1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_xgmi.h"
36 
37 #include <drm/drm_drv.h>
38 
39 /**
40  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
41  *
42  * @adev: amdgpu_device pointer
43  *
44  * Allocate video memory for pdb0 and map it for CPU access
45  * Returns 0 for success, error for failure.
46  */
47 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
48 {
49 	int r;
50 	struct amdgpu_bo_param bp;
51 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
52 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
53 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;
54 
55 	memset(&bp, 0, sizeof(bp));
56 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
57 	bp.byte_align = PAGE_SIZE;
58 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
59 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
60 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
61 	bp.type = ttm_bo_type_kernel;
62 	bp.resv = NULL;
63 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
64 
65 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
66 	if (r)
67 		return r;
68 
69 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
70 	if (unlikely(r != 0))
71 		goto bo_reserve_failure;
72 
73 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
74 	if (r)
75 		goto bo_pin_failure;
76 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
77 	if (r)
78 		goto bo_kmap_failure;
79 
80 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
81 	return 0;
82 
83 bo_kmap_failure:
84 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
85 bo_pin_failure:
86 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
87 bo_reserve_failure:
88 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
89 	return r;
90 }
91 
92 /**
93  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
94  *
95  * @bo: the BO to get the PDE for
96  * @level: the level in the PD hirarchy
97  * @addr: resulting addr
98  * @flags: resulting flags
99  *
100  * Get the address and flags to be used for a PDE (Page Directory Entry).
101  */
102 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
103 			       uint64_t *addr, uint64_t *flags)
104 {
105 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
106 
107 	switch (bo->tbo.resource->mem_type) {
108 	case TTM_PL_TT:
109 		*addr = bo->tbo.ttm->dma_address[0];
110 		break;
111 	case TTM_PL_VRAM:
112 		*addr = amdgpu_bo_gpu_offset(bo);
113 		break;
114 	default:
115 		*addr = 0;
116 		break;
117 	}
118 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
119 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
120 }
121 
122 /*
123  * amdgpu_gmc_pd_addr - return the address of the root directory
124  */
125 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
126 {
127 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
128 	uint64_t pd_addr;
129 
130 	/* TODO: move that into ASIC specific code */
131 	if (adev->asic_type >= CHIP_VEGA10) {
132 		uint64_t flags = AMDGPU_PTE_VALID;
133 
134 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
135 		pd_addr |= flags;
136 	} else {
137 		pd_addr = amdgpu_bo_gpu_offset(bo);
138 	}
139 	return pd_addr;
140 }
141 
142 /**
143  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
144  *
145  * @adev: amdgpu_device pointer
146  * @cpu_pt_addr: cpu address of the page table
147  * @gpu_page_idx: entry in the page table to update
148  * @addr: dst addr to write into pte/pde
149  * @flags: access flags
150  *
151  * Update the page tables using CPU.
152  */
153 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
154 				uint32_t gpu_page_idx, uint64_t addr,
155 				uint64_t flags)
156 {
157 	void __iomem *ptr = (void *)cpu_pt_addr;
158 	uint64_t value;
159 
160 	/*
161 	 * The following is for PTE only. GART does not have PDEs.
162 	*/
163 	value = addr & 0x0000FFFFFFFFF000ULL;
164 	value |= flags;
165 	writeq(value, ptr + (gpu_page_idx * 8));
166 
167 	return 0;
168 }
169 
170 /**
171  * amdgpu_gmc_agp_addr - return the address in the AGP address space
172  *
173  * @bo: TTM BO which needs the address, must be in GTT domain
174  *
175  * Tries to figure out how to access the BO through the AGP aperture. Returns
176  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
177  */
178 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
179 {
180 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
181 
182 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
183 		return AMDGPU_BO_INVALID_OFFSET;
184 
185 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
186 		return AMDGPU_BO_INVALID_OFFSET;
187 
188 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
189 }
190 
191 /**
192  * amdgpu_gmc_vram_location - try to find VRAM location
193  *
194  * @adev: amdgpu device structure holding all necessary information
195  * @mc: memory controller structure holding memory information
196  * @base: base address at which to put VRAM
197  *
198  * Function will try to place VRAM at base address provided
199  * as parameter.
