1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 32 /* delay 0.1 second to enable gfx off feature */ 33 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 34 35 #define GFX_OFF_NO_DELAY 0 36 37 /* 38 * GPU GFX IP block helpers function. 39 */ 40 41 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 42 int pipe, int queue) 43 { 44 int bit = 0; 45 46 bit += mec * adev->gfx.mec.num_pipe_per_mec 47 * adev->gfx.mec.num_queue_per_pipe; 48 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 49 bit += queue; 50 51 return bit; 52 } 53 54 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 55 int *mec, int *pipe, int *queue) 56 { 57 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 58 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 59 % adev->gfx.mec.num_pipe_per_mec; 60 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 61 / adev->gfx.mec.num_pipe_per_mec; 62 63 } 64 65 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 66 int xcc_id, int mec, int pipe, int queue) 67 { 68 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 69 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 70 } 71 72 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 73 int me, int pipe, int queue) 74 { 75 int bit = 0; 76 77 bit += me * adev->gfx.me.num_pipe_per_me 78 * adev->gfx.me.num_queue_per_pipe; 79 bit += pipe * adev->gfx.me.num_queue_per_pipe; 80 bit += queue; 81 82 return bit; 83 } 84 85 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 86 int *me, int *pipe, int *queue) 87 { 88 *queue = bit % adev->gfx.me.num_queue_per_pipe; 89 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 90 % adev->gfx.me.num_pipe_per_me; 91 *me = (bit / adev->gfx.me.num_queue_per_pipe) 92 / adev->gfx.me.num_pipe_per_me; 93 } 94 95 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 96 int me, int pipe, int queue) 97 { 98 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 99 adev->gfx.me.queue_bitmap); 100 } 101 102 /** 103 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 104 * 105 * @mask: array in which the per-shader array disable masks will be stored 106 * @max_se: number of SEs 107 * @max_sh: number of SHs 108 * 109 * The bitmask of CUs to be disabled in the shader array determined by se and 110 * sh is stored in mask[se * max_sh + sh]. 111 */ 112 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh) 113 { 114 unsigned se, sh, cu; 115 const char *p; 116 117 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 118 119 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 120 return; 121 122 p = amdgpu_disable_cu; 123 for (;;) { 124 char *next; 125 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 126 if (ret < 3) { 127 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 128 return; 129 } 130 131 if (se < max_se && sh < max_sh && cu < 16) { 132 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 133 mask[se * max_sh + sh] |= 1u << cu; 134 } else { 135 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 136 se, sh, cu); 137 } 138 139 next = strchr(p, ','); 140 if (!next) 141 break; 142 p = next + 1; 143 } 144 } 145 146 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 147 { 148 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 149 } 150 151 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 152 { 153 if (amdgpu_compute_multipipe != -1) { 154 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 155 amdgpu_compute_multipipe); 156 return amdgpu_compute_multipipe == 1; 157 } 158 159 if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)) 160 return true; 161 162 /* FIXME: spreading the queues across pipes causes perf regressions 163 * on POLARIS11 compute workloads */ 164 if (adev->asic_type == CHIP_POLARIS11) 165 return false; 166 167 return adev->gfx.mec.num_mec > 1; 168 } 169 170 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 171 struct amdgpu_ring *ring) 172 { 173 int queue = ring->queue; 174 int pipe = ring->pipe; 175 176 /* Policy: use pipe1 queue0 as high priority graphics queue if we 177 * have more than one gfx pipe. 178 */ 179 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 180 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 181 int me = ring->me; 182 int bit; 183 184 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 185 if (ring == &adev->gfx.gfx_ring[bit]) 186 return true; 187 } 188 189 return false; 190 } 191 192 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 193 struct amdgpu_ring *ring) 194 { 195 /* Policy: use 1st queue as high priority compute queue if we 196 * have more than one compute queue. 