1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 32 /* delay 0.1 second to enable gfx off feature */ 33 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 34 35 #define GFX_OFF_NO_DELAY 0 36 37 /* 38 * GPU GFX IP block helpers function. 39 */ 40 41 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 42 int pipe, int queue) 43 { 44 int bit = 0; 45 46 bit += mec * adev->gfx.mec.num_pipe_per_mec 47 * adev->gfx.mec.num_queue_per_pipe; 48 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 49 bit += queue; 50 51 return bit; 52 } 53 54 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 55 int *mec, int *pipe, int *queue) 56 { 57 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 58 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 59 % adev->gfx.mec.num_pipe_per_mec; 60 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 61 / adev->gfx.mec.num_pipe_per_mec; 62 63 } 64 65 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 66 int xcc_id, int mec, int pipe, int queue) 67 { 68 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 69 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 70 } 71 72 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 73 int me, int pipe, int queue) 74 { 75 int bit = 0; 76 77 bit += me * adev->gfx.me.num_pipe_per_me 78 * adev->gfx.me.num_queue_per_pipe; 79 bit += pipe * adev->gfx.me.num_queue_per_pipe; 80 bit += queue; 81 82 return bit; 83 } 84 85 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 86 int *me, int *pipe, int *queue) 87 { 88 *queue = bit % adev->gfx.me.num_queue_per_pipe; 89 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 90 % adev->gfx.me.num_pipe_per_me; 91 *me = (bit / adev->gfx.me.num_queue_per_pipe) 92 / adev->gfx.me.num_pipe_per_me; 93 } 94 95 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 96 int me, int pipe, int queue) 97 { 98 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 99 adev->gfx.me.queue_bitmap); 100 } 101 102 /** 103 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 104 * 105 * @mask: array in which the per-shader array disable masks will be stored 106 * @max_se: number of SEs 107 * @max_sh: number of SHs 108 * 109 * The bitmask of CUs to be disabled in the shader array determined by se and 110 * sh is stored in mask[se * max_sh + sh]. 111 */ 112 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh) 113 { 114 unsigned se, sh, cu; 115 const char *p; 116 117 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 118 119 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 120 return; 121 122 p = amdgpu_disable_cu; 123 for (;;) { 124 char *next; 125 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 126 if (ret < 3) { 127 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 128 return; 129 } 130 131 if (se < max_se && sh < max_sh && cu < 16) { 132 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 133 mask[se * max_sh + sh] |= 1u << cu; 134 } else { 135 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 136 se, sh, cu); 137 } 138 139 next = strchr(p, ','); 140 if (!next) 141 break; 142 p = next + 1; 143 } 144 } 145 146 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 147 { 148 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 149 } 150 151 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 152 { 153 if (amdgpu_compute_multipipe != -1) { 154 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 155 amdgpu_compute_multipipe); 156 return amdgpu_compute_multipipe == 1; 157 } 158 159 if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)) 160 return true; 161 162 /* FIXME: spreading the queues across pipes causes perf regressions 163 * on POLARIS11 compute workloads */ 164 if (adev->asic_type == CHIP_POLARIS11) 165 return false; 166 167 return adev->gfx.mec.num_mec > 1; 168 } 169 170 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 171 struct amdgpu_ring *ring) 172 { 173 int queue = ring->queue; 174 int pipe = ring->pipe; 175 176 /* Policy: use pipe1 queue0 as high priority graphics queue if we 177 * have more than one gfx pipe. 178 */ 179 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 180 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 181 int me = ring->me; 182 int bit; 183 184 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 185 if (ring == &adev->gfx.gfx_ring[bit]) 186 return true; 187 } 188 189 return false; 190 } 191 192 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 193 struct amdgpu_ring *ring) 194 { 195 /* Policy: use 1st queue as high priority compute queue if we 196 * have more than one compute queue. 