1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32 
33 /* delay 0.1 second to enable gfx off feature */
34 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
35 
36 #define GFX_OFF_NO_DELAY 0
37 
38 /*
39  * GPU GFX IP block helpers function.
40  */
41 
42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
43 				int pipe, int queue)
44 {
45 	int bit = 0;
46 
47 	bit += mec * adev->gfx.mec.num_pipe_per_mec
48 		* adev->gfx.mec.num_queue_per_pipe;
49 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
50 	bit += queue;
51 
52 	return bit;
53 }
54 
55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
56 				 int *mec, int *pipe, int *queue)
57 {
58 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
59 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
60 		% adev->gfx.mec.num_pipe_per_mec;
61 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
62 	       / adev->gfx.mec.num_pipe_per_mec;
63 
64 }
65 
66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
67 				     int xcc_id, int mec, int pipe, int queue)
68 {
69 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
70 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
71 }
72 
73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
74 			       int me, int pipe, int queue)
75 {
76 	int bit = 0;
77 
78 	bit += me * adev->gfx.me.num_pipe_per_me
79 		* adev->gfx.me.num_queue_per_pipe;
80 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
81 	bit += queue;
82 
83 	return bit;
84 }
85 
86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
87 				int *me, int *pipe, int *queue)
88 {
89 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
90 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
91 		% adev->gfx.me.num_pipe_per_me;
92 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
93 		/ adev->gfx.me.num_pipe_per_me;
94 }
95 
96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
97 				    int me, int pipe, int queue)
98 {
99 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
100 			adev->gfx.me.queue_bitmap);
101 }
102 
103 /**
104  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
105  *
106  * @mask: array in which the per-shader array disable masks will be stored
107  * @max_se: number of SEs
108  * @max_sh: number of SHs
109  *
110  * The bitmask of CUs to be disabled in the shader array determined by se and
111  * sh is stored in mask[se * max_sh + sh].
112  */
113 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
114 {
115 	unsigned int se, sh, cu;
116 	const char *p;
117 
118 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
119 
120 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
121 		return;
122 
123 	p = amdgpu_disable_cu;
124 	for (;;) {
125 		char *next;
126 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
127 
128 		if (ret < 3) {
129 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
130 			return;
131 		}
132 
133 		if (se < max_se && sh < max_sh && cu < 16) {
134 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
135 			mask[se * max_sh + sh] |= 1u << cu;
136 		} else {
137 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
138 				  se, sh, cu);
139 		}
140 
141 		next = strchr(p, ',');
142 		if (!next)
143 			break;
144 		p = next + 1;
145 	}
146 }
147 
148 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
149 {
150 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
151 }
152 
153 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
154 {
155 	if (amdgpu_compute_multipipe != -1) {
156 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
157 			 amdgpu_compute_multipipe);
158 		return amdgpu_compute_multipipe == 1;
159 	}
160 
161 	if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
162 		return true;
163 
164 	/* FIXME: spreading the queues across pipes causes perf regressions
165 	 * on POLARIS11 compute workloads */
166 	if (adev->asic_type == CHIP_POLARIS11)
167 		return false;
168 
169 	return adev->gfx.mec.num_mec > 1;
170 }
171 
172 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
173 						struct amdgpu_ring *ring)
174 {
175 	int queue = ring->queue;
176 	int pipe = ring->pipe;
177 
178 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
179 	 * have more than one gfx pipe.
180 	 */
181 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
182 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
183 		int me = ring->me;
184 		int bit;
185 
186 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
187 		if (ring == &adev->gfx.gfx_ring[bit])
188 			return true;
189 	}
190 
191 	return false;
192 }
193 
194 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
195 					       struct amdgpu_ring *ring)
196 {
197 	/* Policy: use 1st queue as high priority compute queue if we
198 	 * have more than one compute queue.
