xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c (revision c8cefb99fc811304fff9590677994531ff0ac992)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 
32 /* delay 0.1 second to enable gfx off feature */
33 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
34 
35 #define GFX_OFF_NO_DELAY 0
36 
37 /*
38  * GPU GFX IP block helpers function.
39  */
40 
41 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
42 				int pipe, int queue)
43 {
44 	int bit = 0;
45 
46 	bit += mec * adev->gfx.mec.num_pipe_per_mec
47 		* adev->gfx.mec.num_queue_per_pipe;
48 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
49 	bit += queue;
50 
51 	return bit;
52 }
53 
54 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
55 				 int *mec, int *pipe, int *queue)
56 {
57 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
58 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
59 		% adev->gfx.mec.num_pipe_per_mec;
60 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
61 	       / adev->gfx.mec.num_pipe_per_mec;
62 
63 }
64 
65 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
66 				     int xcc_id, int mec, int pipe, int queue)
67 {
68 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
69 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
70 }
71 
72 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
73 			       int me, int pipe, int queue)
74 {
75 	int bit = 0;
76 
77 	bit += me * adev->gfx.me.num_pipe_per_me
78 		* adev->gfx.me.num_queue_per_pipe;
79 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
80 	bit += queue;
81 
82 	return bit;
83 }
84 
85 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
86 				int *me, int *pipe, int *queue)
87 {
88 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
89 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
90 		% adev->gfx.me.num_pipe_per_me;
91 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
92 		/ adev->gfx.me.num_pipe_per_me;
93 }
94 
95 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
96 				    int me, int pipe, int queue)
97 {
98 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
99 			adev->gfx.me.queue_bitmap);
100 }
101 
102 /**
103  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
104  *
105  * @mask: array in which the per-shader array disable masks will be stored
106  * @max_se: number of SEs
107  * @max_sh: number of SHs
108  *
109  * The bitmask of CUs to be disabled in the shader array determined by se and
110  * sh is stored in mask[se * max_sh + sh].
111  */
112 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh)
113 {
114 	unsigned se, sh, cu;
115 	const char *p;
116 
117 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
118 
119 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
120 		return;
121 
122 	p = amdgpu_disable_cu;
123 	for (;;) {
124 		char *next;
125 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
126 		if (ret < 3) {
127 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
128 			return;
129 		}
130 
131 		if (se < max_se && sh < max_sh && cu < 16) {
132 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
133 			mask[se * max_sh + sh] |= 1u << cu;
134 		} else {
135 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
136 				  se, sh, cu);
137 		}
138 
139 		next = strchr(p, ',');
140 		if (!next)
141 			break;
142 		p = next + 1;
143 	}
144 }
145 
146 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
147 {
148 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
149 }
150 
151 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
152 {
153 	if (amdgpu_compute_multipipe != -1) {
154 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
155 			 amdgpu_compute_multipipe);
156 		return amdgpu_compute_multipipe == 1;
157 	}
158 
159 	if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
160 		return true;
161 
162 	/* FIXME: spreading the queues across pipes causes perf regressions
163 	 * on POLARIS11 compute workloads */
164 	if (adev->asic_type == CHIP_POLARIS11)
165 		return false;
166 
167 	return adev->gfx.mec.num_mec > 1;
168 }
169 
170 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
171 						struct amdgpu_ring *ring)
172 {
173 	int queue = ring->queue;
174 	int pipe = ring->pipe;
175 
176 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
177 	 * have more than one gfx pipe.
178 	 */
179 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
180 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
181 		int me = ring->me;
182 		int bit;
183 
184 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
185 		if (ring == &adev->gfx.gfx_ring[bit])
186 			return true;
187 	}
188 
189 	return false;
190 }
191 
192 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
193 					       struct amdgpu_ring *ring)
194 {
195 	/* Policy: use 1st queue as high priority compute queue if we
196 	 * have more than one compute queue.
