1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32 
33 /* delay 0.1 second to enable gfx off feature */
34 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
35 
36 #define GFX_OFF_NO_DELAY 0
37 
38 /*
39  * GPU GFX IP block helpers function.
40  */
41 
42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
43 				int pipe, int queue)
44 {
45 	int bit = 0;
46 
47 	bit += mec * adev->gfx.mec.num_pipe_per_mec
48 		* adev->gfx.mec.num_queue_per_pipe;
49 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
50 	bit += queue;
51 
52 	return bit;
53 }
54 
55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
56 				 int *mec, int *pipe, int *queue)
57 {
58 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
59 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
60 		% adev->gfx.mec.num_pipe_per_mec;
61 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
62 	       / adev->gfx.mec.num_pipe_per_mec;
63 
64 }
65 
66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
67 				     int xcc_id, int mec, int pipe, int queue)
68 {
69 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
70 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
71 }
72 
73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
74 			       int me, int pipe, int queue)
75 {
76 	int bit = 0;
77 
78 	bit += me * adev->gfx.me.num_pipe_per_me
79 		* adev->gfx.me.num_queue_per_pipe;
80 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
81 	bit += queue;
82 
83 	return bit;
84 }
85 
86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
87 				int *me, int *pipe, int *queue)
88 {
89 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
90 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
91 		% adev->gfx.me.num_pipe_per_me;
92 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
93 		/ adev->gfx.me.num_pipe_per_me;
94 }
95 
96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
97 				    int me, int pipe, int queue)
98 {
99 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
100 			adev->gfx.me.queue_bitmap);
101 }
102 
103 /**
104  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
105  *
106  * @mask: array in which the per-shader array disable masks will be stored
107  * @max_se: number of SEs
108  * @max_sh: number of SHs
109  *
110  * The bitmask of CUs to be disabled in the shader array determined by se and
111  * sh is stored in mask[se * max_sh + sh].
112  */
113 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh)
114 {
115 	unsigned se, sh, cu;
116 	const char *p;
117 
118 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
119 
120 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
121 		return;
122 
123 	p = amdgpu_disable_cu;
124 	for (;;) {
125 		char *next;
126 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
127 		if (ret < 3) {
128 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
129 			return;
130 		}
131 
132 		if (se < max_se && sh < max_sh && cu < 16) {
133 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
134 			mask[se * max_sh + sh] |= 1u << cu;
135 		} else {
136 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
137 				  se, sh, cu);
138 		}
139 
140 		next = strchr(p, ',');
141 		if (!next)
142 			break;
143 		p = next + 1;
144 	}
145 }
146 
147 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
148 {
149 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
150 }
151 
152 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
153 {
154 	if (amdgpu_compute_multipipe != -1) {
155 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
156 			 amdgpu_compute_multipipe);
157 		return amdgpu_compute_multipipe == 1;
158 	}
159 
160 	if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
161 		return true;
162 
163 	/* FIXME: spreading the queues across pipes causes perf regressions
164 	 * on POLARIS11 compute workloads */
165 	if (adev->asic_type == CHIP_POLARIS11)
166 		return false;
167 
168 	return adev->gfx.mec.num_mec > 1;
169 }
170 
171 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
172 						struct amdgpu_ring *ring)
173 {
174 	int queue = ring->queue;
175 	int pipe = ring->pipe;
176 
177 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
178 	 * have more than one gfx pipe.
179 	 */
180 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
181 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
182 		int me = ring->me;
183 		int bit;
184 
185 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
186 		if (ring == &adev->gfx.gfx_ring[bit])
187 			return true;
188 	}
189 
190 	return false;
191 }
192 
193 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
194 					       struct amdgpu_ring *ring)
195 {
196 	/* Policy: use 1st queue as high priority compute queue if we
197 	 * have more than one compute queue.