199 	 */
200 	if (adev->gfx.num_compute_rings > 1 &&
201 	    ring == &adev->gfx.compute_ring[0])
202 		return true;
203 
204 	return false;
205 }
206 
207 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
208 {
209 	int i, j, queue, pipe;
210 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
211 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
212 				     adev->gfx.mec.num_queue_per_pipe,
213 				     adev->gfx.num_compute_rings);
214 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
215 
216 	if (multipipe_policy) {
217 		/* policy: make queues evenly cross all pipes on MEC1 only
218 		 * for multiple xcc, just use the original policy for simplicity */
219 		for (j = 0; j < num_xcc; j++) {
220 			for (i = 0; i < max_queues_per_mec; i++) {
221 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
222 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
223 					 adev->gfx.mec.num_queue_per_pipe;
224 
225 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
226 					adev->gfx.mec_bitmap[j].queue_bitmap);
227 			}
228 		}
229 	} else {
230 		/* policy: amdgpu owns all queues in the given pipe */
231 		for (j = 0; j < num_xcc; j++) {
232 			for (i = 0; i < max_queues_per_mec; ++i)
233 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
234 		}
235 	}
236 
237 	for (j = 0; j < num_xcc; j++) {
238 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
239 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
240 	}
241 }
242 
243 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
244 {
245 	int i, queue, pipe;
246 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
247 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
248 					adev->gfx.me.num_queue_per_pipe;
249 
250 	if (multipipe_policy) {
251 		/* policy: amdgpu owns the first queue per pipe at this stage
252 		 * will extend to mulitple queues per pipe later */
253 		for (i = 0; i < max_queues_per_me; i++) {
254 			pipe = i % adev->gfx.me.num_pipe_per_me;
255 			queue = (i / adev->gfx.me.num_pipe_per_me) %
256 				adev->gfx.me.num_queue_per_pipe;
257 
258 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
259 				adev->gfx.me.queue_bitmap);
260 		}
261 	} else {
262 		for (i = 0; i < max_queues_per_me; ++i)
263 			set_bit(i, adev->gfx.me.queue_bitmap);
264 	}
265 
266 	/* update the number of active graphics rings */
267 	adev->gfx.num_gfx_rings =
268 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
269 }
270 
271 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
272 				  struct amdgpu_ring *ring, int xcc_id)
273 {
274 	int queue_bit;
275 	int mec, pipe, queue;
276 
277 	queue_bit = adev->gfx.mec.num_mec
278 		    * adev->gfx.mec.num_pipe_per_mec
279 		    * adev->gfx.mec.num_queue_per_pipe;
280 
281 	while (--queue_bit >= 0) {
282 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
283 			continue;
284 
285 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
286 
287 		/*
288 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
289 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
290 		 * only can be issued on queue 0.
291 		 */
292 		if ((mec == 1 && pipe > 1) || queue != 0)
293 			continue;
294 
295 		ring->me = mec + 1;
296 		ring->pipe = pipe;
297 		ring->queue = queue;
298 
299 		return 0;
300 	}
301 
302 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
303 	return -EINVAL;
304 }
305 
306 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
307 			     struct amdgpu_ring *ring,
308 			     struct amdgpu_irq_src *irq, int xcc_id)
309 {
310 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
311 	int r = 0;
312 
313 	spin_lock_init(&kiq->ring_lock);
314 
315 	ring->adev = NULL;
316 	ring->ring_obj = NULL;
317 	ring->use_doorbell = true;
318 	ring->xcc_id = xcc_id;
319 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
320 	ring->doorbell_index =
321 		(adev->doorbell_index.kiq +
322 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
323 		<< 1;
324 
325 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
326 	if (r)
327 		return r;
328 
329 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
330 	ring->no_scheduler = true;
331 	sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
332 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
333 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
334 	if (r)
335 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
336 
337 	return r;
338 }
339 
340 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
341 {
342 	amdgpu_ring_fini(ring);
343 }
344 
345 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
346 {
347 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
348 
349 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
350 }
351 
352 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
353 			unsigned int hpd_size, int xcc_id)
354 {
355 	int r;
356 	u32 *hpd;
357 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
358 
359 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
360 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
361 				    &kiq->eop_gpu_addr, (void **)&hpd);
362 	if (r) {
363 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