197 */ 198 if (adev->gfx.num_compute_rings > 1 && 199 ring == &adev->gfx.compute_ring[0]) 200 return true; 201 202 return false; 203 } 204 205 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 206 { 207 int i, j, queue, pipe; 208 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 209 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 210 adev->gfx.mec.num_queue_per_pipe, 211 adev->gfx.num_compute_rings); 212 int num_xcd = (adev->gfx.num_xcd > 1) ? adev->gfx.num_xcd : 1; 213 214 if (multipipe_policy) { 215 /* policy: make queues evenly cross all pipes on MEC1 only 216 * for multiple xcc, just use the original policy for simplicity */ 217 for (j = 0; j < num_xcd; j++) { 218 for (i = 0; i < max_queues_per_mec; i++) { 219 pipe = i % adev->gfx.mec.num_pipe_per_mec; 220 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 221 adev->gfx.mec.num_queue_per_pipe; 222 223 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 224 adev->gfx.mec_bitmap[j].queue_bitmap); 225 } 226 } 227 } else { 228 /* policy: amdgpu owns all queues in the given pipe */ 229 for (j = 0; j < num_xcd; j++) { 230 for (i = 0; i < max_queues_per_mec; ++i) 231 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 232 } 233 } 234 235 for (j = 0; j < num_xcd; j++) { 236 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 237 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 238 } 239 } 240 241 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 242 { 243 int i, queue, pipe; 244 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 245 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 246 adev->gfx.me.num_queue_per_pipe; 247 248 if (multipipe_policy) { 249 /* policy: amdgpu owns the first queue per pipe at this stage 250 * will extend to mulitple queues per pipe later */ 251 for (i = 0; i < max_queues_per_me; i++) { 252 pipe = i % adev->gfx.me.num_pipe_per_me; 253 queue = (i / adev->gfx.me.num_pipe_per_me) % 254 adev->gfx.me.num_queue_per_pipe; 255 256 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 257 adev->gfx.me.queue_bitmap); 258 } 259 } else { 260 for (i = 0; i < max_queues_per_me; ++i) 261 set_bit(i, adev->gfx.me.queue_bitmap); 262 } 263 264 /* update the number of active graphics rings */ 265 adev->gfx.num_gfx_rings = 266 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 267 } 268 269 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 270 struct amdgpu_ring *ring, int xcc_id) 271 { 272 int queue_bit; 273 int mec, pipe, queue; 274 275 queue_bit = adev->gfx.mec.num_mec 276 * adev->gfx.mec.num_pipe_per_mec 277 * adev->gfx.mec.num_queue_per_pipe; 278 279 while (--queue_bit >= 0) { 280 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 281 continue; 282 283 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 284 285 /* 286 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 287 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 288 * only can be issued on queue 0. 289 */ 290 if ((mec == 1 && pipe > 1) || queue != 0) 291 continue; 292 293 ring->me = mec + 1; 294 ring->pipe = pipe; 295 ring->queue = queue; 296 297 return 0; 298 } 299 300 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 301 return -EINVAL; 302 } 303 304 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 305 struct amdgpu_ring *ring, 306 struct amdgpu_irq_src *irq, int xcc_id) 307 { 308 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 309 int r = 0; 310 311 spin_lock_init(&kiq->ring_lock); 312 313 ring->adev = NULL; 314 ring->ring_obj = NULL; 315 ring->use_doorbell = true; 316 ring->doorbell_index = adev->doorbell_index.kiq; 317 ring->xcc_id = xcc_id; 318 ring->vm_hub = AMDGPU_GFXHUB_0; 319 if (xcc_id >= 1) 320 ring->doorbell_index = adev->doorbell_index.xcc1_kiq_start + 321 xcc_id - 1; 322 else 323 ring->doorbell_index = adev->doorbell_index.kiq; 324 325 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 326 if (r) 327 return r; 328 329 ring->eop_gpu_addr = kiq->eop_gpu_addr; 330 ring->no_scheduler = true; 331 sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue); 332 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 333 AMDGPU_RING_PRIO_DEFAULT, NULL); 334 if (r) 335 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 336 337 return r; 338 } 339 340 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 341 { 342 amdgpu_ring_fini(ring); 343 } 344 345 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 346 { 347 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 348 349 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 350 } 351 352 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 353 unsigned hpd_size, int xcc_id) 354 { 355 int r; 356 u32 *hpd; 357 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 358 359 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 360 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 361 &kiq->eop_gpu_addr, (void **)&hpd); 362 if (r) { 363 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 364 return r; 365 } 366 367 memset(hpd, 0, hpd_size); 368 369 r = amdgpu_bo_reserve(kiq->eop_obj, true); 370 if (unlikely(r != 0)) 371 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 372 amdgpu_bo_kunmap(kiq->eop_obj); 373 