197 */ 198 if (adev->gfx.num_compute_rings > 1 && 199 ring == &adev->gfx.compute_ring[0]) 200 return true; 201 202 return false; 203 } 204 205 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 206 { 207 int i, j, queue, pipe; 208 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 209 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 210 adev->gfx.mec.num_queue_per_pipe, 211 adev->gfx.num_compute_rings); 212 int num_xcd = (adev->gfx.num_xcd > 1) ? adev->gfx.num_xcd : 1; 213 214 if (multipipe_policy) { 215 /* policy: make queues evenly cross all pipes on MEC1 only 216 * for multiple xcc, just use the original policy for simplicity */ 217 for (j = 0; j < num_xcd; j++) { 218 for (i = 0; i < max_queues_per_mec; i++) { 219 pipe = i % adev->gfx.mec.num_pipe_per_mec; 220 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 221 adev->gfx.mec.num_queue_per_pipe; 222 223 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 224 adev->gfx.mec_bitmap[j].queue_bitmap); 225 } 226 } 227 } else { 228 /* policy: amdgpu owns all queues in the given pipe */ 229 for (j = 0; j < num_xcd; j++) { 230 for (i = 0; i < max_queues_per_mec; ++i) 231 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 232 } 233 } 234 235 for (j = 0; j < num_xcd; j++) { 236 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 237 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 238 } 239 } 240 241 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 242 { 243 int i, queue, pipe; 244 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 245 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 246 adev->gfx.me.num_queue_per_pipe; 247 248 if (multipipe_policy) { 249 /* policy: amdgpu owns the first queue per pipe at this stage 250 * will extend to mulitple queues per pipe later */ 251 for (i = 0; i < max_queues_per_me; i++) { 252 pipe = i % adev->gfx.me.num_pipe_per_me; 253 queue = (i / adev->gfx.me.num_pipe_per_me) % 254 adev->gfx.me.num_queue_per_pipe; 255 256 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 257 adev->gfx.me.queue_bitmap); 258 } 259 } else { 260 for (i = 0; i < max_queues_per_me; ++i) 261 set_bit(i, adev->gfx.me.queue_bitmap); 262 } 263 264 /* update the number of active graphics rings */ 265 adev->gfx.num_gfx_rings = 266 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 267 } 268 269 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 270 struct amdgpu_ring *ring, int xcc_id) 271 { 272 int queue_bit; 273 int mec, pipe, queue; 274 275 queue_bit = adev->gfx.mec.num_mec 276 * adev->gfx.mec.num_pipe_per_mec 277 * adev->gfx.mec.num_queue_per_pipe; 278 279 while (--queue_bit >= 0) { 280 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 281 continue; 282 283 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 284 285 /* 286 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 287 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 288 * only can be issued on queue 0. 289 */ 290 if ((mec == 1 && pipe > 1) || queue != 0) 291 continue; 292 293 ring->me = mec + 1; 294 ring->pipe = pipe; 295 ring->queue = queue; 296 297 return 0; 298 } 299 300 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 301 return -EINVAL; 302 } 303 304 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 305 struct amdgpu_ring *ring, 306 struct amdgpu_irq_src *irq, int xcc_id) 307 { 308 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 309 int r = 0; 310 311 spin_lock_init(&kiq->ring_lock); 312 313 ring->adev = NULL; 314 ring->ring_obj = NULL; 315 ring->use_doorbell = true; 316 ring->doorbell_index = adev->doorbell_index.kiq; 317 ring->xcc_id = xcc_id; 318 ring->vm_hub = AMDGPU_GFXHUB_0; 319 if (xcc_id >= 1) 320 ring->doorbell_index = adev->doorbell_index.xcc1_kiq_start + 321 xcc_id - 1; 322 else 323 ring->doorbell_index = adev->doorbell_index.kiq; 324 325 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 326 if (r) 327 return r; 328 329 ring->eop_gpu_addr = kiq->eop_gpu_addr; 330 ring->no_scheduler = true; 331 sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue); 332 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 333 AMDGPU_RING_PRIO_DEFAULT, NULL); 334 if (r) 335 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 336 337 return r; 338 } 339 340 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 341 { 342 amdgpu_ring_fini(ring); 343 } 344 345 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 346 { 347 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 348 349 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 350 } 351 352 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 