364 		return r;
365 	}
366 
367 	memset(hpd, 0, hpd_size);
368 
369 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
370 	if (unlikely(r != 0))
371 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
372 	amdgpu_bo_kunmap(kiq->eop_obj);
373 	amdgpu_bo_unreserve(kiq->eop_obj);
374 
375 	return 0;
376 }
377 
378 /* create MQD for each compute/gfx queue */
379 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
380 			   unsigned int mqd_size, int xcc_id)
381 {
382 	int r, i, j;
383 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
384 	struct amdgpu_ring *ring = &kiq->ring;
385 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
386 
387 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
388 	if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
389 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
390 
391 	/* create MQD for KIQ */
392 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
393 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
394 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
395 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
396 		 * KIQ MQD no matter SRIOV or Bare-metal
397 		 */
398 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
399 					    AMDGPU_GEM_DOMAIN_VRAM |
400 					    AMDGPU_GEM_DOMAIN_GTT,
401 					    &ring->mqd_obj,
402 					    &ring->mqd_gpu_addr,
403 					    &ring->mqd_ptr);
404 		if (r) {
405 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
406 			return r;
407 		}
408 
409 		/* prepare MQD backup */
410 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
411 		if (!kiq->mqd_backup) {
412 			dev_warn(adev->dev,
413 				 "no memory to create MQD backup for ring %s\n", ring->name);
414 			return -ENOMEM;
415 		}
416 	}
417 
418 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
419 		/* create MQD for each KGQ */
420 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
421 			ring = &adev->gfx.gfx_ring[i];
422 			if (!ring->mqd_obj) {
423 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
424 							    domain, &ring->mqd_obj,
425 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
426 				if (r) {
427 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
428 					return r;
429 				}
430 
431 				ring->mqd_size = mqd_size;
432 				/* prepare MQD backup */
433 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
434 				if (!adev->gfx.me.mqd_backup[i]) {
435 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
436 					return -ENOMEM;
437 				}
438 			}
439 		}
440 	}
441 
442 	/* create MQD for each KCQ */
443 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
444 		j = i + xcc_id * adev->gfx.num_compute_rings;
445 		ring = &adev->gfx.compute_ring[j];
446 		if (!ring->mqd_obj) {
447 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
448 						    domain, &ring->mqd_obj,
449 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
450 			if (r) {
451 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
452 				return r;
453 			}
454 
455 			ring->mqd_size = mqd_size;
456 			/* prepare MQD backup */
457 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
458 			if (!adev->gfx.mec.mqd_backup[j]) {
459 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
460 				return -ENOMEM;
461 			}
462 		}
463 	}
464 
465 	return 0;
466 }
467 
468 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
469 {
470 	struct amdgpu_ring *ring = NULL;
471 	int i, j;
472 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
473 
474 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
475 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
476 			ring = &adev->gfx.gfx_ring[i];
477 			kfree(adev->gfx.me.mqd_backup[i]);
478 			amdgpu_bo_free_kernel(&ring->mqd_obj,
479 					      &ring->mqd_gpu_addr,
480 					      &ring->mqd_ptr);
481 		}
482 	}
483 
484 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
485 		j = i + xcc_id * adev->gfx.num_compute_rings;
486 		ring = &adev->gfx.compute_ring[j];
487 		kfree(adev->gfx.mec.mqd_backup[j]);
488 		amdgpu_bo_free_kernel(&ring->mqd_obj,
489 				      &ring->mqd_gpu_addr,
490 				      &ring->mqd_ptr);
491 	}
492 
493 	ring = &kiq->ring;
494 	kfree(kiq->mqd_backup);
495 	amdgpu_bo_free_kernel(&ring->mqd_obj,
496 			      &ring->mqd_gpu_addr,
497 			      &ring->mqd_ptr);
498 }
499 
500 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
501 {
502 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
503 	struct amdgpu_ring *kiq_ring = &kiq->ring;
504 	int i, r = 0;
505 	int j;
506 
507 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
508 		return -EINVAL;
509 
510 	spin_lock(&kiq->ring_lock);
511 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
512 					adev->gfx.num_compute_rings)) {
513 		spin_unlock(&kiq->ring_lock);
514 		return -ENOMEM;
515 	}
516 
517 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
518 		j = i + xcc_id * adev->gfx.num_compute_rings;
519 		kiq->pmf->kiq_unmap_queues(kiq_ring,
520 					   &adev->gfx.compute_ring[j],
521 					   RESET_QUEUES, 0, 0);
522 	}
523 
524 	if (kiq_ring->sched.ready && !adev->job_hang)
525 		r = amdgpu_ring_test_helper(kiq_ring);
