1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32 
33 /* delay 0.1 second to enable gfx off feature */
34 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
35 
36 #define GFX_OFF_NO_DELAY 0
37 
38 /*
39  * GPU GFX IP block helpers function.
40  */
41 
42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
43 				int pipe, int queue)
44 {
45 	int bit = 0;
46 
47 	bit += mec * adev->gfx.mec.num_pipe_per_mec
48 		* adev->gfx.mec.num_queue_per_pipe;
49 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
50 	bit += queue;
51 
52 	return bit;
53 }
54 
55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
56 				 int *mec, int *pipe, int *queue)
57 {
58 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
59 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
60 		% adev->gfx.mec.num_pipe_per_mec;
61 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
62 	       / adev->gfx.mec.num_pipe_per_mec;
63 
64 }
65 
66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
67 				     int xcc_id, int mec, int pipe, int queue)
68 {
69 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
70 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
71 }
72 
73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
74 			       int me, int pipe, int queue)
75 {
76 	int bit = 0;
77 
78 	bit += me * adev->gfx.me.num_pipe_per_me
79 		* adev->gfx.me.num_queue_per_pipe;
80 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
81 	bit += queue;
82 
83 	return bit;
84 }
85 
86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
87 				int *me, int *pipe, int *queue)
88 {
89 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
90 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
91 		% adev->gfx.me.num_pipe_per_me;
92 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
93 		/ adev->gfx.me.num_pipe_per_me;
94 }
95 
96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
97 				    int me, int pipe, int queue)
98 {
99 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
100 			adev->gfx.me.queue_bitmap);
101 }
102 
103 /**
104  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
105  *
106  * @mask: array in which the per-shader array disable masks will be stored
107  * @max_se: number of SEs
108  * @max_sh: number of SHs
109  *
110  * The bitmask of CUs to be disabled in the shader array determined by se and
111  * sh is stored in mask[se * max_sh + sh].
112  */
113 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh)
114 {
115 	unsigned se, sh, cu;
116 	const char *p;
117 
118 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
119 
120 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
121 		return;
122 
123 	p = amdgpu_disable_cu;
124 	for (;;) {
125 		char *next;
126 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
127 		if (ret < 3) {
128 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
129 			return;
130 		}
131 
132 		if (se < max_se && sh < max_sh && cu < 16) {
133 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
134 			mask[se * max_sh + sh] |= 1u << cu;
135 		} else {
136 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
137 				  se, sh, cu);
138 		}
139 
140 		next = strchr(p, ',');
141 		if (!next)
142 			break;
143 		p = next + 1;
144 	}
145 }
146 
147 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
148 {
149 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
150 }
151 
152 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
153 {
154 	if (amdgpu_compute_multipipe != -1) {
155 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
156 			 amdgpu_compute_multipipe);
157 		return amdgpu_compute_multipipe == 1;
158 	}
159 
160 	if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
161 		return true;
162 
163 	/* FIXME: spreading the queues across pipes causes perf regressions
164 	 * on POLARIS11 compute workloads */
165 	if (adev->asic_type == CHIP_POLARIS11)
166 		return false;
167 
168 	return adev->gfx.mec.num_mec > 1;
169 }
170 
171 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
172 						struct amdgpu_ring *ring)
173 {
174 	int queue = ring->queue;
175 	int pipe = ring->pipe;
176 
177 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
178 	 * have more than one gfx pipe.
179 	 */
180 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
181 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
182 		int me = ring->me;
183 		int bit;
184 
185 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
186 		if (ring == &adev->gfx.gfx_ring[bit])
187 			return true;
188 	}
189 
190 	return false;
191 }
192 
193 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
194 					       struct amdgpu_ring *ring)
195 {
196 	/* Policy: use 1st queue as high priority compute queue if we
197 	 * have more than one compute queue.