353 unsigned hpd_size, int xcc_id) 354 { 355 int r; 356 u32 *hpd; 357 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 358 359 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 360 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 361 &kiq->eop_gpu_addr, (void **)&hpd); 362 if (r) { 363 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 364 return r; 365 } 366 367 memset(hpd, 0, hpd_size); 368 369 r = amdgpu_bo_reserve(kiq->eop_obj, true); 370 if (unlikely(r != 0)) 371 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 372 amdgpu_bo_kunmap(kiq->eop_obj); 373 amdgpu_bo_unreserve(kiq->eop_obj); 374 375 return 0; 376 } 377 378 /* create MQD for each compute/gfx queue */ 379 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 380 unsigned mqd_size, int xcc_id) 381 { 382 int r, i; 383 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 384 struct amdgpu_ring *ring = &kiq->ring; 385 386 /* create MQD for KIQ */ 387 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 388 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 389 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 390 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 391 * KIQ MQD no matter SRIOV or Bare-metal 392 */ 393 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 394 AMDGPU_GEM_DOMAIN_VRAM | 395 AMDGPU_GEM_DOMAIN_GTT, 396 &ring->mqd_obj, 397 &ring->mqd_gpu_addr, 398 &ring->mqd_ptr); 399 if (r) { 400 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 401 return r; 402 } 403 404 /* prepare MQD backup */ 405 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 406 if (!kiq->mqd_backup) 407 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 408 } 409 410 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 411 /* create MQD for each KGQ */ 412 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 413 ring = &adev->gfx.gfx_ring[i]; 414 if (!ring->mqd_obj) { 415 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 416 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 417 &ring->mqd_gpu_addr, &ring->mqd_ptr); 418 if (r) { 419 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 420 return r; 421 } 422 423 ring->mqd_size = mqd_size; 424 /* prepare MQD backup */ 425 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 426 if (!adev->gfx.me.mqd_backup[i]) 427 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 428 } 429 } 430 } 431 432 /* create MQD for each KCQ */ 433 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 434 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; 435 if (!ring->mqd_obj) { 436 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 437 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 438 &ring->mqd_gpu_addr, &ring->mqd_ptr); 439 if (r) { 440 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 441 return r; 442 } 443 444 ring->mqd_size = mqd_size; 445 /* prepare MQD backup */ 446 adev->gfx.mec.mqd_backup[i + xcc_id * adev->gfx.num_compute_rings] = kmalloc(mqd_size, GFP_KERNEL); 447 if (!adev->gfx.mec.mqd_backup[i]) 448 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 449 } 450 } 451 452 return 0; 453 } 454 455 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 456 { 457 struct amdgpu_ring *ring = NULL; 458 int i, j; 459 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 460 461 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 462 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 463 ring = &adev->gfx.gfx_ring[i]; 464 kfree(adev->gfx.me.mqd_backup[i]); 465 amdgpu_bo_free_kernel(&ring->mqd_obj, 466 &ring->mqd_gpu_addr, 467 &ring->mqd_ptr); 468 } 469 } 470 471 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 472 j = i + xcc_id * adev->gfx.num_compute_rings; 473 ring = &adev->gfx.compute_ring[i]; 474 kfree(adev->gfx.mec.mqd_backup[i]); 475 amdgpu_bo_free_kernel(&ring->mqd_obj, 476 &ring->mqd_gpu_addr, 477 &ring->mqd_ptr); 478 } 479 480 ring = &kiq->ring; 481 kfree(kiq->mqd_backup); 482 kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]); 483 amdgpu_bo_free_kernel(&ring->mqd_obj, 484 &ring->mqd_gpu_addr, 485 &ring->mqd_ptr); 486 } 487 488 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 489 { 490 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 491 struct amdgpu_ring *kiq_ring = &kiq->ring; 492 int i, r = 0; 493 int j; 494 495 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 496 return -EINVAL; 497 498 spin_lock(&kiq->ring_lock); 499 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 500 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 501 adev->gfx.num_compute_rings)) { 