1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 32 /* delay 0.1 second to enable gfx off feature */ 33 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 34 35 #define GFX_OFF_NO_DELAY 0 36 37 /* 38 * GPU GFX IP block helpers function. 39 */ 40 41 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 42 int pipe, int queue) 43 { 44 int bit = 0; 45 46 bit += mec * adev->gfx.mec.num_pipe_per_mec 47 * adev->gfx.mec.num_queue_per_pipe; 48 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 49 bit += queue; 50 51 return bit; 52 } 53 54 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 55 int *mec, int *pipe, int *queue) 56 { 57 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 58 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 59 % adev->gfx.mec.num_pipe_per_mec; 60 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 61 / adev->gfx.mec.num_pipe_per_mec; 62 63 } 64 65 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 66 int mec, int pipe, int queue) 67 { 68 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 69 adev->gfx.mec.queue_bitmap); 70 } 71 72 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 73 int me, int pipe, int queue) 74 { 75 int bit = 0; 76 77 bit += me * adev->gfx.me.num_pipe_per_me 78 * adev->gfx.me.num_queue_per_pipe; 79 bit += pipe * adev->gfx.me.num_queue_per_pipe; 80 bit += queue; 81 82 return bit; 83 } 84 85 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 86 int *me, int *pipe, int *queue) 87 { 88 *queue = bit % adev->gfx.me.num_queue_per_pipe; 89 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 90 % adev->gfx.me.num_pipe_per_me; 91 *me = (bit / adev->gfx.me.num_queue_per_pipe) 92 / adev->gfx.me.num_pipe_per_me; 93 } 94 95 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 96 int me, int pipe, int queue) 97 { 98 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 99 adev->gfx.me.queue_bitmap); 100 } 101 102 /** 103 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 104 * 105 * @mask: array in which the per-shader array disable masks will be stored 106 * @max_se: number of SEs 107 * @max_sh: number of SHs 108 * 109 * The bitmask of CUs to be disabled in the shader array determined by se and 110 * sh is stored in mask[se * max_sh + sh]. 111 */ 112 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh) 113 { 114 unsigned se, sh, cu; 115 const char *p; 116 117 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 118 119 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 120 return; 121 122 p = amdgpu_disable_cu; 123 for (;;) { 124 char *next; 125 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 126 if (ret < 3) { 127 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 128 return; 129 } 130 131 if (se < max_se && sh < max_sh && cu < 16) { 132 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 133 mask[se * max_sh + sh] |= 1u << cu; 134 } else { 135 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 136 se, sh, cu); 137 } 138 139 next = strchr(p, ','); 140 if (!next) 141 break; 142 p = next + 1; 143 } 144 } 145 146 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 147 { 148 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 149 } 150 151 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 152 { 153 if (amdgpu_compute_multipipe != -1) { 154 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 155 amdgpu_compute_multipipe); 156 return amdgpu_compute_multipipe == 1; 157 } 158 159 if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)) 160 return true; 161 162 /* FIXME: spreading the queues across pipes causes perf regressions 163 * on POLARIS11 compute workloads */ 164 if (adev->asic_type == CHIP_POLARIS11) 165 return false; 166 167 return adev->gfx.mec.num_mec > 1; 168 } 169 170 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 171 struct amdgpu_ring *ring) 172 { 173 int queue = ring->queue; 174 int pipe = ring->pipe; 175 176 /* Policy: use pipe1 queue0 as high priority graphics queue if we 177 * have more than one gfx pipe. 178 */ 179 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 180 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 181 int me = ring->me; 182 int bit; 183 184 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 185 if (ring == &adev->gfx.gfx_ring[bit]) 186 return true; 187 } 188 189 return false; 190 } 191 192 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 193 struct amdgpu_ring *ring) 194 { 195 /* Policy: use 1st queue as high priority compute queue if we 196 * have more than one compute queue. 