amdgpu_bo_unreserve(kiq->eop_obj); 374 375 return 0; 376 } 377 378 /* create MQD for each compute/gfx queue */ 379 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 380 unsigned mqd_size, int xcc_id) 381 { 382 int r, i, j; 383 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 384 struct amdgpu_ring *ring = &kiq->ring; 385 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 386 387 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 388 if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0)) 389 domain |= AMDGPU_GEM_DOMAIN_VRAM; 390 391 /* create MQD for KIQ */ 392 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 393 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 394 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 395 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 396 * KIQ MQD no matter SRIOV or Bare-metal 397 */ 398 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 399 AMDGPU_GEM_DOMAIN_VRAM | 400 AMDGPU_GEM_DOMAIN_GTT, 401 &ring->mqd_obj, 402 &ring->mqd_gpu_addr, 403 &ring->mqd_ptr); 404 if (r) { 405 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 406 return r; 407 } 408 409 /* prepare MQD backup */ 410 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 411 if (!kiq->mqd_backup) 412 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 413 } 414 415 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 416 /* create MQD for each KGQ */ 417 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 418 ring = &adev->gfx.gfx_ring[i]; 419 if (!ring->mqd_obj) { 420 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 421 domain, &ring->mqd_obj, 422 &ring->mqd_gpu_addr, &ring->mqd_ptr); 423 if (r) { 424 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 425 return r; 426 } 427 428 ring->mqd_size = mqd_size; 429 /* prepare MQD backup */ 430 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 431 if (!adev->gfx.me.mqd_backup[i]) 432 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 433 } 434 } 435 } 436 437 /* create MQD for each KCQ */ 438 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 439 j = i + xcc_id * adev->gfx.num_compute_rings; 440 ring = &adev->gfx.compute_ring[j]; 441 if (!ring->mqd_obj) { 442 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 443 domain, &ring->mqd_obj, 444 &ring->mqd_gpu_addr, &ring->mqd_ptr); 445 if (r) { 446 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 447 return r; 448 } 449 450 ring->mqd_size = mqd_size; 451 /* prepare MQD backup */ 452 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); 453 if (!adev->gfx.mec.mqd_backup[j]) 454 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 455 } 456 } 457 458 return 0; 459 } 460 461 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 462 { 463 struct amdgpu_ring *ring = NULL; 464 int i, j; 465 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 466 467 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 468 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 469 ring = &adev->gfx.gfx_ring[i]; 470 kfree(adev->gfx.me.mqd_backup[i]); 471 amdgpu_bo_free_kernel(&ring->mqd_obj, 472 &ring->mqd_gpu_addr, 473 &ring->mqd_ptr); 474 } 475 } 476 477 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 478 j = i + xcc_id * adev->gfx.num_compute_rings; 479 ring = &adev->gfx.compute_ring[j]; 480 kfree(adev->gfx.mec.mqd_backup[j]); 481 amdgpu_bo_free_kernel(&ring->mqd_obj, 482 &ring->mqd_gpu_addr, 483 &ring->mqd_ptr); 484 } 485 486 ring = &kiq->ring; 487 kfree(kiq->mqd_backup); 488 kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]); 489 amdgpu_bo_free_kernel(&ring->mqd_obj, 490 &ring->mqd_gpu_addr, 491 &ring->mqd_ptr); 492 } 493 494 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 495 { 496 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 497 struct amdgpu_ring *kiq_ring = &kiq->ring; 498 int i, r = 0; 499 int j; 500 501 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 502 return -EINVAL; 503 504 spin_lock(&kiq->ring_lock); 505 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 506 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 507 adev->gfx.num_compute_rings)) { 508 spin_unlock(&kiq->ring_lock); 509 return -ENOMEM; 510 } 511 512 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 513 j = i + xcc_id * adev->gfx.num_compute_rings; 514 kiq->pmf->kiq_unmap_queues(kiq_ring, 515 &adev->gfx.compute_ring[i], 516 RESET_QUEUES, 0, 0); 517 } 518 } 519 520 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 521 r = amdgpu_ring_test_helper(kiq_ring); 522 spin_unlock(&kiq->ring_lock); 523 524 return r; 525 } 526 527 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 528 { 529 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 530 struct amdgpu_ring *kiq_ring = &kiq->ring; 531 int i, r = 0; 532 int j; 533 534 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 535 return -EINVAL; 536 537 spin_lock(&kiq->ring_lock); 