xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c (revision 1d8355ad922423c9f765a644ed04526a6273d9ee)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 
32 /* delay 0.1 second to enable gfx off feature */
33 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
34 
35 #define GFX_OFF_NO_DELAY 0
36 
37 /*
38  * GPU GFX IP block helpers function.
39  */
40 
41 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
42 				int pipe, int queue)
43 {
44 	int bit = 0;
45 
46 	bit += mec * adev->gfx.mec.num_pipe_per_mec
47 		* adev->gfx.mec.num_queue_per_pipe;
48 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
49 	bit += queue;
50 
51 	return bit;
52 }
53 
54 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
55 				 int *mec, int *pipe, int *queue)
56 {
57 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
58 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
59 		% adev->gfx.mec.num_pipe_per_mec;
60 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
61 	       / adev->gfx.mec.num_pipe_per_mec;
62 
63 }
64 
65 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
66 				     int xcc_id, int mec, int pipe, int queue)
67 {
68 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
69 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
70 }
71 
72 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
73 			       int me, int pipe, int queue)
74 {
75 	int bit = 0;
76 
77 	bit += me * adev->gfx.me.num_pipe_per_me
78 		* adev->gfx.me.num_queue_per_pipe;
79 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
80 	bit += queue;
81 
82 	return bit;
83 }
84 
85 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
86 				int *me, int *pipe, int *queue)
87 {
88 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
89 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
90 		% adev->gfx.me.num_pipe_per_me;
91 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
92 		/ adev->gfx.me.num_pipe_per_me;
93 }
94 
95 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
96 				    int me, int pipe, int queue)
97 {
98 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
99 			adev->gfx.me.queue_bitmap);
100 }
101 
102 /**
103  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
104  *
105  * @mask: array in which the per-shader array disable masks will be stored
106  * @max_se: number of SEs
107  * @max_sh: number of SHs
108  *
109  * The bitmask of CUs to be disabled in the shader array determined by se and
110  * sh is stored in mask[se * max_sh + sh].
111  */
112 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh)
113 {
114 	unsigned se, sh, cu;
115 	const char *p;
116 
117 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
118 
119 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
120 		return;
121 
122 	p = amdgpu_disable_cu;
123 	for (;;) {
124 		char *next;
125 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
126 		if (ret < 3) {
127 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
128 			return;
129 		}
130 
131 		if (se < max_se && sh < max_sh && cu < 16) {
132 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
133 			mask[se * max_sh + sh] |= 1u << cu;
134 		} else {
135 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
136 				  se, sh, cu);
137 		}
138 
139 		next = strchr(p, ',');
140 		if (!next)
141 			break;
142 		p = next + 1;
143 	}
144 }
145 
146 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
147 {
148 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
149 }
150 
151 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
152 {
153 	if (amdgpu_compute_multipipe != -1) {
154 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
155 			 amdgpu_compute_multipipe);
156 		return amdgpu_compute_multipipe == 1;
157 	}
158 
159 	if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
160 		return true;
161 
162 	/* FIXME: spreading the queues across pipes causes perf regressions
163 	 * on POLARIS11 compute workloads */
164 	if (adev->asic_type == CHIP_POLARIS11)
165 		return false;
166 
167 	return adev->gfx.mec.num_mec > 1;
168 }
169 
170 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
171 						struct amdgpu_ring *ring)
172 {
173 	int queue = ring->queue;
174 	int pipe = ring->pipe;
175 
176 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
177 	 * have more than one gfx pipe.
178 	 */
179 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
180 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
181 		int me = ring->me;
182 		int bit;
183 
184 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
185 		if (ring == &adev->gfx.gfx_ring[bit])
186 			return true;
187 	}
188 
189 	return false;
190 }
191 
192 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
193 					       struct amdgpu_ring *ring)
194 {
195 	/* Policy: use 1st queue as high priority compute queue if we
196 	 * have more than one compute queue.
