1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include "amdgpu.h" 27 #include "amdgpu_gfx.h" 28 #include "amdgpu_rlc.h" 29 #include "amdgpu_ras.h" 30 31 /* delay 0.1 second to enable gfx off feature */ 32 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 33 34 /* 35 * GPU GFX IP block helpers function. 36 */ 37 38 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 39 int pipe, int queue) 40 { 41 int bit = 0; 42 43 bit += mec * adev->gfx.mec.num_pipe_per_mec 44 * adev->gfx.mec.num_queue_per_pipe; 45 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 46 bit += queue; 47 48 return bit; 49 } 50 51 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 52 int *mec, int *pipe, int *queue) 53 { 54 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 55 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 56 % adev->gfx.mec.num_pipe_per_mec; 57 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 58 / adev->gfx.mec.num_pipe_per_mec; 59 60 } 61 62 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 63 int mec, int pipe, int queue) 64 { 65 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 66 adev->gfx.mec.queue_bitmap); 67 } 68 69 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 70 int me, int pipe, int queue) 71 { 72 int bit = 0; 73 74 bit += me * adev->gfx.me.num_pipe_per_me 75 * adev->gfx.me.num_queue_per_pipe; 76 bit += pipe * adev->gfx.me.num_queue_per_pipe; 77 bit += queue; 78 79 return bit; 80 } 81 82 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 83 int *me, int *pipe, int *queue) 84 { 85 *queue = bit % adev->gfx.me.num_queue_per_pipe; 86 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 87 % adev->gfx.me.num_pipe_per_me; 88 *me = (bit / adev->gfx.me.num_queue_per_pipe) 89 / adev->gfx.me.num_pipe_per_me; 90 } 91 92 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 93 int me, int pipe, int queue) 94 { 95 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 96 adev->gfx.me.queue_bitmap); 97 } 98 99 /** 100 * amdgpu_gfx_scratch_get - Allocate a scratch register 101 * 102 * @adev: amdgpu_device pointer 103 * @reg: scratch register mmio offset 104 * 105 * Allocate a CP scratch register for use by the driver (all asics). 106 * Returns 0 on success or -EINVAL on failure. 107 */ 108 int amdgpu_gfx_scratch_get(struct amdgpu_device *adev, uint32_t *reg) 109 { 110 int i; 111 112 i = ffs(adev->gfx.scratch.free_mask); 113 if (i != 0 && i <= adev->gfx.scratch.num_reg) { 114 i--; 115 adev->gfx.scratch.free_mask &= ~(1u << i); 116 *reg = adev->gfx.scratch.reg_base + i; 117 return 0; 118 } 119 return -EINVAL; 120 } 121 122 /** 123 * amdgpu_gfx_scratch_free - Free a scratch register 124 * 125 * @adev: amdgpu_device pointer 126 * @reg: scratch register mmio offset 127 * 128 * Free a CP scratch register allocated for use by the driver (all asics) 129 */ 130 void amdgpu_gfx_scratch_free(struct amdgpu_device *adev, uint32_t reg) 131 { 132 adev->gfx.scratch.free_mask |= 1u << (reg - adev->gfx.scratch.reg_base); 133 } 134 135 /** 136 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 137 * 138 * @mask: array in which the per-shader array disable masks will be stored 139 * @max_se: number of SEs 140 * @max_sh: number of SHs 141 * 142 * The bitmask of CUs to be disabled in the shader array determined by se and 143 * sh is stored in mask[se * max_sh + sh]. 144 */ 145 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh) 146 { 147 unsigned se, sh, cu; 148 const char *p; 149 150 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 151 152 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 153 return; 154 155 p = amdgpu_disable_cu; 156 for (;;) { 157 char *next; 158 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 159 if (ret < 3) { 160 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 161 return; 162 } 163 164 if (se < max_se && sh < max_sh && cu < 16) { 165 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 166 mask[se * max_sh + sh] |= 1u << cu; 167 } else { 168 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 