526 	spin_unlock(&kiq->ring_lock);
527 
528 	return r;
529 }
530 
531 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
532 {
533 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
534 	struct amdgpu_ring *kiq_ring = &kiq->ring;
535 	int i, r = 0;
536 	int j;
537 
538 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
539 		return -EINVAL;
540 
541 	spin_lock(&kiq->ring_lock);
542 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
543 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
544 						adev->gfx.num_gfx_rings)) {
545 			spin_unlock(&kiq->ring_lock);
546 			return -ENOMEM;
547 		}
548 
549 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
550 			j = i + xcc_id * adev->gfx.num_gfx_rings;
551 			kiq->pmf->kiq_unmap_queues(kiq_ring,
552 						   &adev->gfx.gfx_ring[j],
553 						   PREEMPT_QUEUES, 0, 0);
554 		}
555 	}
556 
557 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
558 		r = amdgpu_ring_test_helper(kiq_ring);
559 	spin_unlock(&kiq->ring_lock);
560 
561 	return r;
562 }
563 
564 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
565 					int queue_bit)
566 {
567 	int mec, pipe, queue;
568 	int set_resource_bit = 0;
569 
570 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
571 
572 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
573 
574 	return set_resource_bit;
575 }
576 
577 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
578 {
579 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
580 	struct amdgpu_ring *kiq_ring = &kiq->ring;
581 	uint64_t queue_mask = 0;
582 	int r, i, j;
583 
584 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
585 		return -EINVAL;
586 
587 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
588 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
589 			continue;
590 
591 		/* This situation may be hit in the future if a new HW
592 		 * generation exposes more than 64 queues. If so, the
593 		 * definition of queue_mask needs updating */
594 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
595 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
596 			break;
597 		}
598 
599 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
600 	}
601 
602 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
603 							kiq_ring->queue);
604 	amdgpu_device_flush_hdp(adev, NULL);
605 
606 	spin_lock(&kiq->ring_lock);
607 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
608 					adev->gfx.num_compute_rings +
609 					kiq->pmf->set_resources_size);
610 	if (r) {
611 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
612 		spin_unlock(&kiq->ring_lock);
613 		return r;
614 	}
615 
616 	if (adev->enable_mes)
617 		queue_mask = ~0ULL;
618 
619 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
620 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
621 		j = i + xcc_id * adev->gfx.num_compute_rings;
622 			kiq->pmf->kiq_map_queues(kiq_ring,
623 						 &adev->gfx.compute_ring[j]);
624 	}
625 
626 	r = amdgpu_ring_test_helper(kiq_ring);
627 	spin_unlock(&kiq->ring_lock);
628 	if (r)
629 		DRM_ERROR("KCQ enable failed\n");
630 
631 	return r;
632 }
633 
634 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
635 {
636 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
637 	struct amdgpu_ring *kiq_ring = &kiq->ring;
638 	int r, i, j;
639 
640 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
641 		return -EINVAL;
642 
643 	amdgpu_device_flush_hdp(adev, NULL);
644 
645 	spin_lock(&kiq->ring_lock);
646 	/* No need to map kcq on the slave */
647 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
648 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
649 						adev->gfx.num_gfx_rings);
650 		if (r) {
651 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
652 			spin_unlock(&kiq->ring_lock);
653 			return r;
654 		}
655 
656 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
657 			j = i + xcc_id * adev->gfx.num_gfx_rings;
658 			kiq->pmf->kiq_map_queues(kiq_ring,
659 						 &adev->gfx.gfx_ring[j]);
660 		}
661 	}
662 
663 	r = amdgpu_ring_test_helper(kiq_ring);
664 	spin_unlock(&kiq->ring_lock);
665 	if (r)
666 		DRM_ERROR("KCQ enable failed\n");
667 
668 	return r;
669 }
670 
671 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
672  *
673  * @adev: amdgpu_device pointer
674  * @bool enable true: enable gfx off feature, false: disable gfx off feature
675  *
676  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
677  * 2. other client can send request to disable gfx off feature, the request should be honored.
678  * 3. other client can cancel their request of disable gfx off feature
679  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
680  */
681 
682 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
683 {
684 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
685 
686 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
687 		return;
688 
689 	mutex_lock(&adev->gfx.gfx_off_mutex);
690 
691 	if (enable) {
692 		/* If the count is already 0, it means there's an imbalance bug somewhere.
693 		 * Note that the bug may be in a different caller than the one which triggers the
694 		 * WARN_ON_ONCE.