200  */
201 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
202 			      u64 base)
203 {
204 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
205 
206 	mc->vram_start = base;
207 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
208 	if (limit && limit < mc->real_vram_size)
209 		mc->real_vram_size = limit;
210 
211 	if (mc->xgmi.num_physical_nodes == 0) {
212 		mc->fb_start = mc->vram_start;
213 		mc->fb_end = mc->vram_end;
214 	}
215 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
216 			mc->mc_vram_size >> 20, mc->vram_start,
217 			mc->vram_end, mc->real_vram_size >> 20);
218 }
219 
220 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
221  *
222  * @adev: amdgpu device structure holding all necessary information
223  * @mc: memory controller structure holding memory information
224  *
225  * This function is only used if use GART for FB translation. In such
226  * case, we use sysvm aperture (vmid0 page tables) for both vram
227  * and gart (aka system memory) access.
228  *
229  * GPUVM (and our organization of vmid0 page tables) require sysvm
230  * aperture to be placed at a location aligned with 8 times of native
231  * page size. For example, if vm_context0_cntl.page_table_block_size
232  * is 12, then native page size is 8G (2M*2^12), sysvm should start
233  * with a 64G aligned address. For simplicity, we just put sysvm at
234  * address 0. So vram start at address 0 and gart is right after vram.
235  */
236 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
237 {
238 	u64 hive_vram_start = 0;
239 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
240 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
241 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
242 	mc->gart_start = hive_vram_end + 1;
243 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
244 	mc->fb_start = hive_vram_start;
245 	mc->fb_end = hive_vram_end;
246 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
247 			mc->mc_vram_size >> 20, mc->vram_start,
248 			mc->vram_end, mc->real_vram_size >> 20);
249 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
250 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
251 }
252 
253 /**
254  * amdgpu_gmc_gart_location - try to find GART location
255  *
256  * @adev: amdgpu device structure holding all necessary information
257  * @mc: memory controller structure holding memory information
258  *
259  * Function will place try to place GART before or after VRAM.
260  * If GART size is bigger than space left then we ajust GART size.
261  * Thus function will never fails.
262  */
263 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
264 {
265 	const uint64_t four_gb = 0x100000000ULL;
266 	u64 size_af, size_bf;
267 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
268 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
269 
270 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
271 	 * the GART base on a 4GB boundary as well.
272 	 */
273 	size_bf = mc->fb_start;
274 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
275 
276 	if (mc->gart_size > max(size_bf, size_af)) {
277 		dev_warn(adev->dev, "limiting GART\n");
278 		mc->gart_size = max(size_bf, size_af);
279 	}
280 
281 	if ((size_bf >= mc->gart_size && size_bf < size_af) ||
282 	    (size_af < mc->gart_size))
283 		mc->gart_start = 0;
284 	else
285 		mc->gart_start = max_mc_address - mc->gart_size + 1;
286 
287 	mc->gart_start &= ~(four_gb - 1);
288 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
289 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
290 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
291 }
292 
293 /**
294  * amdgpu_gmc_agp_location - try to find AGP location
295  * @adev: amdgpu device structure holding all necessary information
296  * @mc: memory controller structure holding memory information
297  *
298  * Function will place try to find a place for the AGP BAR in the MC address
299  * space.
300  *
301  * AGP BAR will be assigned the largest available hole in the address space.
302  * Should be called after VRAM and GART locations are setup.