198 	 */
199 	if (adev->gfx.num_compute_rings > 1 &&
200 	    ring == &adev->gfx.compute_ring[0])
201 		return true;
202 
203 	return false;
204 }
205 
206 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
207 {
208 	int i, j, queue, pipe;
209 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
210 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
211 				     adev->gfx.mec.num_queue_per_pipe,
212 				     adev->gfx.num_compute_rings);
213 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
214 
215 	if (multipipe_policy) {
216 		/* policy: make queues evenly cross all pipes on MEC1 only
217 		 * for multiple xcc, just use the original policy for simplicity */
218 		for (j = 0; j < num_xcc; j++) {
219 			for (i = 0; i < max_queues_per_mec; i++) {
220 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
221 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
222 					 adev->gfx.mec.num_queue_per_pipe;
223 
224 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
225 					adev->gfx.mec_bitmap[j].queue_bitmap);
226 			}
227 		}
228 	} else {
229 		/* policy: amdgpu owns all queues in the given pipe */
230 		for (j = 0; j < num_xcc; j++) {
231 			for (i = 0; i < max_queues_per_mec; ++i)
232 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
233 		}
234 	}
235 
236 	for (j = 0; j < num_xcc; j++) {
237 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
238 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
239 	}
240 }
241 
242 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
243 {
244 	int i, queue, pipe;
245 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
246 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
247 					adev->gfx.me.num_queue_per_pipe;
248 
249 	if (multipipe_policy) {
250 		/* policy: amdgpu owns the first queue per pipe at this stage
251 		 * will extend to mulitple queues per pipe later */
252 		for (i = 0; i < max_queues_per_me; i++) {
253 			pipe = i % adev->gfx.me.num_pipe_per_me;
254 			queue = (i / adev->gfx.me.num_pipe_per_me) %
255 				adev->gfx.me.num_queue_per_pipe;
256 
257 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
258 				adev->gfx.me.queue_bitmap);
259 		}
260 	} else {
261 		for (i = 0; i < max_queues_per_me; ++i)
262 			set_bit(i, adev->gfx.me.queue_bitmap);
263 	}
264 
265 	/* update the number of active graphics rings */
266 	adev->gfx.num_gfx_rings =
267 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
268 }
269 
270 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
271 				  struct amdgpu_ring *ring, int xcc_id)
272 {
273 	int queue_bit;
274 	int mec, pipe, queue;
275 
276 	queue_bit = adev->gfx.mec.num_mec
277 		    * adev->gfx.mec.num_pipe_per_mec
278 		    * adev->gfx.mec.num_queue_per_pipe;
279 
280 	while (--queue_bit >= 0) {
281 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
282 			continue;
283 
284 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
285 
286 		/*
287 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
288 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
289 		 * only can be issued on queue 0.
290 		 */
291 		if ((mec == 1 && pipe > 1) || queue != 0)
292 			continue;
293 
294 		ring->me = mec + 1;
295 		ring->pipe = pipe;
296 		ring->queue = queue;
297 
298 		return 0;
299 	}
300 
301 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
302 	return -EINVAL;
303 }
304 
305 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
306 			     struct amdgpu_ring *ring,
307 			     struct amdgpu_irq_src *irq, int xcc_id)
308 {
309 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
310 	int r = 0;
311 
312 	spin_lock_init(&kiq->ring_lock);
313 
314 	ring->adev = NULL;
315 	ring->ring_obj = NULL;
316 	ring->use_doorbell = true;
317 	ring->xcc_id = xcc_id;
318 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
319 	ring->doorbell_index =
320 		(adev->doorbell_index.kiq +
321 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
322 		<< 1;
323 
324 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
325 	if (r)
326 		return r;
327 
328 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
329 	ring->no_scheduler = true;
330 	sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
331 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
332 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
333 	if (r)
334 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
335 
336 	return r;
337 }
338 
339 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
340 {
341 	amdgpu_ring_fini(ring);
342 }
343 
344 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
345 {
346 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
347 
348 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
349 }
350 
351 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
352 			unsigned hpd_size, int xcc_id)
353 {
354 	int r;
355 	u32 *hpd;
356 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
357 
358 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
359 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
360 				    &kiq->eop_gpu_addr, (void **)&hpd);
361 	if (r) {
