1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 32 /* delay 0.1 second to enable gfx off feature */ 33 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 34 35 #define GFX_OFF_NO_DELAY 0 36 37 /* 38 * GPU GFX IP block helpers function. 39 */ 40 41 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 42 int pipe, int queue) 43 { 44 int bit = 0; 45 46 bit += mec * adev->gfx.mec.num_pipe_per_mec 47 * adev->gfx.mec.num_queue_per_pipe; 48 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 49 bit += queue; 50 51 return bit; 52 } 53 54 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 55 int *mec, int *pipe, int *queue) 56 { 57 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 58 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 59 % adev->gfx.mec.num_pipe_per_mec; 60 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 61 / adev->gfx.mec.num_pipe_per_mec; 62 63 } 64 65 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 66 int xcc_id, int mec, int pipe, int queue) 67 { 68 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 69 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 70 } 71 72 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 73 int me, int pipe, int queue) 74 { 75 int bit = 0; 76 77 bit += me * adev->gfx.me.num_pipe_per_me 78 * adev->gfx.me.num_queue_per_pipe; 79 bit += pipe * adev->gfx.me.num_queue_per_pipe; 80 bit += queue; 81 82 return bit; 83 } 84 85 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 86 int *me, int *pipe, int *queue) 87 { 88 *queue = bit % adev->gfx.me.num_queue_per_pipe; 89 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 90 % adev->gfx.me.num_pipe_per_me; 91 *me = (bit / adev->gfx.me.num_queue_per_pipe) 92 / adev->gfx.me.num_pipe_per_me; 93 } 94 95 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 96 int me, int pipe, int queue) 97 { 98 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 99 adev->gfx.me.queue_bitmap); 100 } 101 102 /** 103 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 104 * 105 * @mask: array in which the per-shader array disable masks will be stored 106 * @max_se: number of SEs 107 * @max_sh: number of SHs 108 * 109 * The bitmask of CUs to be disabled in the shader array determined by se and 110 * sh is stored in mask[se * max_sh + sh]. 111 */ 112 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh) 113 { 114 unsigned se, sh, cu; 115 const char *p; 116 117 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 118 119 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 120 return; 121 122 p = amdgpu_disable_cu; 123 for (;;) { 124 char *next; 125 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 126 if (ret < 3) { 127 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 128 return; 129 } 130 131 if (se < max_se && sh < max_sh && cu < 16) { 132 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 133 mask[se * max_sh + sh] |= 1u << cu; 134 } else { 135 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 136 se, sh, cu); 137 } 138 139 next = strchr(p, ','); 140 if (!next) 141 break; 142 p = next + 1; 143 } 144 } 145 146 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 147 { 148 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 149 } 150 151 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 152 { 153 if (amdgpu_compute_multipipe != -1) { 154 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 155 amdgpu_compute_multipipe); 156 return amdgpu_compute_multipipe == 1; 157 } 158 159 if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)) 160 return true; 161 162 /* FIXME: spreading the queues across pipes causes perf regressions 163 * on POLARIS11 compute workloads */ 164 if (adev->asic_type == CHIP_POLARIS11) 165 return false; 166 167 return adev->gfx.mec.num_mec > 1; 168 } 169 170 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 171 struct amdgpu_ring *ring) 172 { 173 int queue = ring->queue; 174 int pipe = ring->pipe; 175 176 /* Policy: use pipe1 queue0 as high priority graphics queue if we 177 * have more than one gfx pipe. 178 */ 179 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 180 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 181 int me = ring->me; 182 int bit; 183 184 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 185 if (ring == &adev->gfx.gfx_ring[bit]) 186 return true; 187 } 188 189 return false; 190 } 191 192 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 193 struct amdgpu_ring *ring) 194 { 195 /* Policy: use 1st queue as high priority compute queue if we 196 * have more than one compute queue. 