169 se, sh, cu); 170 } 171 172 next = strchr(p, ','); 173 if (!next) 174 break; 175 p = next + 1; 176 } 177 } 178 179 static bool amdgpu_gfx_is_multipipe_capable(struct amdgpu_device *adev) 180 { 181 if (amdgpu_compute_multipipe != -1) { 182 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 183 amdgpu_compute_multipipe); 184 return amdgpu_compute_multipipe == 1; 185 } 186 187 /* FIXME: spreading the queues across pipes causes perf regressions 188 * on POLARIS11 compute workloads */ 189 if (adev->asic_type == CHIP_POLARIS11) 190 return false; 191 192 return adev->gfx.mec.num_mec > 1; 193 } 194 195 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 196 struct amdgpu_ring *ring) 197 { 198 /* Policy: use 1st queue as high priority compute queue if we 199 * have more than one compute queue. 200 */ 201 if (adev->gfx.num_compute_rings > 1 && 202 ring == &adev->gfx.compute_ring[0]) 203 return true; 204 205 return false; 206 } 207 208 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 209 { 210 int i, queue, pipe; 211 bool multipipe_policy = amdgpu_gfx_is_multipipe_capable(adev); 212 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 213 adev->gfx.mec.num_queue_per_pipe, 214 adev->gfx.num_compute_rings); 215 216 if (multipipe_policy) { 217 /* policy: make queues evenly cross all pipes on MEC1 only */ 218 for (i = 0; i < max_queues_per_mec; i++) { 219 pipe = i % adev->gfx.mec.num_pipe_per_mec; 220 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 221 adev->gfx.mec.num_queue_per_pipe; 222 223 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 224 adev->gfx.mec.queue_bitmap); 225 } 226 } else { 227 /* policy: amdgpu owns all queues in the given pipe */ 228 for (i = 0; i < max_queues_per_mec; ++i) 229 set_bit(i, adev->gfx.mec.queue_bitmap); 230 } 231 232 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", bitmap_weight(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 233 } 234 235 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 236 { 237 int i, queue, me; 238 239 for (i = 0; i < AMDGPU_MAX_GFX_QUEUES; ++i) { 240 queue = i % adev->gfx.me.num_queue_per_pipe; 241 me = (i / adev->gfx.me.num_queue_per_pipe) 242 / adev->gfx.me.num_pipe_per_me; 243 244 if (me >= adev->gfx.me.num_me) 245 break; 246 /* policy: amdgpu owns the first queue per pipe at this stage 247 * will extend to mulitple queues per pipe later */ 248 if (me == 0 && queue < 1) 249 set_bit(i, adev->gfx.me.queue_bitmap); 250 } 251 252 /* update the number of active graphics rings */ 253 adev->gfx.num_gfx_rings = 254 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 255 } 256 257 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 258 struct amdgpu_ring *ring) 259 { 260 int queue_bit; 261 int mec, pipe, queue; 262 263 queue_bit = adev->gfx.mec.num_mec 264 * adev->gfx.mec.num_pipe_per_mec 265 * adev->gfx.mec.num_queue_per_pipe; 266 267 while (queue_bit-- >= 0) { 268 if (test_bit(queue_bit, adev->gfx.mec.queue_bitmap)) 269 continue; 270 271 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 272 273 /* 274 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 275 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 276 * only can be issued on queue 0. 277 */ 278 if ((mec == 1 && pipe > 1) || queue != 0) 279 continue; 280 281 ring->me = mec + 1; 282 ring->pipe = pipe; 283 ring->queue = queue; 284 285 return 0; 286 } 287 288 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 289 return -EINVAL; 290 } 291 292 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 293 struct amdgpu_ring *ring, 294 struct amdgpu_irq_src *irq) 295 { 296 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 297 int r = 0; 298 299 spin_lock_init(&kiq->ring_lock); 300 301 ring->adev = NULL; 302 ring->ring_obj = NULL; 303 ring->use_doorbell = true; 304 ring->doorbell_index = adev->doorbell_index.kiq; 305 306 r = amdgpu_gfx_kiq_acquire(adev, ring); 307 if (r) 308 return r; 309 310 ring->eop_gpu_addr = kiq->eop_gpu_addr; 311 ring->no_scheduler = true; 312 sprintf(ring->name, "kiq_%d.