1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 #include "amdgpu_xcp.h" 32 33 /* delay 0.1 second to enable gfx off feature */ 34 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 35 36 #define GFX_OFF_NO_DELAY 0 37 38 /* 39 * GPU GFX IP block helpers function. 40 */ 41 42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 43 int pipe, int queue) 44 { 45 int bit = 0; 46 47 bit += mec * adev->gfx.mec.num_pipe_per_mec 48 * adev->gfx.mec.num_queue_per_pipe; 49 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 50 bit += queue; 51 52 return bit; 53 } 54 55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 56 int *mec, int *pipe, int *queue) 57 { 58 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 59 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 60 % adev->gfx.mec.num_pipe_per_mec; 61 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 62 / adev->gfx.mec.num_pipe_per_mec; 63 64 } 65 66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 67 int xcc_id, int mec, int pipe, int queue) 68 { 69 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 70 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 71 } 72 73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 74 int me, int pipe, int queue) 75 { 76 int bit = 0; 77 78 bit += me * adev->gfx.me.num_pipe_per_me 79 * adev->gfx.me.num_queue_per_pipe; 80 bit += pipe * adev->gfx.me.num_queue_per_pipe; 81 bit += queue; 82 83 return bit; 84 } 85 86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 87 int *me, int *pipe, int *queue) 88 { 89 *queue = bit % adev->gfx.me.num_queue_per_pipe; 90 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 91 % adev->gfx.me.num_pipe_per_me; 92 *me = (bit / adev->gfx.me.num_queue_per_pipe) 93 / adev->gfx.me.num_pipe_per_me; 94 } 95 96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 97 int me, int pipe, int queue) 98 { 99 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 100 adev->gfx.me.queue_bitmap); 101 } 102 103 /** 104 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 105 * 106 * @mask: array in which the per-shader array disable masks will be stored 107 * @max_se: number of SEs 108 * @max_sh: number of SHs 109 * 110 * The bitmask of CUs to be disabled in the shader array determined by se and 111 * sh is stored in mask[se * max_sh + sh]. 112 */ 113 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh) 114 { 115 unsigned se, sh, cu; 116 const char *p; 117 118 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 119 120 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 121 return; 122 123 p = amdgpu_disable_cu; 124 for (;;) { 125 char *next; 126 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 127 if (ret < 3) { 128 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 129 return; 130 } 131 132 if (se < max_se && sh < max_sh && cu < 16) { 133 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 134 mask[se * max_sh + sh] |= 1u << cu; 135 } else { 136 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 137 se, sh, cu); 138 } 139 140 next = strchr(p, ','); 141 if (!next) 142 break; 143 p = next + 1; 144 } 145 } 146 147 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 148 { 149 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 150 } 151 152 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 153 { 154 if (amdgpu_compute_multipipe != -1) { 155 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 156 amdgpu_compute_multipipe); 157 return amdgpu_compute_multipipe == 1; 158 } 159 160 if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)) 161 return true; 162 163 /* FIXME: spreading the queues across pipes causes perf regressions 164 * on POLARIS11 compute workloads */ 165 if (adev->asic_type == CHIP_POLARIS11) 166 return false; 167 168 return adev->gfx.mec.num_mec > 1; 169 } 170 171 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 172 struct amdgpu_ring *ring) 173 { 174 int queue = ring->queue; 175 int pipe = ring->pipe; 176 177 /* Policy: use pipe1 queue0 as high priority graphics queue if we 178 * have more than one gfx pipe. 179 */ 180 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 181 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 182 int me = ring->me; 183 int bit; 184 185 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 186 if (ring == &adev->gfx.gfx_ring[bit]) 187 return true; 188 } 189 190 return false; 191 } 192 193 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 194 struct amdgpu_ring *ring) 195 { 196 /* Policy: use 1st queue as high priority compute queue if we 197 * have more than one compute queue. 