xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision 447395e18ae084b1ac96d4efeca43a711cf5a36b)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_xgmi.h"
36 
37 #include <drm/drm_drv.h>
38 
39 /**
40  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
41  *
42  * @adev: amdgpu_device pointer
43  *
44  * Allocate video memory for pdb0 and map it for CPU access
45  * Returns 0 for success, error for failure.
46  */
47 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
48 {
49 	int r;
50 	struct amdgpu_bo_param bp;
51 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
52 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
53 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;
54 
55 	memset(&bp, 0, sizeof(bp));
56 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
57 	bp.byte_align = PAGE_SIZE;
58 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
59 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
60 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
61 	bp.type = ttm_bo_type_kernel;
62 	bp.resv = NULL;
63 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
64 
65 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
66 	if (r)
67 		return r;
68 
69 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
70 	if (unlikely(r != 0))
71 		goto bo_reserve_failure;
72 
73 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
74 	if (r)
75 		goto bo_pin_failure;
76 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
77 	if (r)
78 		goto bo_kmap_failure;
79 
80 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
81 	return 0;
82 
83 bo_kmap_failure:
84 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
85 bo_pin_failure:
86 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
87 bo_reserve_failure:
88 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
89 	return r;
90 }
91 
92 /**
93  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
94  *
95  * @bo: the BO to get the PDE for
96  * @level: the level in the PD hirarchy
97  * @addr: resulting addr
98  * @flags: resulting flags
99  *
100  * Get the address and flags to be used for a PDE (Page Directory Entry).
101  */
102 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
103 			       uint64_t *addr, uint64_t *flags)
104 {
105 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
106 
107 	switch (bo->tbo.resource->mem_type) {
108 	case TTM_PL_TT:
109 		*addr = bo->tbo.ttm->dma_address[0];
110 		break;
111 	case TTM_PL_VRAM:
112 		*addr = amdgpu_bo_gpu_offset(bo);
113 		break;
114 	default:
115 		*addr = 0;
116 		break;
117 	}
118 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
119 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
120 }
121 
122 /*
123  * amdgpu_gmc_pd_addr - return the address of the root directory
124  */
125 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
126 {
127 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
128 	uint64_t pd_addr;
129 
130 	/* TODO: move that into ASIC specific code */
131 	if (adev->asic_type >= CHIP_VEGA10) {
132 		uint64_t flags = AMDGPU_PTE_VALID;
133 
134 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
135 		pd_addr |= flags;
136 	} else {
137 		pd_addr = amdgpu_bo_gpu_offset(bo);
138 	}
139 	return pd_addr;
140 }
141 
142 /**
143  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
144  *
145  * @adev: amdgpu_device pointer
146  * @cpu_pt_addr: cpu address of the page table
147  * @gpu_page_idx: entry in the page table to update
148  * @addr: dst addr to write into pte/pde
149  * @flags: access flags
150  *
151  * Update the page tables using CPU.
152  */
153 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
154 				uint32_t gpu_page_idx, uint64_t addr,
155 				uint64_t flags)
156 {
157 	void __iomem *ptr = (void *)cpu_pt_addr;
158 	uint64_t value;
159 
160 	/*
161 	 * The following is for PTE only. GART does not have PDEs.
162 	*/
163 	value = addr & 0x0000FFFFFFFFF000ULL;
164 	value |= flags;
165 	writeq(value, ptr + (gpu_page_idx * 8));
166 
167 	return 0;
168 }
169 
170 /**
171  * amdgpu_gmc_agp_addr - return the address in the AGP address space
172  *
173  * @bo: TTM BO which needs the address, must be in GTT domain
174  *
175  * Tries to figure out how to access the BO through the AGP aperture. Returns
176  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
177  */
178 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
179 {
180 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
181 
182 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
183 		return AMDGPU_BO_INVALID_OFFSET;
184 
185 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
186 		return AMDGPU_BO_INVALID_OFFSET;
187 
188 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
189 }
190 
191 /**
192  * amdgpu_gmc_vram_location - try to find VRAM location
193  *
194  * @adev: amdgpu device structure holding all necessary information
195  * @mc: memory controller structure holding memory information
196  * @base: base address at which to put VRAM
197  *
198  * Function will try to place VRAM at base address provided
199  * as parameter.