695 		 */
696 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
697 			goto unlock;
698 
699 		adev->gfx.gfx_off_req_count--;
700 
701 		if (adev->gfx.gfx_off_req_count == 0 &&
702 		    !adev->gfx.gfx_off_state) {
703 			/* If going to s2idle, no need to wait */
704 			if (adev->in_s0ix) {
705 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
706 						AMD_IP_BLOCK_TYPE_GFX, true))
707 					adev->gfx.gfx_off_state = true;
708 			} else {
709 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
710 					      delay);
711 			}
712 		}
713 	} else {
714 		if (adev->gfx.gfx_off_req_count == 0) {
715 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
716 
717 			if (adev->gfx.gfx_off_state &&
718 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
719 				adev->gfx.gfx_off_state = false;
720 
721 				if (adev->gfx.funcs->init_spm_golden) {
722 					dev_dbg(adev->dev,
723 						"GFXOFF is disabled, re-init SPM golden settings\n");
724 					amdgpu_gfx_init_spm_golden(adev);
725 				}
726 			}
727 		}
728 
729 		adev->gfx.gfx_off_req_count++;
730 	}
731 
732 unlock:
733 	mutex_unlock(&adev->gfx.gfx_off_mutex);
734 }
735 
736 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
737 {
738 	int r = 0;
739 
740 	mutex_lock(&adev->gfx.gfx_off_mutex);
741 
742 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
743 
744 	mutex_unlock(&adev->gfx.gfx_off_mutex);
745 
746 	return r;
747 }
748 
749 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
750 {
751 	int r = 0;
752 
753 	mutex_lock(&adev->gfx.gfx_off_mutex);
754 
755 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
756 
757 	mutex_unlock(&adev->gfx.gfx_off_mutex);
758 
759 	return r;
760 }
761 
762 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
763 {
764 	int r = 0;
765 
766 	mutex_lock(&adev->gfx.gfx_off_mutex);
767 
768 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
769 
770 	mutex_unlock(&adev->gfx.gfx_off_mutex);
771 
772 	return r;
773 }
774 
775 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
776 {
777 
778 	int r = 0;
779 
780 	mutex_lock(&adev->gfx.gfx_off_mutex);
781 
782 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
783 
784 	mutex_unlock(&adev->gfx.gfx_off_mutex);
785 
786 	return r;
787 }
788 
789 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
790 {
791 	int r;
792 
793 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
794 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
795 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
796 
797 		r = amdgpu_ras_block_late_init(adev, ras_block);
798 		if (r)
799 			return r;
800 
801 		if (adev->gfx.cp_ecc_error_irq.funcs) {
802 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
803 			if (r)
804 				goto late_fini;
805 		}
806 	} else {
807 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
808 	}
809 
810 	return 0;
811 late_fini:
812 	amdgpu_ras_block_late_fini(adev, ras_block);
813 	return r;
814 }
815 
816 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
817 {
818 	int err = 0;
819 	struct amdgpu_gfx_ras *ras = NULL;
820 
821 	/* adev->gfx.ras is NULL, which means gfx does not
822 	 * support ras function, then do nothing here.
823 	 */
824 	if (!adev->gfx.ras)
825 		return 0;
826 
827 	ras = adev->gfx.ras;
828 
829 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
830 	if (err) {
831 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
832 		return err;
833 	}
834 
835 	strcpy(ras->ras_block.ras_comm.name, "gfx");
836 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
837 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
838 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
839 
840 	/* If not define special ras_late_init function, use gfx default ras_late_init */
841 	if (!ras->ras_block.ras_late_init)
842 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
843 
844 	/* If not defined special ras_cb function, use default ras_cb */
845 	if (!ras->ras_block.ras_cb)
846 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
847 
848 	return 0;
849 }
850 
851 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
852 						struct amdgpu_iv_entry *entry)
853 {
854 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
855 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
856 
857 	return 0;
858 }
859 
860 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
861 		void *err_data,
862 		struct amdgpu_iv_entry *entry)
863 {
864 	/* TODO ue will trigger an interrupt.