197 */ 198 if (adev->gfx.num_compute_rings > 1 && 199 ring == &adev->gfx.compute_ring[0]) 200 return true; 201 202 return false; 203 } 204 205 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 206 { 207 int i, queue, pipe; 208 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 209 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 210 adev->gfx.mec.num_queue_per_pipe, 211 adev->gfx.num_compute_rings); 212 213 if (multipipe_policy) { 214 /* policy: make queues evenly cross all pipes on MEC1 only */ 215 for (i = 0; i < max_queues_per_mec; i++) { 216 pipe = i % adev->gfx.mec.num_pipe_per_mec; 217 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 218 adev->gfx.mec.num_queue_per_pipe; 219 220 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 221 adev->gfx.mec.queue_bitmap); 222 } 223 } else { 224 /* policy: amdgpu owns all queues in the given pipe */ 225 for (i = 0; i < max_queues_per_mec; ++i) 226 set_bit(i, adev->gfx.mec.queue_bitmap); 227 } 228 229 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", bitmap_weight(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 230 } 231 232 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 233 { 234 int i, queue, pipe; 235 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 236 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 237 adev->gfx.me.num_queue_per_pipe; 238 239 if (multipipe_policy) { 240 /* policy: amdgpu owns the first queue per pipe at this stage 241 * will extend to mulitple queues per pipe later */ 242 for (i = 0; i < max_queues_per_me; i++) { 243 pipe = i % adev->gfx.me.num_pipe_per_me; 244 queue = (i / adev->gfx.me.num_pipe_per_me) % 245 adev->gfx.me.num_queue_per_pipe; 246 247 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 248 adev->gfx.me.queue_bitmap); 249 } 250 } else { 251 for (i = 0; i < max_queues_per_me; ++i) 252 set_bit(i, adev->gfx.me.queue_bitmap); 253 } 254 255 /* update the number of active graphics rings */ 256 adev->gfx.num_gfx_rings = 257 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 258 } 259 260 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 261 struct amdgpu_ring *ring) 262 { 263 int queue_bit; 264 int mec, pipe, queue; 265 266 queue_bit = adev->gfx.mec.num_mec 267 * adev->gfx.mec.num_pipe_per_mec 268 * adev->gfx.mec.num_queue_per_pipe; 269 270 while (--queue_bit >= 0) { 271 if (test_bit(queue_bit, adev->gfx.mec.queue_bitmap)) 272 continue; 273 274 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 275 276 /* 277 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 278 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 279 * only can be issued on queue 0. 280 */ 281 if ((mec == 1 && pipe > 1) || queue != 0) 282 continue; 283 284 ring->me = mec + 1; 285 ring->pipe = pipe; 286 ring->queue = queue; 287 288 return 0; 289 } 290 291 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 292 return -EINVAL; 293 } 294 295 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 296 struct amdgpu_ring *ring, 297 struct amdgpu_irq_src *irq) 298 { 299 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 300 int r = 0; 301 302 spin_lock_init(&kiq->ring_lock); 303 304 ring->adev = NULL; 305 ring->ring_obj = NULL; 306 ring->use_doorbell = true; 307 ring->doorbell_index = adev->doorbell_index.kiq; 308 309 r = amdgpu_gfx_kiq_acquire(adev, ring); 310 if (r) 311 return r; 312 313 ring->eop_gpu_addr = kiq->eop_gpu_addr; 314 ring->no_scheduler = true; 315 sprintf(ring->name, "kiq_%d.%d.%d", ring->me, ring->pipe, ring->queue); 316 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 317 AMDGPU_RING_PRIO_DEFAULT, NULL); 318 if (r) 319 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 320 321 return r; 322 } 323 324 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 325 { 326 amdgpu_ring_fini(ring); 327 } 328 329 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev) 330 { 331 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 332 333 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 334 } 335 336 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 337 unsigned hpd_size) 338 { 339 int r; 340 u32 *hpd; 341 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 342 343 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 344 