502 spin_unlock(&kiq->ring_lock); 503 return -ENOMEM; 504 } 505 506 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 507 j = i + xcc_id * adev->gfx.num_compute_rings; 508 kiq->pmf->kiq_unmap_queues(kiq_ring, 509 &adev->gfx.compute_ring[i], 510 RESET_QUEUES, 0, 0); 511 } 512 } 513 514 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 515 r = amdgpu_ring_test_helper(kiq_ring); 516 spin_unlock(&kiq->ring_lock); 517 518 return r; 519 } 520 521 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 522 int queue_bit) 523 { 524 int mec, pipe, queue; 525 int set_resource_bit = 0; 526 527 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 528 529 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 530 531 return set_resource_bit; 532 } 533 534 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 535 { 536 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 537 struct amdgpu_ring *kiq_ring = &kiq->ring; 538 uint64_t queue_mask = 0; 539 int r, i, j; 540 541 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 542 return -EINVAL; 543 544 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 545 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 546 continue; 547 548 /* This situation may be hit in the future if a new HW 549 * generation exposes more than 64 queues. If so, the 550 * definition of queue_mask needs updating */ 551 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 552 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 553 break; 554 } 555 556 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 557 } 558 559 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 560 kiq_ring->queue); 561 spin_lock(&kiq->ring_lock); 562 /* No need to map kcq on the slave */ 563 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 564 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 565 adev->gfx.num_compute_rings + 566 kiq->pmf->set_resources_size); 567 if (r) { 568 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 569 spin_unlock(&adev->gfx.kiq[0].ring_lock); 570 return r; 571 } 572 573 if (adev->enable_mes) 574 queue_mask = ~0ULL; 575 576 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 577 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 578 j = i + xcc_id * adev->gfx.num_compute_rings; 579 kiq->pmf->kiq_map_queues(kiq_ring, 580 &adev->gfx.compute_ring[i]); 581 } 582 } 583 584 r = amdgpu_ring_test_helper(kiq_ring); 585 spin_unlock(&kiq->ring_lock); 586 if (r) 587 DRM_ERROR("KCQ enable failed\n"); 588 589 return r; 590 } 591 592 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 593 * 594 * @adev: amdgpu_device pointer 595 * @bool enable true: enable gfx off feature, false: disable gfx off feature 596 * 597 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 598 * 2. other client can send request to disable gfx off feature, the request should be honored. 599 * 3. other client can cancel their request of disable gfx off feature 600 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 601 */ 602 603 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 604 { 605 unsigned long delay = GFX_OFF_DELAY_ENABLE; 606 607 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 608 return; 609 610 mutex_lock(&adev->gfx.gfx_off_mutex); 611 612 if (enable) { 613 /* If the count is already 0, it means there's an imbalance bug somewhere. 614 * Note that the bug may be in a different caller than the one which triggers the 615 * WARN_ON_ONCE. 616 */ 617 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 618 goto unlock; 619 620 adev->gfx.gfx_off_req_count--; 621 622 if (adev->gfx.gfx_off_req_count == 0 && 623 !adev->gfx.gfx_off_state) { 624 /* If going to s2idle, no need to wait */ 625 if (adev->in_s0ix) { 626 if (!amdgpu_dpm_set_powergating_by_smu(adev, 627 AMD_IP_BLOCK_TYPE_GFX, true)) 628 adev->gfx.gfx_off_state = true; 629 } else { 630 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 631 delay); 632 } 633 } 634 } else { 635 if (adev->gfx.gfx_off_req_count == 0) { 636 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 637 638 if (adev->gfx.gfx_off_state && 639 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 640 adev->gfx.gfx_off_state = false; 641 642 if (adev->gfx.funcs->init_spm_golden) { 643 dev_dbg(adev->dev, 644 "GFXOFF is disabled, re-init SPM golden settings\n"); 645 amdgpu_gfx_init_spm_golden(adev); 646 } 647 } 648 } 649 650 adev->gfx.gfx_off_req_count++; 651 } 652 653 unlock: 654 mutex_unlock(&adev->gfx.gfx_off_mutex); 655 } 656 657 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 658 { 659 int r = 0; 660 661 