865 	 *
866 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
867 	 * be disabled and the driver should only look for the aggregated
868 	 * interrupt via sync flood
869 	 */
870 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
871 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
872 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
873 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
874 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
875 		amdgpu_ras_reset_gpu(adev);
876 	}
877 	return AMDGPU_RAS_SUCCESS;
878 }
879 
880 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
881 				  struct amdgpu_irq_src *source,
882 				  struct amdgpu_iv_entry *entry)
883 {
884 	struct ras_common_if *ras_if = adev->gfx.ras_if;
885 	struct ras_dispatch_if ih_data = {
886 		.entry = entry,
887 	};
888 
889 	if (!ras_if)
890 		return 0;
891 
892 	ih_data.head = *ras_if;
893 
894 	DRM_ERROR("CP ECC ERROR IRQ\n");
895 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
896 	return 0;
897 }
898 
899 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
900 		void *ras_error_status,
901 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
902 				int xcc_id))
903 {
904 	int i;
905 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
906 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
907 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
908 
909 	if (err_data) {
910 		err_data->ue_count = 0;
911 		err_data->ce_count = 0;
912 	}
913 
914 	for_each_inst(i, xcc_mask)
915 		func(adev, ras_error_status, i);
916 }
917 
918 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
919 {
920 	signed long r, cnt = 0;
921 	unsigned long flags;
922 	uint32_t seq, reg_val_offs = 0, value = 0;
923 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
924 	struct amdgpu_ring *ring = &kiq->ring;
925 
926 	if (amdgpu_device_skip_hw_access(adev))
927 		return 0;
928 
929 	if (adev->mes.ring.sched.ready)
930 		return amdgpu_mes_rreg(adev, reg);
931 
932 	BUG_ON(!ring->funcs->emit_rreg);
933 
934 	spin_lock_irqsave(&kiq->ring_lock, flags);
935 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
936 		pr_err("critical bug! too many kiq readers\n");
937 		goto failed_unlock;
938 	}
939 	amdgpu_ring_alloc(ring, 32);
940 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
941 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
942 	if (r)
943 		goto failed_undo;
944 
945 	amdgpu_ring_commit(ring);
946 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
947 
948 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
949 
950 	/* don't wait anymore for gpu reset case because this way may
951 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
952 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
953 	 * never return if we keep waiting in virt_kiq_rreg, which cause
954 	 * gpu_recover() hang there.
955 	 *
956 	 * also don't wait anymore for IRQ context
957 	 * */
958 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
959 		goto failed_kiq_read;
960 
961 	might_sleep();
962 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
963 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
964 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
965 	}
966 
967 	if (cnt > MAX_KIQ_REG_TRY)
968 		goto failed_kiq_read;
969 
970 	mb();
971 	value = adev->wb.wb[reg_val_offs];
972 	amdgpu_device_wb_free(adev, reg_val_offs);
973 	return value;
974 
975 failed_undo:
976 	amdgpu_ring_undo(ring);
977 failed_unlock:
978 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
979 failed_kiq_read:
980 	if (reg_val_offs)
981 		amdgpu_device_wb_free(adev, reg_val_offs);
982 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
983 	return ~0;
984 }
985 
986 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
987 {
988 	signed long r, cnt = 0;
989 	unsigned long flags;
990 	uint32_t seq;
991 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
992 	struct amdgpu_ring *ring = &kiq->ring;
993 
994 	BUG_ON(!ring->funcs->emit_wreg);
995 
996 	if (amdgpu_device_skip_hw_access(adev))
997 		return;
998 
999 	if (adev->mes.ring.sched.ready) {
1000 		amdgpu_mes_wreg(adev, reg, v);
1001 		return;
1002 	}
1003 
1004 	spin_lock_irqsave(&kiq->ring_lock, flags);
1005 	amdgpu_ring_alloc(ring, 32);
1006 	amdgpu_ring_emit_wreg(ring, reg, v);
1007 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1008 	if (r)
1009 		goto failed_undo;
1010 
1011 	amdgpu_ring_commit(ring);
1012 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1013 
1014 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1015 
1016 	/* don't wait anymore for gpu reset case because this way may
1017 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1018 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1019 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1020 	 * gpu_recover() hang there.