197 */ 198 if (adev->gfx.num_compute_rings > 1 && 199 ring == &adev->gfx.compute_ring[0]) 200 return true; 201 202 return false; 203 } 204 205 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 206 { 207 int i, j, queue, pipe; 208 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 209 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 210 adev->gfx.mec.num_queue_per_pipe, 211 adev->gfx.num_compute_rings); 212 int num_xcd = (adev->gfx.num_xcd > 1) ? adev->gfx.num_xcd : 1; 213 214 if (multipipe_policy) { 215 /* policy: make queues evenly cross all pipes on MEC1 only 216 * for multiple xcc, just use the original policy for simplicity */ 217 for (j = 0; j < num_xcd; j++) { 218 for (i = 0; i < max_queues_per_mec; i++) { 219 pipe = i % adev->gfx.mec.num_pipe_per_mec; 220 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 221 adev->gfx.mec.num_queue_per_pipe; 222 223 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 224 adev->gfx.mec_bitmap[j].queue_bitmap); 225 } 226 } 227 } else { 228 /* policy: amdgpu owns all queues in the given pipe */ 229 for (j = 0; j < num_xcd; j++) { 230 for (i = 0; i < max_queues_per_mec; ++i) 231 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 232 } 233 } 234 235 for (j = 0; j < num_xcd; j++) { 236 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 237 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 238 } 239 } 240 241 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 242 { 243 int i, queue, pipe; 244 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 245 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 246 adev->gfx.me.num_queue_per_pipe; 247 248 if (multipipe_policy) { 249 /* policy: amdgpu owns the first queue per pipe at this stage 250 * will extend to mulitple queues per pipe later */ 251 for (i = 0; i < max_queues_per_me; i++) { 252 pipe = i % adev->gfx.me.num_pipe_per_me; 253 queue = (i / adev->gfx.me.num_pipe_per_me) % 254 adev->gfx.me.num_queue_per_pipe; 255 256 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 257 adev->gfx.me.queue_bitmap); 258 } 259 } else { 260 for (i = 0; i < max_queues_per_me; ++i) 261 set_bit(i, adev->gfx.me.queue_bitmap); 262 } 263 264 /* update the number of active graphics rings */ 265 adev->gfx.num_gfx_rings = 266 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 267 } 268 269 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 270 struct amdgpu_ring *ring, int xcc_id) 271 { 272 int queue_bit; 273 int mec, pipe, queue; 274 275 queue_bit = adev->gfx.mec.num_mec 276 * adev->gfx.mec.num_pipe_per_mec 277 * adev->gfx.mec.num_queue_per_pipe; 278 279 while (--queue_bit >= 0) { 280 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 281 continue; 282 283 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 284 285 /* 286 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 287 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 288 * only can be issued on queue 0. 289 */ 290 if ((mec == 1 && pipe > 1) || queue != 0) 291 continue; 292 293 ring->me = mec + 1; 294 ring->pipe = pipe; 295 ring->queue = queue; 296 297 return 0; 298 } 299 300 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 301 return -EINVAL; 302 } 303 304 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 305 struct amdgpu_ring *ring, 306 struct amdgpu_irq_src *irq, int xcc_id) 307 { 308 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 309 int r = 0; 310 311 spin_lock_init(&kiq->ring_lock); 312 313 ring->adev = NULL; 314 ring->ring_obj = NULL; 315 ring->use_doorbell = true; 316 ring->doorbell_index = adev->doorbell_index.kiq; 317 ring->xcc_id = xcc_id; 318 ring->vm_hub = AMDGPU_GFXHUB_0; 319 320 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 321 if (r) 322 return r; 323 324 ring->eop_gpu_addr = kiq->eop_gpu_addr; 325 ring->no_scheduler = true; 326 sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue); 327 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 328 AMDGPU_RING_PRIO_DEFAULT, NULL); 329 if (r) 330 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 331 332 return r; 333 } 334 335 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 336 { 337 amdgpu_ring_fini(ring); 338 } 339 340 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 341 { 342 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 343 344 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 345 } 346 347 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 