198 */ 199 if (adev->gfx.num_compute_rings > 1 && 200 ring == &adev->gfx.compute_ring[0]) 201 return true; 202 203 return false; 204 } 205 206 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 207 { 208 int i, j, queue, pipe; 209 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 210 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 211 adev->gfx.mec.num_queue_per_pipe, 212 adev->gfx.num_compute_rings); 213 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 214 215 if (multipipe_policy) { 216 /* policy: make queues evenly cross all pipes on MEC1 only 217 * for multiple xcc, just use the original policy for simplicity */ 218 for (j = 0; j < num_xcc; j++) { 219 for (i = 0; i < max_queues_per_mec; i++) { 220 pipe = i % adev->gfx.mec.num_pipe_per_mec; 221 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 222 adev->gfx.mec.num_queue_per_pipe; 223 224 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 225 adev->gfx.mec_bitmap[j].queue_bitmap); 226 } 227 } 228 } else { 229 /* policy: amdgpu owns all queues in the given pipe */ 230 for (j = 0; j < num_xcc; j++) { 231 for (i = 0; i < max_queues_per_mec; ++i) 232 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 233 } 234 } 235 236 for (j = 0; j < num_xcc; j++) { 237 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 238 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 239 } 240 } 241 242 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 243 { 244 int i, queue, pipe; 245 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 246 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 247 adev->gfx.me.num_queue_per_pipe; 248 249 if (multipipe_policy) { 250 /* policy: amdgpu owns the first queue per pipe at this stage 251 * will extend to mulitple queues per pipe later */ 252 for (i = 0; i < max_queues_per_me; i++) { 253 pipe = i % adev->gfx.me.num_pipe_per_me; 254 queue = (i / adev->gfx.me.num_pipe_per_me) % 255 adev->gfx.me.num_queue_per_pipe; 256 257 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 258 adev->gfx.me.queue_bitmap); 259 } 260 } else { 261 for (i = 0; i < max_queues_per_me; ++i) 262 set_bit(i, adev->gfx.me.queue_bitmap); 263 } 264 265 /* update the number of active graphics rings */ 266 adev->gfx.num_gfx_rings = 267 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 268 } 269 270 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 271 struct amdgpu_ring *ring, int xcc_id) 272 { 273 int queue_bit; 274 int mec, pipe, queue; 275 276 queue_bit = adev->gfx.mec.num_mec 277 * adev->gfx.mec.num_pipe_per_mec 278 * adev->gfx.mec.num_queue_per_pipe; 279 280 while (--queue_bit >= 0) { 281 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 282 continue; 283 284 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 285 286 /* 287 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 288 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 289 * only can be issued on queue 0. 290 */ 291 if ((mec == 1 && pipe > 1) || queue != 0) 292 continue; 293 294 ring->me = mec + 1; 295 ring->pipe = pipe; 296 ring->queue = queue; 297 298 return 0; 299 } 300 301 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 302 return -EINVAL; 303 } 304 305 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 306 struct amdgpu_ring *ring, 307 struct amdgpu_irq_src *irq, int xcc_id) 308 { 309 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 310 int r = 0; 311 312 spin_lock_init(&kiq->ring_lock); 313 314 ring->adev = NULL; 315 ring->ring_obj = NULL; 316 ring->use_doorbell = true; 317 ring->xcc_id = xcc_id; 318 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 319 ring->doorbell_index = 320 (adev->doorbell_index.kiq + 321 xcc_id * adev->doorbell_index.xcc_doorbell_range) 322 << 1; 323 324 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 325 if (r) 326 return r; 327 328 ring->eop_gpu_addr = kiq->eop_gpu_addr; 329 ring->no_scheduler = true; 330 sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue); 331 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 332 AMDGPU_RING_PRIO_DEFAULT, NULL); 333 if (r) 334 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 335 336 return r; 337 } 338 339 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 340 { 341 amdgpu_ring_fini(ring); 342 } 343 344 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 345 { 346 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 347 348 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 349 } 350 351 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 352 unsigned hpd_size, int xcc_id) 353 { 354 int r; 355 u32 *hpd; 356 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 357 358 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 359 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 360 &kiq->eop_gpu_addr, (void **)&hpd); 361 if (r) { 362 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 363 return r; 364 } 365 366 memset(hpd, 0, hpd_size); 367 368 r = amdgpu_bo_reserve(kiq->eop_obj, true); 369 if (unlikely(r != 0)) 370 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 371 amdgpu_bo_kunmap(kiq->eop_obj); 372 amdgpu_bo_unreserve(kiq->eop_obj); 373 374 return 0; 375 } 376 377 /* create MQD for each compute/gfx queue */ 378 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 379 unsigned mqd_size, int xcc_id) 380 { 381 int r, i, j; 382 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 383 struct amdgpu_ring *ring = &kiq->ring; 384 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 385 386 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 387 if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0)) 388 domain |= AMDGPU_GEM_DOMAIN_VRAM; 389 390 /* create MQD for KIQ */ 391 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 392 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 393 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 394 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 395 * KIQ MQD no matter SRIOV or Bare-metal 396 */ 397 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 398 AMDGPU_GEM_DOMAIN_VRAM | 399 AMDGPU_GEM_DOMAIN_GTT, 400 &ring->mqd_obj, 401 &ring->mqd_gpu_addr, 402 &ring->mqd_ptr); 403 if (r) { 404 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 405 return r; 406 } 407 408 /* prepare MQD backup */ 409 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 410 if (!kiq->mqd_backup) { 411 dev_warn(adev->dev, 412 "no memory to create MQD backup for ring %s\n", ring->name); 413 return -ENOMEM; 414 } 415 } 416 417 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 418 /* create MQD for each KGQ */ 419 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 420 ring = &adev->gfx.gfx_ring[i]; 421 if (!ring->mqd_obj) { 422 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 423 domain, &ring->mqd_obj, 424 &ring->mqd_gpu_addr, &ring->mqd_ptr); 425 if (r) { 426 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 427 return r; 428 } 429 430 ring->mqd_size = mqd_size; 431 /* prepare MQD backup */ 432 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 433 if (!adev->gfx.me.mqd_backup[i]) { 434 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 435 return -ENOMEM; 436 } 437 } 438 } 439 } 440 441 /* create MQD for each KCQ */ 442 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 443 j = i + xcc_id * adev->gfx.num_compute_rings; 444 ring = &adev->gfx.compute_ring[j]; 445 if (!ring->mqd_obj) { 446 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 447 domain, &ring->mqd_obj, 448 &ring->mqd_gpu_addr, &ring->mqd_ptr); 449 if (r) { 450 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 451 return r; 452 } 453 454 ring->mqd_size = mqd_size; 455 /* prepare MQD backup */ 456 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); 457 if (!adev->gfx.mec.mqd_backup[j]) 458 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 459 } 460 } 461 462 return 0; 463 } 464 465 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 466 { 467 struct amdgpu_ring *ring = NULL; 468 int i, j; 469 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 470 471 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 472 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 473 ring = &adev->gfx.gfx_ring[i]; 474 kfree(adev->gfx.me.mqd_backup[i]); 475 amdgpu_bo_free_kernel(&ring->mqd_obj, 476 &ring->mqd_gpu_addr, 477 &ring->mqd_ptr); 478 } 479 } 480 481 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 482 j = i + xcc_id * adev->gfx.num_compute_rings; 483 ring = &adev->gfx.compute_ring[j]; 484 kfree(adev->gfx.mec.mqd_backup[j]); 485 amdgpu_bo_free_kernel(&ring->mqd_obj, 486 &ring->mqd_gpu_addr, 487 &ring->mqd_ptr); 488 } 489 490 ring = &kiq->ring; 491 kfree(kiq->mqd_backup); 492 amdgpu_bo_free_kernel(&ring->mqd_obj, 493 &ring->mqd_gpu_addr, 494 &ring->mqd_ptr); 495 } 496 497 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 498 { 499 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 500 struct amdgpu_ring *kiq_ring = &kiq->ring; 501 int i, r = 0; 502 int j; 503 504 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 505 return -EINVAL; 506 507 spin_lock(&kiq->ring_lock); 508 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 509 adev->gfx.num_compute_rings)) { 510 spin_unlock(&kiq->ring_lock); 511 return -ENOMEM; 512 } 513 514 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 515 j = i + xcc_id * adev->gfx.num_compute_rings; 516 kiq->pmf->kiq_unmap_queues(kiq_ring, 517 &adev->gfx.compute_ring[j], 518 RESET_QUEUES, 0, 0); 519 } 520 521 if (kiq_ring->sched.ready && !adev->job_hang) 522 r = amdgpu_ring_test_helper(kiq_ring); 523 spin_unlock(&kiq->ring_lock); 524 525 return r; 526 } 527 528 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 529 { 530 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 531 struct amdgpu_ring *kiq_ring = &kiq->ring; 532 int i, r = 0; 533 int j; 534 535 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 536 return -EINVAL; 537 538 spin_lock(&kiq->ring_lock); 539 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 540 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 541 adev->gfx.num_gfx_rings)) { 542 spin_unlock(&kiq->ring_lock); 543 return -ENOMEM; 544 } 545 546 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 547 j = i + xcc_id * adev->gfx.num_gfx_rings; 548 kiq->pmf->kiq_unmap_queues(kiq_ring, 549 &adev->gfx.gfx_ring[j], 550 PREEMPT_QUEUES, 0, 0); 551 } 552 } 553 554 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 555 r = amdgpu_ring_test_helper(kiq_ring); 556 spin_unlock(&kiq->ring_lock); 557 558 return r; 559 } 560 561 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 562 int queue_bit) 563 { 564 int mec, pipe, queue; 565 int set_resource_bit = 0; 566 567 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 568 569 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 570 571 return set_resource_bit; 572 } 573 574 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 575 { 576 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 577 struct amdgpu_ring *kiq_ring = &kiq->ring; 578 uint64_t queue_mask = 0; 579 int r, i, j; 580 581 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 582 return -EINVAL; 583 584 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 585 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 586 continue; 587 588 /* This situation may be hit in the future if a new HW 589 * generation exposes more than 64 queues. If so, the 590 * definition of queue_mask needs updating */ 591 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 592 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 593 break; 594 } 595 596 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 597 } 598 599 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 600 kiq_ring->queue); 601 amdgpu_device_flush_hdp(adev, NULL); 602 603 spin_lock(&kiq->ring_lock); 604 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 605 adev->gfx.num_compute_rings + 606 kiq->pmf->set_resources_size); 607 if (r) { 608 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 609 spin_unlock(&kiq->ring_lock); 610 return r; 611 } 612 613 if (adev->enable_mes) 614 queue_mask = ~0ULL; 615 616 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 617 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 618 j = i + xcc_id * adev->gfx.num_compute_rings; 619 kiq->pmf->kiq_map_queues(kiq_ring, 620 &adev->gfx.compute_ring[j]); 621 } 622 623 r = amdgpu_ring_test_helper(kiq_ring); 624 spin_unlock(&kiq->ring_lock); 625 if (r) 626 DRM_ERROR("KCQ enable failed\n"); 627 628 return r; 629 } 630 631 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 632 { 633 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 634 struct amdgpu_ring *kiq_ring = &kiq->ring; 635 int r, i, j; 636 637 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 638 return -EINVAL; 639 640 amdgpu_device_flush_hdp(adev, NULL); 641 642 spin_lock(&kiq->ring_lock); 643 /* No need to map kcq on the slave */ 644 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 645 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 646 adev->gfx.num_gfx_rings); 647 if (r) { 648 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 649 spin_unlock(&kiq->ring_lock); 650 return r; 651 } 652 653 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 654 j = i + xcc_id * adev->gfx.num_gfx_rings; 655 kiq->pmf->kiq_map_queues(kiq_ring, 656 &adev->gfx.gfx_ring[j]); 657 } 658 } 659 660 r = amdgpu_ring_test_helper(kiq_ring); 661 spin_unlock(&kiq->ring_lock); 662 if (r) 663 DRM_ERROR("KCQ enable failed\n"); 664 665 return r; 666 } 667 668 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 669 * 670 * @adev: amdgpu_device pointer 671 * @bool enable true: enable gfx off feature, false: disable gfx off feature 672 * 673 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 674 * 2. other client can send request to disable gfx off feature, the request should be honored. 675 * 3. other client can cancel their request of disable gfx off feature 676 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 677 */ 678 679 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 680 { 681 unsigned long delay = GFX_OFF_DELAY_ENABLE; 682 683 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 684 return; 685 686 mutex_lock(&adev->gfx.gfx_off_mutex); 687 688 if (enable) { 689 /* If the count is already 0, it means there's an imbalance bug somewhere. 