%d.%d", ring->me, ring->pipe, ring->queue); 313 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 314 AMDGPU_RING_PRIO_DEFAULT, NULL); 315 if (r) 316 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 317 318 return r; 319 } 320 321 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 322 { 323 amdgpu_ring_fini(ring); 324 } 325 326 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev) 327 { 328 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 329 330 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 331 } 332 333 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 334 unsigned hpd_size) 335 { 336 int r; 337 u32 *hpd; 338 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 339 340 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 341 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 342 &kiq->eop_gpu_addr, (void **)&hpd); 343 if (r) { 344 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 345 return r; 346 } 347 348 memset(hpd, 0, hpd_size); 349 350 r = amdgpu_bo_reserve(kiq->eop_obj, true); 351 if (unlikely(r != 0)) 352 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 353 amdgpu_bo_kunmap(kiq->eop_obj); 354 amdgpu_bo_unreserve(kiq->eop_obj); 355 356 return 0; 357 } 358 359 /* create MQD for each compute/gfx queue */ 360 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 361 unsigned mqd_size) 362 { 363 struct amdgpu_ring *ring = NULL; 364 int r, i; 365 366 /* create MQD for KIQ */ 367 ring = &adev->gfx.kiq.ring; 368 if (!ring->mqd_obj) { 369 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 370 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 371 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 372 * KIQ MQD no matter SRIOV or Bare-metal 373 */ 374 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 375 AMDGPU_GEM_DOMAIN_VRAM, &ring->mqd_obj, 376 &ring->mqd_gpu_addr, &ring->mqd_ptr); 377 if (r) { 378 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 379 return r; 380 } 381 382 /* prepare MQD backup */ 383 adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS] = kmalloc(mqd_size, GFP_KERNEL); 384 if (!adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]) 385 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 386 } 387 388 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 389 /* create MQD for each KGQ */ 390 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 391 ring = &adev->gfx.gfx_ring[i]; 392 if (!ring->mqd_obj) { 393 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 394 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 395 &ring->mqd_gpu_addr, &ring->mqd_ptr); 396 if (r) { 397 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 398 return r; 399 } 400 401 /* prepare MQD backup */ 402 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 403 if (!adev->gfx.me.mqd_backup[i]) 404 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 405 } 406 } 407 } 408 409 /* create MQD for each KCQ */ 410 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 411 ring = &adev->gfx.compute_ring[i]; 412 if (!ring->mqd_obj) { 413 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 414 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 415 &ring->mqd_gpu_addr, &ring->mqd_ptr); 416 if (r) { 417 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 418 return r; 419 } 420 421 /* prepare MQD backup */ 422 adev->gfx.mec.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 423 if (!adev->gfx.mec.mqd_backup[i]) 424 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 425 } 426 } 427 428 return 0; 429 } 430 431 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev) 432 { 433 struct amdgpu_ring *ring = NULL; 434 int i; 435 436 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 437 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 438 ring = &adev->gfx.gfx_ring[i]; 439 kfree(adev->gfx.me.mqd_backup[i]); 440 amdgpu_bo_free_kernel(&ring->mqd_obj, 441 &ring->mqd_gpu_addr, 442 &ring->mqd_ptr); 443 } 444 } 445 446 