538 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 539 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 540 adev->gfx.num_gfx_rings)) { 541 spin_unlock(&kiq->ring_lock); 542 return -ENOMEM; 543 } 544 545 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 546 j = i + xcc_id * adev->gfx.num_gfx_rings; 547 kiq->pmf->kiq_unmap_queues(kiq_ring, 548 &adev->gfx.gfx_ring[i], 549 PREEMPT_QUEUES, 0, 0); 550 } 551 } 552 553 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 554 r = amdgpu_ring_test_helper(kiq_ring); 555 spin_unlock(&kiq->ring_lock); 556 557 return r; 558 } 559 560 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 561 int queue_bit) 562 { 563 int mec, pipe, queue; 564 int set_resource_bit = 0; 565 566 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 567 568 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 569 570 return set_resource_bit; 571 } 572 573 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 574 { 575 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 576 struct amdgpu_ring *kiq_ring = &kiq->ring; 577 uint64_t queue_mask = 0; 578 int r, i, j; 579 580 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 581 return -EINVAL; 582 583 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 584 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 585 continue; 586 587 /* This situation may be hit in the future if a new HW 588 * generation exposes more than 64 queues. If so, the 589 * definition of queue_mask needs updating */ 590 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 591 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 592 break; 593 } 594 595 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 596 } 597 598 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 599 kiq_ring->queue); 600 spin_lock(&kiq->ring_lock); 601 /* No need to map kcq on the slave */ 602 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 603 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 604 adev->gfx.num_compute_rings + 605 kiq->pmf->set_resources_size); 606 if (r) { 607 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 608 spin_unlock(&kiq->ring_lock); 609 return r; 610 } 611 612 if (adev->enable_mes) 613 queue_mask = ~0ULL; 614 615 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 616 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 617 j = i + xcc_id * adev->gfx.num_compute_rings; 618 kiq->pmf->kiq_map_queues(kiq_ring, 619 &adev->gfx.compute_ring[i]); 620 } 621 } 622 623 r = amdgpu_ring_test_helper(kiq_ring); 624 spin_unlock(&kiq->ring_lock); 625 if (r) 626 DRM_ERROR("KCQ enable failed\n"); 627 628 return r; 629 } 630 631 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 632 { 633 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 634 struct amdgpu_ring *kiq_ring = &kiq->ring; 635 int r, i, j; 636 637 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 638 return -EINVAL; 639 640 spin_lock(&kiq->ring_lock); 641 /* No need to map kcq on the slave */ 642 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 643 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 644 adev->gfx.num_gfx_rings); 645 if (r) { 646 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 647 spin_unlock(&kiq->ring_lock); 648 return r; 649 } 650 651 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 652 j = i + xcc_id * adev->gfx.num_gfx_rings; 653 kiq->pmf->kiq_map_queues(kiq_ring, 654 &adev->gfx.gfx_ring[i]); 655 } 656 } 657 658 r = amdgpu_ring_test_helper(kiq_ring); 659 spin_unlock(&kiq->ring_lock); 660 if (r) 661 DRM_ERROR("KCQ enable failed\n"); 662 663 return r; 664 } 665 666 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 667 * 668 * @adev: amdgpu_device pointer 669 * @bool enable true: enable gfx off feature, false: disable gfx off feature 670 * 671 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 672 * 2. other client can send request to disable gfx off feature, the request should be honored. 673 * 3. other client can cancel their request of disable gfx off feature 674 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 675 */ 676 677 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 678 { 679 unsigned long delay = GFX_OFF_DELAY_ENABLE; 680 681 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 682 return; 683 684 mutex_lock(&adev->gfx.gfx_off_mutex); 685 686 if (enable) { 687 /* If the count is already 0, it means there's an imbalance bug somewhere. 