1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32 
33 /* delay 0.1 second to enable gfx off feature */
34 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
35 
36 #define GFX_OFF_NO_DELAY 0
37 
38 /*
39  * GPU GFX IP block helpers function.
40  */
41 
42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
43 				int pipe, int queue)
44 {
45 	int bit = 0;
46 
47 	bit += mec * adev->gfx.mec.num_pipe_per_mec
48 		* adev->gfx.mec.num_queue_per_pipe;
49 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
50 	bit += queue;
51 
52 	return bit;
53 }
54 
55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
56 				 int *mec, int *pipe, int *queue)
57 {
58 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
59 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
60 		% adev->gfx.mec.num_pipe_per_mec;
61 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
62 	       / adev->gfx.mec.num_pipe_per_mec;
63 
64 }
65 
66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
67 				     int xcc_id, int mec, int pipe, int queue)
68 {
69 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
70 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
71 }
72 
73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
74 			       int me, int pipe, int queue)
75 {
76 	int bit = 0;
77 
78 	bit += me * adev->gfx.me.num_pipe_per_me
79 		* adev->gfx.me.num_queue_per_pipe;
80 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
81 	bit += queue;
82 
83 	return bit;
84 }
85 
86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
87 				int *me, int *pipe, int *queue)
88 {
89 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
90 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
91 		% adev->gfx.me.num_pipe_per_me;
92 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
93 		/ adev->gfx.me.num_pipe_per_me;
94 }
95 
96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
97 				    int me, int pipe, int queue)
98 {
99 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
100 			adev->gfx.me.queue_bitmap);
101 }
102 
103 /**
104  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
105  *
106  * @mask: array in which the per-shader array disable masks will be stored
107  * @max_se: number of SEs
108  * @max_sh: number of SHs
109  *
110  * The bitmask of CUs to be disabled in the shader array determined by se and
111  * sh is stored in mask[se * max_sh + sh].
112  */
113 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
114 {
115 	unsigned int se, sh, cu;
116 	const char *p;
117 
118 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
119 
120 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
121 		return;
122 
123 	p = amdgpu_disable_cu;
124 	for (;;) {
125 		char *next;
126 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
127 
128 		if (ret < 3) {
129 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
130 			return;
131 		}
132 
133 		if (se < max_se && sh < max_sh && cu < 16) {
134 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
135 			mask[se * max_sh + sh] |= 1u << cu;
136 		} else {
137 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
138 				  se, sh, cu);
139 		}
140 
141 		next = strchr(p, ',');
142 		if (!next)
143 			break;
144 		p = next + 1;
145 	}
146 }
147 
148 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
149 {
150 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
151 }
152 
153 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
154 {
155 	if (amdgpu_compute_multipipe != -1) {
156 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
157 			 amdgpu_compute_multipipe);
158 		return amdgpu_compute_multipipe == 1;
159 	}
160 
161 	if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
162 		return true;
163 
164 	/* FIXME: spreading the queues across pipes causes perf regressions
165 	 * on POLARIS11 compute workloads */
166 	if (adev->asic_type == CHIP_POLARIS11)
167 		return false;
168 
169 	return adev->gfx.mec.num_mec > 1;
170 }
171 
172 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
173 						struct amdgpu_ring *ring)
174 {
175 	int queue = ring->queue;
176 	int pipe = ring->pipe;
177 
178 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
179 	 * have more than one gfx pipe.
180 	 */
181 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
182 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
183 		int me = ring->me;
184 		int bit;
185 
186 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
187 		if (ring == &adev->gfx.gfx_ring[bit])
188 			return true;
189 	}
190 
191 	return false;
192 }
193 
194 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
195 					       struct amdgpu_ring *ring)
196 {
197 	/* Policy: use 1st queue as high priority compute queue if we
198 	 * have more than one compute queue.