200  */
201 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
202 			      u64 base)
203 {
204 	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
205 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
206 
207 	mc->vram_start = base;
208 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
209 	if (limit < mc->real_vram_size)
210 		mc->real_vram_size = limit;
211 
212 	if (vis_limit && vis_limit < mc->visible_vram_size)
213 		mc->visible_vram_size = vis_limit;
214 
215 	if (mc->real_vram_size < mc->visible_vram_size)
216 		mc->visible_vram_size = mc->real_vram_size;
217 
218 	if (mc->xgmi.num_physical_nodes == 0) {
219 		mc->fb_start = mc->vram_start;
220 		mc->fb_end = mc->vram_end;
221 	}
222 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
223 			mc->mc_vram_size >> 20, mc->vram_start,
224 			mc->vram_end, mc->real_vram_size >> 20);
225 }
226 
227 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
228  *
229  * @adev: amdgpu device structure holding all necessary information
230  * @mc: memory controller structure holding memory information
231  *
232  * This function is only used if use GART for FB translation. In such
233  * case, we use sysvm aperture (vmid0 page tables) for both vram
234  * and gart (aka system memory) access.
235  *
236  * GPUVM (and our organization of vmid0 page tables) require sysvm
237  * aperture to be placed at a location aligned with 8 times of native
238  * page size. For example, if vm_context0_cntl.page_table_block_size
239  * is 12, then native page size is 8G (2M*2^12), sysvm should start
240  * with a 64G aligned address. For simplicity, we just put sysvm at
241  * address 0. So vram start at address 0 and gart is right after vram.
242  */
243 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
244 {
245 	u64 hive_vram_start = 0;
246 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
247 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
248 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
249 	mc->gart_start = hive_vram_end + 1;
250 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
251 	mc->fb_start = hive_vram_start;
252 	mc->fb_end = hive_vram_end;
253 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
254 			mc->mc_vram_size >> 20, mc->vram_start,
255 			mc->vram_end, mc->real_vram_size >> 20);
256 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
257 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
258 }
259 
260 /**
261  * amdgpu_gmc_gart_location - try to find GART location
262  *
263  * @adev: amdgpu device structure holding all necessary information
264  * @mc: memory controller structure holding memory information
265  *
266  * Function will place try to place GART before or after VRAM.
267  * If GART size is bigger than space left then we ajust GART size.
268  * Thus function will never fails.
269  */
270 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
271 {
272 	const uint64_t four_gb = 0x100000000ULL;
273 	u64 size_af, size_bf;
274 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
275 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
276 
277 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
278 	 * the GART base on a 4GB boundary as well.
279 	 */
280 	size_bf = mc->fb_start;
281 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
282 
283 	if (mc->gart_size > max(size_bf, size_af)) {
284 		dev_warn(adev->dev, "limiting GART\n");
285 		mc->gart_size = max(size_bf, size_af);
286 	}
287 
288 	if ((size_bf >= mc->gart_size && size_bf < size_af) ||
289 	    (size_af < mc->gart_size))
290 		mc->gart_start = 0;
291 	else
292 		mc->gart_start = max_mc_address - mc->gart_size + 1;
293 
294 	mc->gart_start &= ~(four_gb - 1);
295 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
296 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
297 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
298 }
299 
300 /**
301  * amdgpu_gmc_agp_location - try to find AGP location
302  * @adev: amdgpu device structure holding all necessary information
303  * @mc: memory controller structure holding memory information
304  *
305  * Function will place try to find a place for the AGP BAR in the MC address
306  * space.
307  *
308  * AGP BAR will be assigned the largest available hole in the address space.
309  * Should be called after VRAM and GART locations are setup.