303  */
304 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
305 {
306 	const uint64_t sixteen_gb = 1ULL << 34;
307 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
308 	u64 size_af, size_bf;
309 
310 	if (amdgpu_sriov_vf(adev)) {
311 		mc->agp_start = 0xffffffffffff;
312 		mc->agp_end = 0x0;
313 		mc->agp_size = 0;
314 
315 		return;
316 	}
317 
318 	if (mc->fb_start > mc->gart_start) {
319 		size_bf = (mc->fb_start & sixteen_gb_mask) -
320 			ALIGN(mc->gart_end + 1, sixteen_gb);
321 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
322 	} else {
323 		size_bf = mc->fb_start & sixteen_gb_mask;
324 		size_af = (mc->gart_start & sixteen_gb_mask) -
325 			ALIGN(mc->fb_end + 1, sixteen_gb);
326 	}
327 
328 	if (size_bf > size_af) {
329 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
330 		mc->agp_size = size_bf;
331 	} else {
332 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
333 		mc->agp_size = size_af;
334 	}
335 
336 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
337 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
338 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
339 }
340 
341 /**
342  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
343  *
344  * @addr: 48 bit physical address, page aligned (36 significant bits)
345  * @pasid: 16 bit process address space identifier
346  */
347 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
348 {
349 	return addr << 4 | pasid;
350 }
351 
352 /**
353  * amdgpu_gmc_filter_faults - filter VM faults
354  *
355  * @adev: amdgpu device structure
356  * @ih: interrupt ring that the fault received from
357  * @addr: address of the VM fault
358  * @pasid: PASID of the process causing the fault
359  * @timestamp: timestamp of the fault
360  *
361  * Returns:
362  * True if the fault was filtered and should not be processed further.
363  * False if the fault is a new one and needs to be handled.
364  */
365 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
366 			      struct amdgpu_ih_ring *ih, uint64_t addr,
367 			      uint16_t pasid, uint64_t timestamp)
368 {
369 	struct amdgpu_gmc *gmc = &adev->gmc;
370 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
371 	struct amdgpu_gmc_fault *fault;
372 	uint32_t hash;
373 
374 	/* Stale retry fault if timestamp goes backward */
375 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
376 		return true;
377 
378 	/* If we don't have space left in the ring buffer return immediately */
379 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
380 		AMDGPU_GMC_FAULT_TIMEOUT;
381 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
382 		return true;
383 
384 	/* Try to find the fault in the hash */
385 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
386 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
387 	while (fault->timestamp >= stamp) {
388 		uint64_t tmp;
389 
390 		if (atomic64_read(&fault->key) == key)
391 			return true;
392 
393 		tmp = fault->timestamp;
394 		fault = &gmc->fault_ring[fault->next];
395 
396 		/* Check if the entry was reused */
397 		if (fault->timestamp >= tmp)
398 			break;
399 	}
400 
401 	/* Add the fault to the ring */
402 	fault = &gmc->fault_ring[gmc->last_fault];
403 	atomic64_set(&fault->key, key);
404 	fault->timestamp = timestamp;
405 
406 	/* And update the hash */
407 	fault->next = gmc->fault_hash[hash].idx;
408 	gmc->fault_hash[hash].idx = gmc->last_fault++;
409 	return false;
410 }
411 
412 /**
413  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
414  *
415  * @adev: amdgpu device structure
416  * @addr: address of the VM fault
417  * @pasid: PASID of the process causing the fault
418  *
419  * Remove the address from fault filter, then future vm fault on this address
420  * will pass to retry fault handler to recover.