197 	 */
198 	if (adev->gfx.num_compute_rings > 1 &&
199 	    ring == &adev->gfx.compute_ring[0])
200 		return true;
201 
202 	return false;
203 }
204 
205 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
206 {
207 	int i, j, queue, pipe;
208 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
209 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
210 				     adev->gfx.mec.num_queue_per_pipe,
211 				     adev->gfx.num_compute_rings);
212 	int num_xcd = (adev->gfx.num_xcd > 1) ? adev->gfx.num_xcd : 1;
213 
214 	if (multipipe_policy) {
215 		/* policy: make queues evenly cross all pipes on MEC1 only
216 		 * for multiple xcc, just use the original policy for simplicity */
217 		for (j = 0; j < num_xcd; j++) {
218 			for (i = 0; i < max_queues_per_mec; i++) {
219 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
220 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
221 					 adev->gfx.mec.num_queue_per_pipe;
222 
223 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
224 					adev->gfx.mec_bitmap[j].queue_bitmap);
225 			}
226 		}
227 	} else {
228 		/* policy: amdgpu owns all queues in the given pipe */
229 		for (j = 0; j < num_xcd; j++) {
230 			for (i = 0; i < max_queues_per_mec; ++i)
231 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
232 		}
233 	}
234 
235 	for (j = 0; j < num_xcd; j++) {
236 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
237 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
238 	}
239 }
240 
241 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
242 {
243 	int i, queue, pipe;
244 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
245 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
246 					adev->gfx.me.num_queue_per_pipe;
247 
248 	if (multipipe_policy) {
249 		/* policy: amdgpu owns the first queue per pipe at this stage
250 		 * will extend to mulitple queues per pipe later */
251 		for (i = 0; i < max_queues_per_me; i++) {
252 			pipe = i % adev->gfx.me.num_pipe_per_me;
253 			queue = (i / adev->gfx.me.num_pipe_per_me) %
254 				adev->gfx.me.num_queue_per_pipe;
255 
256 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
257 				adev->gfx.me.queue_bitmap);
258 		}
259 	} else {
260 		for (i = 0; i < max_queues_per_me; ++i)
261 			set_bit(i, adev->gfx.me.queue_bitmap);
262 	}
263 
264 	/* update the number of active graphics rings */
265 	adev->gfx.num_gfx_rings =
266 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
267 }
268 
269 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
270 				  struct amdgpu_ring *ring, int xcc_id)
271 {
272 	int queue_bit;
273 	int mec, pipe, queue;
274 
275 	queue_bit = adev->gfx.mec.num_mec
276 		    * adev->gfx.mec.num_pipe_per_mec
277 		    * adev->gfx.mec.num_queue_per_pipe;
278 
279 	while (--queue_bit >= 0) {
280 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
281 			continue;
282 
283 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
284 
285 		/*
286 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
287 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
288 		 * only can be issued on queue 0.
289 		 */
290 		if ((mec == 1 && pipe > 1) || queue != 0)
291 			continue;
292 
293 		ring->me = mec + 1;
294 		ring->pipe = pipe;
295 		ring->queue = queue;
296 
297 		return 0;
298 	}
299 
300 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
301 	return -EINVAL;
302 }
303 
304 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
305 			     struct amdgpu_ring *ring,
306 			     struct amdgpu_irq_src *irq, int xcc_id)
307 {
308 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
309 	int r = 0;
310 
311 	spin_lock_init(&kiq->ring_lock);
312 
313 	ring->adev = NULL;
314 	ring->ring_obj = NULL;
315 	ring->use_doorbell = true;
316 	ring->doorbell_index = adev->doorbell_index.kiq;
317 	ring->xcc_id = xcc_id;
318 	ring->vm_hub = AMDGPU_GFXHUB_0;
319 	if (xcc_id >= 1)
320 		ring->doorbell_index = adev->doorbell_index.xcc1_kiq_start +
321 					xcc_id - 1;
322 	else
323 		ring->doorbell_index = adev->doorbell_index.kiq;
324 
325 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
326 	if (r)
327 		return r;
328 
329 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
330 	ring->no_scheduler = true;
331 	sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
332 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
333 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
334 	if (r)
335 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