362 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
363 		return r;
364 	}
365 
366 	memset(hpd, 0, hpd_size);
367 
368 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
369 	if (unlikely(r != 0))
370 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
371 	amdgpu_bo_kunmap(kiq->eop_obj);
372 	amdgpu_bo_unreserve(kiq->eop_obj);
373 
374 	return 0;
375 }
376 
377 /* create MQD for each compute/gfx queue */
378 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
379 			   unsigned mqd_size, int xcc_id)
380 {
381 	int r, i, j;
382 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
383 	struct amdgpu_ring *ring = &kiq->ring;
384 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
385 
386 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
387 	if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
388 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
389 
390 	/* create MQD for KIQ */
391 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
392 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
393 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
394 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
395 		 * KIQ MQD no matter SRIOV or Bare-metal
396 		 */
397 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
398 					    AMDGPU_GEM_DOMAIN_VRAM |
399 					    AMDGPU_GEM_DOMAIN_GTT,
400 					    &ring->mqd_obj,
401 					    &ring->mqd_gpu_addr,
402 					    &ring->mqd_ptr);
403 		if (r) {
404 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
405 			return r;
406 		}
407 
408 		/* prepare MQD backup */
409 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
410 		if (!kiq->mqd_backup)
411 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
412 	}
413 
414 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
415 		/* create MQD for each KGQ */
416 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
417 			ring = &adev->gfx.gfx_ring[i];
418 			if (!ring->mqd_obj) {
419 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
420 							    domain, &ring->mqd_obj,
421 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
422 				if (r) {
423 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
424 					return r;
425 				}
426 
427 				ring->mqd_size = mqd_size;
428 				/* prepare MQD backup */
429 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
430 				if (!adev->gfx.me.mqd_backup[i])
431 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
432 			}
433 		}
434 	}
435 
436 	/* create MQD for each KCQ */
437 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
438 		j = i + xcc_id * adev->gfx.num_compute_rings;
439 		ring = &adev->gfx.compute_ring[j];
440 		if (!ring->mqd_obj) {
441 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
442 						    domain, &ring->mqd_obj,
443 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
444 			if (r) {
445 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
446 				return r;
447 			}
448 
449 			ring->mqd_size = mqd_size;
450 			/* prepare MQD backup */
451 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
452 			if (!adev->gfx.mec.mqd_backup[j])
453 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
454 		}
455 	}
456 
457 	return 0;
458 }
459 
460 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
461 {
462 	struct amdgpu_ring *ring = NULL;
463 	int i, j;
464 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
465 
466 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
467 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
468 			ring = &adev->gfx.gfx_ring[i];
469 			kfree(adev->gfx.me.mqd_backup[i]);
470 			amdgpu_bo_free_kernel(&ring->mqd_obj,
471 					      &ring->mqd_gpu_addr,
472 					      &ring->mqd_ptr);
473 		}
474 	}
475 
476 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
477 		j = i + xcc_id * adev->gfx.num_compute_rings;
478 		ring = &adev->gfx.compute_ring[j];
479 		kfree(adev->gfx.mec.mqd_backup[j]);
480 		amdgpu_bo_free_kernel(&ring->mqd_obj,
481 				      &ring->mqd_gpu_addr,
482 				      &ring->mqd_ptr);
483 	}
484 
485 	ring = &kiq->ring;
486 	kfree(kiq->mqd_backup);
487 	amdgpu_bo_free_kernel(&ring->mqd_obj,
488 			      &ring->mqd_gpu_addr,
489 			      &ring->mqd_ptr);
490 }
491 
492 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
493 {
494 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
495 	struct amdgpu_ring *kiq_ring = &kiq->ring;
496 	int i, r = 0;
497 	int j;
498 
499 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
500 		return -EINVAL;
501 
502 	spin_lock(&kiq->ring_lock);
503 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
504 					adev->gfx.num_compute_rings)) {
505 		spin_unlock(&kiq->ring_lock);
506 		return -ENOMEM;
507 	}
508 
509 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
510 		j = i + xcc_id * adev->gfx.num_compute_rings;
511 		kiq->pmf->kiq_unmap_queues(kiq_ring,
512 					   &adev->gfx.compute_ring[j],
513 					   RESET_QUEUES, 0, 0);
514 	}
515 
516 	if (kiq_ring->sched.ready && !adev->job_hang)
517 		r = amdgpu_ring_test_helper(kiq_ring);
518 	spin_unlock(&kiq->ring_lock);
519 