197 	 */
198 	if (adev->gfx.num_compute_rings > 1 &&
199 	    ring == &adev->gfx.compute_ring[0])
200 		return true;
201 
202 	return false;
203 }
204 
205 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
206 {
207 	int i, j, queue, pipe;
208 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
209 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
210 				     adev->gfx.mec.num_queue_per_pipe,
211 				     adev->gfx.num_compute_rings);
212 	int num_xcd = (adev->gfx.num_xcd > 1) ? adev->gfx.num_xcd : 1;
213 
214 	if (multipipe_policy) {
215 		/* policy: make queues evenly cross all pipes on MEC1 only
216 		 * for multiple xcc, just use the original policy for simplicity */
217 		for (j = 0; j < num_xcd; j++) {
218 			for (i = 0; i < max_queues_per_mec; i++) {
219 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
220 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
221 					 adev->gfx.mec.num_queue_per_pipe;
222 
223 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
224 					adev->gfx.mec_bitmap[j].queue_bitmap);
225 			}
226 		}
227 	} else {
228 		/* policy: amdgpu owns all queues in the given pipe */
229 		for (j = 0; j < num_xcd; j++) {
230 			for (i = 0; i < max_queues_per_mec; ++i)
231 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
232 		}
233 	}
234 
235 	for (j = 0; j < num_xcd; j++) {
236 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
237 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
238 	}
239 }
240 
241 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
242 {
243 	int i, queue, pipe;
244 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
245 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
246 					adev->gfx.me.num_queue_per_pipe;
247 
248 	if (multipipe_policy) {
249 		/* policy: amdgpu owns the first queue per pipe at this stage
250 		 * will extend to mulitple queues per pipe later */
251 		for (i = 0; i < max_queues_per_me; i++) {
252 			pipe = i % adev->gfx.me.num_pipe_per_me;
253 			queue = (i / adev->gfx.me.num_pipe_per_me) %
254 				adev->gfx.me.num_queue_per_pipe;
255 
256 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
257 				adev->gfx.me.queue_bitmap);
258 		}
259 	} else {
260 		for (i = 0; i < max_queues_per_me; ++i)
261 			set_bit(i, adev->gfx.me.queue_bitmap);
262 	}
263 
264 	/* update the number of active graphics rings */
265 	adev->gfx.num_gfx_rings =
266 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
267 }
268 
269 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
270 				  struct amdgpu_ring *ring, int xcc_id)
271 {
272 	int queue_bit;
273 	int mec, pipe, queue;
274 
275 	queue_bit = adev->gfx.mec.num_mec
276 		    * adev->gfx.mec.num_pipe_per_mec
277 		    * adev->gfx.mec.num_queue_per_pipe;
278 
279 	while (--queue_bit >= 0) {
280 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
281 			continue;
282 
283 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
284 
285 		/*
286 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
287 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
288 		 * only can be issued on queue 0.
289 		 */
290 		if ((mec == 1 && pipe > 1) || queue != 0)
291 			continue;
292 
293 		ring->me = mec + 1;
294 		ring->pipe = pipe;
295 		ring->queue = queue;
296 
297 		return 0;
298 	}
299 
300 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
301 	return -EINVAL;
302 }
303 
304 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
305 			     struct amdgpu_ring *ring,
306 			     struct amdgpu_irq_src *irq, int xcc_id)
307 {
308 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
309 	int r = 0;
310 
311 	spin_lock_init(&kiq->ring_lock);
312 
313 	ring->adev = NULL;
314 	ring->ring_obj = NULL;
315 	ring->use_doorbell = true;
316 	ring->doorbell_index = adev->doorbell_index.kiq;
317 	ring->xcc_id = xcc_id;
318 	ring->vm_hub = AMDGPU_GFXHUB_0;
319 	if (xcc_id >= 1)
320 		ring->doorbell_index = adev->doorbell_index.xcc1_kiq_start +
321 					xcc_id - 1;
322 	else
323 		ring->doorbell_index = adev->doorbell_index.kiq;
324 
325 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
326 	if (r)
327 		return r;
328 
329 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
330 	ring->no_scheduler = true;
331 	sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
332 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
333 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
334 	if (r)
335 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
336 
337 	return r;
338 }
339 
340 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
341 {
342 	amdgpu_ring_fini(ring);
343 }
344 
345 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
346 {
347 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
348 
349 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
350 }
351 
352 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
353 			unsigned hpd_size, int xcc_id)
354 {
355 	int r;
356 	u32 *hpd;
357 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
358 
359 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
360 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
361 				    &kiq->eop_gpu_addr, (void **)&hpd);
362 	if (r) {