336 
337 	return r;
338 }
339 
340 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
341 {
342 	amdgpu_ring_fini(ring);
343 }
344 
345 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
346 {
347 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
348 
349 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
350 }
351 
352 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
353 			unsigned hpd_size, int xcc_id)
354 {
355 	int r;
356 	u32 *hpd;
357 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
358 
359 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
360 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
361 				    &kiq->eop_gpu_addr, (void **)&hpd);
362 	if (r) {
363 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
364 		return r;
365 	}
366 
367 	memset(hpd, 0, hpd_size);
368 
369 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
370 	if (unlikely(r != 0))
371 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
372 	amdgpu_bo_kunmap(kiq->eop_obj);
373 	amdgpu_bo_unreserve(kiq->eop_obj);
374 
375 	return 0;
376 }
377 
378 /* create MQD for each compute/gfx queue */
379 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
380 			   unsigned mqd_size, int xcc_id)
381 {
382 	int r, i;
383 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
384 	struct amdgpu_ring *ring = &kiq->ring;
385 
386 	/* create MQD for KIQ */
387 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
388 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
389 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
390 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
391 		 * KIQ MQD no matter SRIOV or Bare-metal
392 		 */
393 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
394 					    AMDGPU_GEM_DOMAIN_VRAM |
395 					    AMDGPU_GEM_DOMAIN_GTT,
396 					    &ring->mqd_obj,
397 					    &ring->mqd_gpu_addr,
398 					    &ring->mqd_ptr);
399 		if (r) {
400 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
401 			return r;
402 		}
403 
404 		/* prepare MQD backup */
405 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
406 		if (!kiq->mqd_backup)
407 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
408 	}
409 
410 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
411 		/* create MQD for each KGQ */
412 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
413 			ring = &adev->gfx.gfx_ring[i];
414 			if (!ring->mqd_obj) {
415 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
416 							    AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj,
417 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
418 				if (r) {
419 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
420 					return r;
421 				}
422 
423 				ring->mqd_size = mqd_size;
424 				/* prepare MQD backup */
425 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
426 				if (!adev->gfx.me.mqd_backup[i])
427 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
428 			}
429 		}
430 	}
431 
432 	/* create MQD for each KCQ */
433 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
434 		ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
435 		if (!ring->mqd_obj) {
436 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
437 						    AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj,
438 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
439 			if (r) {
440 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
441 				return r;
442 			}
443 
444 			ring->mqd_size = mqd_size;
445 			/* prepare MQD backup */
446 			adev->gfx.mec.mqd_backup[i + xcc_id * adev->gfx.num_compute_rings] = kmalloc(mqd_size, GFP_KERNEL);
447 			if (!adev->gfx.mec.mqd_backup[i])
448 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
449 		}
450 	}
451 
452 	return 0;
453 }
454 
455 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
456 {
457 	struct amdgpu_ring *ring = NULL;
458 	int i, j;
459 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
460 
461 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
462 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
463 			ring = &adev->gfx.gfx_ring[i];
464 			kfree(adev->gfx.me.mqd_backup[i]);
465 			amdgpu_bo_free_kernel(&ring->mqd_obj,
466 					      &ring->mqd_gpu_addr,
467 					      &ring->mqd_ptr);
468 		}
469 	}
470 
471 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
472 		j = i + xcc_id * adev->gfx.num_compute_rings;
473 		ring = &adev->gfx.compute_ring[i];
474 		kfree(adev->gfx.mec.mqd_backup[i]);