690 * Note that the bug may be in a different caller than the one which triggers the 691 * WARN_ON_ONCE. 692 */ 693 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 694 goto unlock; 695 696 adev->gfx.gfx_off_req_count--; 697 698 if (adev->gfx.gfx_off_req_count == 0 && 699 !adev->gfx.gfx_off_state) { 700 /* If going to s2idle, no need to wait */ 701 if (adev->in_s0ix) { 702 if (!amdgpu_dpm_set_powergating_by_smu(adev, 703 AMD_IP_BLOCK_TYPE_GFX, true)) 704 adev->gfx.gfx_off_state = true; 705 } else { 706 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 707 delay); 708 } 709 } 710 } else { 711 if (adev->gfx.gfx_off_req_count == 0) { 712 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 713 714 if (adev->gfx.gfx_off_state && 715 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 716 adev->gfx.gfx_off_state = false; 717 718 if (adev->gfx.funcs->init_spm_golden) { 719 dev_dbg(adev->dev, 720 "GFXOFF is disabled, re-init SPM golden settings\n"); 721 amdgpu_gfx_init_spm_golden(adev); 722 } 723 } 724 } 725 726 adev->gfx.gfx_off_req_count++; 727 } 728 729 unlock: 730 mutex_unlock(&adev->gfx.gfx_off_mutex); 731 } 732 733 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 734 { 735 int r = 0; 736 737 mutex_lock(&adev->gfx.gfx_off_mutex); 738 739 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 740 741 mutex_unlock(&adev->gfx.gfx_off_mutex); 742 743 return r; 744 } 745 746 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 747 { 748 int r = 0; 749 750 mutex_lock(&adev->gfx.gfx_off_mutex); 751 752 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 753 754 mutex_unlock(&adev->gfx.gfx_off_mutex); 755 756 return r; 757 } 758 759 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 760 { 761 int r = 0; 762 763 mutex_lock(&adev->gfx.gfx_off_mutex); 764 765 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 766 767 mutex_unlock(&adev->gfx.gfx_off_mutex); 768 769 return r; 770 } 771 772 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 773 { 774 775 int r = 0; 776 777 mutex_lock(&adev->gfx.gfx_off_mutex); 778 779 r = amdgpu_dpm_get_status_gfxoff(adev, value); 780 781 mutex_unlock(&adev->gfx.gfx_off_mutex); 782 783 return r; 784 } 785 786 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 787 { 788 int r; 789 790 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 791 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 792 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 793 794 r = amdgpu_ras_block_late_init(adev, ras_block); 795 if (r) 796 return r; 797 798 if (adev->gfx.cp_ecc_error_irq.funcs) { 799 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 800 if (r) 801 goto late_fini; 802 } 803 } else { 804 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 805 } 806 807 return 0; 808 late_fini: 809 amdgpu_ras_block_late_fini(adev, ras_block); 810 return r; 811 } 812 813 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 814 { 815 int err = 0; 816 struct amdgpu_gfx_ras *ras = NULL; 817 818 /* adev->gfx.ras is NULL, which means gfx does not 819 * support ras function, then do nothing here. 820 */ 821 if (!adev->gfx.ras) 822 return 0; 823 824 ras = adev->gfx.ras; 825 826 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 827 if (err) { 828 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 829 return err; 830 } 831 832 strcpy(ras->ras_block.ras_comm.name, "gfx"); 833 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 834 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 835 adev->gfx.ras_if = &ras->ras_block.ras_comm; 836 837 /* If not define special ras_late_init function, use gfx default ras_late_init */ 838 if (!ras->ras_block.ras_late_init) 839 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 840 841 /* If not defined special ras_cb function, use default ras_cb */ 842 if (!ras->ras_block.ras_cb) 843 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 844 845 return 0; 846 } 847 848 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 849 struct amdgpu_iv_entry *entry) 850 { 851 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 852 return adev->gfx.ras->poison_consumption_handler(adev, entry); 853 854 return 0; 855 } 856 857 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 858 void *err_data, 859 struct amdgpu_iv_entry *entry) 860 { 861 /* TODO ue will trigger an interrupt. 