199 	 */
200 	if (adev->gfx.num_compute_rings > 1 &&
201 	    ring == &adev->gfx.compute_ring[0])
202 		return true;
203 
204 	return false;
205 }
206 
207 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
208 {
209 	int i, j, queue, pipe;
210 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
211 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
212 				     adev->gfx.mec.num_queue_per_pipe,
213 				     adev->gfx.num_compute_rings);
214 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
215 
216 	if (multipipe_policy) {
217 		/* policy: make queues evenly cross all pipes on MEC1 only
218 		 * for multiple xcc, just use the original policy for simplicity */
219 		for (j = 0; j < num_xcc; j++) {
220 			for (i = 0; i < max_queues_per_mec; i++) {
221 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
222 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
223 					 adev->gfx.mec.num_queue_per_pipe;
224 
225 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
226 					adev->gfx.mec_bitmap[j].queue_bitmap);
227 			}
228 		}
229 	} else {
230 		/* policy: amdgpu owns all queues in the given pipe */
231 		for (j = 0; j < num_xcc; j++) {
232 			for (i = 0; i < max_queues_per_mec; ++i)
233 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
234 		}
235 	}
236 
237 	for (j = 0; j < num_xcc; j++) {
238 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
239 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
240 	}
241 }
242 
243 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
244 {
245 	int i, queue, pipe;
246 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
247 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
248 					adev->gfx.me.num_queue_per_pipe;
249 
250 	if (multipipe_policy) {
251 		/* policy: amdgpu owns the first queue per pipe at this stage
252 		 * will extend to mulitple queues per pipe later */
253 		for (i = 0; i < max_queues_per_me; i++) {
254 			pipe = i % adev->gfx.me.num_pipe_per_me;
255 			queue = (i / adev->gfx.me.num_pipe_per_me) %
256 				adev->gfx.me.num_queue_per_pipe;
257 
258 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
259 				adev->gfx.me.queue_bitmap);
260 		}
261 	} else {
262 		for (i = 0; i < max_queues_per_me; ++i)
263 			set_bit(i, adev->gfx.me.queue_bitmap);
264 	}
265 
266 	/* update the number of active graphics rings */
267 	adev->gfx.num_gfx_rings =
268 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
269 }
270 
271 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
272 				  struct amdgpu_ring *ring, int xcc_id)
273 {
274 	int queue_bit;
275 	int mec, pipe, queue;
276 
277 	queue_bit = adev->gfx.mec.num_mec
278 		    * adev->gfx.mec.num_pipe_per_mec
279 		    * adev->gfx.mec.num_queue_per_pipe;
280 
281 	while (--queue_bit >= 0) {
282 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
283 			continue;
284 
285 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
286 
287 		/*
288 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
289 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
290 		 * only can be issued on queue 0.
291 		 */
292 		if ((mec == 1 && pipe > 1) || queue != 0)
293 			continue;
294 
295 		ring->me = mec + 1;
296 		ring->pipe = pipe;
297 		ring->queue = queue;
298 
299 		return 0;
300 	}
301 
302 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
303 	return -EINVAL;
304 }
305 
306 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
307 			     struct amdgpu_ring *ring,
308 			     struct amdgpu_irq_src *irq, int xcc_id)
309 {
310 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
311 	int r = 0;
312 
313 	spin_lock_init(&kiq->ring_lock);
314 
315 	ring->adev = NULL;
316 	ring->ring_obj = NULL;
317 	ring->use_doorbell = true;
318 	ring->xcc_id = xcc_id;
319 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
320 	ring->doorbell_index =
321 		(adev->doorbell_index.kiq +
322 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
323 		<< 1;
324 
325 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
326 	if (r)
327 		return r;
328 
329 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
330 	ring->no_scheduler = true;
331 	sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
332 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
333 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
334 	if (r)
335 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
336 
337 	return r;
338 }
339 
340 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
341 {
342 	amdgpu_ring_fini(ring);
343 }
344 
345 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
346 {
347 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
348 
349 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
350 }
351 
352 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
353 			unsigned int hpd_size, int xcc_id)
354 {
355 	int r;
356 	u32 *hpd;
357 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
358 
359 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
360 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
361 				    &kiq->eop_gpu_addr, (void **)&hpd);
362 	if (r) {