688 * Note that the bug may be in a different caller than the one which triggers the 689 * WARN_ON_ONCE. 690 */ 691 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 692 goto unlock; 693 694 adev->gfx.gfx_off_req_count--; 695 696 if (adev->gfx.gfx_off_req_count == 0 && 697 !adev->gfx.gfx_off_state) { 698 /* If going to s2idle, no need to wait */ 699 if (adev->in_s0ix) { 700 if (!amdgpu_dpm_set_powergating_by_smu(adev, 701 AMD_IP_BLOCK_TYPE_GFX, true)) 702 adev->gfx.gfx_off_state = true; 703 } else { 704 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 705 delay); 706 } 707 } 708 } else { 709 if (adev->gfx.gfx_off_req_count == 0) { 710 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 711 712 if (adev->gfx.gfx_off_state && 713 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 714 adev->gfx.gfx_off_state = false; 715 716 if (adev->gfx.funcs->init_spm_golden) { 717 dev_dbg(adev->dev, 718 "GFXOFF is disabled, re-init SPM golden settings\n"); 719 amdgpu_gfx_init_spm_golden(adev); 720 } 721 } 722 } 723 724 adev->gfx.gfx_off_req_count++; 725 } 726 727 unlock: 728 mutex_unlock(&adev->gfx.gfx_off_mutex); 729 } 730 731 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 732 { 733 int r = 0; 734 735 mutex_lock(&adev->gfx.gfx_off_mutex); 736 737 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 738 739 mutex_unlock(&adev->gfx.gfx_off_mutex); 740 741 return r; 742 } 743 744 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 745 { 746 int r = 0; 747 748 mutex_lock(&adev->gfx.gfx_off_mutex); 749 750 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 751 752 mutex_unlock(&adev->gfx.gfx_off_mutex); 753 754 return r; 755 } 756 757 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 758 { 759 int r = 0; 760 761 mutex_lock(&adev->gfx.gfx_off_mutex); 762 763 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 764 765 mutex_unlock(&adev->gfx.gfx_off_mutex); 766 767 return r; 768 } 769 770 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 771 { 772 773 int r = 0; 774 775 mutex_lock(&adev->gfx.gfx_off_mutex); 776 777 r = amdgpu_dpm_get_status_gfxoff(adev, value); 778 779 mutex_unlock(&adev->gfx.gfx_off_mutex); 780 781 return r; 782 } 783 784 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 785 { 786 int r; 787 788 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 789 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 790 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 791 792 r = amdgpu_ras_block_late_init(adev, ras_block); 793 if (r) 794 return r; 795 796 if (adev->gfx.cp_ecc_error_irq.funcs) { 797 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 798 if (r) 799 goto late_fini; 800 } 801 } else { 802 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 803 } 804 805 return 0; 806 late_fini: 807 amdgpu_ras_block_late_fini(adev, ras_block); 808 return r; 809 } 810 811 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 812 { 813 int err = 0; 814 struct amdgpu_gfx_ras *ras = NULL; 815 816 /* adev->gfx.ras is NULL, which means gfx does not 817 * support ras function, then do nothing here. 818 */ 819 if (!adev->gfx.ras) 820 return 0; 821 822 ras = adev->gfx.ras; 823 824 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 825 if (err) { 826 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 827 return err; 828 } 829 830 strcpy(ras->ras_block.ras_comm.name, "gfx"); 831 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 832 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 833 adev->gfx.ras_if = &ras->ras_block.ras_comm; 834 835 /* If not define special ras_late_init function, use gfx default ras_late_init */ 836 if (!ras->ras_block.ras_late_init) 837 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 838 839 /* If not defined special ras_cb function, use default ras_cb */ 840 if (!ras->ras_block.ras_cb) 841 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 842 843 return 0; 844 } 845 846 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 847 struct amdgpu_iv_entry *entry) 848 { 849 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 850 return adev->gfx.ras->poison_consumption_handler(adev, entry); 851 852 return 0; 853 } 854 855 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 856 void *err_data, 857 struct amdgpu_iv_entry *entry) 858 { 859 /* TODO ue will trigger an interrupt. 860 * 861 * When “Full RAS” is enabled, the per-IP interrupt sources should 862 * be disabled and the driver should only look for the aggregated 863 * interrupt via sync flood 864 */ 865 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 866 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 867 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 868 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 869 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 870 amdgpu_ras_reset_gpu(adev); 871 } 872 return AMDGPU_RAS_SUCCESS; 873 } 874 875 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 876 struct amdgpu_irq_src *source, 877 struct amdgpu_iv_entry *entry) 878 { 879 struct ras_common_if *ras_if = adev->gfx.ras_if; 880 struct ras_dispatch_if ih_data = { 881 .entry = entry, 882 }; 883 884 if (!ras_if) 885 return 0; 886 887 ih_data.head = *ras_if; 888 889 DRM_ERROR("CP ECC ERROR IRQ\n"); 890 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 891 return 0; 892 } 893 