310  */
311 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
312 {
313 	const uint64_t sixteen_gb = 1ULL << 34;
314 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
315 	u64 size_af, size_bf;
316 
317 	if (amdgpu_sriov_vf(adev)) {
318 		mc->agp_start = 0xffffffffffff;
319 		mc->agp_end = 0x0;
320 		mc->agp_size = 0;
321 
322 		return;
323 	}
324 
325 	if (mc->fb_start > mc->gart_start) {
326 		size_bf = (mc->fb_start & sixteen_gb_mask) -
327 			ALIGN(mc->gart_end + 1, sixteen_gb);
328 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
329 	} else {
330 		size_bf = mc->fb_start & sixteen_gb_mask;
331 		size_af = (mc->gart_start & sixteen_gb_mask) -
332 			ALIGN(mc->fb_end + 1, sixteen_gb);
333 	}
334 
335 	if (size_bf > size_af) {
336 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
337 		mc->agp_size = size_bf;
338 	} else {
339 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
340 		mc->agp_size = size_af;
341 	}
342 
343 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
344 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
345 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
346 }
347 
348 /**
349  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
350  *
351  * @addr: 48 bit physical address, page aligned (36 significant bits)
352  * @pasid: 16 bit process address space identifier
353  */
354 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
355 {
356 	return addr << 4 | pasid;
357 }
358 
359 /**
360  * amdgpu_gmc_filter_faults - filter VM faults
361  *
362  * @adev: amdgpu device structure
363  * @ih: interrupt ring that the fault received from
364  * @addr: address of the VM fault
365  * @pasid: PASID of the process causing the fault
366  * @timestamp: timestamp of the fault
367  *
368  * Returns:
369  * True if the fault was filtered and should not be processed further.
370  * False if the fault is a new one and needs to be handled.
371  */
372 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
373 			      struct amdgpu_ih_ring *ih, uint64_t addr,
374 			      uint16_t pasid, uint64_t timestamp)
375 {
376 	struct amdgpu_gmc *gmc = &adev->gmc;
377 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
378 	struct amdgpu_gmc_fault *fault;
379 	uint32_t hash;
380 
381 	/* Stale retry fault if timestamp goes backward */
382 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
383 		return true;
384 
385 	/* If we don't have space left in the ring buffer return immediately */
386 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
387 		AMDGPU_GMC_FAULT_TIMEOUT;
388 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
389 		return true;
390 
391 	/* Try to find the fault in the hash */
392 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
393 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
394 	while (fault->timestamp >= stamp) {
395 		uint64_t tmp;
396 
397 		if (atomic64_read(&fault->key) == key)
398 			return true;
399 
400 		tmp = fault->timestamp;
401 		fault = &gmc->fault_ring[fault->next];
402 
403 		/* Check if the entry was reused */
404 		if (fault->timestamp >= tmp)
405 			break;
406 	}
407 
408 	/* Add the fault to the ring */
409 	fault = &gmc->fault_ring[gmc->last_fault];
410 	atomic64_set(&fault->key, key);
411 	fault->timestamp = timestamp;
412 
413 	/* And update the hash */
414 	fault->next = gmc->fault_hash[hash].idx;
415 	gmc->fault_hash[hash].idx = gmc->last_fault++;
416 	return false;
417 }
418 
419 /**
420  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
421  *
422  * @adev: amdgpu device structure
423  * @addr: address of the VM fault
424  * @pasid: PASID of the process causing the fault
425  *
426  * Remove the address from fault filter, then future vm fault on this address
427  * will pass to retry fault handler to recover.
