE_WRITEABLE; 755 flags |= AMDGPU_PTE_SNOOPED; 756 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); 757 flags |= AMDGPU_PDE_PTE; 758 759 /* The first n PDE0 entries are used as PTE, 760 * pointing to vram 761 */ 762 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) 763 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); 764 765 /* The n+1'th PDE0 entry points to a huge 766 * PTB who has more than 512 entries each 767 * pointing to a 4K system page 768 */ 769 flags = AMDGPU_PTE_VALID; 770 flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED; 771 /* Requires gart_ptb_gpu_pa to be 4K aligned */ 772 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); 773 drm_dev_exit(idx); 774 } 775 776 /** 777 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC 778 * address 779 * 780 * @adev: amdgpu_device pointer 781 * @mc_addr: MC address of buffer 782 */ 783 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) 784 { 785 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; 786 } 787 788 /** 789 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from 790 * GPU's view 791 * 792 * @adev: amdgpu_device pointer 793 * @bo: amdgpu buffer object 794 */ 795 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 796 { 797 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); 798 } 799 800 /** 801 * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address 802 * from CPU's view 803 * 804 * @adev: amdgpu_device pointer 805 * @bo: amdgpu buffer object 806 */ 807 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 808 { 809 return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base; 810 } 811 812 void amdgpu_gmc_get_reserved_allocation(struct amdgpu_device *adev) 813 { 814 /* Some ASICs need to reserve a region of video memory to avoid access 815 * from driver */ 816 adev->mman.stolen_reserved_offset = 0; 817 adev->mman.stolen_reserved_size = 0; 818 819 switch (adev->asic_type) { 820 case CHIP_YELLOW_CARP: 821 if (amdgpu_discovery == 0) { 822 adev->mman.stolen_reserved_offset = 0x1ffb0000; 823 adev->mman.stolen_reserved_size = 64 * PAGE_SIZE; 824 } 825 break; 826 default: 827 break; 828 } 829 } 830 831 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) 832 { 833 struct amdgpu_bo *vram_bo = NULL; 834 uint64_t vram_gpu = 0; 835 void *vram_ptr = NULL; 836 837 int ret, size = 0x100000; 838 uint8_t cptr[10]; 839 840 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, 841 AMDGPU_GEM_DOMAIN_VRAM, 842 &vram_bo, 843 &vram_gpu, 844 &vram_ptr); 845 if (ret) 846 return ret; 847 848 memset(vram_ptr, 0x86, size); 849 memset(cptr, 0x86, 10); 850 851 /** 852 * Check the start, the mid, and the end of the memory if the content of 853 * each byte is the pattern "0x86". If yes, we suppose the vram bo is 854 * workable. 855 * 856 * Note: If check the each byte of whole 1M bo, it will cost too many 857 * seconds, so here, we just pick up three parts for emulation. 858 */ 859 ret = memcmp(vram_ptr, cptr, 10); 860 if (ret) 861 return ret; 862 863 ret = memcmp(vram_ptr + (size / 2), cptr, 10); 864 if (ret) 865 return ret; 866 867 ret = memcmp(vram_ptr + size - 10, cptr, 10); 868 if (ret) 869 return ret; 870 871 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, 872 &vram_ptr); 873 874 return 0; 875 } 876