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 345 &kiq->eop_gpu_addr, (void **)&hpd); 346 if (r) { 347 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 348 return r; 349 } 350 351 memset(hpd, 0, hpd_size); 352 353 r = amdgpu_bo_reserve(kiq->eop_obj, true); 354 if (unlikely(r != 0)) 355 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 356 amdgpu_bo_kunmap(kiq->eop_obj); 357 amdgpu_bo_unreserve(kiq->eop_obj); 358 359 return 0; 360 } 361 362 /* create MQD for each compute/gfx queue */ 363 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 364 unsigned mqd_size) 365 { 366 struct amdgpu_ring *ring = NULL; 367 int r, i; 368 369 /* create MQD for KIQ */ 370 ring = &adev->gfx.kiq.ring; 371 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 372 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 373 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 374 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 375 * KIQ MQD no matter SRIOV or Bare-metal 376 */ 377 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 378 AMDGPU_GEM_DOMAIN_VRAM | 379 AMDGPU_GEM_DOMAIN_GTT, 380 &ring->mqd_obj, 381 &ring->mqd_gpu_addr, 382 &ring->mqd_ptr); 383 if (r) { 384 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 385 return r; 386 } 387 388 /* prepare MQD backup */ 389 adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS] = kmalloc(mqd_size, GFP_KERNEL); 390 if (!adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]) 391 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 392 } 393 394 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 395 /* create MQD for each KGQ */ 396 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 397 ring = &adev->gfx.gfx_ring[i]; 398 if (!ring->mqd_obj) { 399 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 400 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 401 &ring->mqd_gpu_addr, &ring->mqd_ptr); 402 if (r) { 403 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 404 return r; 405 } 406 407 /* prepare MQD backup */ 408 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 409 if (!adev->gfx.me.mqd_backup[i]) 410 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 411 } 412 } 413 } 414 415 /* create MQD for each KCQ */ 416 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 417 ring = &adev->gfx.compute_ring[i]; 418 if (!ring->mqd_obj) { 419 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 420 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 421 &ring->mqd_gpu_addr, &ring->mqd_ptr); 422 if (r) { 423 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 424 return r; 425 } 426 427 /* prepare MQD backup */ 428 adev->gfx.mec.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 429 if (!adev->gfx.mec.mqd_backup[i]) 430 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 431 } 432 } 433 434 return 0; 435 } 436 437 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev) 438 { 439 struct amdgpu_ring *ring = NULL; 440 int i; 441 442 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 443 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 444 ring = &adev->gfx.gfx_ring[i]; 445 kfree(adev->gfx.me.mqd_backup[i]); 446 amdgpu_bo_free_kernel(&ring->mqd_obj, 447 &ring->mqd_gpu_addr, 448 &ring->mqd_ptr); 449 } 450 } 451 452 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 453 ring = &adev->gfx.compute_ring[i]; 454 kfree(adev->gfx.mec.mqd_backup[i]); 455 amdgpu_bo_free_kernel(&ring->mqd_obj, 456 &ring->mqd_gpu_addr, 457 &ring->mqd_ptr); 458 } 459 460 ring = &adev->gfx.kiq.ring; 461 kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]); 462 amdgpu_bo_free_kernel(&ring->mqd_obj, 463 &ring->mqd_gpu_addr, 464 &ring->mqd_ptr); 465 } 466 467 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev) 468 { 469 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 470 struct amdgpu_ring *kiq_ring = &kiq->ring; 471 int i, r = 0; 472 473 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 474 return -EINVAL; 475 476 spin_lock(&adev->gfx.kiq.ring_lock); 477 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 478 adev->gfx.num_compute_rings)) { 479 spin_unlock(&adev->gfx.kiq.ring_lock); 480 return -ENOMEM; 481 } 482 483 for (i = 0; i < adev->gfx.num_compute_rings; i++) 484 kiq->pmf->kiq_unmap_queues(kiq_ring, &adev->gfx.compute_ring[i], 485 RESET_QUEUES, 0, 0); 486 487 if (adev->gfx.kiq.ring.sched.ready && !adev->job_hang) 488 r = amdgpu_ring_test_helper(kiq_ring); 