363 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
364 		return r;
365 	}
366 
367 	memset(hpd, 0, hpd_size);
368 
369 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
370 	if (unlikely(r != 0))
371 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
372 	amdgpu_bo_kunmap(kiq->eop_obj);
373 	amdgpu_bo_unreserve(kiq->eop_obj);
374 
375 	return 0;
376 }
377 
378 /* create MQD for each compute/gfx queue */
379 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
380 			   unsigned int mqd_size, int xcc_id)
381 {
382 	int r, i, j;
383 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
384 	struct amdgpu_ring *ring = &kiq->ring;
385 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
386 
387 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
388 	if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
389 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
390 
391 	/* create MQD for KIQ */
392 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
393 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
394 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
395 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
396 		 * KIQ MQD no matter SRIOV or Bare-metal
397 		 */
398 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
399 					    AMDGPU_GEM_DOMAIN_VRAM |
400 					    AMDGPU_GEM_DOMAIN_GTT,
401 					    &ring->mqd_obj,
402 					    &ring->mqd_gpu_addr,
403 					    &ring->mqd_ptr);
404 		if (r) {
405 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
406 			return r;
407 		}
408 
409 		/* prepare MQD backup */
410 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
411 		if (!kiq->mqd_backup) {
412 			dev_warn(adev->dev,
413 				 "no memory to create MQD backup for ring %s\n", ring->name);
414 			return -ENOMEM;
415 		}
416 	}
417 
418 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
419 		/* create MQD for each KGQ */
420 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
421 			ring = &adev->gfx.gfx_ring[i];
422 			if (!ring->mqd_obj) {
423 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
424 							    domain, &ring->mqd_obj,
425 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
426 				if (r) {
427 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
428 					return r;
429 				}
430 
431 				ring->mqd_size = mqd_size;
432 				/* prepare MQD backup */
433 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
434 				if (!adev->gfx.me.mqd_backup[i]) {
435 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
436 					return -ENOMEM;
437 				}
438 			}
439 		}
440 	}
441 
442 	/* create MQD for each KCQ */
443 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
444 		j = i + xcc_id * adev->gfx.num_compute_rings;
445 		ring = &adev->gfx.compute_ring[j];
446 		if (!ring->mqd_obj) {
447 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
448 						    domain, &ring->mqd_obj,
449 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
450 			if (r) {
451 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
452 				return r;
453 			}
454 
455 			ring->mqd_size = mqd_size;
456 			/* prepare MQD backup */
457 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
458 			if (!adev->gfx.mec.mqd_backup[j]) {
459 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
460 				return -ENOMEM;
461 			}
462 		}
463 	}
464 
465 	return 0;
466 }
467 
468 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
469 {
470 	struct amdgpu_ring *ring = NULL;
471 	int i, j;
472 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
473 
474 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
475 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
476 			ring = &adev->gfx.gfx_ring[i];
477 			kfree(adev->gfx.me.mqd_backup[i]);
478 			amdgpu_bo_free_kernel(&ring->mqd_obj,
479 					      &ring->mqd_gpu_addr,
480 					      &ring->mqd_ptr);
481 		}
482 	}
483 
484 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
485 		j = i + xcc_id * adev->gfx.num_compute_rings;
486 		ring = &adev->gfx.compute_ring[j];
487 		kfree(adev->gfx.mec.mqd_backup[j]);
488 		amdgpu_bo_free_kernel(&ring->mqd_obj,
489 				      &ring->mqd_gpu_addr,
490 				      &ring->mqd_ptr);
491 	}
492 
493 	ring = &kiq->ring;
494 	kfree(kiq->mqd_backup);
495 	amdgpu_bo_free_kernel(&ring->mqd_obj,
496 			      &ring->mqd_gpu_addr,
497 			      &ring->mqd_ptr);
498 }
499 
500 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
501 {
502 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
503 	struct amdgpu_ring *kiq_ring = &kiq->ring;
504 	int i, r = 0;
505 	int j;
506 
507 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
508 		return -EINVAL;
509 
510 	spin_lock(&kiq->ring_lock);
511 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
512 					adev->gfx.num_compute_rings)) {
513 		spin_unlock(&kiq->ring_lock);
514 		return -ENOMEM;
515 	}
516 
517 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
518 		j = i + xcc_id * adev->gfx.num_compute_rings;
519 		kiq->pmf->kiq_unmap_queues(kiq_ring,
520 					   &adev->gfx.compute_ring[j],
521 					   RESET_QUEUES, 0, 0);
522 	}
523 