862 * 863 * When “Full RAS” is enabled, the per-IP interrupt sources should 864 * be disabled and the driver should only look for the aggregated 865 * interrupt via sync flood 866 */ 867 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 868 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 869 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 870 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 871 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 872 amdgpu_ras_reset_gpu(adev); 873 } 874 return AMDGPU_RAS_SUCCESS; 875 } 876 877 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 878 struct amdgpu_irq_src *source, 879 struct amdgpu_iv_entry *entry) 880 { 881 struct ras_common_if *ras_if = adev->gfx.ras_if; 882 struct ras_dispatch_if ih_data = { 883 .entry = entry, 884 }; 885 886 if (!ras_if) 887 return 0; 888 889 ih_data.head = *ras_if; 890 891 DRM_ERROR("CP ECC ERROR IRQ\n"); 892 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 893 return 0; 894 } 895 896 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 897 void *ras_error_status, 898 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 899 int xcc_id)) 900 { 901 int i; 902 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 903 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 904 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 905 906 if (err_data) { 907 err_data->ue_count = 0; 908 err_data->ce_count = 0; 909 } 910 911 for_each_inst(i, xcc_mask) 912 func(adev, ras_error_status, i); 913 } 914 915 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) 916 { 917 signed long r, cnt = 0; 918 unsigned long flags; 919 uint32_t seq, reg_val_offs = 0, value = 0; 920 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 921 struct amdgpu_ring *ring = &kiq->ring; 922 923 if (amdgpu_device_skip_hw_access(adev)) 924 return 0; 925 926 if (adev->mes.ring.sched.ready) 927 return amdgpu_mes_rreg(adev, reg); 928 929 BUG_ON(!ring->funcs->emit_rreg); 930 931 spin_lock_irqsave(&kiq->ring_lock, flags); 932 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 933 pr_err("critical bug! too many kiq readers\n"); 934 goto failed_unlock; 935 } 936 amdgpu_ring_alloc(ring, 32); 937 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 938 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 939 if (r) 940 goto failed_undo; 941 942 amdgpu_ring_commit(ring); 943 spin_unlock_irqrestore(&kiq->ring_lock, flags); 944 945 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 946 947 /* don't wait anymore for gpu reset case because this way may 948 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 949 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 950 * never return if we keep waiting in virt_kiq_rreg, which cause 951 * gpu_recover() hang there. 952 * 953 * also don't wait anymore for IRQ context 954 * */ 955 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 956 goto failed_kiq_read; 957 958 might_sleep(); 959 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 960 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 961 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 962 } 963 964 if (cnt > MAX_KIQ_REG_TRY) 965 goto failed_kiq_read; 966 967 mb(); 968 value = adev->wb.wb[reg_val_offs]; 969 amdgpu_device_wb_free(adev, reg_val_offs); 970 return value; 971 972 failed_undo: 973 amdgpu_ring_undo(ring); 974 failed_unlock: 975 spin_unlock_irqrestore(&kiq->ring_lock, flags); 976 failed_kiq_read: 977 if (reg_val_offs) 978 amdgpu_device_wb_free(adev, reg_val_offs); 979 dev_err(adev->dev, "failed to read reg:%x\n", reg); 980 return ~0; 981 } 982 983 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) 984 { 985 signed long r, cnt = 0; 986 unsigned long flags; 987 uint32_t seq; 988 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 989 struct amdgpu_ring *ring = &kiq->ring; 990 991 BUG_ON(!ring->funcs->emit_wreg); 992 993 if (amdgpu_device_skip_hw_access(adev)) 994 return; 995 996 if (adev->mes.ring.sched.ready) { 997 amdgpu_mes_wreg(adev, reg, v); 998 return; 999 } 1000 1001 spin_lock_irqsave(&kiq->ring_lock, flags); 1002 amdgpu_ring_alloc(ring, 32); 1003 amdgpu_ring_emit_wreg(ring, reg, v); 1004 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1005 if (r) 1006 goto failed_undo; 1007 1008 amdgpu_ring_commit(ring); 1009 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1010 1011 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1012 1013 /* don't wait anymore for gpu reset case because this way may 1014 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1015 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1016 * never return if we keep waiting in virt_kiq_rreg, which cause 1017 * gpu_recover() hang there. 