348 unsigned hpd_size, int xcc_id) 349 { 350 int r; 351 u32 *hpd; 352 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 353 354 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 355 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 356 &kiq->eop_gpu_addr, (void **)&hpd); 357 if (r) { 358 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 359 return r; 360 } 361 362 memset(hpd, 0, hpd_size); 363 364 r = amdgpu_bo_reserve(kiq->eop_obj, true); 365 if (unlikely(r != 0)) 366 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 367 amdgpu_bo_kunmap(kiq->eop_obj); 368 amdgpu_bo_unreserve(kiq->eop_obj); 369 370 return 0; 371 } 372 373 /* create MQD for each compute/gfx queue */ 374 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 375 unsigned mqd_size, int xcc_id) 376 { 377 int r, i; 378 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 379 struct amdgpu_ring *ring = &kiq->ring; 380 381 /* create MQD for KIQ */ 382 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 383 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 384 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 385 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 386 * KIQ MQD no matter SRIOV or Bare-metal 387 */ 388 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 389 AMDGPU_GEM_DOMAIN_VRAM | 390 AMDGPU_GEM_DOMAIN_GTT, 391 &ring->mqd_obj, 392 &ring->mqd_gpu_addr, 393 &ring->mqd_ptr); 394 if (r) { 395 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 396 return r; 397 } 398 399 /* prepare MQD backup */ 400 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 401 if (!kiq->mqd_backup) 402 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 403 } 404 405 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 406 /* create MQD for each KGQ */ 407 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 408 ring = &adev->gfx.gfx_ring[i]; 409 if (!ring->mqd_obj) { 410 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 411 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 412 &ring->mqd_gpu_addr, &ring->mqd_ptr); 413 if (r) { 414 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 415 return r; 416 } 417 418 /* prepare MQD backup */ 419 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 420 if (!adev->gfx.me.mqd_backup[i]) 421 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 422 } 423 } 424 } 425 426 /* create MQD for each KCQ */ 427 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 428 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; 429 if (!ring->mqd_obj) { 430 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 431 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 432 &ring->mqd_gpu_addr, &ring->mqd_ptr); 433 if (r) { 434 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 435 return r; 436 } 437 438 /* prepare MQD backup */ 439 adev->gfx.mec.mqd_backup[i + xcc_id * adev->gfx.num_compute_rings] = kmalloc(mqd_size, GFP_KERNEL); 440 if (!adev->gfx.mec.mqd_backup[i]) 441 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 442 } 443 } 444 445 return 0; 446 } 447 448 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 449 { 450 struct amdgpu_ring *ring = NULL; 451 int i, j; 452 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 453 454 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 455 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 456 ring = &adev->gfx.gfx_ring[i]; 457 kfree(adev->gfx.me.mqd_backup[i]); 458 amdgpu_bo_free_kernel(&ring->mqd_obj, 459 &ring->mqd_gpu_addr, 460 &ring->mqd_ptr); 461 } 462 } 463 464 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 465 j = i + xcc_id * adev->gfx.num_compute_rings; 466 ring = &adev->gfx.compute_ring[i]; 467 kfree(adev->gfx.mec.mqd_backup[i]); 468 amdgpu_bo_free_kernel(&ring->mqd_obj, 469 &ring->mqd_gpu_addr, 470 &ring->mqd_ptr); 471 } 472 473 ring = &kiq->ring; 474 kfree(kiq->mqd_backup); 475 kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]); 476 amdgpu_bo_free_kernel(&ring->mqd_obj, 477 &ring->mqd_gpu_addr, 478 &ring->mqd_ptr); 479 } 480 481 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 482 { 483 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 484 struct amdgpu_ring *kiq_ring = &kiq->ring; 485 int i, r = 0; 486 int j; 487 488 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 489 return -EINVAL; 490 491 spin_lock(&kiq->ring_lock); 492 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 493 adev->gfx.num_compute_rings)) { 494 spin_unlock(&adev->gfx.kiq[0].ring_lock); 