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 447 ring = &adev->gfx.compute_ring[i]; 448 kfree(adev->gfx.mec.mqd_backup[i]); 449 amdgpu_bo_free_kernel(&ring->mqd_obj, 450 &ring->mqd_gpu_addr, 451 &ring->mqd_ptr); 452 } 453 454 ring = &adev->gfx.kiq.ring; 455 kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]); 456 amdgpu_bo_free_kernel(&ring->mqd_obj, 457 &ring->mqd_gpu_addr, 458 &ring->mqd_ptr); 459 } 460 461 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev) 462 { 463 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 464 struct amdgpu_ring *kiq_ring = &kiq->ring; 465 int i, r; 466 467 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 468 return -EINVAL; 469 470 spin_lock(&adev->gfx.kiq.ring_lock); 471 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 472 adev->gfx.num_compute_rings)) { 473 spin_unlock(&adev->gfx.kiq.ring_lock); 474 return -ENOMEM; 475 } 476 477 for (i = 0; i < adev->gfx.num_compute_rings; i++) 478 kiq->pmf->kiq_unmap_queues(kiq_ring, &adev->gfx.compute_ring[i], 479 RESET_QUEUES, 0, 0); 480 r = amdgpu_ring_test_helper(kiq_ring); 481 spin_unlock(&adev->gfx.kiq.ring_lock); 482 483 return r; 484 } 485 486 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 487 int queue_bit) 488 { 489 int mec, pipe, queue; 490 int set_resource_bit = 0; 491 492 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 493 494 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 495 496 return set_resource_bit; 497 } 498 499 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev) 500 { 501 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 502 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; 503 uint64_t queue_mask = 0; 504 int r, i; 505 506 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 507 return -EINVAL; 508 509 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 510 if (!test_bit(i, adev->gfx.mec.queue_bitmap)) 511 continue; 512 513 /* This situation may be hit in the future if a new HW 514 * generation exposes more than 64 queues. If so, the 515 * definition of queue_mask needs updating */ 516 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 517 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 518 break; 519 } 520 521 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 522 } 523 524 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 525 kiq_ring->queue); 526 spin_lock(&adev->gfx.kiq.ring_lock); 527 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 528 adev->gfx.num_compute_rings + 529 kiq->pmf->set_resources_size); 530 if (r) { 531 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 532 spin_unlock(&adev->gfx.kiq.ring_lock); 533 return r; 534 } 535 536 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 537 for (i = 0; i < adev->gfx.num_compute_rings; i++) 538 kiq->pmf->kiq_map_queues(kiq_ring, &adev->gfx.compute_ring[i]); 539 540 r = amdgpu_ring_test_helper(kiq_ring); 541 spin_unlock(&adev->gfx.kiq.ring_lock); 542 if (r) 543 DRM_ERROR("KCQ enable failed\n"); 544 545 return r; 546 } 547 548 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 549 * 550 * @adev: amdgpu_device pointer 551 * @bool enable true: enable gfx off feature, false: disable gfx off feature 552 * 553 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 554 * 2. other client can send request to disable gfx off feature, the request should be honored. 555 * 3. other client can cancel their request of disable gfx off feature 556 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 557 */ 558 559 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 560 { 561 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 562 return; 563 564 mutex_lock(&adev->gfx.gfx_off_mutex); 565 566 if (!enable) 567 adev->gfx.gfx_off_req_count++; 568 else if (adev->gfx.gfx_off_req_count > 0) 569 adev->gfx.gfx_off_req_count--; 570 571 if (enable && !adev->gfx.gfx_off_state && !adev->gfx.gfx_off_req_count) { 572 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, GFX_OFF_DELAY_ENABLE); 573 } else if (!enable && adev->gfx.gfx_off_state) { 