421  */
422 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
423 				     uint16_t pasid)
424 {
425 	struct amdgpu_gmc *gmc = &adev->gmc;
426 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
427 	struct amdgpu_gmc_fault *fault;
428 	uint32_t hash;
429 	uint64_t tmp;
430 
431 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
432 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
433 	do {
434 		if (atomic64_cmpxchg(&fault->key, key, 0) == key)
435 			break;
436 
437 		tmp = fault->timestamp;
438 		fault = &gmc->fault_ring[fault->next];
439 	} while (fault->timestamp < tmp);
440 }
441 
442 int amdgpu_gmc_ras_early_init(struct amdgpu_device *adev)
443 {
444 	if (!adev->gmc.xgmi.connected_to_cpu) {
445 		adev->gmc.xgmi.ras = &xgmi_ras;
446 		amdgpu_ras_register_ras_block(adev, &adev->gmc.xgmi.ras->ras_block);
447 		adev->gmc.xgmi.ras_if = &adev->gmc.xgmi.ras->ras_block.ras_comm;
448 	}
449 
450 	return 0;
451 }
452 
453 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
454 {
455 	return 0;
456 }
457 
458 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
459 {
460 
461 }
462 
463 	/*
464 	 * The latest engine allocation on gfx9/10 is:
465 	 * Engine 2, 3: firmware
466 	 * Engine 0, 1, 4~16: amdgpu ring,
467 	 *                    subject to change when ring number changes
468 	 * Engine 17: Gart flushes
469 	 */
470 #define GFXHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
471 #define MMHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
472 
473 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
474 {
475 	struct amdgpu_ring *ring;
476 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] =
477 		{GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP,
478 		GFXHUB_FREE_VM_INV_ENGS_BITMAP};
479 	unsigned i;
480 	unsigned vmhub, inv_eng;
481 
482 	for (i = 0; i < adev->num_rings; ++i) {
483 		ring = adev->rings[i];
484 		vmhub = ring->funcs->vmhub;
485 
486 		if (ring == &adev->mes.ring)
487 			continue;
488 
489 		inv_eng = ffs(vm_inv_engs[vmhub]);
490 		if (!inv_eng) {
491 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
492 				ring->name);
493 			return -EINVAL;
494 		}
495 
496 		ring->vm_inv_eng = inv_eng - 1;
497 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
498 
499 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
500 			 ring->name, ring->vm_inv_eng, ring->funcs->vmhub);
501 	}
502 
503 	return 0;
504 }
505 
506 /**
507  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
508  * @adev: amdgpu_device pointer
509  *
510  * Check and set if an the device @adev supports Trusted Memory
511  * Zones (TMZ).
512  */
513 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
514 {
515 	switch (adev->ip_versions[GC_HWIP][0]) {
516 	/* RAVEN */
517 	case IP_VERSION(9, 2, 2):
518 	case IP_VERSION(9, 1, 0):
519 	/* RENOIR looks like RAVEN */
520 	case IP_VERSION(9, 3, 0):
521 		if (amdgpu_tmz == 0) {
522 			adev->gmc.tmz_enabled = false;
523 			dev_info(adev->dev,
524 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
525 		} else {
526 			adev->gmc.tmz_enabled = true;
527 			dev_info(adev->dev,
528 				 "Trusted Memory Zone (TMZ) feature enabled\n");
529 		}
530 		break;
531 	case IP_VERSION(10, 1, 10):
532 	case IP_VERSION(10, 1, 1):
533 	case IP_VERSION(10, 1, 2):
534 	case IP_VERSION(10, 1, 3):
535 	case IP_VERSION(10, 3, 0):
536 	case IP_VERSION(10, 3, 2):
537 	case IP_VERSION(10, 3, 4):
538 	case IP_VERSION(10, 3, 5):
539 	/* VANGOGH */
540 	case IP_VERSION(10, 3, 1):
541 	/* YELLOW_CARP*/
542 	case IP_VERSION(10, 3, 3):
543 	/* GC 10.3.7 */
544 	case IP_VERSION(10, 3, 7):
545 		/* Don't enable it by default yet.
546 		 */
547 		if (amdgpu_tmz < 1) {
548 			adev->gmc.tmz_enabled = false;
549 			dev_info(adev->dev,
550 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
551 		} else {
552 			adev->gmc.tmz_enabled = true;
553 			dev_info(adev->dev,
554 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
555 		}
556 		break;
557 	default:
558 		adev->gmc.tmz_enabled = false;
559 		dev_info(adev->dev,
560 			 "Trusted Memory Zone (TMZ) feature not supported\n");
561 		break;
562 	}
563 }
564 
565 /**
566  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
567  * @adev: amdgpu_device pointer
568  *
569  * Set a per asic default for the no-retry parameter.