495 return -ENOMEM; 496 } 497 498 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 499 j = i + xcc_id * adev->gfx.num_compute_rings; 500 kiq->pmf->kiq_unmap_queues(kiq_ring, &adev->gfx.compute_ring[i], 501 RESET_QUEUES, 0, 0); 502 } 503 504 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 505 r = amdgpu_ring_test_helper(kiq_ring); 506 spin_unlock(&kiq->ring_lock); 507 508 return r; 509 } 510 511 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 512 int queue_bit) 513 { 514 int mec, pipe, queue; 515 int set_resource_bit = 0; 516 517 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 518 519 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 520 521 return set_resource_bit; 522 } 523 524 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 525 { 526 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 527 struct amdgpu_ring *kiq_ring = &kiq->ring; 528 uint64_t queue_mask = 0; 529 int r, i, j; 530 531 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 532 return -EINVAL; 533 534 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 535 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 536 continue; 537 538 /* This situation may be hit in the future if a new HW 539 * generation exposes more than 64 queues. If so, the 540 * definition of queue_mask needs updating */ 541 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 542 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 543 break; 544 } 545 546 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 547 } 548 549 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 550 kiq_ring->queue); 551 spin_lock(&kiq->ring_lock); 552 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 553 adev->gfx.num_compute_rings + 554 kiq->pmf->set_resources_size); 555 if (r) { 556 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 557 spin_unlock(&adev->gfx.kiq[0].ring_lock); 558 return r; 559 } 560 561 if (adev->enable_mes) 562 queue_mask = ~0ULL; 563 564 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 565 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 566 j = i + xcc_id * adev->gfx.num_compute_rings; 567 kiq->pmf->kiq_map_queues(kiq_ring, &adev->gfx.compute_ring[i]); 568 } 569 570 r = amdgpu_ring_test_helper(kiq_ring); 571 spin_unlock(&kiq->ring_lock); 572 if (r) 573 DRM_ERROR("KCQ enable failed\n"); 574 575 return r; 576 } 577 578 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 579 * 580 * @adev: amdgpu_device pointer 581 * @bool enable true: enable gfx off feature, false: disable gfx off feature 582 * 583 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 584 * 2. other client can send request to disable gfx off feature, the request should be honored. 585 * 3. other client can cancel their request of disable gfx off feature 586 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 587 */ 588 589 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 590 { 591 unsigned long delay = GFX_OFF_DELAY_ENABLE; 592 593 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 594 return; 595 596 mutex_lock(&adev->gfx.gfx_off_mutex); 597 598 if (enable) { 599 /* If the count is already 0, it means there's an imbalance bug somewhere. 600 * Note that the bug may be in a different caller than the one which triggers the 601 * WARN_ON_ONCE. 602 */ 603 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 604 goto unlock; 605 606 adev->gfx.gfx_off_req_count--; 607 608 if (adev->gfx.gfx_off_req_count == 0 && 609 !adev->gfx.gfx_off_state) { 610 /* If going to s2idle, no need to wait */ 611 if (adev->in_s0ix) { 612 if (!amdgpu_dpm_set_powergating_by_smu(adev, 613 AMD_IP_BLOCK_TYPE_GFX, true)) 614 adev->gfx.gfx_off_state = true; 615 } else { 616 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 617 delay); 618 } 619 } 620 } else { 621 if (adev->gfx.gfx_off_req_count == 0) { 622 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 623 624 if (adev->gfx.gfx_off_state && 625 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 626 adev->gfx.gfx_off_state = false; 627 628 if (adev->gfx.funcs->init_spm_golden) { 629 dev_dbg(adev->dev, 630 "GFXOFF is disabled, re-init SPM golden settings\n"); 631 amdgpu_gfx_init_spm_golden(adev); 632 } 633 } 634 } 635 636 adev->gfx.gfx_off_req_count++; 637 } 638 639 unlock: 640 mutex_unlock(&adev->gfx.gfx_off_mutex); 641 } 642 643 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 644 { 645 int r = 0; 646 647 mutex_lock(&adev->gfx.gfx_off_mutex); 648 649 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 