363 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
364 		return r;
365 	}
366 
367 	memset(hpd, 0, hpd_size);
368 
369 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
370 	if (unlikely(r != 0))
371 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
372 	amdgpu_bo_kunmap(kiq->eop_obj);
373 	amdgpu_bo_unreserve(kiq->eop_obj);
374 
375 	return 0;
376 }
377 
378 /* create MQD for each compute/gfx queue */
379 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
380 			   unsigned mqd_size, int xcc_id)
381 {
382 	int r, i, j;
383 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
384 	struct amdgpu_ring *ring = &kiq->ring;
385 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
386 
387 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
388 	if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
389 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
390 
391 	/* create MQD for KIQ */
392 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
393 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
394 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
395 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
396 		 * KIQ MQD no matter SRIOV or Bare-metal
397 		 */
398 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
399 					    AMDGPU_GEM_DOMAIN_VRAM |
400 					    AMDGPU_GEM_DOMAIN_GTT,
401 					    &ring->mqd_obj,
402 					    &ring->mqd_gpu_addr,
403 					    &ring->mqd_ptr);
404 		if (r) {
405 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
406 			return r;
407 		}
408 
409 		/* prepare MQD backup */
410 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
411 		if (!kiq->mqd_backup)
412 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
413 	}
414 
415 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
416 		/* create MQD for each KGQ */
417 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
418 			ring = &adev->gfx.gfx_ring[i];
419 			if (!ring->mqd_obj) {
420 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
421 							    domain, &ring->mqd_obj,
422 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
423 				if (r) {
424 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
425 					return r;
426 				}
427 
428 				ring->mqd_size = mqd_size;
429 				/* prepare MQD backup */
430 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
431 				if (!adev->gfx.me.mqd_backup[i])
432 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
433 			}
434 		}
435 	}
436 
437 	/* create MQD for each KCQ */
438 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
439 		j = i + xcc_id * adev->gfx.num_compute_rings;
440 		ring = &adev->gfx.compute_ring[j];
441 		if (!ring->mqd_obj) {
442 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
443 						    domain, &ring->mqd_obj,
444 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
445 			if (r) {
446 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
447 				return r;
448 			}
449 
450 			ring->mqd_size = mqd_size;
451 			/* prepare MQD backup */
452 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
453 			if (!adev->gfx.mec.mqd_backup[j])
454 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
455 		}
456 	}
457 
458 	return 0;
459 }
460 
461 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
462 {
463 	struct amdgpu_ring *ring = NULL;
464 	int i, j;
465 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
466 
467 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
468 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
469 			ring = &adev->gfx.gfx_ring[i];
470 			kfree(adev->gfx.me.mqd_backup[i]);
471 			amdgpu_bo_free_kernel(&ring->mqd_obj,
472 					      &ring->mqd_gpu_addr,
473 					      &ring->mqd_ptr);
474 		}
475 	}
476 
477 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
478 		j = i + xcc_id * adev->gfx.num_compute_rings;
479 		ring = &adev->gfx.compute_ring[j];
480 		kfree(adev->gfx.mec.mqd_backup[j]);
481 		amdgpu_bo_free_kernel(&ring->mqd_obj,
482 				      &ring->mqd_gpu_addr,
483 				      &ring->mqd_ptr);
484 	}
485 
486 	ring = &kiq->ring;
487 	kfree(kiq->mqd_backup);
488 	kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]);
489 	amdgpu_bo_free_kernel(&ring->mqd_obj,
490 			      &ring->mqd_gpu_addr,
491 			      &ring->mqd_ptr);
492 }
493 
494 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
495 {
496 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
497 	struct amdgpu_ring *kiq_ring = &kiq->ring;
498 	int i, r = 0;
499 	int j;
500 
501 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
502 		return -EINVAL;
503 
504 	spin_lock(&kiq->ring_lock);
505 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
506 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
507 						adev->gfx.num_compute_rings)) {
508 			spin_unlock(&kiq->ring_lock);
509 			return -ENOMEM;
510 		}
511 
512 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
513 			j = i + xcc_id * adev->gfx.num_compute_rings;
514 			kiq->pmf->kiq_unmap_queues(kiq_ring,
515 						   &adev->gfx.compute_ring[i],
516 						   RESET_QUEUES, 0, 0);
517 		}
518 	}
519 
520 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
521 		r = amdgpu_ring_test_helper(kiq_ring);