198 	 */
199 	if (adev->gfx.num_compute_rings > 1 &&
200 	    ring == &adev->gfx.compute_ring[0])
201 		return true;
202 
203 	return false;
204 }
205 
206 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
207 {
208 	int i, j, queue, pipe;
209 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
210 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
211 				     adev->gfx.mec.num_queue_per_pipe,
212 				     adev->gfx.num_compute_rings);
213 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
214 
215 	if (multipipe_policy) {
216 		/* policy: make queues evenly cross all pipes on MEC1 only
217 		 * for multiple xcc, just use the original policy for simplicity */
218 		for (j = 0; j < num_xcc; j++) {
219 			for (i = 0; i < max_queues_per_mec; i++) {
220 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
221 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
222 					 adev->gfx.mec.num_queue_per_pipe;
223 
224 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
225 					adev->gfx.mec_bitmap[j].queue_bitmap);
226 			}
227 		}
228 	} else {
229 		/* policy: amdgpu owns all queues in the given pipe */
230 		for (j = 0; j < num_xcc; j++) {
231 			for (i = 0; i < max_queues_per_mec; ++i)
232 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
233 		}
234 	}
235 
236 	for (j = 0; j < num_xcc; j++) {
237 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
238 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
239 	}
240 }
241 
242 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
243 {
244 	int i, queue, pipe;
245 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
246 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
247 					adev->gfx.me.num_queue_per_pipe;
248 
249 	if (multipipe_policy) {
250 		/* policy: amdgpu owns the first queue per pipe at this stage
251 		 * will extend to mulitple queues per pipe later */
252 		for (i = 0; i < max_queues_per_me; i++) {
253 			pipe = i % adev->gfx.me.num_pipe_per_me;
254 			queue = (i / adev->gfx.me.num_pipe_per_me) %
255 				adev->gfx.me.num_queue_per_pipe;
256 
257 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
258 				adev->gfx.me.queue_bitmap);
259 		}
260 	} else {
261 		for (i = 0; i < max_queues_per_me; ++i)
262 			set_bit(i, adev->gfx.me.queue_bitmap);
263 	}
264 
265 	/* update the number of active graphics rings */
266 	adev->gfx.num_gfx_rings =
267 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
268 }
269 
270 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
271 				  struct amdgpu_ring *ring, int xcc_id)
272 {
273 	int queue_bit;
274 	int mec, pipe, queue;
275 
276 	queue_bit = adev->gfx.mec.num_mec
277 		    * adev->gfx.mec.num_pipe_per_mec
278 		    * adev->gfx.mec.num_queue_per_pipe;
279 
280 	while (--queue_bit >= 0) {
281 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
282 			continue;
283 
284 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
285 
286 		/*
287 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
288 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
289 		 * only can be issued on queue 0.
290 		 */
291 		if ((mec == 1 && pipe > 1) || queue != 0)
292 			continue;
293 
294 		ring->me = mec + 1;
295 		ring->pipe = pipe;
296 		ring->queue = queue;
297 
298 		return 0;
299 	}
300 
301 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
302 	return -EINVAL;
303 }
304 
305 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
306 			     struct amdgpu_ring *ring,
307 			     struct amdgpu_irq_src *irq, int xcc_id)
308 {
309 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
310 	int r = 0;
311 
312 	spin_lock_init(&kiq->ring_lock);
313 
314 	ring->adev = NULL;
315 	ring->ring_obj = NULL;
316 	ring->use_doorbell = true;
317 	ring->xcc_id = xcc_id;
318 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
319 	ring->doorbell_index =
320 		(adev->doorbell_index.kiq +
321 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
322 		<< 1;
323 
324 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
325 	if (r)
326 		return r;
327 
328 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
329 	ring->no_scheduler = true;
330 	sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
331 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
332 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
333 	if (r)
334 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
335 
336 	return r;
337 }
338 
339 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
340 {
341 	amdgpu_ring_fini(ring);
342 }
343 
344 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
345 {
346 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
347 
348 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
349 }
350 
351 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
352 			unsigned hpd_size, int xcc_id)
353 {
354 	int r;
355 	u32 *hpd;
356 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
357 
358 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
359 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
360 				    &kiq->eop_gpu_addr, (void **)&hpd);
361 	if (r) {
362 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