428  */
429 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
430 				     uint16_t pasid)
431 {
432 	struct amdgpu_gmc *gmc = &adev->gmc;
433 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
434 	struct amdgpu_gmc_fault *fault;
435 	uint32_t hash;
436 	uint64_t tmp;
437 
438 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
439 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
440 	do {
441 		if (atomic64_cmpxchg(&fault->key, key, 0) == key)
442 			break;
443 
444 		tmp = fault->timestamp;
445 		fault = &gmc->fault_ring[fault->next];
446 	} while (fault->timestamp < tmp);
447 }
448 
449 int amdgpu_gmc_ras_early_init(struct amdgpu_device *adev)
450 {
451 	if (!adev->gmc.xgmi.connected_to_cpu) {
452 		adev->gmc.xgmi.ras = &xgmi_ras;
453 		amdgpu_ras_register_ras_block(adev, &adev->gmc.xgmi.ras->ras_block);
454 		adev->gmc.xgmi.ras_if = &adev->gmc.xgmi.ras->ras_block.ras_comm;
455 	}
456 
457 	return 0;
458 }
459 
460 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
461 {
462 	return 0;
463 }
464 
465 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
466 {
467 
468 }
469 
470 	/*
471 	 * The latest engine allocation on gfx9/10 is:
472 	 * Engine 2, 3: firmware
473 	 * Engine 0, 1, 4~16: amdgpu ring,
474 	 *                    subject to change when ring number changes
475 	 * Engine 17: Gart flushes
476 	 */
477 #define GFXHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
478 #define MMHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
479 
480 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
481 {
482 	struct amdgpu_ring *ring;
483 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] =
484 		{GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP,
485 		GFXHUB_FREE_VM_INV_ENGS_BITMAP};
486 	unsigned i;
487 	unsigned vmhub, inv_eng;
488 
489 	if (adev->enable_mes) {
490 		/* reserve engine 5 for firmware */
491 		for (vmhub = 0; vmhub < AMDGPU_MAX_VMHUBS; vmhub++)
492 			vm_inv_engs[vmhub] &= ~(1 << 5);
493 	}
494 
495 	for (i = 0; i < adev->num_rings; ++i) {
496 		ring = adev->rings[i];
497 		vmhub = ring->funcs->vmhub;
498 
499 		if (ring == &adev->mes.ring)
500 			continue;
501 
502 		inv_eng = ffs(vm_inv_engs[vmhub]);
503 		if (!inv_eng) {
504 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
505 				ring->name);
506 			return -EINVAL;
507 		}
508 
509 		ring->vm_inv_eng = inv_eng - 1;
510 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
511 
512 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
513 			 ring->name, ring->vm_inv_eng, ring->funcs->vmhub);
514 	}
515 
516 	return 0;
517 }
518 
519 /**
520  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
521  * @adev: amdgpu_device pointer
522  *
523  * Check and set if an the device @adev supports Trusted Memory
524  * Zones (TMZ).
525  */
526 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
527 {
528 	switch (adev->ip_versions[GC_HWIP][0]) {
529 	/* RAVEN */
530 	case IP_VERSION(9, 2, 2):
531 	case IP_VERSION(9, 1, 0):
532 	/* RENOIR looks like RAVEN */
533 	case IP_VERSION(9, 3, 0):
534 	/* GC 10.3.7 */
535 	case IP_VERSION(10, 3, 7):
536 		if (amdgpu_tmz == 0) {
537 			adev->gmc.tmz_enabled = false;
538 			dev_info(adev->dev,
539 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
540 		} else {
541 			adev->gmc.tmz_enabled = true;
542 			dev_info(adev->dev,
543 				 "Trusted Memory Zone (TMZ) feature enabled\n");
544 		}
545 		break;
546 	case IP_VERSION(10, 1, 10):
547 	case IP_VERSION(10, 1, 1):
548 	case IP_VERSION(10, 1, 2):
549 	case IP_VERSION(10, 1, 3):
550 	case IP_VERSION(10, 3, 0):
551 	case IP_VERSION(10, 3, 2):
552 	case IP_VERSION(10, 3, 4):
553 	case IP_VERSION(10, 3, 5):
554 	/* VANGOGH */
555 	case IP_VERSION(10, 3, 1):
556 	/* YELLOW_CARP*/
557 	case IP_VERSION(10, 3, 3):
558 	case IP_VERSION(11, 0, 1):
559 	case IP_VERSION(11, 0, 4):
560 		/* Don't enable it by default yet.