522 	spin_unlock(&kiq->ring_lock);
523 
524 	return r;
525 }
526 
527 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
528 {
529 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
530 	struct amdgpu_ring *kiq_ring = &kiq->ring;
531 	int i, r = 0;
532 	int j;
533 
534 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
535 		return -EINVAL;
536 
537 	spin_lock(&kiq->ring_lock);
538 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
539 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
540 						adev->gfx.num_gfx_rings)) {
541 			spin_unlock(&kiq->ring_lock);
542 			return -ENOMEM;
543 		}
544 
545 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
546 			j = i + xcc_id * adev->gfx.num_gfx_rings;
547 			kiq->pmf->kiq_unmap_queues(kiq_ring,
548 						   &adev->gfx.gfx_ring[i],
549 						   PREEMPT_QUEUES, 0, 0);
550 		}
551 	}
552 
553 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
554 		r = amdgpu_ring_test_helper(kiq_ring);
555 	spin_unlock(&kiq->ring_lock);
556 
557 	return r;
558 }
559 
560 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
561 					int queue_bit)
562 {
563 	int mec, pipe, queue;
564 	int set_resource_bit = 0;
565 
566 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
567 
568 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
569 
570 	return set_resource_bit;
571 }
572 
573 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
574 {
575 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
576 	struct amdgpu_ring *kiq_ring = &kiq->ring;
577 	uint64_t queue_mask = 0;
578 	int r, i, j;
579 
580 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
581 		return -EINVAL;
582 
583 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
584 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
585 			continue;
586 
587 		/* This situation may be hit in the future if a new HW
588 		 * generation exposes more than 64 queues. If so, the
589 		 * definition of queue_mask needs updating */
590 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
591 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
592 			break;
593 		}
594 
595 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
596 	}
597 
598 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
599 							kiq_ring->queue);
600 	spin_lock(&kiq->ring_lock);
601 	/* No need to map kcq on the slave */
602 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
603 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
604 						adev->gfx.num_compute_rings +
605 						kiq->pmf->set_resources_size);
606 		if (r) {
607 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
608 			spin_unlock(&kiq->ring_lock);
609 			return r;
610 		}
611 
612 		if (adev->enable_mes)
613 			queue_mask = ~0ULL;
614 
615 		kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
616 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
617 			j = i + xcc_id * adev->gfx.num_compute_rings;
618 			kiq->pmf->kiq_map_queues(kiq_ring,
619 						 &adev->gfx.compute_ring[i]);
620 		}
621 	}
622 
623 	r = amdgpu_ring_test_helper(kiq_ring);
624 	spin_unlock(&kiq->ring_lock);
625 	if (r)
626 		DRM_ERROR("KCQ enable failed\n");
627 
628 	return r;
629 }
630 
631 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
632 {
633 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
634 	struct amdgpu_ring *kiq_ring = &kiq->ring;
635 	int r, i, j;
636 
637 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
638 		return -EINVAL;
639 
640 	spin_lock(&kiq->ring_lock);
641 	/* No need to map kcq on the slave */
642 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
643 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
644 						adev->gfx.num_gfx_rings);
645 		if (r) {
646 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
647 			spin_unlock(&kiq->ring_lock);
648 			return r;
649 		}
650 
651 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
652 			j = i + xcc_id * adev->gfx.num_gfx_rings;
653 			kiq->pmf->kiq_map_queues(kiq_ring,
654 						 &adev->gfx.gfx_ring[i]);
655 		}
656 	}
657 
658 	r = amdgpu_ring_test_helper(kiq_ring);
659 	spin_unlock(&kiq->ring_lock);
660 	if (r)
661 		DRM_ERROR("KCQ enable failed\n");
662 
663 	return r;
664 }
665 
666 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
667  *
668  * @adev: amdgpu_device pointer
669  * @bool enable true: enable gfx off feature, false: disable gfx off feature
670  *
671  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
672  * 2. other client can send request to disable gfx off feature, the request should be honored.
673  * 3. other client can cancel their request of disable gfx off feature
674  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
675  */
676 
677 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
678 {
679 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
680 
681 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
682 		return;
683 
684 	mutex_lock(&adev->gfx.gfx_off_mutex);
685 
686 	if (enable) {
687 		/* If the count is already 0, it means there's an imbalance bug somewhere.
688 		 * Note that the bug may be in a different caller than the one which triggers the
689 		 * WARN_ON_ONCE.