475 		amdgpu_bo_free_kernel(&ring->mqd_obj,
476 				      &ring->mqd_gpu_addr,
477 				      &ring->mqd_ptr);
478 	}
479 
480 	ring = &kiq->ring;
481 	kfree(kiq->mqd_backup);
482 	kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]);
483 	amdgpu_bo_free_kernel(&ring->mqd_obj,
484 			      &ring->mqd_gpu_addr,
485 			      &ring->mqd_ptr);
486 }
487 
488 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
489 {
490 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
491 	struct amdgpu_ring *kiq_ring = &kiq->ring;
492 	int i, r = 0;
493 	int j;
494 
495 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
496 		return -EINVAL;
497 
498 	spin_lock(&kiq->ring_lock);
499 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
500 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
501 						adev->gfx.num_compute_rings)) {
502 			spin_unlock(&kiq->ring_lock);
503 			return -ENOMEM;
504 		}
505 
506 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
507 			j = i + xcc_id * adev->gfx.num_compute_rings;
508 			kiq->pmf->kiq_unmap_queues(kiq_ring,
509 						   &adev->gfx.compute_ring[i],
510 						   RESET_QUEUES, 0, 0);
511 		}
512 	}
513 
514 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
515 		r = amdgpu_ring_test_helper(kiq_ring);
516 	spin_unlock(&kiq->ring_lock);
517 
518 	return r;
519 }
520 
521 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
522 					int queue_bit)
523 {
524 	int mec, pipe, queue;
525 	int set_resource_bit = 0;
526 
527 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
528 
529 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
530 
531 	return set_resource_bit;
532 }
533 
534 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
535 {
536 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
537 	struct amdgpu_ring *kiq_ring = &kiq->ring;
538 	uint64_t queue_mask = 0;
539 	int r, i, j;
540 
541 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
542 		return -EINVAL;
543 
544 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
545 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
546 			continue;
547 
548 		/* This situation may be hit in the future if a new HW
549 		 * generation exposes more than 64 queues. If so, the
550 		 * definition of queue_mask needs updating */
551 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
552 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
553 			break;
554 		}
555 
556 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
557 	}
558 
559 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
560 							kiq_ring->queue);
561 	spin_lock(&kiq->ring_lock);
562 	/* No need to map kcq on the slave */
563 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
564 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
565 						adev->gfx.num_compute_rings +
566 						kiq->pmf->set_resources_size);
567 		if (r) {
568 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
569 			spin_unlock(&adev->gfx.kiq[0].ring_lock);
570 			return r;
571 		}
572 
573 		if (adev->enable_mes)
574 			queue_mask = ~0ULL;
575 
576 		kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
577 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
578 			j = i + xcc_id * adev->gfx.num_compute_rings;
579 			kiq->pmf->kiq_map_queues(kiq_ring,
580 						 &adev->gfx.compute_ring[i]);
581 		}
582 	}
583 
584 	r = amdgpu_ring_test_helper(kiq_ring);
585 	spin_unlock(&kiq->ring_lock);
586 	if (r)
587 		DRM_ERROR("KCQ enable failed\n");
588 
589 	return r;
590 }
591 
592 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
593  *
594  * @adev: amdgpu_device pointer
595  * @bool enable true: enable gfx off feature, false: disable gfx off feature
596  *
597  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
598  * 2. other client can send request to disable gfx off feature, the request should be honored.
599  * 3. other client can cancel their request of disable gfx off feature
600  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
601  */
602 
603 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
604 {
605 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
606 
607 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
608 		return;
609 
610 	mutex_lock(&adev->gfx.gfx_off_mutex);
611 
612 	if (enable) {
613 		/* If the count is already 0, it means there's an imbalance bug somewhere.
614 		 * Note that the bug may be in a different caller than the one which triggers the
615 		 * WARN_ON_ONCE.