570  *
571  */
572 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
573 {
574 	struct amdgpu_gmc *gmc = &adev->gmc;
575 
576 	switch (adev->ip_versions[GC_HWIP][0]) {
577 	case IP_VERSION(9, 0, 1):
578 	case IP_VERSION(9, 3, 0):
579 	case IP_VERSION(9, 4, 0):
580 	case IP_VERSION(9, 4, 1):
581 	case IP_VERSION(9, 4, 2):
582 	case IP_VERSION(10, 3, 3):
583 	case IP_VERSION(10, 3, 4):
584 	case IP_VERSION(10, 3, 5):
585 	case IP_VERSION(10, 3, 6):
586 	case IP_VERSION(10, 3, 7):
587 		/*
588 		 * noretry = 0 will cause kfd page fault tests fail
589 		 * for some ASICs, so set default to 1 for these ASICs.
590 		 */
591 		if (amdgpu_noretry == -1)
592 			gmc->noretry = 1;
593 		else
594 			gmc->noretry = amdgpu_noretry;
595 		break;
596 	default:
597 		/* Raven currently has issues with noretry
598 		 * regardless of what we decide for other
599 		 * asics, we should leave raven with
600 		 * noretry = 0 until we root cause the
601 		 * issues.
602 		 *
603 		 * default this to 0 for now, but we may want
604 		 * to change this in the future for certain
605 		 * GPUs as it can increase performance in
606 		 * certain cases.
607 		 */
608 		if (amdgpu_noretry == -1)
609 			gmc->noretry = 0;
610 		else
611 			gmc->noretry = amdgpu_noretry;
612 		break;
613 	}
614 }
615 
616 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
617 				   bool enable)
618 {
619 	struct amdgpu_vmhub *hub;
620 	u32 tmp, reg, i;
621 
622 	hub = &adev->vmhub[hub_type];
623 	for (i = 0; i < 16; i++) {
624 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
625 
626 		tmp = (hub_type == AMDGPU_GFXHUB_0) ?
627 			RREG32_SOC15_IP(GC, reg) :
628 			RREG32_SOC15_IP(MMHUB, reg);
629 
630 		if (enable)
631 			tmp |= hub->vm_cntx_cntl_vm_fault;
632 		else
633 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
634 
635 		(hub_type == AMDGPU_GFXHUB_0) ?
636 			WREG32_SOC15_IP(GC, reg, tmp) :
637 			WREG32_SOC15_IP(MMHUB, reg, tmp);
638 	}
639 }
640 
641 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
642 {
643 	unsigned size;
644 
645 	/*
646 	 * Some ASICs need to reserve a region of video memory to avoid access
647 	 * from driver
648 	 */
649 	adev->mman.stolen_reserved_offset = 0;
650 	adev->mman.stolen_reserved_size = 0;
651 
652 	/*
653 	 * TODO:
654 	 * Currently there is a bug where some memory client outside
655 	 * of the driver writes to first 8M of VRAM on S3 resume,
656 	 * this overrides GART which by default gets placed in first 8M and
657 	 * causes VM_FAULTS once GTT is accessed.
658 	 * Keep the stolen memory reservation until the while this is not solved.