561 		 */
562 		if (amdgpu_tmz < 1) {
563 			adev->gmc.tmz_enabled = false;
564 			dev_info(adev->dev,
565 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
566 		} else {
567 			adev->gmc.tmz_enabled = true;
568 			dev_info(adev->dev,
569 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
570 		}
571 		break;
572 	default:
573 		adev->gmc.tmz_enabled = false;
574 		dev_info(adev->dev,
575 			 "Trusted Memory Zone (TMZ) feature not supported\n");
576 		break;
577 	}
578 }
579 
580 /**
581  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
582  * @adev: amdgpu_device pointer
583  *
584  * Set a per asic default for the no-retry parameter.
585  *
586  */
587 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
588 {
589 	struct amdgpu_gmc *gmc = &adev->gmc;
590 	uint32_t gc_ver = adev->ip_versions[GC_HWIP][0];
591 	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
592 				gc_ver == IP_VERSION(9, 3, 0) ||
593 				gc_ver == IP_VERSION(9, 4, 0) ||
594 				gc_ver == IP_VERSION(9, 4, 1) ||
595 				gc_ver == IP_VERSION(9, 4, 2) ||
596 				gc_ver >= IP_VERSION(10, 3, 0));
597 
598 	gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
599 }
600 
601 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
602 				   bool enable)
603 {
604 	struct amdgpu_vmhub *hub;
605 	u32 tmp, reg, i;
606 
607 	hub = &adev->vmhub[hub_type];
608 	for (i = 0; i < 16; i++) {
609 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
610 
611 		tmp = (hub_type == AMDGPU_GFXHUB_0) ?
612 			RREG32_SOC15_IP(GC, reg) :
613 			RREG32_SOC15_IP(MMHUB, reg);
614 
615 		if (enable)
616 			tmp |= hub->vm_cntx_cntl_vm_fault;
617 		else
618 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
619 
620 		(hub_type == AMDGPU_GFXHUB_0) ?
621 			WREG32_SOC15_IP(GC, reg, tmp) :
622 			WREG32_SOC15_IP(MMHUB, reg, tmp);
623 	}
624 }
625 
626 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
627 {
628 	unsigned size;
629 
630 	/*
631 	 * Some ASICs need to reserve a region of video memory to avoid access
632 	 * from driver
633 	 */
634 	adev->mman.stolen_reserved_offset = 0;
635 	adev->mman.stolen_reserved_size = 0;
636 
637 	/*
638 	 * TODO:
639 	 * Currently there is a bug where some memory client outside
640 	 * of the driver writes to first 8M of VRAM on S3 resume,
641 	 * this overrides GART which by default gets placed in first 8M and
642 	 * causes VM_FAULTS once GTT is accessed.
643 	 * Keep the stolen memory reservation until the while this is not solved.
644 	 */
645 	switch (adev->asic_type) {
646 	case CHIP_VEGA10:
647 		adev->mman.keep_stolen_vga_memory = true;
648 		/*
649 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
650 		 */
651 #ifdef CONFIG_X86
652 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
653 			adev->mman.stolen_reserved_offset = 0x500000;
654 			adev->mman.stolen_reserved_size = 0x200000;
655 		}
656 #endif
657 		break;
658 	case CHIP_RAVEN:
659 	case CHIP_RENOIR:
660 		adev->mman.keep_stolen_vga_memory = true;
661 		break;
662 	case CHIP_YELLOW_CARP:
663 		if (amdgpu_discovery == 0) {
664 			adev->mman.stolen_reserved_offset = 0x1ffb0000;
665 			adev->mman.stolen_reserved_size = 64 * PAGE_SIZE;
666 		}
667 		break;
668 	default:
669 		adev->mman.keep_stolen_vga_memory = false;
670 		break;
671 	}
672 
673 	if (amdgpu_sriov_vf(adev) ||
674 	    !amdgpu_device_has_display_hardware(adev)) {
675 		size = 0;
676 	} else {
677 		size = amdgpu_gmc_get_vbios_fb_size(adev);
678 
679 		if (adev->mman.keep_stolen_vga_memory)
680 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
681 	}
682 
683 	/* set to 0 if the pre-OS buffer uses up most of vram */
684 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
685 		size = 0;
686 
687 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
688 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
689 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
690 	} else {
691 		adev->mman.stolen_vga_size = size;
692 		adev->mman.stolen_extended_size = 0;
693 	}
694 }
695 
696 /**
697  * amdgpu_gmc_init_pdb0 - initialize PDB0
698  *
699  * @adev: amdgpu_device pointer
700  *
701  * This function is only used when GART page table is used
702  * for FB address translatioin. In such a case, we construct
703  * a 2-level system VM page table: PDB0->PTB, to cover both
704  * VRAM of the hive and system memory.