mutex_lock(&adev->gfx.gfx_off_mutex); 662 663 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 664 665 mutex_unlock(&adev->gfx.gfx_off_mutex); 666 667 return r; 668 } 669 670 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 671 { 672 int r = 0; 673 674 mutex_lock(&adev->gfx.gfx_off_mutex); 675 676 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 677 678 mutex_unlock(&adev->gfx.gfx_off_mutex); 679 680 return r; 681 } 682 683 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 684 { 685 int r = 0; 686 687 mutex_lock(&adev->gfx.gfx_off_mutex); 688 689 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 690 691 mutex_unlock(&adev->gfx.gfx_off_mutex); 692 693 return r; 694 } 695 696 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 697 { 698 699 int r = 0; 700 701 mutex_lock(&adev->gfx.gfx_off_mutex); 702 703 r = amdgpu_dpm_get_status_gfxoff(adev, value); 704 705 mutex_unlock(&adev->gfx.gfx_off_mutex); 706 707 return r; 708 } 709 710 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 711 { 712 int r; 713 714 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 715 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 716 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 717 718 r = amdgpu_ras_block_late_init(adev, ras_block); 719 if (r) 720 return r; 721 722 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 723 if (r) 724 goto late_fini; 725 } else { 726 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 727 } 728 729 return 0; 730 late_fini: 731 amdgpu_ras_block_late_fini(adev, ras_block); 732 return r; 733 } 734 735 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 736 { 737 int err = 0; 738 struct amdgpu_gfx_ras *ras = NULL; 739 740 /* adev->gfx.ras is NULL, which means gfx does not 741 * support ras function, then do nothing here. 742 */ 743 if (!adev->gfx.ras) 744 return 0; 745 746 ras = adev->gfx.ras; 747 748 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 749 if (err) { 750 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 751 return err; 752 } 753 754 strcpy(ras->ras_block.ras_comm.name, "gfx"); 755 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 756 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 757 adev->gfx.ras_if = &ras->ras_block.ras_comm; 758 759 /* If not define special ras_late_init function, use gfx default ras_late_init */ 760 if (!ras->ras_block.ras_late_init) 761 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 762 763 /* If not defined special ras_cb function, use default ras_cb */ 764 if (!ras->ras_block.ras_cb) 765 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 766 767 return 0; 768 } 769 770 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 771 struct amdgpu_iv_entry *entry) 772 { 773 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 774 return adev->gfx.ras->poison_consumption_handler(adev, entry); 775 776 return 0; 777 } 778 779 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 780 void *err_data, 781 struct amdgpu_iv_entry *entry) 782 { 783 /* TODO ue will trigger an interrupt. 784 * 785 * When “Full RAS” is enabled, the per-IP interrupt sources should 786 * be disabled and the driver should only look for the aggregated 787 * interrupt via sync flood 788 */ 789 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 790 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 791 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 792 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 793 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 794 amdgpu_ras_reset_gpu(adev); 795 } 796 return AMDGPU_RAS_SUCCESS; 797 } 798 799 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 800 struct amdgpu_irq_src *source, 801 struct amdgpu_iv_entry *entry) 802 { 803 struct ras_common_if *ras_if = adev->gfx.ras_if; 804 struct ras_dispatch_if ih_data = { 805 .entry = entry, 806 }; 807 808 if (!ras_if) 809 return 0; 810 811 ih_data.head = *ras_if; 812 813 DRM_ERROR("CP ECC ERROR IRQ\n"); 814 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 815 return 0; 816 } 817 818 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) 819 { 820 signed long r, cnt = 0; 821 unsigned long flags; 822 uint32_t seq, reg_val_offs = 0, value = 0; 823 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 824 struct amdgpu_ring *ring = &kiq->ring; 825 826 if (amdgpu_device_skip_hw_access(adev)) 827 return 0; 828 829 if (adev->mes.ring.sched.ready) 830 return amdgpu_mes_rreg(adev, reg); 831 832 BUG_ON(!ring->funcs->emit_rreg); 833 834 spin_lock_irqsave(&kiq->ring_lock, flags); 835 