574 if (!amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 575 adev->gfx.gfx_off_state = false; 576 577 if (adev->gfx.funcs->init_spm_golden) { 578 dev_dbg(adev->dev, "GFXOFF is disabled, re-init SPM golden settings\n"); 579 amdgpu_gfx_init_spm_golden(adev); 580 } 581 } 582 } 583 584 mutex_unlock(&adev->gfx.gfx_off_mutex); 585 } 586 587 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 588 { 589 590 int r = 0; 591 592 mutex_lock(&adev->gfx.gfx_off_mutex); 593 594 r = smu_get_status_gfxoff(adev, value); 595 596 mutex_unlock(&adev->gfx.gfx_off_mutex); 597 598 return r; 599 } 600 601 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev) 602 { 603 int r; 604 struct ras_fs_if fs_info = { 605 .sysfs_name = "gfx_err_count", 606 }; 607 struct ras_ih_if ih_info = { 608 .cb = amdgpu_gfx_process_ras_data_cb, 609 }; 610 struct ras_query_if info = { 0 }; 611 612 if (!adev->gfx.ras_if) { 613 adev->gfx.ras_if = kmalloc(sizeof(struct ras_common_if), GFP_KERNEL); 614 if (!adev->gfx.ras_if) 615 return -ENOMEM; 616 adev->gfx.ras_if->block = AMDGPU_RAS_BLOCK__GFX; 617 adev->gfx.ras_if->type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 618 adev->gfx.ras_if->sub_block_index = 0; 619 strcpy(adev->gfx.ras_if->name, "gfx"); 620 } 621 fs_info.head = ih_info.head = *adev->gfx.ras_if; 622 r = amdgpu_ras_late_init(adev, adev->gfx.ras_if, 623 &fs_info, &ih_info); 624 if (r) 625 goto free; 626 627 if (amdgpu_ras_is_supported(adev, adev->gfx.ras_if->block)) { 628 if (adev->gmc.xgmi.connected_to_cpu) { 629 info.head = *adev->gfx.ras_if; 630 amdgpu_ras_query_error_status(adev, &info); 631 } else { 632 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 633 } 634 635 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 636 if (r) 637 goto late_fini; 638 } else { 639 /* free gfx ras_if if ras is not supported */ 640 r = 0; 641 goto free; 642 } 643 644 return 0; 645 late_fini: 646 amdgpu_ras_late_fini(adev, adev->gfx.ras_if, &ih_info); 647 free: 648 kfree(adev->gfx.ras_if); 649 adev->gfx.ras_if = NULL; 650 return r; 651 } 652 653 void amdgpu_gfx_ras_fini(struct amdgpu_device *adev) 654 { 655 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX) && 656 adev->gfx.ras_if) { 657 struct ras_common_if *ras_if = adev->gfx.ras_if; 658 struct ras_ih_if ih_info = { 659 .head = *ras_if, 660 .cb = amdgpu_gfx_process_ras_data_cb, 661 }; 662 663 amdgpu_ras_late_fini(adev, ras_if, &ih_info); 664 kfree(ras_if); 665 } 666 } 667 668 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 669 void *err_data, 670 struct amdgpu_iv_entry *entry) 671 { 672 /* TODO ue will trigger an interrupt. 673 * 674 * When “Full RAS” is enabled, the per-IP interrupt sources should 675 * be disabled and the driver should only look for the aggregated 676 * interrupt via sync flood 677 */ 678 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 679 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 680 if (adev->gfx.ras_funcs && 681 adev->gfx.ras_funcs->query_ras_error_count) 682 adev->gfx.ras_funcs->query_ras_error_count(adev, err_data); 683 amdgpu_ras_reset_gpu(adev); 684 } 685 return AMDGPU_RAS_SUCCESS; 686 } 687 688 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 689 struct amdgpu_irq_src *source, 690 struct amdgpu_iv_entry *entry) 691 { 692 struct ras_common_if *ras_if = adev->gfx.ras_if; 693 struct ras_dispatch_if ih_data = { 694 .entry = entry, 695 }; 696 697 if (!ras_if) 698 return 0; 699 700 ih_data.head = *ras_if; 701 702 DRM_ERROR("CP ECC ERROR IRQ\n"); 703 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 704 return 0; 705 } 706 707 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) 708 { 709 signed long r, cnt = 0; 710 unsigned long flags; 711 uint32_t seq, reg_val_offs = 0, value = 0; 712 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 713 struct amdgpu_ring *ring = &kiq->ring; 714 715 if (amdgpu_device_skip_hw_access(adev)) 716 return 0; 717 718 BUG_ON(!ring->funcs->emit_rreg); 719 720 spin_lock_irqsave(&kiq->ring_lock, flags); 721 