363 		return r;
364 	}
365 
366 	memset(hpd, 0, hpd_size);
367 
368 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
369 	if (unlikely(r != 0))
370 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
371 	amdgpu_bo_kunmap(kiq->eop_obj);
372 	amdgpu_bo_unreserve(kiq->eop_obj);
373 
374 	return 0;
375 }
376 
377 /* create MQD for each compute/gfx queue */
378 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
379 			   unsigned mqd_size, int xcc_id)
380 {
381 	int r, i, j;
382 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
383 	struct amdgpu_ring *ring = &kiq->ring;
384 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
385 
386 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
387 	if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
388 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
389 
390 	/* create MQD for KIQ */
391 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
392 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
393 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
394 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
395 		 * KIQ MQD no matter SRIOV or Bare-metal
396 		 */
397 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
398 					    AMDGPU_GEM_DOMAIN_VRAM |
399 					    AMDGPU_GEM_DOMAIN_GTT,
400 					    &ring->mqd_obj,
401 					    &ring->mqd_gpu_addr,
402 					    &ring->mqd_ptr);
403 		if (r) {
404 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
405 			return r;
406 		}
407 
408 		/* prepare MQD backup */
409 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
410 		if (!kiq->mqd_backup) {
411 			dev_warn(adev->dev,
412 				 "no memory to create MQD backup for ring %s\n", ring->name);
413 			return -ENOMEM;
414 		}
415 	}
416 
417 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
418 		/* create MQD for each KGQ */
419 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
420 			ring = &adev->gfx.gfx_ring[i];
421 			if (!ring->mqd_obj) {
422 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
423 							    domain, &ring->mqd_obj,
424 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
425 				if (r) {
426 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
427 					return r;
428 				}
429 
430 				ring->mqd_size = mqd_size;
431 				/* prepare MQD backup */
432 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
433 				if (!adev->gfx.me.mqd_backup[i]) {
434 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
435 					return -ENOMEM;
436 				}
437 			}
438 		}
439 	}
440 
441 	/* create MQD for each KCQ */
442 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
443 		j = i + xcc_id * adev->gfx.num_compute_rings;
444 		ring = &adev->gfx.compute_ring[j];
445 		if (!ring->mqd_obj) {
446 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
447 						    domain, &ring->mqd_obj,
448 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
449 			if (r) {
450 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
451 				return r;
452 			}
453 
454 			ring->mqd_size = mqd_size;
455 			/* prepare MQD backup */
456 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
457 			if (!adev->gfx.mec.mqd_backup[j])
458 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
459 		}
460 	}
461 
462 	return 0;
463 }
464 
465 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
466 {
467 	struct amdgpu_ring *ring = NULL;
468 	int i, j;
469 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
470 
471 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
472 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
473 			ring = &adev->gfx.gfx_ring[i];
474 			kfree(adev->gfx.me.mqd_backup[i]);
475 			amdgpu_bo_free_kernel(&ring->mqd_obj,
476 					      &ring->mqd_gpu_addr,
477 					      &ring->mqd_ptr);
478 		}
479 	}
480 
481 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
482 		j = i + xcc_id * adev->gfx.num_compute_rings;
483 		ring = &adev->gfx.compute_ring[j];
484 		kfree(adev->gfx.mec.mqd_backup[j]);
485 		amdgpu_bo_free_kernel(&ring->mqd_obj,
486 				      &ring->mqd_gpu_addr,
487 				      &ring->mqd_ptr);
488 	}
489 
490 	ring = &kiq->ring;
491 	kfree(kiq->mqd_backup);
492 	amdgpu_bo_free_kernel(&ring->mqd_obj,
493 			      &ring->mqd_gpu_addr,
494 			      &ring->mqd_ptr);
495 }
496 
497 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
498 {
499 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
500 	struct amdgpu_ring *kiq_ring = &kiq->ring;
501 	int i, r = 0;
502 	int j;
503 
504 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
505 		return -EINVAL;
506 
507 	spin_lock(&kiq->ring_lock);
508 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
509 					adev->gfx.num_compute_rings)) {
510 		spin_unlock(&kiq->ring_lock);
511 		return -ENOMEM;
512 	}
513 
514 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
515 		j = i + xcc_id * adev->gfx.num_compute_rings;
516 		kiq->pmf->kiq_unmap_queues(kiq_ring,
517 					   &adev->gfx.compute_ring[j],
518 					   RESET_QUEUES, 0, 0);
519 	}
520 
521 	if (kiq_ring->sched.ready && !adev->job_hang)
522 		r = amdgpu_ring_test_helper(kiq_ring);