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 836 pr_err("critical bug! too many kiq readers\n"); 837 goto failed_unlock; 838 } 839 amdgpu_ring_alloc(ring, 32); 840 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 841 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 842 if (r) 843 goto failed_undo; 844 845 amdgpu_ring_commit(ring); 846 spin_unlock_irqrestore(&kiq->ring_lock, flags); 847 848 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 849 850 /* don't wait anymore for gpu reset case because this way may 851 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 852 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 853 * never return if we keep waiting in virt_kiq_rreg, which cause 854 * gpu_recover() hang there. 855 * 856 * also don't wait anymore for IRQ context 857 * */ 858 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 859 goto failed_kiq_read; 860 861 might_sleep(); 862 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 863 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 864 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 865 } 866 867 if (cnt > MAX_KIQ_REG_TRY) 868 goto failed_kiq_read; 869 870 mb(); 871 value = adev->wb.wb[reg_val_offs]; 872 amdgpu_device_wb_free(adev, reg_val_offs); 873 return value; 874 875 failed_undo: 876 amdgpu_ring_undo(ring); 877 failed_unlock: 878 spin_unlock_irqrestore(&kiq->ring_lock, flags); 879 failed_kiq_read: 880 if (reg_val_offs) 881 amdgpu_device_wb_free(adev, reg_val_offs); 882 dev_err(adev->dev, "failed to read reg:%x\n", reg); 883 return ~0; 884 } 885 886 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) 887 { 888 signed long r, cnt = 0; 889 unsigned long flags; 890 uint32_t seq; 891 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 892 struct amdgpu_ring *ring = &kiq->ring; 893 894 BUG_ON(!ring->funcs->emit_wreg); 895 896 if (amdgpu_device_skip_hw_access(adev)) 897 return; 898 899 if (adev->mes.ring.sched.ready) { 900 amdgpu_mes_wreg(adev, reg, v); 901 return; 902 } 903 904 spin_lock_irqsave(&kiq->ring_lock, flags); 905 amdgpu_ring_alloc(ring, 32); 906 amdgpu_ring_emit_wreg(ring, reg, v); 907 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 908 if (r) 909 goto failed_undo; 910 911 amdgpu_ring_commit(ring); 912 spin_unlock_irqrestore(&kiq->ring_lock, flags); 913 914 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 915 916 /* don't wait anymore for gpu reset case because this way may 917 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 918 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 919 * never return if we keep waiting in virt_kiq_rreg, which cause 920 * gpu_recover() hang there. 921 * 922 * also don't wait anymore for IRQ context 923 * */ 924 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 925 goto failed_kiq_write; 926 927 might_sleep(); 928 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 929 930 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 931 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 932 } 933 934 if (cnt > MAX_KIQ_REG_TRY) 935 goto failed_kiq_write; 936 937 return; 938 939 failed_undo: 940 amdgpu_ring_undo(ring); 941 spin_unlock_irqrestore(&kiq->ring_lock, flags); 942 failed_kiq_write: 943 dev_err(adev->dev, "failed to write reg:%x\n", reg); 944 } 945 946 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 947 { 948 if (amdgpu_num_kcq == -1) { 949 return 8; 950 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 951 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 952 return 8; 953 } 954 return amdgpu_num_kcq; 955 } 956 957 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 958 uint32_t ucode_id) 959 { 960 const struct gfx_firmware_header_v1_0 *cp_hdr; 961 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 962 struct amdgpu_firmware_info *info = NULL; 963 const struct firmware *ucode_fw; 964 unsigned int fw_size; 965 966 switch (ucode_id) { 967 case AMDGPU_UCODE_ID_CP_PFP: 968 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 969 adev->gfx.pfp_fw->data; 970 adev->gfx.pfp_fw_version = 971 le32_to_cpu(cp_hdr->header.ucode_version); 972 adev->gfx.pfp_feature_version = 973 le32_to_cpu(cp_hdr->ucode_feature_version); 974 ucode_fw = adev->gfx.pfp_fw; 975 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 976 break; 977 case AMDGPU_UCODE_ID_CP_RS64_PFP: 978 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 979 adev->gfx.pfp_fw->data; 980 adev->gfx.pfp_fw_version = 981 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 982 adev->gfx.pfp_feature_version = 983 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 984 