524 	if (kiq_ring->sched.ready && !adev->job_hang)
525 		r = amdgpu_ring_test_helper(kiq_ring);
526 	spin_unlock(&kiq->ring_lock);
527 
528 	return r;
529 }
530 
531 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
532 {
533 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
534 	struct amdgpu_ring *kiq_ring = &kiq->ring;
535 	int i, r = 0;
536 	int j;
537 
538 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
539 		return -EINVAL;
540 
541 	spin_lock(&kiq->ring_lock);
542 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
543 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
544 						adev->gfx.num_gfx_rings)) {
545 			spin_unlock(&kiq->ring_lock);
546 			return -ENOMEM;
547 		}
548 
549 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
550 			j = i + xcc_id * adev->gfx.num_gfx_rings;
551 			kiq->pmf->kiq_unmap_queues(kiq_ring,
552 						   &adev->gfx.gfx_ring[j],
553 						   PREEMPT_QUEUES, 0, 0);
554 		}
555 	}
556 
557 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
558 		r = amdgpu_ring_test_helper(kiq_ring);
559 	spin_unlock(&kiq->ring_lock);
560 
561 	return r;
562 }
563 
564 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
565 					int queue_bit)
566 {
567 	int mec, pipe, queue;
568 	int set_resource_bit = 0;
569 
570 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
571 
572 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
573 
574 	return set_resource_bit;
575 }
576 
577 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
578 {
579 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
580 	struct amdgpu_ring *kiq_ring = &kiq->ring;
581 	uint64_t queue_mask = 0;
582 	int r, i, j;
583 
584 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
585 		return -EINVAL;
586 
587 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
588 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
589 			continue;
590 
591 		/* This situation may be hit in the future if a new HW
592 		 * generation exposes more than 64 queues. If so, the
593 		 * definition of queue_mask needs updating */
594 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
595 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
596 			break;
597 		}
598 
599 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
600 	}
601 
602 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
603 							kiq_ring->queue);
604 	amdgpu_device_flush_hdp(adev, NULL);
605 
606 	spin_lock(&kiq->ring_lock);
607 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
608 					adev->gfx.num_compute_rings +
609 					kiq->pmf->set_resources_size);
610 	if (r) {
611 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
612 		spin_unlock(&kiq->ring_lock);
613 		return r;
614 	}
615 
616 	if (adev->enable_mes)
617 		queue_mask = ~0ULL;
618 
619 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
620 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
621 		j = i + xcc_id * adev->gfx.num_compute_rings;
622 			kiq->pmf->kiq_map_queues(kiq_ring,
623 						 &adev->gfx.compute_ring[j]);
624 	}
625 
626 	r = amdgpu_ring_test_helper(kiq_ring);
627 	spin_unlock(&kiq->ring_lock);
628 	if (r)
629 		DRM_ERROR("KCQ enable failed\n");
630 
631 	return r;
632 }
633 
634 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
635 {
636 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
637 	struct amdgpu_ring *kiq_ring = &kiq->ring;
638 	int r, i, j;
639 
640 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
641 		return -EINVAL;
642 
643 	amdgpu_device_flush_hdp(adev, NULL);
644 
645 	spin_lock(&kiq->ring_lock);
646 	/* No need to map kcq on the slave */
647 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
648 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
649 						adev->gfx.num_gfx_rings);
650 		if (r) {
651 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
652 			spin_unlock(&kiq->ring_lock);
653 			return r;
654 		}
655 
656 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
657 			j = i + xcc_id * adev->gfx.num_gfx_rings;
658 			kiq->pmf->kiq_map_queues(kiq_ring,
659 						 &adev->gfx.gfx_ring[j]);
660 		}
661 	}
662 
663 	r = amdgpu_ring_test_helper(kiq_ring);
664 	spin_unlock(&kiq->ring_lock);
665 	if (r)
666 		DRM_ERROR("KCQ enable failed\n");
667 
668 	return r;
669 }
670 
671 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
672  *
673  * @adev: amdgpu_device pointer
674  * @bool enable true: enable gfx off feature, false: disable gfx off feature
675  *
676  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
677  * 2. other client can send request to disable gfx off feature, the request should be honored.
678  * 3. other client can cancel their request of disable gfx off feature
679  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
680  */
681 
682 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
683 {
684 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
685 
686 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
687 		return;
688 
689 	mutex_lock(&adev->gfx.gfx_off_mutex);
690 
691 	if (enable) {
692 		/* If the count is already 0, it means there's an imbalance bug somewhere.