520 	return r;
521 }
522 
523 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
524 {
525 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
526 	struct amdgpu_ring *kiq_ring = &kiq->ring;
527 	int i, r = 0;
528 	int j;
529 
530 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
531 		return -EINVAL;
532 
533 	spin_lock(&kiq->ring_lock);
534 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
535 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
536 						adev->gfx.num_gfx_rings)) {
537 			spin_unlock(&kiq->ring_lock);
538 			return -ENOMEM;
539 		}
540 
541 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
542 			j = i + xcc_id * adev->gfx.num_gfx_rings;
543 			kiq->pmf->kiq_unmap_queues(kiq_ring,
544 						   &adev->gfx.gfx_ring[j],
545 						   PREEMPT_QUEUES, 0, 0);
546 		}
547 	}
548 
549 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
550 		r = amdgpu_ring_test_helper(kiq_ring);
551 	spin_unlock(&kiq->ring_lock);
552 
553 	return r;
554 }
555 
556 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
557 					int queue_bit)
558 {
559 	int mec, pipe, queue;
560 	int set_resource_bit = 0;
561 
562 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
563 
564 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
565 
566 	return set_resource_bit;
567 }
568 
569 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
570 {
571 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
572 	struct amdgpu_ring *kiq_ring = &kiq->ring;
573 	uint64_t queue_mask = 0;
574 	int r, i, j;
575 
576 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
577 		return -EINVAL;
578 
579 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
580 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
581 			continue;
582 
583 		/* This situation may be hit in the future if a new HW
584 		 * generation exposes more than 64 queues. If so, the
585 		 * definition of queue_mask needs updating */
586 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
587 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
588 			break;
589 		}
590 
591 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
592 	}
593 
594 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
595 							kiq_ring->queue);
596 	amdgpu_device_flush_hdp(adev, NULL);
597 
598 	spin_lock(&kiq->ring_lock);
599 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
600 					adev->gfx.num_compute_rings +
601 					kiq->pmf->set_resources_size);
602 	if (r) {
603 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
604 		spin_unlock(&kiq->ring_lock);
605 		return r;
606 	}
607 
608 	if (adev->enable_mes)
609 		queue_mask = ~0ULL;
610 
611 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
612 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
613 		j = i + xcc_id * adev->gfx.num_compute_rings;
614 			kiq->pmf->kiq_map_queues(kiq_ring,
615 						 &adev->gfx.compute_ring[j]);
616 	}
617 
618 	r = amdgpu_ring_test_helper(kiq_ring);
619 	spin_unlock(&kiq->ring_lock);
620 	if (r)
621 		DRM_ERROR("KCQ enable failed\n");
622 
623 	return r;
624 }
625 
626 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
627 {
628 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
629 	struct amdgpu_ring *kiq_ring = &kiq->ring;
630 	int r, i, j;
631 
632 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
633 		return -EINVAL;
634 
635 	amdgpu_device_flush_hdp(adev, NULL);
636 
637 	spin_lock(&kiq->ring_lock);
638 	/* No need to map kcq on the slave */
639 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
640 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
641 						adev->gfx.num_gfx_rings);
642 		if (r) {
643 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
644 			spin_unlock(&kiq->ring_lock);
645 			return r;
646 		}
647 
648 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
649 			j = i + xcc_id * adev->gfx.num_gfx_rings;
650 			kiq->pmf->kiq_map_queues(kiq_ring,
651 						 &adev->gfx.gfx_ring[j]);
652 		}
653 	}
654 
655 	r = amdgpu_ring_test_helper(kiq_ring);
656 	spin_unlock(&kiq->ring_lock);
657 	if (r)
658 		DRM_ERROR("KCQ enable failed\n");
659 
660 	return r;
661 }
662 
663 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
664  *
665  * @adev: amdgpu_device pointer
666  * @bool enable true: enable gfx off feature, false: disable gfx off feature
667  *
668  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
669  * 2. other client can send request to disable gfx off feature, the request should be honored.
670  * 3. other client can cancel their request of disable gfx off feature
671  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
672  */
673 
674 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
675 {
676 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
677 
678 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
679 		return;
680 
681 	mutex_lock(&adev->gfx.gfx_off_mutex);
682 
683 	if (enable) {
684 		/* If the count is already 0, it means there's an imbalance bug somewhere.
685 		 * Note that the bug may be in a different caller than the one which triggers the
686 		 * WARN_ON_ONCE.