1021 	 *
1022 	 * also don't wait anymore for IRQ context
1023 	 * */
1024 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1025 		goto failed_kiq_write;
1026 
1027 	might_sleep();
1028 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1029 
1030 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1031 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1032 	}
1033 
1034 	if (cnt > MAX_KIQ_REG_TRY)
1035 		goto failed_kiq_write;
1036 
1037 	return;
1038 
1039 failed_undo:
1040 	amdgpu_ring_undo(ring);
1041 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1042 failed_kiq_write:
1043 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1044 }
1045 
1046 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1047 {
1048 	if (amdgpu_num_kcq == -1) {
1049 		return 8;
1050 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1051 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1052 		return 8;
1053 	}
1054 	return amdgpu_num_kcq;
1055 }
1056 
1057 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1058 				  uint32_t ucode_id)
1059 {
1060 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1061 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1062 	struct amdgpu_firmware_info *info = NULL;
1063 	const struct firmware *ucode_fw;
1064 	unsigned int fw_size;
1065 
1066 	switch (ucode_id) {
1067 	case AMDGPU_UCODE_ID_CP_PFP:
1068 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1069 			adev->gfx.pfp_fw->data;
1070 		adev->gfx.pfp_fw_version =
1071 			le32_to_cpu(cp_hdr->header.ucode_version);
1072 		adev->gfx.pfp_feature_version =
1073 			le32_to_cpu(cp_hdr->ucode_feature_version);
1074 		ucode_fw = adev->gfx.pfp_fw;
1075 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1076 		break;
1077 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1078 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1079 			adev->gfx.pfp_fw->data;
1080 		adev->gfx.pfp_fw_version =
1081 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1082 		adev->gfx.pfp_feature_version =
1083 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1084 		ucode_fw = adev->gfx.pfp_fw;
1085 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1086 		break;
1087 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1088 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1089 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1090 			adev->gfx.pfp_fw->data;
1091 		ucode_fw = adev->gfx.pfp_fw;
1092 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1093 		break;
1094 	case AMDGPU_UCODE_ID_CP_ME:
1095 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1096 			adev->gfx.me_fw->data;
1097 		adev->gfx.me_fw_version =
1098 			le32_to_cpu(cp_hdr->header.ucode_version);
1099 		adev->gfx.me_feature_version =
1100 			le32_to_cpu(cp_hdr->ucode_feature_version);
1101 		ucode_fw = adev->gfx.me_fw;
1102 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1103 		break;
1104 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1105 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1106 			adev->gfx.me_fw->data;
1107 		adev->gfx.me_fw_version =
1108 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1109 		adev->gfx.me_feature_version =
1110 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1111 		ucode_fw = adev->gfx.me_fw;
1112 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1113 		break;
1114 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1115 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1116 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1117 			adev->gfx.me_fw->data;
1118 		ucode_fw = adev->gfx.me_fw;
1119 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1120 		break;
1121 	case AMDGPU_UCODE_ID_CP_CE:
1122 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1123 			adev->gfx.ce_fw->data;
1124 		adev->gfx.ce_fw_version =
1125 			le32_to_cpu(cp_hdr->header.ucode_version);
1126 		adev->gfx.ce_feature_version =
1127 			le32_to_cpu(cp_hdr->ucode_feature_version);
1128 		ucode_fw = adev->gfx.ce_fw;
1129 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1130 		break;
1131 	case AMDGPU_UCODE_ID_CP_MEC1:
1132 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1133 			adev->gfx.mec_fw->data;
1134 		adev->gfx.mec_fw_version =
1135 			le32_to_cpu(cp_hdr->header.ucode_version);
1136 		adev->gfx.mec_feature_version =
1137 			le32_to_cpu(cp_hdr->ucode_feature_version);
1138 		ucode_fw = adev->gfx.mec_fw;
1139 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1140 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1141 		break;
1142 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1143 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1144 			adev->gfx.mec_fw->data;
1145 		ucode_fw = adev->gfx.mec_fw;
1146 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1147 		break;
1148 	case AMDGPU_UCODE_ID_CP_MEC2:
1149 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1150 			adev->gfx.mec2_fw->data;
1151 		adev->gfx.mec2_fw_version =
1152 			le32_to_cpu(cp_hdr->header.ucode_version);
1153 		adev->gfx.mec2_feature_version =
1154 			le32_to_cpu(cp_hdr->ucode_feature_version);
1155 		ucode_fw = adev->gfx.mec2_fw;