693 		 * Note that the bug may be in a different caller than the one which triggers the
694 		 * WARN_ON_ONCE.
695 		 */
696 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
697 			goto unlock;
698 
699 		adev->gfx.gfx_off_req_count--;
700 
701 		if (adev->gfx.gfx_off_req_count == 0 &&
702 		    !adev->gfx.gfx_off_state) {
703 			schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
704 					      delay);
705 		}
706 	} else {
707 		if (adev->gfx.gfx_off_req_count == 0) {
708 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
709 
710 			if (adev->gfx.gfx_off_state &&
711 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
712 				adev->gfx.gfx_off_state = false;
713 
714 				if (adev->gfx.funcs->init_spm_golden) {
715 					dev_dbg(adev->dev,
716 						"GFXOFF is disabled, re-init SPM golden settings\n");
717 					amdgpu_gfx_init_spm_golden(adev);
718 				}
719 			}
720 		}
721 
722 		adev->gfx.gfx_off_req_count++;
723 	}
724 
725 unlock:
726 	mutex_unlock(&adev->gfx.gfx_off_mutex);
727 }
728 
729 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
730 {
731 	int r = 0;
732 
733 	mutex_lock(&adev->gfx.gfx_off_mutex);
734 
735 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
736 
737 	mutex_unlock(&adev->gfx.gfx_off_mutex);
738 
739 	return r;
740 }
741 
742 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
743 {
744 	int r = 0;
745 
746 	mutex_lock(&adev->gfx.gfx_off_mutex);
747 
748 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
749 
750 	mutex_unlock(&adev->gfx.gfx_off_mutex);
751 
752 	return r;
753 }
754 
755 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
756 {
757 	int r = 0;
758 
759 	mutex_lock(&adev->gfx.gfx_off_mutex);
760 
761 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
762 
763 	mutex_unlock(&adev->gfx.gfx_off_mutex);
764 
765 	return r;
766 }
767 
768 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
769 {
770 
771 	int r = 0;
772 
773 	mutex_lock(&adev->gfx.gfx_off_mutex);
774 
775 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
776 
777 	mutex_unlock(&adev->gfx.gfx_off_mutex);
778 
779 	return r;
780 }
781 
782 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
783 {
784 	int r;
785 
786 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
787 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
788 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
789 
790 		r = amdgpu_ras_block_late_init(adev, ras_block);
791 		if (r)
792 			return r;
793 
794 		if (adev->gfx.cp_ecc_error_irq.funcs) {
795 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
796 			if (r)
797 				goto late_fini;
798 		}
799 	} else {
800 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
801 	}
802 
803 	return 0;
804 late_fini:
805 	amdgpu_ras_block_late_fini(adev, ras_block);
806 	return r;
807 }
808 
809 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
810 {
811 	int err = 0;
812 	struct amdgpu_gfx_ras *ras = NULL;
813 
814 	/* adev->gfx.ras is NULL, which means gfx does not
815 	 * support ras function, then do nothing here.
816 	 */
817 	if (!adev->gfx.ras)
818 		return 0;
819 
820 	ras = adev->gfx.ras;
821 
822 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
823 	if (err) {
824 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
825 		return err;
826 	}
827 
828 	strcpy(ras->ras_block.ras_comm.name, "gfx");
829 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
830 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
831 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
832 
833 	/* If not define special ras_late_init function, use gfx default ras_late_init */
834 	if (!ras->ras_block.ras_late_init)
835 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
836 
837 	/* If not defined special ras_cb function, use default ras_cb */
838 	if (!ras->ras_block.ras_cb)
839 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
840 
841 	return 0;
842 }
843 
844 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
845 						struct amdgpu_iv_entry *entry)
846 {
847 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
848 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
849 
850 	return 0;
851 }
852 
853 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
854 		void *err_data,
855 		struct amdgpu_iv_entry *entry)
856 {
857 	/* TODO ue will trigger an interrupt.