687 		 */
688 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
689 			goto unlock;
690 
691 		adev->gfx.gfx_off_req_count--;
692 
693 		if (adev->gfx.gfx_off_req_count == 0 &&
694 		    !adev->gfx.gfx_off_state) {
695 			schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
696 					      delay);
697 		}
698 	} else {
699 		if (adev->gfx.gfx_off_req_count == 0) {
700 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
701 
702 			if (adev->gfx.gfx_off_state &&
703 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
704 				adev->gfx.gfx_off_state = false;
705 
706 				if (adev->gfx.funcs->init_spm_golden) {
707 					dev_dbg(adev->dev,
708 						"GFXOFF is disabled, re-init SPM golden settings\n");
709 					amdgpu_gfx_init_spm_golden(adev);
710 				}
711 			}
712 		}
713 
714 		adev->gfx.gfx_off_req_count++;
715 	}
716 
717 unlock:
718 	mutex_unlock(&adev->gfx.gfx_off_mutex);
719 }
720 
721 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
722 {
723 	int r = 0;
724 
725 	mutex_lock(&adev->gfx.gfx_off_mutex);
726 
727 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
728 
729 	mutex_unlock(&adev->gfx.gfx_off_mutex);
730 
731 	return r;
732 }
733 
734 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
735 {
736 	int r = 0;
737 
738 	mutex_lock(&adev->gfx.gfx_off_mutex);
739 
740 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
741 
742 	mutex_unlock(&adev->gfx.gfx_off_mutex);
743 
744 	return r;
745 }
746 
747 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
748 {
749 	int r = 0;
750 
751 	mutex_lock(&adev->gfx.gfx_off_mutex);
752 
753 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
754 
755 	mutex_unlock(&adev->gfx.gfx_off_mutex);
756 
757 	return r;
758 }
759 
760 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
761 {
762 
763 	int r = 0;
764 
765 	mutex_lock(&adev->gfx.gfx_off_mutex);
766 
767 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
768 
769 	mutex_unlock(&adev->gfx.gfx_off_mutex);
770 
771 	return r;
772 }
773 
774 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
775 {
776 	int r;
777 
778 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
779 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
780 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
781 
782 		r = amdgpu_ras_block_late_init(adev, ras_block);
783 		if (r)
784 			return r;
785 
786 		if (adev->gfx.cp_ecc_error_irq.funcs) {
787 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
788 			if (r)
789 				goto late_fini;
790 		}
791 	} else {
792 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
793 	}
794 
795 	return 0;
796 late_fini:
797 	amdgpu_ras_block_late_fini(adev, ras_block);
798 	return r;
799 }
800 
801 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
802 {
803 	int err = 0;
804 	struct amdgpu_gfx_ras *ras = NULL;
805 
806 	/* adev->gfx.ras is NULL, which means gfx does not
807 	 * support ras function, then do nothing here.
808 	 */
809 	if (!adev->gfx.ras)
810 		return 0;
811 
812 	ras = adev->gfx.ras;
813 
814 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
815 	if (err) {
816 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
817 		return err;
818 	}
819 
820 	strcpy(ras->ras_block.ras_comm.name, "gfx");
821 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
822 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
823 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
824 
825 	/* If not define special ras_late_init function, use gfx default ras_late_init */
826 	if (!ras->ras_block.ras_late_init)
827 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
828 
829 	/* If not defined special ras_cb function, use default ras_cb */
830 	if (!ras->ras_block.ras_cb)
831 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
832 
833 	return 0;
834 }
835 
836 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
837 						struct amdgpu_iv_entry *entry)
838 {
839 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
840 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
841 
842 	return 0;
843 }
844 
845 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
846 		void *err_data,
847 		struct amdgpu_iv_entry *entry)
848 {
849 	/* TODO ue will trigger an interrupt.