659 	 */
660 	switch (adev->asic_type) {
661 	case CHIP_VEGA10:
662 		adev->mman.keep_stolen_vga_memory = true;
663 		/*
664 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
665 		 */
666 #ifdef CONFIG_X86
667 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
668 			adev->mman.stolen_reserved_offset = 0x500000;
669 			adev->mman.stolen_reserved_size = 0x200000;
670 		}
671 #endif
672 		break;
673 	case CHIP_RAVEN:
674 	case CHIP_RENOIR:
675 		adev->mman.keep_stolen_vga_memory = true;
676 		break;
677 	case CHIP_YELLOW_CARP:
678 		if (amdgpu_discovery == 0) {
679 			adev->mman.stolen_reserved_offset = 0x1ffb0000;
680 			adev->mman.stolen_reserved_size = 64 * PAGE_SIZE;
681 		}
682 		break;
683 	default:
684 		adev->mman.keep_stolen_vga_memory = false;
685 		break;
686 	}
687 
688 	if (amdgpu_sriov_vf(adev) ||
689 	    !amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) {
690 		size = 0;
691 	} else {
692 		size = amdgpu_gmc_get_vbios_fb_size(adev);
693 
694 		if (adev->mman.keep_stolen_vga_memory)
695 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
696 	}
697 
698 	/* set to 0 if the pre-OS buffer uses up most of vram */
699 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
700 		size = 0;
701 
702 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
703 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
704 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
705 	} else {
706 		adev->mman.stolen_vga_size = size;
707 		adev->mman.stolen_extended_size = 0;
708 	}
709 }
710 
711 /**
712  * amdgpu_gmc_init_pdb0 - initialize PDB0
713  *
714  * @adev: amdgpu_device pointer
715  *
716  * This function is only used when GART page table is used
717  * for FB address translatioin. In such a case, we construct
718  * a 2-level system VM page table: PDB0->PTB, to cover both
719  * VRAM of the hive and system memory.
720  *
721  * PDB0 is static, initialized once on driver initialization.
722  * The first n entries of PDB0 are used as PTE by setting
723  * P bit to 1, pointing to VRAM. The n+1'th entry points
724  * to a big PTB covering system memory.
725  *
726  */
727 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
728 {
729 	int i;
730 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
731 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
732 	 */
733 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
734 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
735 	u64 vram_addr = adev->vm_manager.vram_base_offset -
736 		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
737 	u64 vram_end = vram_addr + vram_size;
738 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
739 	int idx;
740 
741 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
742 		return;
743 
744 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
745 	flags |= AMDGPU_PTE_WRITEABLE;
746 	flags |= AMDGPU_PTE_SNOOPED;
747 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
748 	flags |= AMDGPU_PDE_PTE;
749 
750 	/* The first n PDE0 entries are used as PTE,
751 	 * pointing to vram
752 	 */
753 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
754 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
755 
756 	/* The n+1'th PDE0 entry points to a huge
757 	 * PTB who has more than 512 entries each
758 	 * pointing to a 4K system page
759 	 */
760 	flags = AMDGPU_PTE_VALID;
761 	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
762 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
763 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
764 	drm_dev_exit(idx);
765 }
766 
767 /**
768  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
769  * address
770  *
771  * @adev: amdgpu_device pointer
772  * @mc_addr: MC address of buffer
773  */
774 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
775 {
776 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
777 }
778 
779 /**
780  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
781  * GPU's view
782  *
783  * @adev: amdgpu_device pointer
784  * @bo: amdgpu buffer object
785  */
786 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
787 {
788 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
789 }
790 
791 /**
792  * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
793  * from CPU's view
794  *
795  * @adev: amdgpu_device pointer
796  * @bo: amdgpu buffer object
797  */
798 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
799 {
800 	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
801 }
802 
803 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
804 {
805 	struct amdgpu_bo *vram_bo = NULL;
806 	uint64_t vram_gpu = 0;
807 	void *vram_ptr = NULL;
808 
809 	int ret, size = 0x100000;
810 	uint8_t cptr[10];
811 
812 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
813 				AMDGPU_GEM_DOMAIN_VRAM,
814 				&vram_bo,
815 				&vram_gpu,
816 				&vram_ptr);
817 	if (ret)
818 		return ret;
819 
820 	memset(vram_ptr, 0x86, size);
821 	memset(cptr, 0x86, 10);
822 
823 	/**
824 	 * Check the start, the mid, and the end of the memory if the content of
825 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
826 	 * workable.
827 	 *
828 	 * Note: If check the each byte of whole 1M bo, it will cost too many
829 	 * seconds, so here, we just pick up three parts for emulation.
830 	 */
831 	ret = memcmp(vram_ptr, cptr, 10);
832 	if (ret)
833 		return ret;
834 
835 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
836 	if (ret)
837 		return ret;
838 
839 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
840 	if (ret)
841 		return ret;
842 
843 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
844 			&vram_ptr);
845 
846 	return 0;
847 }
848