650 651 mutex_unlock(&adev->gfx.gfx_off_mutex); 652 653 return r; 654 } 655 656 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 657 { 658 int r = 0; 659 660 mutex_lock(&adev->gfx.gfx_off_mutex); 661 662 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 663 664 mutex_unlock(&adev->gfx.gfx_off_mutex); 665 666 return r; 667 } 668 669 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 670 { 671 int r = 0; 672 673 mutex_lock(&adev->gfx.gfx_off_mutex); 674 675 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 676 677 mutex_unlock(&adev->gfx.gfx_off_mutex); 678 679 return r; 680 } 681 682 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 683 { 684 685 int r = 0; 686 687 mutex_lock(&adev->gfx.gfx_off_mutex); 688 689 r = amdgpu_dpm_get_status_gfxoff(adev, value); 690 691 mutex_unlock(&adev->gfx.gfx_off_mutex); 692 693 return r; 694 } 695 696 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 697 { 698 int r; 699 700 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 701 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 702 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 703 704 r = amdgpu_ras_block_late_init(adev, ras_block); 705 if (r) 706 return r; 707 708 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 709 if (r) 710 goto late_fini; 711 } else { 712 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 713 } 714 715 return 0; 716 late_fini: 717 amdgpu_ras_block_late_fini(adev, ras_block); 718 return r; 719 } 720 721 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 722 { 723 int err = 0; 724 struct amdgpu_gfx_ras *ras = NULL; 725 726 /* adev->gfx.ras is NULL, which means gfx does not 727 * support ras function, then do nothing here. 728 */ 729 if (!adev->gfx.ras) 730 return 0; 731 732 ras = adev->gfx.ras; 733 734 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 735 if (err) { 736 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 737 return err; 738 } 739 740 strcpy(ras->ras_block.ras_comm.name, "gfx"); 741 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 742 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 743 adev->gfx.ras_if = &ras->ras_block.ras_comm; 744 745 /* If not define special ras_late_init function, use gfx default ras_late_init */ 746 if (!ras->ras_block.ras_late_init) 747 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 748 749 /* If not defined special ras_cb function, use default ras_cb */ 750 if (!ras->ras_block.ras_cb) 751 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 752 753 return 0; 754 } 755 756 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 757 struct amdgpu_iv_entry *entry) 758 { 759 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 760 return adev->gfx.ras->poison_consumption_handler(adev, entry); 761 762 return 0; 763 } 764 765 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 766 void *err_data, 767 struct amdgpu_iv_entry *entry) 768 { 769 /* TODO ue will trigger an interrupt. 770 * 771 * When “Full RAS” is enabled, the per-IP interrupt sources should 772 * be disabled and the driver should only look for the aggregated 773 * interrupt via sync flood 774 */ 775 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 776 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 777 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 778 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 779 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 780 amdgpu_ras_reset_gpu(adev); 781 } 782 return AMDGPU_RAS_SUCCESS; 783 } 784 785 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 786 struct amdgpu_irq_src *source, 787 struct amdgpu_iv_entry *entry) 788 { 789 struct ras_common_if *ras_if = adev->gfx.ras_if; 790 struct ras_dispatch_if ih_data = { 791 .entry = entry, 792 }; 793 794 if (!ras_if) 795 return 0; 796 797 ih_data.head = *ras_if; 798 799 DRM_ERROR("CP ECC ERROR IRQ\n"); 800 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 801 return 0; 802 } 803 804 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) 805 { 806 signed long r, cnt = 0; 807 unsigned long flags; 808 uint32_t seq, reg_val_offs = 0, value = 0; 809 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 810 struct amdgpu_ring *ring = &kiq->ring; 811 812 if (amdgpu_device_skip_hw_access(adev)) 813 return 0; 814 815 if (adev->mes.ring.sched.ready) 816 return amdgpu_mes_rreg(adev, reg); 817 818 BUG_ON(!ring->funcs->emit_rreg); 819 820 spin_lock_irqsave(&kiq->ring_lock, flags); 821 