523 	spin_unlock(&kiq->ring_lock);
524 
525 	return r;
526 }
527 
528 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
529 {
530 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
531 	struct amdgpu_ring *kiq_ring = &kiq->ring;
532 	int i, r = 0;
533 	int j;
534 
535 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
536 		return -EINVAL;
537 
538 	spin_lock(&kiq->ring_lock);
539 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
540 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
541 						adev->gfx.num_gfx_rings)) {
542 			spin_unlock(&kiq->ring_lock);
543 			return -ENOMEM;
544 		}
545 
546 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
547 			j = i + xcc_id * adev->gfx.num_gfx_rings;
548 			kiq->pmf->kiq_unmap_queues(kiq_ring,
549 						   &adev->gfx.gfx_ring[j],
550 						   PREEMPT_QUEUES, 0, 0);
551 		}
552 	}
553 
554 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
555 		r = amdgpu_ring_test_helper(kiq_ring);
556 	spin_unlock(&kiq->ring_lock);
557 
558 	return r;
559 }
560 
561 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
562 					int queue_bit)
563 {
564 	int mec, pipe, queue;
565 	int set_resource_bit = 0;
566 
567 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
568 
569 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
570 
571 	return set_resource_bit;
572 }
573 
574 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
575 {
576 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
577 	struct amdgpu_ring *kiq_ring = &kiq->ring;
578 	uint64_t queue_mask = 0;
579 	int r, i, j;
580 
581 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
582 		return -EINVAL;
583 
584 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
585 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
586 			continue;
587 
588 		/* This situation may be hit in the future if a new HW
589 		 * generation exposes more than 64 queues. If so, the
590 		 * definition of queue_mask needs updating */
591 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
592 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
593 			break;
594 		}
595 
596 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
597 	}
598 
599 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
600 							kiq_ring->queue);
601 	amdgpu_device_flush_hdp(adev, NULL);
602 
603 	spin_lock(&kiq->ring_lock);
604 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
605 					adev->gfx.num_compute_rings +
606 					kiq->pmf->set_resources_size);
607 	if (r) {
608 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
609 		spin_unlock(&kiq->ring_lock);
610 		return r;
611 	}
612 
613 	if (adev->enable_mes)
614 		queue_mask = ~0ULL;
615 
616 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
617 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
618 		j = i + xcc_id * adev->gfx.num_compute_rings;
619 			kiq->pmf->kiq_map_queues(kiq_ring,
620 						 &adev->gfx.compute_ring[j]);
621 	}
622 
623 	r = amdgpu_ring_test_helper(kiq_ring);
624 	spin_unlock(&kiq->ring_lock);
625 	if (r)
626 		DRM_ERROR("KCQ enable failed\n");
627 
628 	return r;
629 }
630 
631 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
632 {
633 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
634 	struct amdgpu_ring *kiq_ring = &kiq->ring;
635 	int r, i, j;
636 
637 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
638 		return -EINVAL;
639 
640 	amdgpu_device_flush_hdp(adev, NULL);
641 
642 	spin_lock(&kiq->ring_lock);
643 	/* No need to map kcq on the slave */
644 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
645 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
646 						adev->gfx.num_gfx_rings);
647 		if (r) {
648 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
649 			spin_unlock(&kiq->ring_lock);
650 			return r;
651 		}
652 
653 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
654 			j = i + xcc_id * adev->gfx.num_gfx_rings;
655 			kiq->pmf->kiq_map_queues(kiq_ring,
656 						 &adev->gfx.gfx_ring[j]);
657 		}
658 	}
659 
660 	r = amdgpu_ring_test_helper(kiq_ring);
661 	spin_unlock(&kiq->ring_lock);
662 	if (r)
663 		DRM_ERROR("KCQ enable failed\n");
664 
665 	return r;
666 }
667 
668 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
669  *
670  * @adev: amdgpu_device pointer
671  * @bool enable true: enable gfx off feature, false: disable gfx off feature
672  *
673  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
674  * 2. other client can send request to disable gfx off feature, the request should be honored.
675  * 3. other client can cancel their request of disable gfx off feature
676  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
677  */
678 
679 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
680 {
681 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
682 
683 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
684 		return;
685 
686 	mutex_lock(&adev->gfx.gfx_off_mutex);
687 
688 	if (enable) {
689 		/* If the count is already 0, it means there's an imbalance bug somewhere.
690 		 * Note that the bug may be in a different caller than the one which triggers the
691 		 * WARN_ON_ONCE.