850 	 *
851 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
852 	 * be disabled and the driver should only look for the aggregated
853 	 * interrupt via sync flood
854 	 */
855 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
856 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
857 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
858 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
859 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
860 		amdgpu_ras_reset_gpu(adev);
861 	}
862 	return AMDGPU_RAS_SUCCESS;
863 }
864 
865 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
866 				  struct amdgpu_irq_src *source,
867 				  struct amdgpu_iv_entry *entry)
868 {
869 	struct ras_common_if *ras_if = adev->gfx.ras_if;
870 	struct ras_dispatch_if ih_data = {
871 		.entry = entry,
872 	};
873 
874 	if (!ras_if)
875 		return 0;
876 
877 	ih_data.head = *ras_if;
878 
879 	DRM_ERROR("CP ECC ERROR IRQ\n");
880 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
881 	return 0;
882 }
883 
884 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
885 		void *ras_error_status,
886 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
887 				int xcc_id))
888 {
889 	int i;
890 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
891 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
892 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
893 
894 	if (err_data) {
895 		err_data->ue_count = 0;
896 		err_data->ce_count = 0;
897 	}
898 
899 	for_each_inst(i, xcc_mask)
900 		func(adev, ras_error_status, i);
901 }
902 
903 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
904 {
905 	signed long r, cnt = 0;
906 	unsigned long flags;
907 	uint32_t seq, reg_val_offs = 0, value = 0;
908 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
909 	struct amdgpu_ring *ring = &kiq->ring;
910 
911 	if (amdgpu_device_skip_hw_access(adev))
912 		return 0;
913 
914 	if (adev->mes.ring.sched.ready)
915 		return amdgpu_mes_rreg(adev, reg);
916 
917 	BUG_ON(!ring->funcs->emit_rreg);
918 
919 	spin_lock_irqsave(&kiq->ring_lock, flags);
920 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
921 		pr_err("critical bug! too many kiq readers\n");
922 		goto failed_unlock;
923 	}
924 	amdgpu_ring_alloc(ring, 32);
925 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
926 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
927 	if (r)
928 		goto failed_undo;
929 
930 	amdgpu_ring_commit(ring);
931 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
932 
933 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
934 
935 	/* don't wait anymore for gpu reset case because this way may
936 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
937 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
938 	 * never return if we keep waiting in virt_kiq_rreg, which cause
939 	 * gpu_recover() hang there.
940 	 *
941 	 * also don't wait anymore for IRQ context
942 	 * */
943 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
944 		goto failed_kiq_read;
945 
946 	might_sleep();
947 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
948 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
949 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
950 	}
951 
952 	if (cnt > MAX_KIQ_REG_TRY)
953 		goto failed_kiq_read;
954 
955 	mb();
956 	value = adev->wb.wb[reg_val_offs];
957 	amdgpu_device_wb_free(adev, reg_val_offs);
958 	return value;
959 
960 failed_undo:
961 	amdgpu_ring_undo(ring);
962 failed_unlock:
963 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
964 failed_kiq_read:
965 	if (reg_val_offs)
966 		amdgpu_device_wb_free(adev, reg_val_offs);
967 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
968 	return ~0;
969 }
970 
971 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
972 {
973 	signed long r, cnt = 0;
974 	unsigned long flags;
975 	uint32_t seq;
976 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
977 	struct amdgpu_ring *ring = &kiq->ring;
978 
979 	BUG_ON(!ring->funcs->emit_wreg);
980 
981 	if (amdgpu_device_skip_hw_access(adev))
982 		return;
983 
984 	if (adev->mes.ring.sched.ready) {
985 		amdgpu_mes_wreg(adev, reg, v);
986 		return;
987 	}
988 
989 	spin_lock_irqsave(&kiq->ring_lock, flags);
990 	amdgpu_ring_alloc(ring, 32);
991 	amdgpu_ring_emit_wreg(ring, reg, v);
992 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
993 	if (r)
994 		goto failed_undo;
995 
996 	amdgpu_ring_commit(ring);
997 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
998 
999 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1000 
1001 	/* don't wait anymore for gpu reset case because this way may
1002 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1003 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1004 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1005 	 * gpu_recover() hang there.