616 		 */
617 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
618 			goto unlock;
619 
620 		adev->gfx.gfx_off_req_count--;
621 
622 		if (adev->gfx.gfx_off_req_count == 0 &&
623 		    !adev->gfx.gfx_off_state) {
624 			/* If going to s2idle, no need to wait */
625 			if (adev->in_s0ix) {
626 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
627 						AMD_IP_BLOCK_TYPE_GFX, true))
628 					adev->gfx.gfx_off_state = true;
629 			} else {
630 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
631 					      delay);
632 			}
633 		}
634 	} else {
635 		if (adev->gfx.gfx_off_req_count == 0) {
636 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
637 
638 			if (adev->gfx.gfx_off_state &&
639 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
640 				adev->gfx.gfx_off_state = false;
641 
642 				if (adev->gfx.funcs->init_spm_golden) {
643 					dev_dbg(adev->dev,
644 						"GFXOFF is disabled, re-init SPM golden settings\n");
645 					amdgpu_gfx_init_spm_golden(adev);
646 				}
647 			}
648 		}
649 
650 		adev->gfx.gfx_off_req_count++;
651 	}
652 
653 unlock:
654 	mutex_unlock(&adev->gfx.gfx_off_mutex);
655 }
656 
657 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
658 {
659 	int r = 0;
660 
661 	mutex_lock(&adev->gfx.gfx_off_mutex);
662 
663 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
664 
665 	mutex_unlock(&adev->gfx.gfx_off_mutex);
666 
667 	return r;
668 }
669 
670 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
671 {
672 	int r = 0;
673 
674 	mutex_lock(&adev->gfx.gfx_off_mutex);
675 
676 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
677 
678 	mutex_unlock(&adev->gfx.gfx_off_mutex);
679 
680 	return r;
681 }
682 
683 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
684 {
685 	int r = 0;
686 
687 	mutex_lock(&adev->gfx.gfx_off_mutex);
688 
689 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
690 
691 	mutex_unlock(&adev->gfx.gfx_off_mutex);
692 
693 	return r;
694 }
695 
696 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
697 {
698 
699 	int r = 0;
700 
701 	mutex_lock(&adev->gfx.gfx_off_mutex);
702 
703 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
704 
705 	mutex_unlock(&adev->gfx.gfx_off_mutex);
706 
707 	return r;
708 }
709 
710 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
711 {
712 	int r;
713 
714 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
715 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
716 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
717 
718 		r = amdgpu_ras_block_late_init(adev, ras_block);
719 		if (r)
720 			return r;
721 
722 		r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
723 		if (r)
724 			goto late_fini;
725 	} else {
726 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
727 	}
728 
729 	return 0;
730 late_fini:
731 	amdgpu_ras_block_late_fini(adev, ras_block);
732 	return r;
733 }
734 
735 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
736 {
737 	int err = 0;
738 	struct amdgpu_gfx_ras *ras = NULL;
739 
740 	/* adev->gfx.ras is NULL, which means gfx does not
741 	 * support ras function, then do nothing here.
742 	 */
743 	if (!adev->gfx.ras)
744 		return 0;
745 
746 	ras = adev->gfx.ras;
747 
748 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
749 	if (err) {
750 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
751 		return err;
752 	}
753 
754 	strcpy(ras->ras_block.ras_comm.name, "gfx");
755 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
756 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
757 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
758 
759 	/* If not define special ras_late_init function, use gfx default ras_late_init */
760 	if (!ras->ras_block.ras_late_init)
761 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
762 
763 	/* If not defined special ras_cb function, use default ras_cb */
764 	if (!ras->ras_block.ras_cb)
765 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
766 
767 	return 0;
768 }
769 
770 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
771 						struct amdgpu_iv_entry *entry)
772 {
773 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
774 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
775 
776 	return 0;
777 }
778 
779 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
780 		void *err_data,
781 		struct amdgpu_iv_entry *entry)
782 {
783 	/* TODO ue will trigger an interrupt.
784 	 *
785 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
786 	 * be disabled and the driver should only look for the aggregated
787 	 * interrupt via sync flood
788 	 */
789 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
790 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
791 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
792 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
793 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
794 		amdgpu_ras_reset_gpu(adev);
795 	}
796 	return AMDGPU_RAS_SUCCESS;
797 }
798 
799 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
800 				  struct amdgpu_irq_src *source,
801 				  struct amdgpu_iv_entry *entry)
802 {
803 	struct ras_common_if *ras_if = adev->gfx.ras_if;
804 	struct ras_dispatch_if ih_data = {
805 		.entry = entry,
806 	};
807 
808 	if (!ras_if)
809 		return 0;
810 
811 	ih_data.head = *ras_if;
812 
813 	DRM_ERROR("CP ECC ERROR IRQ\n");
814 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
815 	return 0;
816 }
817 
818 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
819 {
820 	signed long r, cnt = 0;
821 	unsigned long flags;
822 	uint32_t seq, reg_val_offs = 0, value = 0;
823 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
824 	struct amdgpu_ring *ring = &kiq->ring;
825 
826 	if (amdgpu_device_skip_hw_access(adev))
827 		return 0;
828 
829 	if (adev->mes.ring.sched.ready)
830 		return amdgpu_mes_rreg(adev, reg);
831 
832 	BUG_ON(!ring->funcs->emit_rreg);
833 
834 	spin_lock_irqsave(&kiq->ring_lock, flags);
835 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
836 		pr_err("critical bug! too many kiq readers\n");
837 		goto failed_unlock;
838 	}
839 	amdgpu_ring_alloc(ring, 32);
840 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
841 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
842 	if (r)
843 		goto failed_undo;
844 
845 	amdgpu_ring_commit(ring);
846 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
847 
848 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
849 
850 	/* don't wait anymore for gpu reset case because this way may
851 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
852 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
853 	 * never return if we keep waiting in virt_kiq_rreg, which cause
854 	 * gpu_recover() hang there.