690 		 */
691 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
692 			goto unlock;
693 
694 		adev->gfx.gfx_off_req_count--;
695 
696 		if (adev->gfx.gfx_off_req_count == 0 &&
697 		    !adev->gfx.gfx_off_state) {
698 			/* If going to s2idle, no need to wait */
699 			if (adev->in_s0ix) {
700 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
701 						AMD_IP_BLOCK_TYPE_GFX, true))
702 					adev->gfx.gfx_off_state = true;
703 			} else {
704 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
705 					      delay);
706 			}
707 		}
708 	} else {
709 		if (adev->gfx.gfx_off_req_count == 0) {
710 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
711 
712 			if (adev->gfx.gfx_off_state &&
713 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
714 				adev->gfx.gfx_off_state = false;
715 
716 				if (adev->gfx.funcs->init_spm_golden) {
717 					dev_dbg(adev->dev,
718 						"GFXOFF is disabled, re-init SPM golden settings\n");
719 					amdgpu_gfx_init_spm_golden(adev);
720 				}
721 			}
722 		}
723 
724 		adev->gfx.gfx_off_req_count++;
725 	}
726 
727 unlock:
728 	mutex_unlock(&adev->gfx.gfx_off_mutex);
729 }
730 
731 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
732 {
733 	int r = 0;
734 
735 	mutex_lock(&adev->gfx.gfx_off_mutex);
736 
737 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
738 
739 	mutex_unlock(&adev->gfx.gfx_off_mutex);
740 
741 	return r;
742 }
743 
744 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
745 {
746 	int r = 0;
747 
748 	mutex_lock(&adev->gfx.gfx_off_mutex);
749 
750 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
751 
752 	mutex_unlock(&adev->gfx.gfx_off_mutex);
753 
754 	return r;
755 }
756 
757 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
758 {
759 	int r = 0;
760 
761 	mutex_lock(&adev->gfx.gfx_off_mutex);
762 
763 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
764 
765 	mutex_unlock(&adev->gfx.gfx_off_mutex);
766 
767 	return r;
768 }
769 
770 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
771 {
772 
773 	int r = 0;
774 
775 	mutex_lock(&adev->gfx.gfx_off_mutex);
776 
777 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
778 
779 	mutex_unlock(&adev->gfx.gfx_off_mutex);
780 
781 	return r;
782 }
783 
784 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
785 {
786 	int r;
787 
788 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
789 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
790 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
791 
792 		r = amdgpu_ras_block_late_init(adev, ras_block);
793 		if (r)
794 			return r;
795 
796 		if (adev->gfx.cp_ecc_error_irq.funcs) {
797 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
798 			if (r)
799 				goto late_fini;
800 		}
801 	} else {
802 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
803 	}
804 
805 	return 0;
806 late_fini:
807 	amdgpu_ras_block_late_fini(adev, ras_block);
808 	return r;
809 }
810 
811 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
812 {
813 	int err = 0;
814 	struct amdgpu_gfx_ras *ras = NULL;
815 
816 	/* adev->gfx.ras is NULL, which means gfx does not
817 	 * support ras function, then do nothing here.
818 	 */
819 	if (!adev->gfx.ras)
820 		return 0;
821 
822 	ras = adev->gfx.ras;
823 
824 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
825 	if (err) {
826 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
827 		return err;
828 	}
829 
830 	strcpy(ras->ras_block.ras_comm.name, "gfx");
831 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
832 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
833 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
834 
835 	/* If not define special ras_late_init function, use gfx default ras_late_init */
836 	if (!ras->ras_block.ras_late_init)
837 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
838 
839 	/* If not defined special ras_cb function, use default ras_cb */
840 	if (!ras->ras_block.ras_cb)
841 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
842 
843 	return 0;
844 }
845 
846 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
847 						struct amdgpu_iv_entry *entry)
848 {
849 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
850 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
851 
852 	return 0;
853 }
854 
855 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
856 		void *err_data,
857 		struct amdgpu_iv_entry *entry)
858 {
859 	/* TODO ue will trigger an interrupt.