1018 * 1019 * also don't wait anymore for IRQ context 1020 * */ 1021 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1022 goto failed_kiq_write; 1023 1024 might_sleep(); 1025 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1026 1027 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1028 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1029 } 1030 1031 if (cnt > MAX_KIQ_REG_TRY) 1032 goto failed_kiq_write; 1033 1034 return; 1035 1036 failed_undo: 1037 amdgpu_ring_undo(ring); 1038 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1039 failed_kiq_write: 1040 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1041 } 1042 1043 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1044 { 1045 if (amdgpu_num_kcq == -1) { 1046 return 8; 1047 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1048 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1049 return 8; 1050 } 1051 return amdgpu_num_kcq; 1052 } 1053 1054 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1055 uint32_t ucode_id) 1056 { 1057 const struct gfx_firmware_header_v1_0 *cp_hdr; 1058 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1059 struct amdgpu_firmware_info *info = NULL; 1060 const struct firmware *ucode_fw; 1061 unsigned int fw_size; 1062 1063 switch (ucode_id) { 1064 case AMDGPU_UCODE_ID_CP_PFP: 1065 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1066 adev->gfx.pfp_fw->data; 1067 adev->gfx.pfp_fw_version = 1068 le32_to_cpu(cp_hdr->header.ucode_version); 1069 adev->gfx.pfp_feature_version = 1070 le32_to_cpu(cp_hdr->ucode_feature_version); 1071 ucode_fw = adev->gfx.pfp_fw; 1072 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1073 break; 1074 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1075 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1076 adev->gfx.pfp_fw->data; 1077 adev->gfx.pfp_fw_version = 1078 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1079 adev->gfx.pfp_feature_version = 1080 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1081 ucode_fw = adev->gfx.pfp_fw; 1082 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1083 break; 1084 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1085 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1086 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1087 adev->gfx.pfp_fw->data; 1088 ucode_fw = adev->gfx.pfp_fw; 1089 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1090 break; 1091 case AMDGPU_UCODE_ID_CP_ME: 1092 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1093 adev->gfx.me_fw->data; 1094 adev->gfx.me_fw_version = 1095 le32_to_cpu(cp_hdr->header.ucode_version); 1096 adev->gfx.me_feature_version = 1097 le32_to_cpu(cp_hdr->ucode_feature_version); 1098 ucode_fw = adev->gfx.me_fw; 1099 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1100 break; 1101 case AMDGPU_UCODE_ID_CP_RS64_ME: 1102 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1103 adev->gfx.me_fw->data; 1104 adev->gfx.me_fw_version = 1105 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1106 adev->gfx.me_feature_version = 1107 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1108 ucode_fw = adev->gfx.me_fw; 1109 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1110 break; 1111 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1112 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1113 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1114 adev->gfx.me_fw->data; 1115 ucode_fw = adev->gfx.me_fw; 1116 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1117 break; 1118 case AMDGPU_UCODE_ID_CP_CE: 1119 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1120 adev->gfx.ce_fw->data; 1121 adev->gfx.ce_fw_version = 1122 le32_to_cpu(cp_hdr->header.ucode_version); 1123 adev->gfx.ce_feature_version = 1124 le32_to_cpu(cp_hdr->ucode_feature_version); 1125 ucode_fw = adev->gfx.ce_fw; 1126 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1127 break; 1128 case AMDGPU_UCODE_ID_CP_MEC1: 1129 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1130 adev->gfx.mec_fw->data; 1131 adev->gfx.mec_fw_version = 1132 le32_to_cpu(cp_hdr->header.ucode_version); 1133 adev->gfx.mec_feature_version = 1134 le32_to_cpu(cp_hdr->ucode_feature_version); 1135 ucode_fw = adev->gfx.mec_fw; 1136 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1137 le32_to_cpu(cp_hdr->jt_size) * 4; 1138 break; 1139 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1140 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1141 adev->gfx.mec_fw->data; 1142 ucode_fw = adev->gfx.mec_fw; 1143 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1144 break; 1145 case AMDGPU_UCODE_ID_CP_MEC2: 1146 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1147 adev->gfx.mec2_fw->data; 1148 adev->gfx.mec2_fw_version = 1149 le32_to_cpu(cp_hdr->header.ucode_version); 1150 adev->gfx.mec2_feature_version = 1151 le32_to_cpu(cp_hdr->ucode_feature_version); 1152 ucode_fw = adev->gfx.mec2_fw; 1153 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1154 le32_to_cpu(cp_hdr->jt_size) * 4; 1155 break; 1156 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1157 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1158 