858 	 *
859 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
860 	 * be disabled and the driver should only look for the aggregated
861 	 * interrupt via sync flood
862 	 */
863 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
864 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
865 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
866 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
867 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
868 		amdgpu_ras_reset_gpu(adev);
869 	}
870 	return AMDGPU_RAS_SUCCESS;
871 }
872 
873 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
874 				  struct amdgpu_irq_src *source,
875 				  struct amdgpu_iv_entry *entry)
876 {
877 	struct ras_common_if *ras_if = adev->gfx.ras_if;
878 	struct ras_dispatch_if ih_data = {
879 		.entry = entry,
880 	};
881 
882 	if (!ras_if)
883 		return 0;
884 
885 	ih_data.head = *ras_if;
886 
887 	DRM_ERROR("CP ECC ERROR IRQ\n");
888 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
889 	return 0;
890 }
891 
892 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
893 		void *ras_error_status,
894 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
895 				int xcc_id))
896 {
897 	int i;
898 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
899 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
900 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
901 
902 	if (err_data) {
903 		err_data->ue_count = 0;
904 		err_data->ce_count = 0;
905 	}
906 
907 	for_each_inst(i, xcc_mask)
908 		func(adev, ras_error_status, i);
909 }
910 
911 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
912 {
913 	signed long r, cnt = 0;
914 	unsigned long flags;
915 	uint32_t seq, reg_val_offs = 0, value = 0;
916 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
917 	struct amdgpu_ring *ring = &kiq->ring;
918 
919 	if (amdgpu_device_skip_hw_access(adev))
920 		return 0;
921 
922 	if (adev->mes.ring.sched.ready)
923 		return amdgpu_mes_rreg(adev, reg);
924 
925 	BUG_ON(!ring->funcs->emit_rreg);
926 
927 	spin_lock_irqsave(&kiq->ring_lock, flags);
928 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
929 		pr_err("critical bug! too many kiq readers\n");
930 		goto failed_unlock;
931 	}
932 	amdgpu_ring_alloc(ring, 32);
933 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
934 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
935 	if (r)
936 		goto failed_undo;
937 
938 	amdgpu_ring_commit(ring);
939 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
940 
941 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
942 
943 	/* don't wait anymore for gpu reset case because this way may
944 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
945 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
946 	 * never return if we keep waiting in virt_kiq_rreg, which cause
947 	 * gpu_recover() hang there.
948 	 *
949 	 * also don't wait anymore for IRQ context
950 	 * */
951 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
952 		goto failed_kiq_read;
953 
954 	might_sleep();
955 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
956 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
957 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
958 	}
959 
960 	if (cnt > MAX_KIQ_REG_TRY)
961 		goto failed_kiq_read;
962 
963 	mb();
964 	value = adev->wb.wb[reg_val_offs];
965 	amdgpu_device_wb_free(adev, reg_val_offs);
966 	return value;
967 
968 failed_undo:
969 	amdgpu_ring_undo(ring);
970 failed_unlock:
971 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
972 failed_kiq_read:
973 	if (reg_val_offs)
974 		amdgpu_device_wb_free(adev, reg_val_offs);
975 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
976 	return ~0;
977 }
978 
979 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
980 {
981 	signed long r, cnt = 0;
982 	unsigned long flags;
983 	uint32_t seq;
984 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
985 	struct amdgpu_ring *ring = &kiq->ring;
986 
987 	BUG_ON(!ring->funcs->emit_wreg);
988 
989 	if (amdgpu_device_skip_hw_access(adev))
990 		return;
991 
992 	if (adev->mes.ring.sched.ready) {
993 		amdgpu_mes_wreg(adev, reg, v);
994 		return;
995 	}
996 
997 	spin_lock_irqsave(&kiq->ring_lock, flags);
998 	amdgpu_ring_alloc(ring, 32);
999 	amdgpu_ring_emit_wreg(ring, reg, v);
1000 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1001 	if (r)
1002 		goto failed_undo;
1003 
1004 	amdgpu_ring_commit(ring);
1005 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1006 
1007 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1008 
1009 	/* don't wait anymore for gpu reset case because this way may
1010 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1011 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1012 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1013 	 * gpu_recover() hang there.