1006 	 *
1007 	 * also don't wait anymore for IRQ context
1008 	 * */
1009 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1010 		goto failed_kiq_write;
1011 
1012 	might_sleep();
1013 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1014 
1015 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1016 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1017 	}
1018 
1019 	if (cnt > MAX_KIQ_REG_TRY)
1020 		goto failed_kiq_write;
1021 
1022 	return;
1023 
1024 failed_undo:
1025 	amdgpu_ring_undo(ring);
1026 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1027 failed_kiq_write:
1028 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1029 }
1030 
1031 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1032 {
1033 	if (amdgpu_num_kcq == -1) {
1034 		return 8;
1035 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1036 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1037 		return 8;
1038 	}
1039 	return amdgpu_num_kcq;
1040 }
1041 
1042 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1043 				  uint32_t ucode_id)
1044 {
1045 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1046 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1047 	struct amdgpu_firmware_info *info = NULL;
1048 	const struct firmware *ucode_fw;
1049 	unsigned int fw_size;
1050 
1051 	switch (ucode_id) {
1052 	case AMDGPU_UCODE_ID_CP_PFP:
1053 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1054 			adev->gfx.pfp_fw->data;
1055 		adev->gfx.pfp_fw_version =
1056 			le32_to_cpu(cp_hdr->header.ucode_version);
1057 		adev->gfx.pfp_feature_version =
1058 			le32_to_cpu(cp_hdr->ucode_feature_version);
1059 		ucode_fw = adev->gfx.pfp_fw;
1060 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1061 		break;
1062 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1063 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1064 			adev->gfx.pfp_fw->data;
1065 		adev->gfx.pfp_fw_version =
1066 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1067 		adev->gfx.pfp_feature_version =
1068 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1069 		ucode_fw = adev->gfx.pfp_fw;
1070 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1071 		break;
1072 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1073 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1074 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1075 			adev->gfx.pfp_fw->data;
1076 		ucode_fw = adev->gfx.pfp_fw;
1077 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1078 		break;
1079 	case AMDGPU_UCODE_ID_CP_ME:
1080 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1081 			adev->gfx.me_fw->data;
1082 		adev->gfx.me_fw_version =
1083 			le32_to_cpu(cp_hdr->header.ucode_version);
1084 		adev->gfx.me_feature_version =
1085 			le32_to_cpu(cp_hdr->ucode_feature_version);
1086 		ucode_fw = adev->gfx.me_fw;
1087 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1088 		break;
1089 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1090 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1091 			adev->gfx.me_fw->data;
1092 		adev->gfx.me_fw_version =
1093 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1094 		adev->gfx.me_feature_version =
1095 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1096 		ucode_fw = adev->gfx.me_fw;
1097 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1098 		break;
1099 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1100 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1101 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1102 			adev->gfx.me_fw->data;
1103 		ucode_fw = adev->gfx.me_fw;
1104 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1105 		break;
1106 	case AMDGPU_UCODE_ID_CP_CE:
1107 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1108 			adev->gfx.ce_fw->data;
1109 		adev->gfx.ce_fw_version =
1110 			le32_to_cpu(cp_hdr->header.ucode_version);
1111 		adev->gfx.ce_feature_version =
1112 			le32_to_cpu(cp_hdr->ucode_feature_version);
1113 		ucode_fw = adev->gfx.ce_fw;
1114 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1115 		break;
1116 	case AMDGPU_UCODE_ID_CP_MEC1:
1117 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1118 			adev->gfx.mec_fw->data;
1119 		adev->gfx.mec_fw_version =
1120 			le32_to_cpu(cp_hdr->header.ucode_version);
1121 		adev->gfx.mec_feature_version =
1122 			le32_to_cpu(cp_hdr->ucode_feature_version);
1123 		ucode_fw = adev->gfx.mec_fw;
1124 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1125 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1126 		break;
1127 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1128 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1129 			adev->gfx.mec_fw->data;
1130 		ucode_fw = adev->gfx.mec_fw;
1131 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1132 		break;
1133 	case AMDGPU_UCODE_ID_CP_MEC2:
1134 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1135 			adev->gfx.mec2_fw->data;
1136 		adev->gfx.mec2_fw_version =
1137 			le32_to_cpu(cp_hdr->header.ucode_version);
1138 		adev->gfx.mec2_feature_version =
1139 			le32_to_cpu(cp_hdr->ucode_feature_version);
1140 		ucode_fw = adev->gfx.mec2_fw;