489 spin_unlock(&adev->gfx.kiq.ring_lock); 490 491 return r; 492 } 493 494 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 495 int queue_bit) 496 { 497 int mec, pipe, queue; 498 int set_resource_bit = 0; 499 500 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 501 502 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 503 504 return set_resource_bit; 505 } 506 507 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev) 508 { 509 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 510 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; 511 uint64_t queue_mask = 0; 512 int r, i; 513 514 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 515 return -EINVAL; 516 517 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 518 if (!test_bit(i, adev->gfx.mec.queue_bitmap)) 519 continue; 520 521 /* This situation may be hit in the future if a new HW 522 * generation exposes more than 64 queues. If so, the 523 * definition of queue_mask needs updating */ 524 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 525 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 526 break; 527 } 528 529 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 530 } 531 532 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 533 kiq_ring->queue); 534 spin_lock(&adev->gfx.kiq.ring_lock); 535 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 536 adev->gfx.num_compute_rings + 537 kiq->pmf->set_resources_size); 538 if (r) { 539 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 540 spin_unlock(&adev->gfx.kiq.ring_lock); 541 return r; 542 } 543 544 if (adev->enable_mes) 545 queue_mask = ~0ULL; 546 547 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 548 for (i = 0; i < adev->gfx.num_compute_rings; i++) 549 kiq->pmf->kiq_map_queues(kiq_ring, &adev->gfx.compute_ring[i]); 550 551 r = amdgpu_ring_test_helper(kiq_ring); 552 spin_unlock(&adev->gfx.kiq.ring_lock); 553 if (r) 554 DRM_ERROR("KCQ enable failed\n"); 555 556 return r; 557 } 558 559 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 560 * 561 * @adev: amdgpu_device pointer 562 * @bool enable true: enable gfx off feature, false: disable gfx off feature 563 * 564 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 565 * 2. other client can send request to disable gfx off feature, the request should be honored. 566 * 3. other client can cancel their request of disable gfx off feature 567 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 568 */ 569 570 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 571 { 572 unsigned long delay = GFX_OFF_DELAY_ENABLE; 573 574 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 575 return; 576 577 mutex_lock(&adev->gfx.gfx_off_mutex); 578 579 if (enable) { 580 /* If the count is already 0, it means there's an imbalance bug somewhere. 581 * Note that the bug may be in a different caller than the one which triggers the 582 * WARN_ON_ONCE. 583 */ 584 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 585 goto unlock; 586 587 adev->gfx.gfx_off_req_count--; 588 589 if (adev->gfx.gfx_off_req_count == 0 && 590 !adev->gfx.gfx_off_state) { 591 /* If going to s2idle, no need to wait */ 592 if (adev->in_s0ix) { 593 if (!amdgpu_dpm_set_powergating_by_smu(adev, 594 AMD_IP_BLOCK_TYPE_GFX, true)) 595 adev->gfx.gfx_off_state = true; 596 } else { 597 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 598 delay); 599 } 600 } 601 } else { 602 if (adev->gfx.gfx_off_req_count == 0) { 603 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 604 605 if (adev->gfx.gfx_off_state && 606 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 607 adev->gfx.gfx_off_state = false; 608 609 if (adev->gfx.funcs->init_spm_golden) { 610 dev_dbg(adev->dev, 611 "GFXOFF is disabled, re-init SPM golden settings\n"); 612 amdgpu_gfx_init_spm_golden(adev); 613 } 614 } 615 } 616 617 adev->gfx.gfx_off_req_count++; 618 } 619 620 unlock: 621 mutex_unlock(&adev->gfx.gfx_off_mutex); 622 } 623 624 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 625 { 626 int r = 0; 627 628 mutex_lock(&adev->gfx.gfx_off_mutex); 629 630 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 631 632 mutex_unlock(&adev->gfx.gfx_off_mutex); 633 634 return r; 635 } 636 637 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 638 { 639 int r = 0; 640 641 mutex_lock(&adev->gfx.gfx_off_mutex); 642 643 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 