692 		 */
693 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
694 			goto unlock;
695 
696 		adev->gfx.gfx_off_req_count--;
697 
698 		if (adev->gfx.gfx_off_req_count == 0 &&
699 		    !adev->gfx.gfx_off_state) {
700 			/* If going to s2idle, no need to wait */
701 			if (adev->in_s0ix) {
702 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
703 						AMD_IP_BLOCK_TYPE_GFX, true))
704 					adev->gfx.gfx_off_state = true;
705 			} else {
706 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
707 					      delay);
708 			}
709 		}
710 	} else {
711 		if (adev->gfx.gfx_off_req_count == 0) {
712 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
713 
714 			if (adev->gfx.gfx_off_state &&
715 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
716 				adev->gfx.gfx_off_state = false;
717 
718 				if (adev->gfx.funcs->init_spm_golden) {
719 					dev_dbg(adev->dev,
720 						"GFXOFF is disabled, re-init SPM golden settings\n");
721 					amdgpu_gfx_init_spm_golden(adev);
722 				}
723 			}
724 		}
725 
726 		adev->gfx.gfx_off_req_count++;
727 	}
728 
729 unlock:
730 	mutex_unlock(&adev->gfx.gfx_off_mutex);
731 }
732 
733 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
734 {
735 	int r = 0;
736 
737 	mutex_lock(&adev->gfx.gfx_off_mutex);
738 
739 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
740 
741 	mutex_unlock(&adev->gfx.gfx_off_mutex);
742 
743 	return r;
744 }
745 
746 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
747 {
748 	int r = 0;
749 
750 	mutex_lock(&adev->gfx.gfx_off_mutex);
751 
752 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
753 
754 	mutex_unlock(&adev->gfx.gfx_off_mutex);
755 
756 	return r;
757 }
758 
759 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
760 {
761 	int r = 0;
762 
763 	mutex_lock(&adev->gfx.gfx_off_mutex);
764 
765 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
766 
767 	mutex_unlock(&adev->gfx.gfx_off_mutex);
768 
769 	return r;
770 }
771 
772 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
773 {
774 
775 	int r = 0;
776 
777 	mutex_lock(&adev->gfx.gfx_off_mutex);
778 
779 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
780 
781 	mutex_unlock(&adev->gfx.gfx_off_mutex);
782 
783 	return r;
784 }
785 
786 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
787 {
788 	int r;
789 
790 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
791 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
792 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
793 
794 		r = amdgpu_ras_block_late_init(adev, ras_block);
795 		if (r)
796 			return r;
797 
798 		if (adev->gfx.cp_ecc_error_irq.funcs) {
799 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
800 			if (r)
801 				goto late_fini;
802 		}
803 	} else {
804 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
805 	}
806 
807 	return 0;
808 late_fini:
809 	amdgpu_ras_block_late_fini(adev, ras_block);
810 	return r;
811 }
812 
813 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
814 {
815 	int err = 0;
816 	struct amdgpu_gfx_ras *ras = NULL;
817 
818 	/* adev->gfx.ras is NULL, which means gfx does not
819 	 * support ras function, then do nothing here.
820 	 */
821 	if (!adev->gfx.ras)
822 		return 0;
823 
824 	ras = adev->gfx.ras;
825 
826 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
827 	if (err) {
828 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
829 		return err;
830 	}
831 
832 	strcpy(ras->ras_block.ras_comm.name, "gfx");
833 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
834 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
835 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
836 
837 	/* If not define special ras_late_init function, use gfx default ras_late_init */
838 	if (!ras->ras_block.ras_late_init)
839 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
840 
841 	/* If not defined special ras_cb function, use default ras_cb */
842 	if (!ras->ras_block.ras_cb)
843 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
844 
845 	return 0;
846 }
847 
848 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
849 						struct amdgpu_iv_entry *entry)
850 {
851 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
852 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
853 
854 	return 0;
855 }
856 
857 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
858 		void *err_data,
859 		struct amdgpu_iv_entry *entry)
860 {
861 	/* TODO ue will trigger an interrupt.