860 	 *
861 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
862 	 * be disabled and the driver should only look for the aggregated
863 	 * interrupt via sync flood
864 	 */
865 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
866 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
867 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
868 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
869 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
870 		amdgpu_ras_reset_gpu(adev);
871 	}
872 	return AMDGPU_RAS_SUCCESS;
873 }
874 
875 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
876 				  struct amdgpu_irq_src *source,
877 				  struct amdgpu_iv_entry *entry)
878 {
879 	struct ras_common_if *ras_if = adev->gfx.ras_if;
880 	struct ras_dispatch_if ih_data = {
881 		.entry = entry,
882 	};
883 
884 	if (!ras_if)
885 		return 0;
886 
887 	ih_data.head = *ras_if;
888 
889 	DRM_ERROR("CP ECC ERROR IRQ\n");
890 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
891 	return 0;
892 }
893 
894 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
895 {
896 	signed long r, cnt = 0;
897 	unsigned long flags;
898 	uint32_t seq, reg_val_offs = 0, value = 0;
899 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
900 	struct amdgpu_ring *ring = &kiq->ring;
901 
902 	if (amdgpu_device_skip_hw_access(adev))
903 		return 0;
904 
905 	if (adev->mes.ring.sched.ready)
906 		return amdgpu_mes_rreg(adev, reg);
907 
908 	BUG_ON(!ring->funcs->emit_rreg);
909 
910 	spin_lock_irqsave(&kiq->ring_lock, flags);
911 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
912 		pr_err("critical bug! too many kiq readers\n");
913 		goto failed_unlock;
914 	}
915 	amdgpu_ring_alloc(ring, 32);
916 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
917 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
918 	if (r)
919 		goto failed_undo;
920 
921 	amdgpu_ring_commit(ring);
922 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
923 
924 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
925 
926 	/* don't wait anymore for gpu reset case because this way may
927 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
928 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
929 	 * never return if we keep waiting in virt_kiq_rreg, which cause
930 	 * gpu_recover() hang there.
931 	 *
932 	 * also don't wait anymore for IRQ context
933 	 * */
934 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
935 		goto failed_kiq_read;
936 
937 	might_sleep();
938 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
939 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
940 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
941 	}
942 
943 	if (cnt > MAX_KIQ_REG_TRY)
944 		goto failed_kiq_read;
945 
946 	mb();
947 	value = adev->wb.wb[reg_val_offs];
948 	amdgpu_device_wb_free(adev, reg_val_offs);
949 	return value;
950 
951 failed_undo:
952 	amdgpu_ring_undo(ring);
953 failed_unlock:
954 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
955 failed_kiq_read:
956 	if (reg_val_offs)
957 		amdgpu_device_wb_free(adev, reg_val_offs);
958 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
959 	return ~0;
960 }
961 
962 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
963 {
964 	signed long r, cnt = 0;
965 	unsigned long flags;
966 	uint32_t seq;
967 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
968 	struct amdgpu_ring *ring = &kiq->ring;
969 
970 	BUG_ON(!ring->funcs->emit_wreg);
971 
972 	if (amdgpu_device_skip_hw_access(adev))
973 		return;
974 
975 	if (adev->mes.ring.sched.ready) {
976 		amdgpu_mes_wreg(adev, reg, v);
977 		return;
978 	}
979 
980 	spin_lock_irqsave(&kiq->ring_lock, flags);
981 	amdgpu_ring_alloc(ring, 32);
982 	amdgpu_ring_emit_wreg(ring, reg, v);
983 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
984 	if (r)
985 		goto failed_undo;
986 
987 	amdgpu_ring_commit(ring);
988 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
989 
990 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
991 
992 	/* don't wait anymore for gpu reset case because this way may
993 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
994 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
995 	 * never return if we keep waiting in virt_kiq_rreg, which cause
996 	 * gpu_recover() hang there.