855 	 *
856 	 * also don't wait anymore for IRQ context
857 	 * */
858 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
859 		goto failed_kiq_read;
860 
861 	might_sleep();
862 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
863 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
864 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
865 	}
866 
867 	if (cnt > MAX_KIQ_REG_TRY)
868 		goto failed_kiq_read;
869 
870 	mb();
871 	value = adev->wb.wb[reg_val_offs];
872 	amdgpu_device_wb_free(adev, reg_val_offs);
873 	return value;
874 
875 failed_undo:
876 	amdgpu_ring_undo(ring);
877 failed_unlock:
878 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
879 failed_kiq_read:
880 	if (reg_val_offs)
881 		amdgpu_device_wb_free(adev, reg_val_offs);
882 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
883 	return ~0;
884 }
885 
886 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
887 {
888 	signed long r, cnt = 0;
889 	unsigned long flags;
890 	uint32_t seq;
891 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
892 	struct amdgpu_ring *ring = &kiq->ring;
893 
894 	BUG_ON(!ring->funcs->emit_wreg);
895 
896 	if (amdgpu_device_skip_hw_access(adev))
897 		return;
898 
899 	if (adev->mes.ring.sched.ready) {
900 		amdgpu_mes_wreg(adev, reg, v);
901 		return;
902 	}
903 
904 	spin_lock_irqsave(&kiq->ring_lock, flags);
905 	amdgpu_ring_alloc(ring, 32);
906 	amdgpu_ring_emit_wreg(ring, reg, v);
907 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
908 	if (r)
909 		goto failed_undo;
910 
911 	amdgpu_ring_commit(ring);
912 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
913 
914 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
915 
916 	/* don't wait anymore for gpu reset case because this way may
917 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
918 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
919 	 * never return if we keep waiting in virt_kiq_rreg, which cause
920 	 * gpu_recover() hang there.
921 	 *
922 	 * also don't wait anymore for IRQ context
923 	 * */
924 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
925 		goto failed_kiq_write;
926 
927 	might_sleep();
928 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
929 
930 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
931 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
932 	}
933 
934 	if (cnt > MAX_KIQ_REG_TRY)
935 		goto failed_kiq_write;
936 
937 	return;
938 
939 failed_undo:
940 	amdgpu_ring_undo(ring);
941 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
942 failed_kiq_write:
943 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
944 }
945 
946 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
947 {
948 	if (amdgpu_num_kcq == -1) {
949 		return 8;
950 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
951 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
952 		return 8;
953 	}
954 	return amdgpu_num_kcq;
955 }
956 
957 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
958 				  uint32_t ucode_id)
959 {
960 	const struct gfx_firmware_header_v1_0 *cp_hdr;
961 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
962 	struct amdgpu_firmware_info *info = NULL;
963 	const struct firmware *ucode_fw;
964 	unsigned int fw_size;
965 
966 	switch (ucode_id) {
967 	case AMDGPU_UCODE_ID_CP_PFP:
968 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
969 			adev->gfx.pfp_fw->data;
970 		adev->gfx.pfp_fw_version =
971 			le32_to_cpu(cp_hdr->header.ucode_version);
972 		adev->gfx.pfp_feature_version =
973 			le32_to_cpu(cp_hdr->ucode_feature_version);
974 		ucode_fw = adev->gfx.pfp_fw;
975 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
976 		break;
977 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
978 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
979 			adev->gfx.pfp_fw->data;
980 		adev->gfx.pfp_fw_version =
981 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
982 		adev->gfx.pfp_feature_version =
983 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
984 		ucode_fw = adev->gfx.pfp_fw;
985 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
986 		break;
987 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
988 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
989 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
990 			adev->gfx.pfp_fw->data;
991 		ucode_fw = adev->gfx.pfp_fw;
992 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