1141 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1142 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1143 		break;
1144 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1145 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1146 			adev->gfx.mec2_fw->data;
1147 		ucode_fw = adev->gfx.mec2_fw;
1148 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1149 		break;
1150 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1151 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1152 			adev->gfx.mec_fw->data;
1153 		adev->gfx.mec_fw_version =
1154 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1155 		adev->gfx.mec_feature_version =
1156 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1157 		ucode_fw = adev->gfx.mec_fw;
1158 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1159 		break;
1160 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1161 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1162 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1163 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1164 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1165 			adev->gfx.mec_fw->data;
1166 		ucode_fw = adev->gfx.mec_fw;
1167 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1168 		break;
1169 	default:
1170 		break;
1171 	}
1172 
1173 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1174 		info = &adev->firmware.ucode[ucode_id];
1175 		info->ucode_id = ucode_id;
1176 		info->fw = ucode_fw;
1177 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1178 	}
1179 }
1180 
1181 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1182 {
1183 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1184 			adev->gfx.num_xcc_per_xcp : 1));
1185 }
1186 
1187 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1188 						struct device_attribute *addr,
1189 						char *buf)
1190 {
1191 	struct drm_device *ddev = dev_get_drvdata(dev);
1192 	struct amdgpu_device *adev = drm_to_adev(ddev);
1193 	int mode;
1194 
1195 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1196 					       AMDGPU_XCP_FL_NONE);
1197 
1198 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1199 }
1200 
1201 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1202 						struct device_attribute *addr,
1203 						const char *buf, size_t count)
1204 {
1205 	struct drm_device *ddev = dev_get_drvdata(dev);
1206 	struct amdgpu_device *adev = drm_to_adev(ddev);
1207 	enum amdgpu_gfx_partition mode;
1208 	int ret = 0, num_xcc;
1209 
1210 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1211 	if (num_xcc % 2 != 0)
1212 		return -EINVAL;
1213 
1214 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1215 		mode = AMDGPU_SPX_PARTITION_MODE;
1216 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1217 		/*
1218 		 * DPX mode needs AIDs to be in multiple of 2.
1219 		 * Each AID connects 2 XCCs.
1220 		 */
1221 		if (num_xcc%4)
1222 			return -EINVAL;
1223 		mode = AMDGPU_DPX_PARTITION_MODE;
1224 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1225 		if (num_xcc != 6)
1226 			return -EINVAL;
1227 		mode = AMDGPU_TPX_PARTITION_MODE;
1228 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1229 		if (num_xcc != 8)
1230 			return -EINVAL;
1231 		mode = AMDGPU_QPX_PARTITION_MODE;
1232 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1233 		mode = AMDGPU_CPX_PARTITION_MODE;
1234 	} else {
1235 		return -EINVAL;
1236 	}
1237 
1238 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1239 
1240 	if (ret)
1241 		return ret;
1242 
1243 	return count;
1244 }
1245 
1246 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1247 						struct device_attribute *addr,
1248 						char *buf)
1249 {
1250 	struct drm_device *ddev = dev_get_drvdata(dev);
1251 	struct amdgpu_device *adev = drm_to_adev(ddev);
1252 	char *supported_partition;
1253 
1254 	/* TBD */
1255 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1256 	case 8:
1257 		supported_partition = "SPX, DPX, QPX, CPX";
1258 		break;
1259 	case 6:
1260 		supported_partition = "SPX, TPX, CPX";
1261 		break;
1262 	case 4:
1263 		supported_partition = "SPX, DPX, CPX";
1264 		break;
1265 	/* this seems only existing in emulation phase */
1266 	case 2:
1267 		supported_partition = "SPX, CPX";
1268 		break;
1269 	default:
1270 		supported_partition = "Not supported";
1271 		break;
1272 	}
1273 
1274 	return sysfs_emit(buf, "%s\n", supported_partition);
1275 }
1276 
1277 static DEVICE_ATTR(current_compute_partition, S_IRUGO | S_IWUSR,
1278 		   amdgpu_gfx_get_current_compute_partition,
1279 		   amdgpu_gfx_set_compute_partition);
1280 
1281 static DEVICE_ATTR(available_compute_partition, S_IRUGO,
1282 		   amdgpu_gfx_get_available_compute_partition, NULL);
1283 
1284 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1285 {
1286 	int r;
1287 
1288 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1289 	if (r)
1290 		return r;
1291 
1292 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1293 
1294 	return r;
1295 }
1296 
1297 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1298 {
1299 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1300 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1301 }
1302