adev->gfx.mec2_fw->data; 1159 ucode_fw = adev->gfx.mec2_fw; 1160 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1161 break; 1162 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1163 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1164 adev->gfx.mec_fw->data; 1165 adev->gfx.mec_fw_version = 1166 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1167 adev->gfx.mec_feature_version = 1168 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1169 ucode_fw = adev->gfx.mec_fw; 1170 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1171 break; 1172 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1173 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1174 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1175 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1176 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1177 adev->gfx.mec_fw->data; 1178 ucode_fw = adev->gfx.mec_fw; 1179 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1180 break; 1181 default: 1182 break; 1183 } 1184 1185 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1186 info = &adev->firmware.ucode[ucode_id]; 1187 info->ucode_id = ucode_id; 1188 info->fw = ucode_fw; 1189 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1190 } 1191 } 1192 1193 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1194 { 1195 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1196 adev->gfx.num_xcc_per_xcp : 1)); 1197 } 1198 1199 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1200 struct device_attribute *addr, 1201 char *buf) 1202 { 1203 struct drm_device *ddev = dev_get_drvdata(dev); 1204 struct amdgpu_device *adev = drm_to_adev(ddev); 1205 int mode; 1206 1207 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1208 AMDGPU_XCP_FL_NONE); 1209 1210 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1211 } 1212 1213 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1214 struct device_attribute *addr, 1215 const char *buf, size_t count) 1216 { 1217 struct drm_device *ddev = dev_get_drvdata(dev); 1218 struct amdgpu_device *adev = drm_to_adev(ddev); 1219 enum amdgpu_gfx_partition mode; 1220 int ret = 0, num_xcc; 1221 1222 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1223 if (num_xcc % 2 != 0) 1224 return -EINVAL; 1225 1226 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1227 mode = AMDGPU_SPX_PARTITION_MODE; 1228 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1229 /* 1230 * DPX mode needs AIDs to be in multiple of 2. 1231 * Each AID connects 2 XCCs. 1232 */ 1233 if (num_xcc%4) 1234 return -EINVAL; 1235 mode = AMDGPU_DPX_PARTITION_MODE; 1236 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1237 if (num_xcc != 6) 1238 return -EINVAL; 1239 mode = AMDGPU_TPX_PARTITION_MODE; 1240 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1241 if (num_xcc != 8) 1242 return -EINVAL; 1243 mode = AMDGPU_QPX_PARTITION_MODE; 1244 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1245 mode = AMDGPU_CPX_PARTITION_MODE; 1246 } else { 1247 return -EINVAL; 1248 } 1249 1250 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1251 1252 if (ret) 1253 return ret; 1254 1255 return count; 1256 } 1257 1258 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1259 struct device_attribute *addr, 1260 char *buf) 1261 { 1262 struct drm_device *ddev = dev_get_drvdata(dev); 1263 struct amdgpu_device *adev = drm_to_adev(ddev); 1264 char *supported_partition; 1265 1266 /* TBD */ 1267 switch (NUM_XCC(adev->gfx.xcc_mask)) { 1268 case 8: 1269 supported_partition = "SPX, DPX, QPX, CPX"; 1270 break; 1271 case 6: 1272 supported_partition = "SPX, TPX, CPX"; 1273 break; 1274 case 4: 1275 supported_partition = "SPX, DPX, CPX"; 1276 break; 1277 /* this seems only existing in emulation phase */ 1278 case 2: 1279 supported_partition = "SPX, CPX"; 1280 break; 1281 default: 1282 supported_partition = "Not supported"; 1283 break; 1284 } 1285 1286 return sysfs_emit(buf, "%s\n", supported_partition); 1287 } 1288 1289 static DEVICE_ATTR(current_compute_partition, S_IRUGO | S_IWUSR, 1290 amdgpu_gfx_get_current_compute_partition, 1291 amdgpu_gfx_set_compute_partition); 1292 1293 static DEVICE_ATTR(available_compute_partition, S_IRUGO, 1294 amdgpu_gfx_get_available_compute_partition, NULL); 1295 1296 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1297 { 1298 int r; 1299 1300 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1301 if (r) 1302 return r; 1303 1304 r = device_create_file(adev->dev, &dev_attr_available_compute_partition); 1305 1306 return r; 1307 } 1308 1309 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1310 { 1311 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1312 device_remove_file(adev->dev, &dev_attr_available_compute_partition); 1313 } 1314