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 822 pr_err("critical bug! too many kiq readers\n"); 823 goto failed_unlock; 824 } 825 amdgpu_ring_alloc(ring, 32); 826 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 827 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 828 if (r) 829 goto failed_undo; 830 831 amdgpu_ring_commit(ring); 832 spin_unlock_irqrestore(&kiq->ring_lock, flags); 833 834 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 835 836 /* don't wait anymore for gpu reset case because this way may 837 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 838 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 839 * never return if we keep waiting in virt_kiq_rreg, which cause 840 * gpu_recover() hang there. 841 * 842 * also don't wait anymore for IRQ context 843 * */ 844 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 845 goto failed_kiq_read; 846 847 might_sleep(); 848 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 849 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 850 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 851 } 852 853 if (cnt > MAX_KIQ_REG_TRY) 854 goto failed_kiq_read; 855 856 mb(); 857 value = adev->wb.wb[reg_val_offs]; 858 amdgpu_device_wb_free(adev, reg_val_offs); 859 return value; 860 861 failed_undo: 862 amdgpu_ring_undo(ring); 863 failed_unlock: 864 spin_unlock_irqrestore(&kiq->ring_lock, flags); 865 failed_kiq_read: 866 if (reg_val_offs) 867 amdgpu_device_wb_free(adev, reg_val_offs); 868 dev_err(adev->dev, "failed to read reg:%x\n", reg); 869 return ~0; 870 } 871 872 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) 873 { 874 signed long r, cnt = 0; 875 unsigned long flags; 876 uint32_t seq; 877 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 878 struct amdgpu_ring *ring = &kiq->ring; 879 880 BUG_ON(!ring->funcs->emit_wreg); 881 882 if (amdgpu_device_skip_hw_access(adev)) 883 return; 884 885 if (adev->mes.ring.sched.ready) { 886 amdgpu_mes_wreg(adev, reg, v); 887 return; 888 } 889 890 spin_lock_irqsave(&kiq->ring_lock, flags); 891 amdgpu_ring_alloc(ring, 32); 892 amdgpu_ring_emit_wreg(ring, reg, v); 893 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 894 if (r) 895 goto failed_undo; 896 897 amdgpu_ring_commit(ring); 898 spin_unlock_irqrestore(&kiq->ring_lock, flags); 899 900 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 901 902 /* don't wait anymore for gpu reset case because this way may 903 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 904 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 905 * never return if we keep waiting in virt_kiq_rreg, which cause 906 * gpu_recover() hang there. 907 * 908 * also don't wait anymore for IRQ context 909 * */ 910 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 911 goto failed_kiq_write; 912 913 might_sleep(); 914 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 915 916 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 917 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 918 } 919 920 if (cnt > MAX_KIQ_REG_TRY) 921 goto failed_kiq_write; 922 923 return; 924 925 failed_undo: 926 amdgpu_ring_undo(ring); 927 spin_unlock_irqrestore(&kiq->ring_lock, flags); 928 failed_kiq_write: 929 dev_err(adev->dev, "failed to write reg:%x\n", reg); 930 } 931 932 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 933 { 934 if (amdgpu_num_kcq == -1) { 935 return 8; 936 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 937 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 938 return 8; 939 } 940 return amdgpu_num_kcq; 941 } 942 943 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 944 uint32_t ucode_id) 945 { 946 const struct gfx_firmware_header_v1_0 *cp_hdr; 947 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 948 struct amdgpu_firmware_info *info = NULL; 949 const struct firmware *ucode_fw; 950 unsigned int fw_size; 951 952 switch (ucode_id) { 953 case AMDGPU_UCODE_ID_CP_PFP: 954 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 955 adev->gfx.pfp_fw->data; 956 adev->gfx.pfp_fw_version = 957 le32_to_cpu(cp_hdr->header.ucode_version); 958 adev->gfx.pfp_feature_version = 959 le32_to_cpu(cp_hdr->ucode_feature_version); 960 ucode_fw = adev->gfx.pfp_fw; 961 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 962 break; 963 case AMDGPU_UCODE_ID_CP_RS64_PFP: 964 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 965 adev->gfx.pfp_fw->data; 966 adev->gfx.pfp_fw_version = 967 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 