894 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) 895 { 896 signed long r, cnt = 0; 897 unsigned long flags; 898 uint32_t seq, reg_val_offs = 0, value = 0; 899 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 900 struct amdgpu_ring *ring = &kiq->ring; 901 902 if (amdgpu_device_skip_hw_access(adev)) 903 return 0; 904 905 if (adev->mes.ring.sched.ready) 906 return amdgpu_mes_rreg(adev, reg); 907 908 BUG_ON(!ring->funcs->emit_rreg); 909 910 spin_lock_irqsave(&kiq->ring_lock, flags); 911 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 912 pr_err("critical bug! too many kiq readers\n"); 913 goto failed_unlock; 914 } 915 amdgpu_ring_alloc(ring, 32); 916 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 917 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 918 if (r) 919 goto failed_undo; 920 921 amdgpu_ring_commit(ring); 922 spin_unlock_irqrestore(&kiq->ring_lock, flags); 923 924 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 925 926 /* don't wait anymore for gpu reset case because this way may 927 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 928 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 929 * never return if we keep waiting in virt_kiq_rreg, which cause 930 * gpu_recover() hang there. 931 * 932 * also don't wait anymore for IRQ context 933 * */ 934 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 935 goto failed_kiq_read; 936 937 might_sleep(); 938 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 939 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 940 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 941 } 942 943 if (cnt > MAX_KIQ_REG_TRY) 944 goto failed_kiq_read; 945 946 mb(); 947 value = adev->wb.wb[reg_val_offs]; 948 amdgpu_device_wb_free(adev, reg_val_offs); 949 return value; 950 951 failed_undo: 952 amdgpu_ring_undo(ring); 953 failed_unlock: 954 spin_unlock_irqrestore(&kiq->ring_lock, flags); 955 failed_kiq_read: 956 if (reg_val_offs) 957 amdgpu_device_wb_free(adev, reg_val_offs); 958 dev_err(adev->dev, "failed to read reg:%x\n", reg); 959 return ~0; 960 } 961 962 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) 963 { 964 signed long r, cnt = 0; 965 unsigned long flags; 966 uint32_t seq; 967 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 968 struct amdgpu_ring *ring = &kiq->ring; 969 970 BUG_ON(!ring->funcs->emit_wreg); 971 972 if (amdgpu_device_skip_hw_access(adev)) 973 return; 974 975 if (adev->mes.ring.sched.ready) { 976 amdgpu_mes_wreg(adev, reg, v); 977 return; 978 } 979 980 spin_lock_irqsave(&kiq->ring_lock, flags); 981 amdgpu_ring_alloc(ring, 32); 982 amdgpu_ring_emit_wreg(ring, reg, v); 983 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 984 if (r) 985 goto failed_undo; 986 987 amdgpu_ring_commit(ring); 988 spin_unlock_irqrestore(&kiq->ring_lock, flags); 989 990 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 991 992 /* don't wait anymore for gpu reset case because this way may 993 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 994 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 995 * never return if we keep waiting in virt_kiq_rreg, which cause 996 * gpu_recover() hang there. 997 * 998 * also don't wait anymore for IRQ context 999 * */ 1000 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1001 goto failed_kiq_write; 1002 1003 might_sleep(); 1004 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1005 1006 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1007 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1008 } 1009 1010 if (cnt > MAX_KIQ_REG_TRY) 1011 goto failed_kiq_write; 1012 1013 return; 1014 1015 failed_undo: 1016 amdgpu_ring_undo(ring); 1017 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1018 failed_kiq_write: 1019 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1020 } 1021 1022 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1023 { 1024 if (amdgpu_num_kcq == -1) { 1025 return 8; 1026 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1027 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1028 return 8; 1029 } 1030 return amdgpu_num_kcq; 1031 } 1032 1033 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1034 uint32_t ucode_id) 1035 { 1036 const struct gfx_firmware_header_v1_0 *cp_hdr; 1037 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1038 struct amdgpu_firmware_info *info = NULL; 1039 const struct firmware *ucode_fw; 1040 unsigned int fw_size; 1041 1042 switch (ucode_id) { 1043 case AMDGPU_UCODE_ID_CP_PFP: 1044 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1045 adev->gfx.pfp_fw->data; 1046 adev->gfx.pfp_fw_version = 1047 le32_to_cpu(cp_hdr->header.ucode_version); 1048 adev->gfx.pfp_feature_version = 1049 le32_to_cpu(cp_hdr->ucode_feature_version); 1050 ucode_fw = adev->gfx.pfp_fw; 1051 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1052 break; 1053 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1054 