862 	 *
863 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
864 	 * be disabled and the driver should only look for the aggregated
865 	 * interrupt via sync flood
866 	 */
867 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
868 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
869 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
870 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
871 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
872 		amdgpu_ras_reset_gpu(adev);
873 	}
874 	return AMDGPU_RAS_SUCCESS;
875 }
876 
877 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
878 				  struct amdgpu_irq_src *source,
879 				  struct amdgpu_iv_entry *entry)
880 {
881 	struct ras_common_if *ras_if = adev->gfx.ras_if;
882 	struct ras_dispatch_if ih_data = {
883 		.entry = entry,
884 	};
885 
886 	if (!ras_if)
887 		return 0;
888 
889 	ih_data.head = *ras_if;
890 
891 	DRM_ERROR("CP ECC ERROR IRQ\n");
892 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
893 	return 0;
894 }
895 
896 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
897 		void *ras_error_status,
898 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
899 				int xcc_id))
900 {
901 	int i;
902 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
903 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
904 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
905 
906 	if (err_data) {
907 		err_data->ue_count = 0;
908 		err_data->ce_count = 0;
909 	}
910 
911 	for_each_inst(i, xcc_mask)
912 		func(adev, ras_error_status, i);
913 }
914 
915 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
916 {
917 	signed long r, cnt = 0;
918 	unsigned long flags;
919 	uint32_t seq, reg_val_offs = 0, value = 0;
920 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
921 	struct amdgpu_ring *ring = &kiq->ring;
922 
923 	if (amdgpu_device_skip_hw_access(adev))
924 		return 0;
925 
926 	if (adev->mes.ring.sched.ready)
927 		return amdgpu_mes_rreg(adev, reg);
928 
929 	BUG_ON(!ring->funcs->emit_rreg);
930 
931 	spin_lock_irqsave(&kiq->ring_lock, flags);
932 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
933 		pr_err("critical bug! too many kiq readers\n");
934 		goto failed_unlock;
935 	}
936 	amdgpu_ring_alloc(ring, 32);
937 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
938 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
939 	if (r)
940 		goto failed_undo;
941 
942 	amdgpu_ring_commit(ring);
943 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
944 
945 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
946 
947 	/* don't wait anymore for gpu reset case because this way may
948 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
949 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
950 	 * never return if we keep waiting in virt_kiq_rreg, which cause
951 	 * gpu_recover() hang there.
952 	 *
953 	 * also don't wait anymore for IRQ context
954 	 * */
955 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
956 		goto failed_kiq_read;
957 
958 	might_sleep();
959 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
960 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
961 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
962 	}
963 
964 	if (cnt > MAX_KIQ_REG_TRY)
965 		goto failed_kiq_read;
966 
967 	mb();
968 	value = adev->wb.wb[reg_val_offs];
969 	amdgpu_device_wb_free(adev, reg_val_offs);
970 	return value;
971 
972 failed_undo:
973 	amdgpu_ring_undo(ring);
974 failed_unlock:
975 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
976 failed_kiq_read:
977 	if (reg_val_offs)
978 		amdgpu_device_wb_free(adev, reg_val_offs);
979 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
980 	return ~0;
981 }
982 
983 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
984 {
985 	signed long r, cnt = 0;
986 	unsigned long flags;
987 	uint32_t seq;
988 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
989 	struct amdgpu_ring *ring = &kiq->ring;
990 
991 	BUG_ON(!ring->funcs->emit_wreg);
992 
993 	if (amdgpu_device_skip_hw_access(adev))
994 		return;
995 
996 	if (adev->mes.ring.sched.ready) {
997 		amdgpu_mes_wreg(adev, reg, v);
998 		return;
999 	}
1000 
1001 	spin_lock_irqsave(&kiq->ring_lock, flags);
1002 	amdgpu_ring_alloc(ring, 32);
1003 	amdgpu_ring_emit_wreg(ring, reg, v);
1004 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1005 	if (r)
1006 		goto failed_undo;
1007 
1008 	amdgpu_ring_commit(ring);
1009 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1010 
1011 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1012 
1013 	/* don't wait anymore for gpu reset case because this way may
1014 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1015 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1016 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1017 	 * gpu_recover() hang there.