993 		break;
994 	case AMDGPU_UCODE_ID_CP_ME:
995 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
996 			adev->gfx.me_fw->data;
997 		adev->gfx.me_fw_version =
998 			le32_to_cpu(cp_hdr->header.ucode_version);
999 		adev->gfx.me_feature_version =
1000 			le32_to_cpu(cp_hdr->ucode_feature_version);
1001 		ucode_fw = adev->gfx.me_fw;
1002 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1003 		break;
1004 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1005 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1006 			adev->gfx.me_fw->data;
1007 		adev->gfx.me_fw_version =
1008 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1009 		adev->gfx.me_feature_version =
1010 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1011 		ucode_fw = adev->gfx.me_fw;
1012 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1013 		break;
1014 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1015 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1016 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1017 			adev->gfx.me_fw->data;
1018 		ucode_fw = adev->gfx.me_fw;
1019 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1020 		break;
1021 	case AMDGPU_UCODE_ID_CP_CE:
1022 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1023 			adev->gfx.ce_fw->data;
1024 		adev->gfx.ce_fw_version =
1025 			le32_to_cpu(cp_hdr->header.ucode_version);
1026 		adev->gfx.ce_feature_version =
1027 			le32_to_cpu(cp_hdr->ucode_feature_version);
1028 		ucode_fw = adev->gfx.ce_fw;
1029 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1030 		break;
1031 	case AMDGPU_UCODE_ID_CP_MEC1:
1032 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1033 			adev->gfx.mec_fw->data;
1034 		adev->gfx.mec_fw_version =
1035 			le32_to_cpu(cp_hdr->header.ucode_version);
1036 		adev->gfx.mec_feature_version =
1037 			le32_to_cpu(cp_hdr->ucode_feature_version);
1038 		ucode_fw = adev->gfx.mec_fw;
1039 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1040 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1041 		break;
1042 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1043 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1044 			adev->gfx.mec_fw->data;
1045 		ucode_fw = adev->gfx.mec_fw;
1046 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1047 		break;
1048 	case AMDGPU_UCODE_ID_CP_MEC2:
1049 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1050 			adev->gfx.mec2_fw->data;
1051 		adev->gfx.mec2_fw_version =
1052 			le32_to_cpu(cp_hdr->header.ucode_version);
1053 		adev->gfx.mec2_feature_version =
1054 			le32_to_cpu(cp_hdr->ucode_feature_version);
1055 		ucode_fw = adev->gfx.mec2_fw;
1056 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1057 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1058 		break;
1059 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1060 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1061 			adev->gfx.mec2_fw->data;
1062 		ucode_fw = adev->gfx.mec2_fw;
1063 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1064 		break;
1065 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1066 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1067 			adev->gfx.mec_fw->data;
1068 		adev->gfx.mec_fw_version =
1069 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1070 		adev->gfx.mec_feature_version =
1071 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1072 		ucode_fw = adev->gfx.mec_fw;
1073 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1074 		break;
1075 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1076 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1077 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1078 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1079 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1080 			adev->gfx.mec_fw->data;
1081 		ucode_fw = adev->gfx.mec_fw;
1082 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1083 		break;
1084 	default:
1085 		break;
1086 	}
1087 
1088 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1089 		info = &adev->firmware.ucode[ucode_id];
1090 		info->ucode_id = ucode_id;
1091 		info->fw = ucode_fw;
1092 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1093 	}
1094 }
1095 
1096 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1097 {
1098 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1099 			adev->gfx.num_xcc_per_xcp : 1));
1100 }
1101