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 722 pr_err("critical bug! too many kiq readers\n"); 723 goto failed_unlock; 724 } 725 amdgpu_ring_alloc(ring, 32); 726 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 727 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 728 if (r) 729 goto failed_undo; 730 731 amdgpu_ring_commit(ring); 732 spin_unlock_irqrestore(&kiq->ring_lock, flags); 733 734 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 735 736 /* don't wait anymore for gpu reset case because this way may 737 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 738 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 739 * never return if we keep waiting in virt_kiq_rreg, which cause 740 * gpu_recover() hang there. 741 * 742 * also don't wait anymore for IRQ context 743 * */ 744 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 745 goto failed_kiq_read; 746 747 might_sleep(); 748 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 749 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 750 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 751 } 752 753 if (cnt > MAX_KIQ_REG_TRY) 754 goto failed_kiq_read; 755 756 mb(); 757 value = adev->wb.wb[reg_val_offs]; 758 amdgpu_device_wb_free(adev, reg_val_offs); 759 return value; 760 761 failed_undo: 762 amdgpu_ring_undo(ring); 763 failed_unlock: 764 spin_unlock_irqrestore(&kiq->ring_lock, flags); 765 failed_kiq_read: 766 if (reg_val_offs) 767 amdgpu_device_wb_free(adev, reg_val_offs); 768 dev_err(adev->dev, "failed to read reg:%x\n", reg); 769 return ~0; 770 } 771 772 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) 773 { 774 signed long r, cnt = 0; 775 unsigned long flags; 776 uint32_t seq; 777 struct amdgpu_kiq *kiq = &adev->gfx.kiq; 778 struct amdgpu_ring *ring = &kiq->ring; 779 780 BUG_ON(!ring->funcs->emit_wreg); 781 782 if (amdgpu_device_skip_hw_access(adev)) 783 return; 784 785 spin_lock_irqsave(&kiq->ring_lock, flags); 786 amdgpu_ring_alloc(ring, 32); 787 amdgpu_ring_emit_wreg(ring, reg, v); 788 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 789 if (r) 790 goto failed_undo; 791 792 amdgpu_ring_commit(ring); 793 spin_unlock_irqrestore(&kiq->ring_lock, flags); 794 795 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 796 797 /* don't wait anymore for gpu reset case because this way may 798 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 799 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 800 * never return if we keep waiting in virt_kiq_rreg, which cause 801 * gpu_recover() hang there. 802 * 803 * also don't wait anymore for IRQ context 804 * */ 805 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 806 goto failed_kiq_write; 807 808 might_sleep(); 809 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 810 811 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 812 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 813 } 814 815 if (cnt > MAX_KIQ_REG_TRY) 816 goto failed_kiq_write; 817 818 return; 819 820 failed_undo: 821 amdgpu_ring_undo(ring); 822 spin_unlock_irqrestore(&kiq->ring_lock, flags); 823 failed_kiq_write: 824 dev_err(adev->dev, "failed to write reg:%x\n", reg); 825 } 826 827 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 828 { 829 if (amdgpu_num_kcq == -1) { 830 return 8; 831 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 832 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 833 return 8; 834 } 835 return amdgpu_num_kcq; 836 } 837 838 /* amdgpu_gfx_state_change_set - Handle gfx power state change set 839 * @adev: amdgpu_device pointer 840 * @state: gfx power state(1 -sGpuChangeState_D0Entry and 2 -sGpuChangeState_D3Entry) 841 * 842 */ 843 844 void amdgpu_gfx_state_change_set(struct amdgpu_device *adev, enum gfx_change_state state) 845 { 846 mutex_lock(&adev->pm.mutex); 847 if (adev->powerplay.pp_funcs && 848 adev->powerplay.pp_funcs->gfx_state_change_set) 849 ((adev)->powerplay.pp_funcs->gfx_state_change_set( 850 (adev)->powerplay.pp_handle, state)); 851 mutex_unlock(&adev->pm.mutex); 852 } 853