ucode_fw = adev->gfx.pfp_fw; 985 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 986 break; 987 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 988 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 989 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 990 adev->gfx.pfp_fw->data; 991 ucode_fw = adev->gfx.pfp_fw; 992 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 993 break; 994 case AMDGPU_UCODE_ID_CP_ME: 995 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 996 adev->gfx.me_fw->data; 997 adev->gfx.me_fw_version = 998 le32_to_cpu(cp_hdr->header.ucode_version); 999 adev->gfx.me_feature_version = 1000 le32_to_cpu(cp_hdr->ucode_feature_version); 1001 ucode_fw = adev->gfx.me_fw; 1002 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1003 break; 1004 case AMDGPU_UCODE_ID_CP_RS64_ME: 1005 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1006 adev->gfx.me_fw->data; 1007 adev->gfx.me_fw_version = 1008 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1009 adev->gfx.me_feature_version = 1010 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1011 ucode_fw = adev->gfx.me_fw; 1012 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1013 break; 1014 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1015 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1016 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1017 adev->gfx.me_fw->data; 1018 ucode_fw = adev->gfx.me_fw; 1019 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1020 break; 1021 case AMDGPU_UCODE_ID_CP_CE: 1022 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1023 adev->gfx.ce_fw->data; 1024 adev->gfx.ce_fw_version = 1025 le32_to_cpu(cp_hdr->header.ucode_version); 1026 adev->gfx.ce_feature_version = 1027 le32_to_cpu(cp_hdr->ucode_feature_version); 1028 ucode_fw = adev->gfx.ce_fw; 1029 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1030 break; 1031 case AMDGPU_UCODE_ID_CP_MEC1: 1032 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1033 adev->gfx.mec_fw->data; 1034 adev->gfx.mec_fw_version = 1035 le32_to_cpu(cp_hdr->header.ucode_version); 1036 adev->gfx.mec_feature_version = 1037 le32_to_cpu(cp_hdr->ucode_feature_version); 1038 ucode_fw = adev->gfx.mec_fw; 1039 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1040 le32_to_cpu(cp_hdr->jt_size) * 4; 1041 break; 1042 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1043 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1044 adev->gfx.mec_fw->data; 1045 ucode_fw = adev->gfx.mec_fw; 1046 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1047 break; 1048 case AMDGPU_UCODE_ID_CP_MEC2: 1049 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1050 adev->gfx.mec2_fw->data; 1051 adev->gfx.mec2_fw_version = 1052 le32_to_cpu(cp_hdr->header.ucode_version); 1053 adev->gfx.mec2_feature_version = 1054 le32_to_cpu(cp_hdr->ucode_feature_version); 1055 ucode_fw = adev->gfx.mec2_fw; 1056 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1057 le32_to_cpu(cp_hdr->jt_size) * 4; 1058 break; 1059 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1060 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1061 adev->gfx.mec2_fw->data; 1062 ucode_fw = adev->gfx.mec2_fw; 1063 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1064 break; 1065 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1066 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1067 adev->gfx.mec_fw->data; 1068 adev->gfx.mec_fw_version = 1069 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1070 adev->gfx.mec_feature_version = 1071 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1072 ucode_fw = adev->gfx.mec_fw; 1073 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1074 break; 1075 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1076 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1077 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1078 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1079 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1080 adev->gfx.mec_fw->data; 1081 ucode_fw = adev->gfx.mec_fw; 1082 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1083 break; 1084 default: 1085 break; 1086 } 1087 1088 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1089 info = &adev->firmware.ucode[ucode_id]; 1090 info->ucode_id = ucode_id; 1091 info->fw = ucode_fw; 1092 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1093 } 1094 } 1095 1096 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1097 { 1098 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1099 adev->gfx.num_xcc_per_xcp : 1)); 1100 } 1101