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1055 adev->gfx.pfp_fw->data; 1056 adev->gfx.pfp_fw_version = 1057 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1058 adev->gfx.pfp_feature_version = 1059 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1060 ucode_fw = adev->gfx.pfp_fw; 1061 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1062 break; 1063 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1064 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1065 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1066 adev->gfx.pfp_fw->data; 1067 ucode_fw = adev->gfx.pfp_fw; 1068 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1069 break; 1070 case AMDGPU_UCODE_ID_CP_ME: 1071 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1072 adev->gfx.me_fw->data; 1073 adev->gfx.me_fw_version = 1074 le32_to_cpu(cp_hdr->header.ucode_version); 1075 adev->gfx.me_feature_version = 1076 le32_to_cpu(cp_hdr->ucode_feature_version); 1077 ucode_fw = adev->gfx.me_fw; 1078 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1079 break; 1080 case AMDGPU_UCODE_ID_CP_RS64_ME: 1081 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1082 adev->gfx.me_fw->data; 1083 adev->gfx.me_fw_version = 1084 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1085 adev->gfx.me_feature_version = 1086 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1087 ucode_fw = adev->gfx.me_fw; 1088 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1089 break; 1090 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1091 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1092 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1093 adev->gfx.me_fw->data; 1094 ucode_fw = adev->gfx.me_fw; 1095 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1096 break; 1097 case AMDGPU_UCODE_ID_CP_CE: 1098 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1099 adev->gfx.ce_fw->data; 1100 adev->gfx.ce_fw_version = 1101 le32_to_cpu(cp_hdr->header.ucode_version); 1102 adev->gfx.ce_feature_version = 1103 le32_to_cpu(cp_hdr->ucode_feature_version); 1104 ucode_fw = adev->gfx.ce_fw; 1105 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1106 break; 1107 case AMDGPU_UCODE_ID_CP_MEC1: 1108 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1109 adev->gfx.mec_fw->data; 1110 adev->gfx.mec_fw_version = 1111 le32_to_cpu(cp_hdr->header.ucode_version); 1112 adev->gfx.mec_feature_version = 1113 le32_to_cpu(cp_hdr->ucode_feature_version); 1114 ucode_fw = adev->gfx.mec_fw; 1115 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1116 le32_to_cpu(cp_hdr->jt_size) * 4; 1117 break; 1118 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1119 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1120 adev->gfx.mec_fw->data; 1121 ucode_fw = adev->gfx.mec_fw; 1122 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1123 break; 1124 case AMDGPU_UCODE_ID_CP_MEC2: 1125 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1126 adev->gfx.mec2_fw->data; 1127 adev->gfx.mec2_fw_version = 1128 le32_to_cpu(cp_hdr->header.ucode_version); 1129 adev->gfx.mec2_feature_version = 1130 le32_to_cpu(cp_hdr->ucode_feature_version); 1131 ucode_fw = adev->gfx.mec2_fw; 1132 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1133 le32_to_cpu(cp_hdr->jt_size) * 4; 1134 break; 1135 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1136 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1137 adev->gfx.mec2_fw->data; 1138 ucode_fw = adev->gfx.mec2_fw; 1139 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1140 break; 1141 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1142 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1143 adev->gfx.mec_fw->data; 1144 adev->gfx.mec_fw_version = 1145 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1146 adev->gfx.mec_feature_version = 1147 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1148 ucode_fw = adev->gfx.mec_fw; 1149 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1150 break; 1151 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1152 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1153 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1154 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1155 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1156 adev->gfx.mec_fw->data; 1157 ucode_fw = adev->gfx.mec_fw; 1158 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1159 break; 1160 default: 1161 break; 1162 } 1163 1164 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1165 info = &adev->firmware.ucode[ucode_id]; 1166 info->ucode_id = ucode_id; 1167 info->fw = ucode_fw; 1168 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1169 } 1170 } 1171 1172 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1173 { 1174 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1175 adev->gfx.num_xcc_per_xcp : 1)); 1176 } 1177