644 645 mutex_unlock(&adev->gfx.gfx_off_mutex); 646 647 return r; 648 } 649 650 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 651 { 652 int r = 0; 653 654 mutex_lock(&adev->gfx.gfx_off_mutex); 655 656 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 657 658 mutex_unlock(&adev->gfx.gfx_off_mutex); 659 660 return r; 661 } 662 663 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 664 { 665 666 int r = 0; 667 668 mutex_lock(&adev->gfx.gfx_off_mutex); 669 670 r = amdgpu_dpm_get_status_gfxoff(adev, value); 671 672 mutex_unlock(&adev->gfx.gfx_off_mutex); 673 674 return r; 675 } 676 677 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 678 { 679 int r; 680 681 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 682 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 683 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 684 685 r = amdgpu_ras_block_late_init(adev, ras_block); 686 if (r) 687 return r; 688 689 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 690 if (r) 691 goto late_fini; 692 } else { 693 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 694 } 695 696 return 0; 697 late_fini: 698 amdgpu_ras_block_late_fini(adev, ras_block); 699 return r; 700 } 701 702 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 703 { 704 int err = 0; 705 struct amdgpu_gfx_ras *ras = NULL; 706 707 /* adev->gfx.ras is NULL, which means gfx does not 708 * support ras function, then do nothing here. 709 */ 710 if (!adev->gfx.ras) 711 return 0; 712 713 ras = adev->gfx.ras; 714 715 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 716 if (err) { 717 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 718 return err; 719 } 720 721 strcpy(ras->ras_block.ras_comm.name, "gfx"); 722 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 723 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 724 adev->gfx.ras_if = &ras->ras_block.ras_comm; 725 726 /* If not define special ras_late_init function, use gfx default ras_late_init */ 727 if (!ras->ras_block.ras_late_init) 728 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 729 730 /* If not defined special ras_cb function, use default ras_cb */ 731 if (!ras->ras_block.ras_cb) 732 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 733 734 return 0; 735 } 736 737 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 738 struct amdgpu_iv_entry *entry) 739 { 740 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 741 return adev->gfx.ras->poison_consumption_handler(adev, entry); 742 743 return 0; 744 } 745 746 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 747 void *err_data, 748 struct amdgpu_iv_entry *entry) 749 { 750 /* TODO ue will trigger an interrupt. 751 * 752 * When “Full RAS” is enabled, the per-IP interrupt sources should 753 * be disabled and the driver should only look for the aggregated 754 * interrupt via sync flood 755 */ 756 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 757 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 758 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 759 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 760 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 761 amdgpu_ras_reset_gpu(adev); 762 } 763 return AMDGPU_RAS_SUCCESS; 764 } 765 766 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 767 struct amdgpu_irq_src *source, 768 struct amdgpu_iv_entry *entry) 769 { 770 struct ras_common_if *ras_if = adev->gfx.ras_if; 771 struct ras_dispatch_if ih_data = { 772 .entry = entry, 773 }; 774 775 if (!ras_if) 776 return 0; 777 778 ih_data.head = *ras_if; 779 780 DRM_ERROR("CP ECC ERROR IRQ\n"); 781 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 782 return 0; 783 } 784 785 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) 786 { 787 signed long r, cnt = 0; 788 unsigned long flags; 789 uint32_t seq, reg_val_offs = 0, value = 0; 790 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 791 struct amdgpu_ring *ring = &kiq->ring; 792 793 if (amdgpu_device_skip_hw_access(adev)) 794 return 0; 795 796 if (adev->mes.ring.sched.ready) 797 return amdgpu_mes_rreg(adev, reg); 798 799 BUG_ON(!ring->funcs->emit_rreg); 800 801 spin_lock_irqsave(&kiq->ring_lock, flags); 802 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 803 pr_err("critical bug! too many kiq readers\n"); 804 goto failed_unlock; 805 } 806 amdgpu_ring_alloc(ring, 32); 807 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 808 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 809 if (r) 810 goto failed_undo; 811 812 amdgpu_ring_commit(ring); 813 spin_unlock_irqrestore(&kiq->ring_lock, flags); 814 815 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 816 817 /* don't wait anymore for gpu reset case because this way may 818 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 819 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 820 * never return if we keep waiting in virt_kiq_rreg, which cause 821 * gpu_recover() hang there. 