968 adev->gfx.pfp_feature_version = 969 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 970 ucode_fw = adev->gfx.pfp_fw; 971 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 972 break; 973 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 974 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 975 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 976 adev->gfx.pfp_fw->data; 977 ucode_fw = adev->gfx.pfp_fw; 978 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 979 break; 980 case AMDGPU_UCODE_ID_CP_ME: 981 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 982 adev->gfx.me_fw->data; 983 adev->gfx.me_fw_version = 984 le32_to_cpu(cp_hdr->header.ucode_version); 985 adev->gfx.me_feature_version = 986 le32_to_cpu(cp_hdr->ucode_feature_version); 987 ucode_fw = adev->gfx.me_fw; 988 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 989 break; 990 case AMDGPU_UCODE_ID_CP_RS64_ME: 991 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 992 adev->gfx.me_fw->data; 993 adev->gfx.me_fw_version = 994 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 995 adev->gfx.me_feature_version = 996 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 997 ucode_fw = adev->gfx.me_fw; 998 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 999 break; 1000 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1001 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1002 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1003 adev->gfx.me_fw->data; 1004 ucode_fw = adev->gfx.me_fw; 1005 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1006 break; 1007 case AMDGPU_UCODE_ID_CP_CE: 1008 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1009 adev->gfx.ce_fw->data; 1010 adev->gfx.ce_fw_version = 1011 le32_to_cpu(cp_hdr->header.ucode_version); 1012 adev->gfx.ce_feature_version = 1013 le32_to_cpu(cp_hdr->ucode_feature_version); 1014 ucode_fw = adev->gfx.ce_fw; 1015 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1016 break; 1017 case AMDGPU_UCODE_ID_CP_MEC1: 1018 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1019 adev->gfx.mec_fw->data; 1020 adev->gfx.mec_fw_version = 1021 le32_to_cpu(cp_hdr->header.ucode_version); 1022 adev->gfx.mec_feature_version = 1023 le32_to_cpu(cp_hdr->ucode_feature_version); 1024 ucode_fw = adev->gfx.mec_fw; 1025 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1026 le32_to_cpu(cp_hdr->jt_size) * 4; 1027 break; 1028 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1029 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1030 adev->gfx.mec_fw->data; 1031 ucode_fw = adev->gfx.mec_fw; 1032 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1033 break; 1034 case AMDGPU_UCODE_ID_CP_MEC2: 1035 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1036 adev->gfx.mec2_fw->data; 1037 adev->gfx.mec2_fw_version = 1038 le32_to_cpu(cp_hdr->header.ucode_version); 1039 adev->gfx.mec2_feature_version = 1040 le32_to_cpu(cp_hdr->ucode_feature_version); 1041 ucode_fw = adev->gfx.mec2_fw; 1042 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1043 le32_to_cpu(cp_hdr->jt_size) * 4; 1044 break; 1045 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1046 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1047 adev->gfx.mec2_fw->data; 1048 ucode_fw = adev->gfx.mec2_fw; 1049 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1050 break; 1051 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1052 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1053 adev->gfx.mec_fw->data; 1054 adev->gfx.mec_fw_version = 1055 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1056 adev->gfx.mec_feature_version = 1057 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1058 ucode_fw = adev->gfx.mec_fw; 1059 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1060 break; 1061 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1062 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1063 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1064 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1065 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1066 adev->gfx.mec_fw->data; 1067 ucode_fw = adev->gfx.mec_fw; 1068 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1069 break; 1070 default: 1071 break; 1072 } 1073 1074 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1075 info = &adev->firmware.ucode[ucode_id]; 1076 info->ucode_id = ucode_id; 1077 info->fw = ucode_fw; 1078 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1079 } 1080 } 1081