705  *
706  * PDB0 is static, initialized once on driver initialization.
707  * The first n entries of PDB0 are used as PTE by setting
708  * P bit to 1, pointing to VRAM. The n+1'th entry points
709  * to a big PTB covering system memory.
710  *
711  */
712 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
713 {
714 	int i;
715 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
716 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
717 	 */
718 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
719 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
720 	u64 vram_addr = adev->vm_manager.vram_base_offset -
721 		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
722 	u64 vram_end = vram_addr + vram_size;
723 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
724 	int idx;
725 
726 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
727 		return;
728 
729 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
730 	flags |= AMDGPU_PTE_WRITEABLE;
731 	flags |= AMDGPU_PTE_SNOOPED;
732 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
733 	flags |= AMDGPU_PDE_PTE;
734 
735 	/* The first n PDE0 entries are used as PTE,
736 	 * pointing to vram
737 	 */
738 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
739 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
740 
741 	/* The n+1'th PDE0 entry points to a huge
742 	 * PTB who has more than 512 entries each
743 	 * pointing to a 4K system page
744 	 */
745 	flags = AMDGPU_PTE_VALID;
746 	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
747 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
748 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
749 	drm_dev_exit(idx);
750 }
751 
752 /**
753  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
754  * address
755  *
756  * @adev: amdgpu_device pointer
757  * @mc_addr: MC address of buffer
758  */
759 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
760 {
761 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
762 }
763 
764 /**
765  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
766  * GPU's view
767  *
768  * @adev: amdgpu_device pointer
769  * @bo: amdgpu buffer object
770  */
771 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
772 {
773 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
774 }
775 
776 /**
777  * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
778  * from CPU's view
779  *
780  * @adev: amdgpu_device pointer
781  * @bo: amdgpu buffer object
782  */
783 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
784 {
785 	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
786 }
787 
788 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
789 {
790 	struct amdgpu_bo *vram_bo = NULL;
791 	uint64_t vram_gpu = 0;
792 	void *vram_ptr = NULL;
793 
794 	int ret, size = 0x100000;
795 	uint8_t cptr[10];
796 
797 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
798 				AMDGPU_GEM_DOMAIN_VRAM,
799 				&vram_bo,
800 				&vram_gpu,
801 				&vram_ptr);
802 	if (ret)
803 		return ret;
804 
805 	memset(vram_ptr, 0x86, size);
806 	memset(cptr, 0x86, 10);
807 
808 	/**
809 	 * Check the start, the mid, and the end of the memory if the content of
810 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
811 	 * workable.
812 	 *
813 	 * Note: If check the each byte of whole 1M bo, it will cost too many
814 	 * seconds, so here, we just pick up three parts for emulation.
815 	 */
816 	ret = memcmp(vram_ptr, cptr, 10);
817 	if (ret)
818 		return ret;
819 
820 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
821 	if (ret)
822 		return ret;
823 
824 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
825 	if (ret)
826 		return ret;
827 
828 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
829 			&vram_ptr);
830 
831 	return 0;
832 }
833