822 * 823 * also don't wait anymore for IRQ context 824 * */ 825 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 826 goto failed_kiq_read; 827 828 might_sleep(); 829 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 830 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 831 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 832 } 833 834 if (cnt > MAX_KIQ_REG_TRY) 835 goto failed_kiq_read; 836 837 mb(); 838 value = adev->wb.wb[reg_val_offs]; 839 amdgpu_device_wb_free(adev, reg_val_offs); 840 return value; 841 842 failed_undo: 843 amdgpu_ring_undo(ring); 844 failed_unlock: 845 spin_unlock_irqrestore(&kiq->ring_lock, flags); 846 failed_kiq_read: 847 if (reg_val_offs) 848 amdgpu_device_wb_free(adev, reg_val_offs); 849 dev_err(adev->dev, "failed to read reg:%x\n", reg); 850 return ~0; 851 } 852 853 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) 854 { 855 signed long r, cnt = 0; 856 unsigned long flags; 857 uint32_t seq; 858 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 859 struct amdgpu_ring *ring = &kiq->ring; 860 861 BUG_ON(!ring->funcs->emit_wreg); 862 863 if (amdgpu_device_skip_hw_access(adev)) 864 return; 865 866 if (adev->mes.ring.sched.ready) { 867 amdgpu_mes_wreg(adev, reg, v); 868 return; 869 } 870 871 spin_lock_irqsave(&kiq->ring_lock, flags); 872 amdgpu_ring_alloc(ring, 32); 873 amdgpu_ring_emit_wreg(ring, reg, v); 874 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 875 if (r) 876 goto failed_undo; 877 878 amdgpu_ring_commit(ring); 879 spin_unlock_irqrestore(&kiq->ring_lock, flags); 880 881 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 882 883 /* don't wait anymore for gpu reset case because this way may 884 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 885 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 886 * never return if we keep waiting in virt_kiq_rreg, which cause 887 * gpu_recover() hang there. 888 * 889 * also don't wait anymore for IRQ context 890 * */ 891 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 892 goto failed_kiq_write; 893 894 might_sleep(); 895 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 896 897 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 898 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 899 } 900 901 if (cnt > MAX_KIQ_REG_TRY) 902 goto failed_kiq_write; 903 904 return; 905 906 failed_undo: 907 amdgpu_ring_undo(ring); 908 spin_unlock_irqrestore(&kiq->ring_lock, flags); 909 failed_kiq_write: 910 dev_err(adev->dev, "failed to write reg:%x\n", reg); 911 } 912 913 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 914 { 915 if (amdgpu_num_kcq == -1) { 916 return 8; 917 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 918 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 919 return 8; 920 } 921 return amdgpu_num_kcq; 922 } 923 924 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 925 uint32_t ucode_id) 926 { 927 const struct gfx_firmware_header_v1_0 *cp_hdr; 928 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 929 struct amdgpu_firmware_info *info = NULL; 930 const struct firmware *ucode_fw; 931 unsigned int fw_size; 932 933 switch (ucode_id) { 934 case AMDGPU_UCODE_ID_CP_PFP: 935 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 936 adev->gfx.pfp_fw->data; 937 adev->gfx.pfp_fw_version = 938 le32_to_cpu(cp_hdr->header.ucode_version); 939 adev->gfx.pfp_feature_version = 940 le32_to_cpu(cp_hdr->ucode_feature_version); 941 ucode_fw = adev->gfx.pfp_fw; 942 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 943 break; 944 case AMDGPU_UCODE_ID_CP_RS64_PFP: 945 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 946 adev->gfx.pfp_fw->data; 947 adev->gfx.pfp_fw_version = 948 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 949 adev->gfx.pfp_feature_version = 950 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 