1018 	 *
1019 	 * also don't wait anymore for IRQ context
1020 	 * */
1021 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1022 		goto failed_kiq_write;
1023 
1024 	might_sleep();
1025 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1026 
1027 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1028 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1029 	}
1030 
1031 	if (cnt > MAX_KIQ_REG_TRY)
1032 		goto failed_kiq_write;
1033 
1034 	return;
1035 
1036 failed_undo:
1037 	amdgpu_ring_undo(ring);
1038 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1039 failed_kiq_write:
1040 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1041 }
1042 
1043 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1044 {
1045 	if (amdgpu_num_kcq == -1) {
1046 		return 8;
1047 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1048 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1049 		return 8;
1050 	}
1051 	return amdgpu_num_kcq;
1052 }
1053 
1054 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1055 				  uint32_t ucode_id)
1056 {
1057 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1058 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1059 	struct amdgpu_firmware_info *info = NULL;
1060 	const struct firmware *ucode_fw;
1061 	unsigned int fw_size;
1062 
1063 	switch (ucode_id) {
1064 	case AMDGPU_UCODE_ID_CP_PFP:
1065 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1066 			adev->gfx.pfp_fw->data;
1067 		adev->gfx.pfp_fw_version =
1068 			le32_to_cpu(cp_hdr->header.ucode_version);
1069 		adev->gfx.pfp_feature_version =
1070 			le32_to_cpu(cp_hdr->ucode_feature_version);
1071 		ucode_fw = adev->gfx.pfp_fw;
1072 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1073 		break;
1074 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1075 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1076 			adev->gfx.pfp_fw->data;
1077 		adev->gfx.pfp_fw_version =
1078 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1079 		adev->gfx.pfp_feature_version =
1080 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1081 		ucode_fw = adev->gfx.pfp_fw;
1082 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1083 		break;
1084 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1085 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1086 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1087 			adev->gfx.pfp_fw->data;
1088 		ucode_fw = adev->gfx.pfp_fw;
1089 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1090 		break;
1091 	case AMDGPU_UCODE_ID_CP_ME:
1092 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1093 			adev->gfx.me_fw->data;
1094 		adev->gfx.me_fw_version =
1095 			le32_to_cpu(cp_hdr->header.ucode_version);
1096 		adev->gfx.me_feature_version =
1097 			le32_to_cpu(cp_hdr->ucode_feature_version);
1098 		ucode_fw = adev->gfx.me_fw;
1099 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1100 		break;
1101 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1102 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1103 			adev->gfx.me_fw->data;
1104 		adev->gfx.me_fw_version =
1105 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1106 		adev->gfx.me_feature_version =
1107 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1108 		ucode_fw = adev->gfx.me_fw;
1109 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1110 		break;
1111 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1112 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1113 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1114 			adev->gfx.me_fw->data;
1115 		ucode_fw = adev->gfx.me_fw;
1116 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1117 		break;
1118 	case AMDGPU_UCODE_ID_CP_CE:
1119 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1120 			adev->gfx.ce_fw->data;
1121 		adev->gfx.ce_fw_version =
1122 			le32_to_cpu(cp_hdr->header.ucode_version);
1123 		adev->gfx.ce_feature_version =
1124 			le32_to_cpu(cp_hdr->ucode_feature_version);
1125 		ucode_fw = adev->gfx.ce_fw;
1126 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1127 		break;
1128 	case AMDGPU_UCODE_ID_CP_MEC1:
1129 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1130 			adev->gfx.mec_fw->data;
1131 		adev->gfx.mec_fw_version =
1132 			le32_to_cpu(cp_hdr->header.ucode_version);
1133 		adev->gfx.mec_feature_version =
1134 			le32_to_cpu(cp_hdr->ucode_feature_version);
1135 		ucode_fw = adev->gfx.mec_fw;
1136 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1137 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1138 		break;
1139 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1140 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1141 			adev->gfx.mec_fw->data;
1142 		ucode_fw = adev->gfx.mec_fw;
1143 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1144 		break;
1145 	case AMDGPU_UCODE_ID_CP_MEC2:
1146 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1147 			adev->gfx.mec2_fw->data;
1148 		adev->gfx.mec2_fw_version =
1149 			le32_to_cpu(cp_hdr->header.ucode_version);
1150 		adev->gfx.mec2_feature_version =
1151 			le32_to_cpu(cp_hdr->ucode_feature_version);
1152 		ucode_fw = adev->gfx.mec2_fw;