997 	 *
998 	 * also don't wait anymore for IRQ context
999 	 * */
1000 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1001 		goto failed_kiq_write;
1002 
1003 	might_sleep();
1004 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1005 
1006 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1007 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1008 	}
1009 
1010 	if (cnt > MAX_KIQ_REG_TRY)
1011 		goto failed_kiq_write;
1012 
1013 	return;
1014 
1015 failed_undo:
1016 	amdgpu_ring_undo(ring);
1017 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1018 failed_kiq_write:
1019 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1020 }
1021 
1022 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1023 {
1024 	if (amdgpu_num_kcq == -1) {
1025 		return 8;
1026 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1027 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1028 		return 8;
1029 	}
1030 	return amdgpu_num_kcq;
1031 }
1032 
1033 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1034 				  uint32_t ucode_id)
1035 {
1036 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1037 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1038 	struct amdgpu_firmware_info *info = NULL;
1039 	const struct firmware *ucode_fw;
1040 	unsigned int fw_size;
1041 
1042 	switch (ucode_id) {
1043 	case AMDGPU_UCODE_ID_CP_PFP:
1044 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1045 			adev->gfx.pfp_fw->data;
1046 		adev->gfx.pfp_fw_version =
1047 			le32_to_cpu(cp_hdr->header.ucode_version);
1048 		adev->gfx.pfp_feature_version =
1049 			le32_to_cpu(cp_hdr->ucode_feature_version);
1050 		ucode_fw = adev->gfx.pfp_fw;
1051 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1052 		break;
1053 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1054 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1055 			adev->gfx.pfp_fw->data;
1056 		adev->gfx.pfp_fw_version =
1057 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1058 		adev->gfx.pfp_feature_version =
1059 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1060 		ucode_fw = adev->gfx.pfp_fw;
1061 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1062 		break;
1063 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1064 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1065 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1066 			adev->gfx.pfp_fw->data;
1067 		ucode_fw = adev->gfx.pfp_fw;
1068 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1069 		break;
1070 	case AMDGPU_UCODE_ID_CP_ME:
1071 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1072 			adev->gfx.me_fw->data;
1073 		adev->gfx.me_fw_version =
1074 			le32_to_cpu(cp_hdr->header.ucode_version);
1075 		adev->gfx.me_feature_version =
1076 			le32_to_cpu(cp_hdr->ucode_feature_version);
1077 		ucode_fw = adev->gfx.me_fw;
1078 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1079 		break;
1080 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1081 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1082 			adev->gfx.me_fw->data;
1083 		adev->gfx.me_fw_version =
1084 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1085 		adev->gfx.me_feature_version =
1086 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1087 		ucode_fw = adev->gfx.me_fw;
1088 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1089 		break;
1090 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1091 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1092 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1093 			adev->gfx.me_fw->data;
1094 		ucode_fw = adev->gfx.me_fw;
1095 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1096 		break;
1097 	case AMDGPU_UCODE_ID_CP_CE:
1098 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1099 			adev->gfx.ce_fw->data;
1100 		adev->gfx.ce_fw_version =
1101 			le32_to_cpu(cp_hdr->header.ucode_version);
1102 		adev->gfx.ce_feature_version =
1103 			le32_to_cpu(cp_hdr->ucode_feature_version);
1104 		ucode_fw = adev->gfx.ce_fw;
1105 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1106 		break;
1107 	case AMDGPU_UCODE_ID_CP_MEC1:
1108 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1109 			adev->gfx.mec_fw->data;
1110 		adev->gfx.mec_fw_version =
1111 			le32_to_cpu(cp_hdr->header.ucode_version);
1112 		adev->gfx.mec_feature_version =
1113 			le32_to_cpu(cp_hdr->ucode_feature_version);
1114 		ucode_fw = adev->gfx.mec_fw;
1115 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1116 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1117 		break;
1118 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1119 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1120 			adev->gfx.mec_fw->data;
1121 		ucode_fw = adev->gfx.mec_fw;
1122 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1123 		break;
1124 	case AMDGPU_UCODE_ID_CP_MEC2:
1125 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1126 			adev->gfx.mec2_fw->data;
1127 		adev->gfx.mec2_fw_version =
1128 			le32_to_cpu(cp_hdr->header.ucode_version);
1129 		adev->gfx.mec2_feature_version =
1130 			le32_to_cpu(cp_hdr->ucode_feature_version);
1131 		ucode_fw = adev->gfx.mec2_fw;
1132 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1133 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1134 		break;
1135 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1136 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1137 			adev->gfx.mec2_fw->data;
1138 		ucode_fw = adev->gfx.mec2_fw;
1139 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1140 		break;
1141 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1142 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1143 			adev->gfx.mec_fw->data;
1144 		adev->gfx.mec_fw_version =
1145 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1146 		adev->gfx.mec_feature_version =
1147 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1148 		ucode_fw = adev->gfx.mec_fw;
1149 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1150 		break;
1151 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1152 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1153 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1154 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1155 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1156 			adev->gfx.mec_fw->data;
1157 		ucode_fw = adev->gfx.mec_fw;
1158 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1159 		break;
1160 	default:
1161 		break;
1162 	}
1163 
1164 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1165 		info = &adev->firmware.ucode[ucode_id];
1166 		info->ucode_id = ucode_id;
1167 		info->fw = ucode_fw;
1168 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1169 	}
1170 }
1171 
1172 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1173 {
1174 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1175 			adev->gfx.num_xcc_per_xcp : 1));
1176 }
1177