1156 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1157 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1158 		break;
1159 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1160 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1161 			adev->gfx.mec2_fw->data;
1162 		ucode_fw = adev->gfx.mec2_fw;
1163 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1164 		break;
1165 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1166 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1167 			adev->gfx.mec_fw->data;
1168 		adev->gfx.mec_fw_version =
1169 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1170 		adev->gfx.mec_feature_version =
1171 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1172 		ucode_fw = adev->gfx.mec_fw;
1173 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1174 		break;
1175 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1176 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1177 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1178 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1179 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1180 			adev->gfx.mec_fw->data;
1181 		ucode_fw = adev->gfx.mec_fw;
1182 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1183 		break;
1184 	default:
1185 		break;
1186 	}
1187 
1188 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1189 		info = &adev->firmware.ucode[ucode_id];
1190 		info->ucode_id = ucode_id;
1191 		info->fw = ucode_fw;
1192 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1193 	}
1194 }
1195 
1196 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1197 {
1198 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1199 			adev->gfx.num_xcc_per_xcp : 1));
1200 }
1201 
1202 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1203 						struct device_attribute *addr,
1204 						char *buf)
1205 {
1206 	struct drm_device *ddev = dev_get_drvdata(dev);
1207 	struct amdgpu_device *adev = drm_to_adev(ddev);
1208 	int mode;
1209 
1210 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1211 					       AMDGPU_XCP_FL_NONE);
1212 
1213 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1214 }
1215 
1216 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1217 						struct device_attribute *addr,
1218 						const char *buf, size_t count)
1219 {
1220 	struct drm_device *ddev = dev_get_drvdata(dev);
1221 	struct amdgpu_device *adev = drm_to_adev(ddev);
1222 	enum amdgpu_gfx_partition mode;
1223 	int ret = 0, num_xcc;
1224 
1225 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1226 	if (num_xcc % 2 != 0)
1227 		return -EINVAL;
1228 
1229 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1230 		mode = AMDGPU_SPX_PARTITION_MODE;
1231 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1232 		/*
1233 		 * DPX mode needs AIDs to be in multiple of 2.
1234 		 * Each AID connects 2 XCCs.
1235 		 */
1236 		if (num_xcc%4)
1237 			return -EINVAL;
1238 		mode = AMDGPU_DPX_PARTITION_MODE;
1239 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1240 		if (num_xcc != 6)
1241 			return -EINVAL;
1242 		mode = AMDGPU_TPX_PARTITION_MODE;
1243 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1244 		if (num_xcc != 8)
1245 			return -EINVAL;
1246 		mode = AMDGPU_QPX_PARTITION_MODE;
1247 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1248 		mode = AMDGPU_CPX_PARTITION_MODE;
1249 	} else {
1250 		return -EINVAL;
1251 	}
1252 
1253 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1254 
1255 	if (ret)
1256 		return ret;
1257 
1258 	return count;
1259 }
1260 
1261 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1262 						struct device_attribute *addr,
1263 						char *buf)
1264 {
1265 	struct drm_device *ddev = dev_get_drvdata(dev);
1266 	struct amdgpu_device *adev = drm_to_adev(ddev);
1267 	char *supported_partition;
1268 
1269 	/* TBD */
1270 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1271 	case 8:
1272 		supported_partition = "SPX, DPX, QPX, CPX";
1273 		break;
1274 	case 6:
1275 		supported_partition = "SPX, TPX, CPX";
1276 		break;
1277 	case 4:
1278 		supported_partition = "SPX, DPX, CPX";
1279 		break;
1280 	/* this seems only existing in emulation phase */
1281 	case 2:
1282 		supported_partition = "SPX, CPX";
1283 		break;
1284 	default:
1285 		supported_partition = "Not supported";
1286 		break;
1287 	}
1288 
1289 	return sysfs_emit(buf, "%s\n", supported_partition);
1290 }
1291 
1292 static DEVICE_ATTR(current_compute_partition, 0644,
1293 		   amdgpu_gfx_get_current_compute_partition,
1294 		   amdgpu_gfx_set_compute_partition);
1295 
1296 static DEVICE_ATTR(available_compute_partition, 0444,
1297 		   amdgpu_gfx_get_available_compute_partition, NULL);
1298 
1299 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1300 {
1301 	int r;
1302 
1303 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1304 	if (r)
1305 		return r;
1306 
1307 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1308 
1309 	return r;
1310 }
1311 
1312 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1313 {
1314 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1315 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1316 }
1317