1153 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1154 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1155 		break;
1156 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1157 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1158 			adev->gfx.mec2_fw->data;
1159 		ucode_fw = adev->gfx.mec2_fw;
1160 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1161 		break;
1162 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1163 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1164 			adev->gfx.mec_fw->data;
1165 		adev->gfx.mec_fw_version =
1166 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1167 		adev->gfx.mec_feature_version =
1168 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1169 		ucode_fw = adev->gfx.mec_fw;
1170 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1171 		break;
1172 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1173 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1174 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1175 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1176 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1177 			adev->gfx.mec_fw->data;
1178 		ucode_fw = adev->gfx.mec_fw;
1179 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1180 		break;
1181 	default:
1182 		break;
1183 	}
1184 
1185 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1186 		info = &adev->firmware.ucode[ucode_id];
1187 		info->ucode_id = ucode_id;
1188 		info->fw = ucode_fw;
1189 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1190 	}
1191 }
1192 
1193 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1194 {
1195 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1196 			adev->gfx.num_xcc_per_xcp : 1));
1197 }
1198 
1199 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1200 						struct device_attribute *addr,
1201 						char *buf)
1202 {
1203 	struct drm_device *ddev = dev_get_drvdata(dev);
1204 	struct amdgpu_device *adev = drm_to_adev(ddev);
1205 	int mode;
1206 
1207 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1208 					       AMDGPU_XCP_FL_NONE);
1209 
1210 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1211 }
1212 
1213 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1214 						struct device_attribute *addr,
1215 						const char *buf, size_t count)
1216 {
1217 	struct drm_device *ddev = dev_get_drvdata(dev);
1218 	struct amdgpu_device *adev = drm_to_adev(ddev);
1219 	enum amdgpu_gfx_partition mode;
1220 	int ret = 0, num_xcc;
1221 
1222 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1223 	if (num_xcc % 2 != 0)
1224 		return -EINVAL;
1225 
1226 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1227 		mode = AMDGPU_SPX_PARTITION_MODE;
1228 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1229 		/*
1230 		 * DPX mode needs AIDs to be in multiple of 2.
1231 		 * Each AID connects 2 XCCs.
1232 		 */
1233 		if (num_xcc%4)
1234 			return -EINVAL;
1235 		mode = AMDGPU_DPX_PARTITION_MODE;
1236 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1237 		if (num_xcc != 6)
1238 			return -EINVAL;
1239 		mode = AMDGPU_TPX_PARTITION_MODE;
1240 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1241 		if (num_xcc != 8)
1242 			return -EINVAL;
1243 		mode = AMDGPU_QPX_PARTITION_MODE;
1244 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1245 		mode = AMDGPU_CPX_PARTITION_MODE;
1246 	} else {
1247 		return -EINVAL;
1248 	}
1249 
1250 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1251 
1252 	if (ret)
1253 		return ret;
1254 
1255 	return count;
1256 }
1257 
1258 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1259 						struct device_attribute *addr,
1260 						char *buf)
1261 {
1262 	struct drm_device *ddev = dev_get_drvdata(dev);
1263 	struct amdgpu_device *adev = drm_to_adev(ddev);
1264 	char *supported_partition;
1265 
1266 	/* TBD */
1267 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1268 	case 8:
1269 		supported_partition = "SPX, DPX, QPX, CPX";
1270 		break;
1271 	case 6:
1272 		supported_partition = "SPX, TPX, CPX";
1273 		break;
1274 	case 4:
1275 		supported_partition = "SPX, DPX, CPX";
1276 		break;
1277 	/* this seems only existing in emulation phase */
1278 	case 2:
1279 		supported_partition = "SPX, CPX";
1280 		break;
1281 	default:
1282 		supported_partition = "Not supported";
1283 		break;
1284 	}
1285 
1286 	return sysfs_emit(buf, "%s\n", supported_partition);
1287 }
1288 
1289 static DEVICE_ATTR(current_compute_partition, S_IRUGO | S_IWUSR,
1290 		   amdgpu_gfx_get_current_compute_partition,
1291 		   amdgpu_gfx_set_compute_partition);
1292 
1293 static DEVICE_ATTR(available_compute_partition, S_IRUGO,
1294 		   amdgpu_gfx_get_available_compute_partition, NULL);
1295 
1296 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1297 {
1298 	int r;
1299 
1300 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1301 	if (r)
1302 		return r;
1303 
1304 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1305 
1306 	return r;
1307 }
1308 
1309 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1310 {
1311 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1312 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1313 }
1314