1014 	 *
1015 	 * also don't wait anymore for IRQ context
1016 	 * */
1017 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1018 		goto failed_kiq_write;
1019 
1020 	might_sleep();
1021 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1022 
1023 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1024 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1025 	}
1026 
1027 	if (cnt > MAX_KIQ_REG_TRY)
1028 		goto failed_kiq_write;
1029 
1030 	return;
1031 
1032 failed_undo:
1033 	amdgpu_ring_undo(ring);
1034 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1035 failed_kiq_write:
1036 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1037 }
1038 
1039 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1040 {
1041 	if (amdgpu_num_kcq == -1) {
1042 		return 8;
1043 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1044 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1045 		return 8;
1046 	}
1047 	return amdgpu_num_kcq;
1048 }
1049 
1050 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1051 				  uint32_t ucode_id)
1052 {
1053 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1054 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1055 	struct amdgpu_firmware_info *info = NULL;
1056 	const struct firmware *ucode_fw;
1057 	unsigned int fw_size;
1058 
1059 	switch (ucode_id) {
1060 	case AMDGPU_UCODE_ID_CP_PFP:
1061 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1062 			adev->gfx.pfp_fw->data;
1063 		adev->gfx.pfp_fw_version =
1064 			le32_to_cpu(cp_hdr->header.ucode_version);
1065 		adev->gfx.pfp_feature_version =
1066 			le32_to_cpu(cp_hdr->ucode_feature_version);
1067 		ucode_fw = adev->gfx.pfp_fw;
1068 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1069 		break;
1070 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1071 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1072 			adev->gfx.pfp_fw->data;
1073 		adev->gfx.pfp_fw_version =
1074 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1075 		adev->gfx.pfp_feature_version =
1076 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1077 		ucode_fw = adev->gfx.pfp_fw;
1078 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1079 		break;
1080 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1081 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1082 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1083 			adev->gfx.pfp_fw->data;
1084 		ucode_fw = adev->gfx.pfp_fw;
1085 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1086 		break;
1087 	case AMDGPU_UCODE_ID_CP_ME:
1088 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1089 			adev->gfx.me_fw->data;
1090 		adev->gfx.me_fw_version =
1091 			le32_to_cpu(cp_hdr->header.ucode_version);
1092 		adev->gfx.me_feature_version =
1093 			le32_to_cpu(cp_hdr->ucode_feature_version);
1094 		ucode_fw = adev->gfx.me_fw;
1095 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1096 		break;
1097 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1098 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1099 			adev->gfx.me_fw->data;
1100 		adev->gfx.me_fw_version =
1101 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1102 		adev->gfx.me_feature_version =
1103 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1104 		ucode_fw = adev->gfx.me_fw;
1105 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1106 		break;
1107 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1108 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1109 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1110 			adev->gfx.me_fw->data;
1111 		ucode_fw = adev->gfx.me_fw;
1112 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1113 		break;
1114 	case AMDGPU_UCODE_ID_CP_CE:
1115 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1116 			adev->gfx.ce_fw->data;
1117 		adev->gfx.ce_fw_version =
1118 			le32_to_cpu(cp_hdr->header.ucode_version);
1119 		adev->gfx.ce_feature_version =
1120 			le32_to_cpu(cp_hdr->ucode_feature_version);
1121 		ucode_fw = adev->gfx.ce_fw;
1122 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1123 		break;
1124 	case AMDGPU_UCODE_ID_CP_MEC1:
1125 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1126 			adev->gfx.mec_fw->data;
1127 		adev->gfx.mec_fw_version =
1128 			le32_to_cpu(cp_hdr->header.ucode_version);
1129 		adev->gfx.mec_feature_version =
1130 			le32_to_cpu(cp_hdr->ucode_feature_version);
1131 		ucode_fw = adev->gfx.mec_fw;
1132 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1133 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1134 		break;
1135 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1136 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1137 			adev->gfx.mec_fw->data;
1138 		ucode_fw = adev->gfx.mec_fw;
1139 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1140 		break;
1141 	case AMDGPU_UCODE_ID_CP_MEC2:
1142 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1143 			adev->gfx.mec2_fw->data;
1144 		adev->gfx.mec2_fw_version =
1145 			le32_to_cpu(cp_hdr->header.ucode_version);
1146 		adev->gfx.mec2_feature_version =
1147 			le32_to_cpu(cp_hdr->ucode_feature_version);
1148 		ucode_fw = adev->gfx.mec2_fw;