951 ucode_fw = adev->gfx.pfp_fw; 952 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 953 break; 954 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 955 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 956 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 957 adev->gfx.pfp_fw->data; 958 ucode_fw = adev->gfx.pfp_fw; 959 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 960 break; 961 case AMDGPU_UCODE_ID_CP_ME: 962 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 963 adev->gfx.me_fw->data; 964 adev->gfx.me_fw_version = 965 le32_to_cpu(cp_hdr->header.ucode_version); 966 adev->gfx.me_feature_version = 967 le32_to_cpu(cp_hdr->ucode_feature_version); 968 ucode_fw = adev->gfx.me_fw; 969 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 970 break; 971 case AMDGPU_UCODE_ID_CP_RS64_ME: 972 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 973 adev->gfx.me_fw->data; 974 adev->gfx.me_fw_version = 975 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 976 adev->gfx.me_feature_version = 977 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 978 ucode_fw = adev->gfx.me_fw; 979 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 980 break; 981 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 982 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 983 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 984 adev->gfx.me_fw->data; 985 ucode_fw = adev->gfx.me_fw; 986 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 987 break; 988 case AMDGPU_UCODE_ID_CP_CE: 989 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 990 adev->gfx.ce_fw->data; 991 adev->gfx.ce_fw_version = 992 le32_to_cpu(cp_hdr->header.ucode_version); 993 adev->gfx.ce_feature_version = 994 le32_to_cpu(cp_hdr->ucode_feature_version); 995 ucode_fw = adev->gfx.ce_fw; 996 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 997 break; 998 case AMDGPU_UCODE_ID_CP_MEC1: 999 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1000 adev->gfx.mec_fw->data; 1001 adev->gfx.mec_fw_version = 1002 le32_to_cpu(cp_hdr->header.ucode_version); 1003 adev->gfx.mec_feature_version = 1004 le32_to_cpu(cp_hdr->ucode_feature_version); 1005 ucode_fw = adev->gfx.mec_fw; 1006 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1007 le32_to_cpu(cp_hdr->jt_size) * 4; 1008 break; 1009 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1010 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1011 adev->gfx.mec_fw->data; 1012 ucode_fw = adev->gfx.mec_fw; 1013 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1014 break; 1015 case AMDGPU_UCODE_ID_CP_MEC2: 1016 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1017 adev->gfx.mec2_fw->data; 1018 adev->gfx.mec2_fw_version = 1019 le32_to_cpu(cp_hdr->header.ucode_version); 1020 adev->gfx.mec2_feature_version = 1021 le32_to_cpu(cp_hdr->ucode_feature_version); 1022 ucode_fw = adev->gfx.mec2_fw; 1023 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1024 le32_to_cpu(cp_hdr->jt_size) * 4; 1025 break; 1026 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1027 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1028 adev->gfx.mec2_fw->data; 1029 ucode_fw = adev->gfx.mec2_fw; 1030 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1031 break; 1032 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1033 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1034 adev->gfx.mec_fw->data; 1035 adev->gfx.mec_fw_version = 1036 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1037 adev->gfx.mec_feature_version = 1038 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1039 ucode_fw = adev->gfx.mec_fw; 1040 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1041 break; 1042 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1043 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1044 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1045 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1046 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1047 adev->gfx.mec_fw->data; 1048 ucode_fw = adev->gfx.mec_fw; 1049 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1050 break; 1051 default: 1052 break; 1053 } 1054 1055 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1056 info = &adev->firmware.ucode[ucode_id]; 1057 info->ucode_id = ucode_id; 1058 info->fw = ucode_fw; 1059 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1060 } 1061 } 1062