1149 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1150 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1151 		break;
1152 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1153 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1154 			adev->gfx.mec2_fw->data;
1155 		ucode_fw = adev->gfx.mec2_fw;
1156 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1157 		break;
1158 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1159 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1160 			adev->gfx.mec_fw->data;
1161 		adev->gfx.mec_fw_version =
1162 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1163 		adev->gfx.mec_feature_version =
1164 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1165 		ucode_fw = adev->gfx.mec_fw;
1166 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1167 		break;
1168 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1169 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1170 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1171 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1172 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1173 			adev->gfx.mec_fw->data;
1174 		ucode_fw = adev->gfx.mec_fw;
1175 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1176 		break;
1177 	default:
1178 		break;
1179 	}
1180 
1181 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1182 		info = &adev->firmware.ucode[ucode_id];
1183 		info->ucode_id = ucode_id;
1184 		info->fw = ucode_fw;
1185 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1186 	}
1187 }
1188 
1189 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1190 {
1191 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1192 			adev->gfx.num_xcc_per_xcp : 1));
1193 }
1194 
1195 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1196 						struct device_attribute *addr,
1197 						char *buf)
1198 {
1199 	struct drm_device *ddev = dev_get_drvdata(dev);
1200 	struct amdgpu_device *adev = drm_to_adev(ddev);
1201 	int mode;
1202 
1203 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1204 					       AMDGPU_XCP_FL_NONE);
1205 
1206 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1207 }
1208 
1209 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1210 						struct device_attribute *addr,
1211 						const char *buf, size_t count)
1212 {
1213 	struct drm_device *ddev = dev_get_drvdata(dev);
1214 	struct amdgpu_device *adev = drm_to_adev(ddev);
1215 	enum amdgpu_gfx_partition mode;
1216 	int ret = 0, num_xcc;
1217 
1218 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1219 	if (num_xcc % 2 != 0)
1220 		return -EINVAL;
1221 
1222 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1223 		mode = AMDGPU_SPX_PARTITION_MODE;
1224 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1225 		/*
1226 		 * DPX mode needs AIDs to be in multiple of 2.
1227 		 * Each AID connects 2 XCCs.
1228 		 */
1229 		if (num_xcc%4)
1230 			return -EINVAL;
1231 		mode = AMDGPU_DPX_PARTITION_MODE;
1232 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1233 		if (num_xcc != 6)
1234 			return -EINVAL;
1235 		mode = AMDGPU_TPX_PARTITION_MODE;
1236 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1237 		if (num_xcc != 8)
1238 			return -EINVAL;
1239 		mode = AMDGPU_QPX_PARTITION_MODE;
1240 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1241 		mode = AMDGPU_CPX_PARTITION_MODE;
1242 	} else {
1243 		return -EINVAL;
1244 	}
1245 
1246 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1247 
1248 	if (ret)
1249 		return ret;
1250 
1251 	return count;
1252 }
1253 
1254 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1255 						struct device_attribute *addr,
1256 						char *buf)
1257 {
1258 	struct drm_device *ddev = dev_get_drvdata(dev);
1259 	struct amdgpu_device *adev = drm_to_adev(ddev);
1260 	char *supported_partition;
1261 
1262 	/* TBD */
1263 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1264 	case 8:
1265 		supported_partition = "SPX, DPX, QPX, CPX";
1266 		break;
1267 	case 6:
1268 		supported_partition = "SPX, TPX, CPX";
1269 		break;
1270 	case 4:
1271 		supported_partition = "SPX, DPX, CPX";
1272 		break;
1273 	/* this seems only existing in emulation phase */
1274 	case 2:
1275 		supported_partition = "SPX, CPX";
1276 		break;
1277 	default:
1278 		supported_partition = "Not supported";
1279 		break;
1280 	}
1281 
1282 	return sysfs_emit(buf, "%s\n", supported_partition);
1283 }
1284 
1285 static DEVICE_ATTR(current_compute_partition, 0644,
1286 		   amdgpu_gfx_get_current_compute_partition,
1287 		   amdgpu_gfx_set_compute_partition);
1288 
1289 static DEVICE_ATTR(available_compute_partition, 0444,
1290 		   amdgpu_gfx_get_available_compute_partition, NULL);
1291 
1292 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1293 {
1294 	int r;
1295 
1296 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1297 	if (r)
1298 		return r;
1299 
1300 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1301 
1302 	return r;
1303 }
1304 
1305 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1306 {
1307 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1308 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1309 }
1310